if_re.c revision 185903
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 185903 2008-12-11 02:24:11Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/* Tunables. */
159static int msi_disable = 1;
160TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161
162#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163
164/*
165 * Various supported device vendors/types and their names.
166 */
167static struct rl_type re_devs[] = {
168	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170	{ RT_VENDORID, RT_DEVICEID_8139, 0,
171	    "RealTek 8139C+ 10/100BaseTX" },
172	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
173	    "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
174	{ RT_VENDORID, RT_DEVICEID_8168, 0,
175	    "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe "
176	    "Gigabit Ethernet" },
177	{ RT_VENDORID, RT_DEVICEID_8169, 0,
178	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
180	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
182	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
183	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
184	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
185	{ USR_VENDORID, USR_DEVICEID_997902, 0,
186	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
187};
188
189static struct rl_hwrev re_hwrevs[] = {
190	{ RL_HWREV_8139, RL_8139,  "" },
191	{ RL_HWREV_8139A, RL_8139, "A" },
192	{ RL_HWREV_8139AG, RL_8139, "A-G" },
193	{ RL_HWREV_8139B, RL_8139, "B" },
194	{ RL_HWREV_8130, RL_8139, "8130" },
195	{ RL_HWREV_8139C, RL_8139, "C" },
196	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
197	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
198	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
199	{ RL_HWREV_8169, RL_8169, "8169"},
200	{ RL_HWREV_8169S, RL_8169, "8169S"},
201	{ RL_HWREV_8110S, RL_8169, "8110S"},
202	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
203	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
204	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"},
205	{ RL_HWREV_8100, RL_8139, "8100"},
206	{ RL_HWREV_8101, RL_8139, "8101"},
207	{ RL_HWREV_8100E, RL_8169, "8100E"},
208	{ RL_HWREV_8101E, RL_8169, "8101E"},
209	{ RL_HWREV_8102E, RL_8169, "8102E"},
210	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
211	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
212	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
213	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
214	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
215	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
216	{ RL_HWREV_8168D, RL_8169, "8168D"},
217	{ 0, 0, NULL }
218};
219
220static int re_probe		(device_t);
221static int re_attach		(device_t);
222static int re_detach		(device_t);
223
224static int re_encap		(struct rl_softc *, struct mbuf **);
225
226static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
227static int re_allocmem		(device_t, struct rl_softc *);
228static __inline void re_discard_rxbuf
229				(struct rl_softc *, int);
230static int re_newbuf		(struct rl_softc *, int);
231static int re_rx_list_init	(struct rl_softc *);
232static int re_tx_list_init	(struct rl_softc *);
233#ifdef RE_FIXUP_RX
234static __inline void re_fixup_rx
235				(struct mbuf *);
236#endif
237static int re_rxeof		(struct rl_softc *);
238static void re_txeof		(struct rl_softc *);
239#ifdef DEVICE_POLLING
240static void re_poll		(struct ifnet *, enum poll_cmd, int);
241static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
242#endif
243static int re_intr		(void *);
244static void re_tick		(void *);
245static void re_tx_task		(void *, int);
246static void re_int_task		(void *, int);
247static void re_start		(struct ifnet *);
248static int re_ioctl		(struct ifnet *, u_long, caddr_t);
249static void re_init		(void *);
250static void re_init_locked	(struct rl_softc *);
251static void re_stop		(struct rl_softc *);
252static void re_watchdog		(struct rl_softc *);
253static int re_suspend		(device_t);
254static int re_resume		(device_t);
255static int re_shutdown		(device_t);
256static int re_ifmedia_upd	(struct ifnet *);
257static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
258
259static void re_eeprom_putbyte	(struct rl_softc *, int);
260static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
261static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
262static int re_gmii_readreg	(device_t, int, int);
263static int re_gmii_writereg	(device_t, int, int, int);
264
265static int re_miibus_readreg	(device_t, int, int);
266static int re_miibus_writereg	(device_t, int, int, int);
267static void re_miibus_statchg	(device_t);
268
269static void re_setmulti		(struct rl_softc *);
270static void re_reset		(struct rl_softc *);
271static void re_setwol		(struct rl_softc *);
272static void re_clrwol		(struct rl_softc *);
273
274#ifdef RE_DIAG
275static int re_diag		(struct rl_softc *);
276#endif
277
278static device_method_t re_methods[] = {
279	/* Device interface */
280	DEVMETHOD(device_probe,		re_probe),
281	DEVMETHOD(device_attach,	re_attach),
282	DEVMETHOD(device_detach,	re_detach),
283	DEVMETHOD(device_suspend,	re_suspend),
284	DEVMETHOD(device_resume,	re_resume),
285	DEVMETHOD(device_shutdown,	re_shutdown),
286
287	/* bus interface */
288	DEVMETHOD(bus_print_child,	bus_generic_print_child),
289	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
290
291	/* MII interface */
292	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
293	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
294	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
295
296	{ 0, 0 }
297};
298
299static driver_t re_driver = {
300	"re",
301	re_methods,
302	sizeof(struct rl_softc)
303};
304
305static devclass_t re_devclass;
306
307DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
308DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
309DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
310
311#define EE_SET(x)					\
312	CSR_WRITE_1(sc, RL_EECMD,			\
313		CSR_READ_1(sc, RL_EECMD) | x)
314
315#define EE_CLR(x)					\
316	CSR_WRITE_1(sc, RL_EECMD,			\
317		CSR_READ_1(sc, RL_EECMD) & ~x)
318
319/*
320 * Send a read command and address to the EEPROM, check for ACK.
321 */
322static void
323re_eeprom_putbyte(struct rl_softc *sc, int addr)
324{
325	int			d, i;
326
327	d = addr | (RL_9346_READ << sc->rl_eewidth);
328
329	/*
330	 * Feed in each bit and strobe the clock.
331	 */
332
333	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
334		if (d & i) {
335			EE_SET(RL_EE_DATAIN);
336		} else {
337			EE_CLR(RL_EE_DATAIN);
338		}
339		DELAY(100);
340		EE_SET(RL_EE_CLK);
341		DELAY(150);
342		EE_CLR(RL_EE_CLK);
343		DELAY(100);
344	}
345}
346
347/*
348 * Read a word of data stored in the EEPROM at address 'addr.'
349 */
350static void
351re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
352{
353	int			i;
354	u_int16_t		word = 0;
355
356	/*
357	 * Send address of word we want to read.
358	 */
359	re_eeprom_putbyte(sc, addr);
360
361	/*
362	 * Start reading bits from EEPROM.
363	 */
364	for (i = 0x8000; i; i >>= 1) {
365		EE_SET(RL_EE_CLK);
366		DELAY(100);
367		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
368			word |= i;
369		EE_CLR(RL_EE_CLK);
370		DELAY(100);
371	}
372
373	*dest = word;
374}
375
376/*
377 * Read a sequence of words from the EEPROM.
378 */
379static void
380re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
381{
382	int			i;
383	u_int16_t		word = 0, *ptr;
384
385	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
386
387        DELAY(100);
388
389	for (i = 0; i < cnt; i++) {
390		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
391		re_eeprom_getword(sc, off + i, &word);
392		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
393		ptr = (u_int16_t *)(dest + (i * 2));
394                *ptr = word;
395	}
396
397	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
398}
399
400static int
401re_gmii_readreg(device_t dev, int phy, int reg)
402{
403	struct rl_softc		*sc;
404	u_int32_t		rval;
405	int			i;
406
407	if (phy != 1)
408		return (0);
409
410	sc = device_get_softc(dev);
411
412	/* Let the rgephy driver read the GMEDIASTAT register */
413
414	if (reg == RL_GMEDIASTAT) {
415		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
416		return (rval);
417	}
418
419	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
420
421	for (i = 0; i < RL_TIMEOUT; i++) {
422		rval = CSR_READ_4(sc, RL_PHYAR);
423		if (rval & RL_PHYAR_BUSY)
424			break;
425		DELAY(100);
426	}
427
428	if (i == RL_TIMEOUT) {
429		device_printf(sc->rl_dev, "PHY read failed\n");
430		return (0);
431	}
432
433	return (rval & RL_PHYAR_PHYDATA);
434}
435
436static int
437re_gmii_writereg(device_t dev, int phy, int reg, int data)
438{
439	struct rl_softc		*sc;
440	u_int32_t		rval;
441	int			i;
442
443	sc = device_get_softc(dev);
444
445	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
446	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
447
448	for (i = 0; i < RL_TIMEOUT; i++) {
449		rval = CSR_READ_4(sc, RL_PHYAR);
450		if (!(rval & RL_PHYAR_BUSY))
451			break;
452		DELAY(100);
453	}
454
455	if (i == RL_TIMEOUT) {
456		device_printf(sc->rl_dev, "PHY write failed\n");
457		return (0);
458	}
459
460	return (0);
461}
462
463static int
464re_miibus_readreg(device_t dev, int phy, int reg)
465{
466	struct rl_softc		*sc;
467	u_int16_t		rval = 0;
468	u_int16_t		re8139_reg = 0;
469
470	sc = device_get_softc(dev);
471
472	if (sc->rl_type == RL_8169) {
473		rval = re_gmii_readreg(dev, phy, reg);
474		return (rval);
475	}
476
477	/* Pretend the internal PHY is only at address 0 */
478	if (phy) {
479		return (0);
480	}
481	switch (reg) {
482	case MII_BMCR:
483		re8139_reg = RL_BMCR;
484		break;
485	case MII_BMSR:
486		re8139_reg = RL_BMSR;
487		break;
488	case MII_ANAR:
489		re8139_reg = RL_ANAR;
490		break;
491	case MII_ANER:
492		re8139_reg = RL_ANER;
493		break;
494	case MII_ANLPAR:
495		re8139_reg = RL_LPAR;
496		break;
497	case MII_PHYIDR1:
498	case MII_PHYIDR2:
499		return (0);
500	/*
501	 * Allow the rlphy driver to read the media status
502	 * register. If we have a link partner which does not
503	 * support NWAY, this is the register which will tell
504	 * us the results of parallel detection.
505	 */
506	case RL_MEDIASTAT:
507		rval = CSR_READ_1(sc, RL_MEDIASTAT);
508		return (rval);
509	default:
510		device_printf(sc->rl_dev, "bad phy register\n");
511		return (0);
512	}
513	rval = CSR_READ_2(sc, re8139_reg);
514	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
515		/* 8139C+ has different bit layout. */
516		rval &= ~(BMCR_LOOP | BMCR_ISO);
517	}
518	return (rval);
519}
520
521static int
522re_miibus_writereg(device_t dev, int phy, int reg, int data)
523{
524	struct rl_softc		*sc;
525	u_int16_t		re8139_reg = 0;
526	int			rval = 0;
527
528	sc = device_get_softc(dev);
529
530	if (sc->rl_type == RL_8169) {
531		rval = re_gmii_writereg(dev, phy, reg, data);
532		return (rval);
533	}
534
535	/* Pretend the internal PHY is only at address 0 */
536	if (phy)
537		return (0);
538
539	switch (reg) {
540	case MII_BMCR:
541		re8139_reg = RL_BMCR;
542		if (sc->rl_type == RL_8139CPLUS) {
543			/* 8139C+ has different bit layout. */
544			data &= ~(BMCR_LOOP | BMCR_ISO);
545		}
546		break;
547	case MII_BMSR:
548		re8139_reg = RL_BMSR;
549		break;
550	case MII_ANAR:
551		re8139_reg = RL_ANAR;
552		break;
553	case MII_ANER:
554		re8139_reg = RL_ANER;
555		break;
556	case MII_ANLPAR:
557		re8139_reg = RL_LPAR;
558		break;
559	case MII_PHYIDR1:
560	case MII_PHYIDR2:
561		return (0);
562		break;
563	default:
564		device_printf(sc->rl_dev, "bad phy register\n");
565		return (0);
566	}
567	CSR_WRITE_2(sc, re8139_reg, data);
568	return (0);
569}
570
571static void
572re_miibus_statchg(device_t dev)
573{
574	struct rl_softc		*sc;
575	struct ifnet		*ifp;
576	struct mii_data		*mii;
577
578	sc = device_get_softc(dev);
579	mii = device_get_softc(sc->rl_miibus);
580	ifp = sc->rl_ifp;
581	if (mii == NULL || ifp == NULL ||
582	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
583		return;
584
585	sc->rl_flags &= ~RL_FLAG_LINK;
586	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
587	    (IFM_ACTIVE | IFM_AVALID)) {
588		switch (IFM_SUBTYPE(mii->mii_media_active)) {
589		case IFM_10_T:
590		case IFM_100_TX:
591			sc->rl_flags |= RL_FLAG_LINK;
592			break;
593		case IFM_1000_T:
594			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
595				break;
596			sc->rl_flags |= RL_FLAG_LINK;
597			break;
598		default:
599			break;
600		}
601	}
602	/*
603	 * RealTek controllers does not provide any interface to
604	 * Tx/Rx MACs for resolved speed, duplex and flow-control
605	 * parameters.
606	 */
607}
608
609/*
610 * Program the 64-bit multicast hash filter.
611 */
612static void
613re_setmulti(struct rl_softc *sc)
614{
615	struct ifnet		*ifp;
616	int			h = 0;
617	u_int32_t		hashes[2] = { 0, 0 };
618	struct ifmultiaddr	*ifma;
619	u_int32_t		rxfilt;
620	int			mcnt = 0;
621
622	RL_LOCK_ASSERT(sc);
623
624	ifp = sc->rl_ifp;
625
626
627	rxfilt = CSR_READ_4(sc, RL_RXCFG);
628	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
629	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
630		if (ifp->if_flags & IFF_PROMISC)
631			rxfilt |= RL_RXCFG_RX_ALLPHYS;
632		/*
633		 * Unlike other hardwares, we have to explicitly set
634		 * RL_RXCFG_RX_MULTI to receive multicast frames in
635		 * promiscuous mode.
636		 */
637		rxfilt |= RL_RXCFG_RX_MULTI;
638		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
639		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
640		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
641		return;
642	}
643
644	/* first, zot all the existing hash bits */
645	CSR_WRITE_4(sc, RL_MAR0, 0);
646	CSR_WRITE_4(sc, RL_MAR4, 0);
647
648	/* now program new ones */
649	IF_ADDR_LOCK(ifp);
650	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
651		if (ifma->ifma_addr->sa_family != AF_LINK)
652			continue;
653		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
654		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
655		if (h < 32)
656			hashes[0] |= (1 << h);
657		else
658			hashes[1] |= (1 << (h - 32));
659		mcnt++;
660	}
661	IF_ADDR_UNLOCK(ifp);
662
663	if (mcnt)
664		rxfilt |= RL_RXCFG_RX_MULTI;
665	else
666		rxfilt &= ~RL_RXCFG_RX_MULTI;
667
668	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
669
670	/*
671	 * For some unfathomable reason, RealTek decided to reverse
672	 * the order of the multicast hash registers in the PCI Express
673	 * parts. This means we have to write the hash pattern in reverse
674	 * order for those devices.
675	 */
676
677	if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
678		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
679		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
680	} else {
681		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
682		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
683	}
684}
685
686static void
687re_reset(struct rl_softc *sc)
688{
689	int			i;
690
691	RL_LOCK_ASSERT(sc);
692
693	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
694
695	for (i = 0; i < RL_TIMEOUT; i++) {
696		DELAY(10);
697		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
698			break;
699	}
700	if (i == RL_TIMEOUT)
701		device_printf(sc->rl_dev, "reset never completed!\n");
702
703	if ((sc->rl_flags & RL_FLAG_PHY8169) != 0)
704		CSR_WRITE_1(sc, 0x82, 1);
705	if ((sc->rl_flags & RL_FLAG_PHY8110S) != 0) {
706		CSR_WRITE_1(sc, 0x82, 1);
707		re_gmii_writereg(sc->rl_dev, 1, 0x0B, 0);
708	}
709}
710
711#ifdef RE_DIAG
712
713/*
714 * The following routine is designed to test for a defect on some
715 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
716 * lines connected to the bus, however for a 32-bit only card, they
717 * should be pulled high. The result of this defect is that the
718 * NIC will not work right if you plug it into a 64-bit slot: DMA
719 * operations will be done with 64-bit transfers, which will fail
720 * because the 64-bit data lines aren't connected.
721 *
722 * There's no way to work around this (short of talking a soldering
723 * iron to the board), however we can detect it. The method we use
724 * here is to put the NIC into digital loopback mode, set the receiver
725 * to promiscuous mode, and then try to send a frame. We then compare
726 * the frame data we sent to what was received. If the data matches,
727 * then the NIC is working correctly, otherwise we know the user has
728 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
729 * slot. In the latter case, there's no way the NIC can work correctly,
730 * so we print out a message on the console and abort the device attach.
731 */
732
733static int
734re_diag(struct rl_softc *sc)
735{
736	struct ifnet		*ifp = sc->rl_ifp;
737	struct mbuf		*m0;
738	struct ether_header	*eh;
739	struct rl_desc		*cur_rx;
740	u_int16_t		status;
741	u_int32_t		rxstat;
742	int			total_len, i, error = 0, phyaddr;
743	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
744	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
745
746	/* Allocate a single mbuf */
747	MGETHDR(m0, M_DONTWAIT, MT_DATA);
748	if (m0 == NULL)
749		return (ENOBUFS);
750
751	RL_LOCK(sc);
752
753	/*
754	 * Initialize the NIC in test mode. This sets the chip up
755	 * so that it can send and receive frames, but performs the
756	 * following special functions:
757	 * - Puts receiver in promiscuous mode
758	 * - Enables digital loopback mode
759	 * - Leaves interrupts turned off
760	 */
761
762	ifp->if_flags |= IFF_PROMISC;
763	sc->rl_testmode = 1;
764	re_init_locked(sc);
765	sc->rl_flags |= RL_FLAG_LINK;
766	if (sc->rl_type == RL_8169)
767		phyaddr = 1;
768	else
769		phyaddr = 0;
770
771	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
772	for (i = 0; i < RL_TIMEOUT; i++) {
773		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
774		if (!(status & BMCR_RESET))
775			break;
776	}
777
778	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
779	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
780
781	DELAY(100000);
782
783	/* Put some data in the mbuf */
784
785	eh = mtod(m0, struct ether_header *);
786	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
787	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
788	eh->ether_type = htons(ETHERTYPE_IP);
789	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
790
791	/*
792	 * Queue the packet, start transmission.
793	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
794	 */
795
796	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
797	RL_UNLOCK(sc);
798	/* XXX: re_diag must not be called when in ALTQ mode */
799	IF_HANDOFF(&ifp->if_snd, m0, ifp);
800	RL_LOCK(sc);
801	m0 = NULL;
802
803	/* Wait for it to propagate through the chip */
804
805	DELAY(100000);
806	for (i = 0; i < RL_TIMEOUT; i++) {
807		status = CSR_READ_2(sc, RL_ISR);
808		CSR_WRITE_2(sc, RL_ISR, status);
809		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
810		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
811			break;
812		DELAY(10);
813	}
814
815	if (i == RL_TIMEOUT) {
816		device_printf(sc->rl_dev,
817		    "diagnostic failed, failed to receive packet in"
818		    " loopback mode\n");
819		error = EIO;
820		goto done;
821	}
822
823	/*
824	 * The packet should have been dumped into the first
825	 * entry in the RX DMA ring. Grab it from there.
826	 */
827
828	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
829	    sc->rl_ldata.rl_rx_list_map,
830	    BUS_DMASYNC_POSTREAD);
831	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
832	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
833	    BUS_DMASYNC_POSTREAD);
834	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
835	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
836
837	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
838	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
839	eh = mtod(m0, struct ether_header *);
840
841	cur_rx = &sc->rl_ldata.rl_rx_list[0];
842	total_len = RL_RXBYTES(cur_rx);
843	rxstat = le32toh(cur_rx->rl_cmdstat);
844
845	if (total_len != ETHER_MIN_LEN) {
846		device_printf(sc->rl_dev,
847		    "diagnostic failed, received short packet\n");
848		error = EIO;
849		goto done;
850	}
851
852	/* Test that the received packet data matches what we sent. */
853
854	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
855	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
856	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
857		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
858		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
859		    dst, ":", src, ":", ETHERTYPE_IP);
860		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
861		    eh->ether_dhost, ":",  eh->ether_shost, ":",
862		    ntohs(eh->ether_type));
863		device_printf(sc->rl_dev, "You may have a defective 32-bit "
864		    "NIC plugged into a 64-bit PCI slot.\n");
865		device_printf(sc->rl_dev, "Please re-install the NIC in a "
866		    "32-bit slot for proper operation.\n");
867		device_printf(sc->rl_dev, "Read the re(4) man page for more "
868		    "details.\n");
869		error = EIO;
870	}
871
872done:
873	/* Turn interface off, release resources */
874
875	sc->rl_testmode = 0;
876	sc->rl_flags &= ~RL_FLAG_LINK;
877	ifp->if_flags &= ~IFF_PROMISC;
878	re_stop(sc);
879	if (m0 != NULL)
880		m_freem(m0);
881
882	RL_UNLOCK(sc);
883
884	return (error);
885}
886
887#endif
888
889/*
890 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
891 * IDs against our list and return a device name if we find a match.
892 */
893static int
894re_probe(device_t dev)
895{
896	struct rl_type		*t;
897	uint16_t		devid, vendor;
898	uint16_t		revid, sdevid;
899	int			i;
900
901	vendor = pci_get_vendor(dev);
902	devid = pci_get_device(dev);
903	revid = pci_get_revid(dev);
904	sdevid = pci_get_subdevice(dev);
905
906	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
907		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
908			/*
909			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
910			 * Rev. 2 is supported by sk(4).
911			 */
912			return (ENXIO);
913		}
914	}
915
916	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
917		if (revid != 0x20) {
918			/* 8139, let rl(4) take care of this device. */
919			return (ENXIO);
920		}
921	}
922
923	t = re_devs;
924	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
925		if (vendor == t->rl_vid && devid == t->rl_did) {
926			device_set_desc(dev, t->rl_name);
927			return (BUS_PROBE_DEFAULT);
928		}
929	}
930
931	return (ENXIO);
932}
933
934/*
935 * Map a single buffer address.
936 */
937
938static void
939re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
940{
941	bus_addr_t		*addr;
942
943	if (error)
944		return;
945
946	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
947	addr = arg;
948	*addr = segs->ds_addr;
949}
950
951static int
952re_allocmem(device_t dev, struct rl_softc *sc)
953{
954	bus_size_t		rx_list_size, tx_list_size;
955	int			error;
956	int			i;
957
958	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
959	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
960
961	/*
962	 * Allocate the parent bus DMA tag appropriate for PCI.
963	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
964	 * register should be set. However some RealTek chips are known
965	 * to be buggy on DAC handling, therefore disable DAC by limiting
966	 * DMA address space to 32bit. PCIe variants of RealTek chips
967	 * may not have the limitation but I took safer path.
968	 */
969	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
970	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
971	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
972	    NULL, NULL, &sc->rl_parent_tag);
973	if (error) {
974		device_printf(dev, "could not allocate parent DMA tag\n");
975		return (error);
976	}
977
978	/*
979	 * Allocate map for TX mbufs.
980	 */
981	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
982	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
983	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
984	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
985	if (error) {
986		device_printf(dev, "could not allocate TX DMA tag\n");
987		return (error);
988	}
989
990	/*
991	 * Allocate map for RX mbufs.
992	 */
993
994	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
995	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
996	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
997	if (error) {
998		device_printf(dev, "could not allocate RX DMA tag\n");
999		return (error);
1000	}
1001
1002	/*
1003	 * Allocate map for TX descriptor list.
1004	 */
1005	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1006	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1007	    NULL, tx_list_size, 1, tx_list_size, 0,
1008	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1009	if (error) {
1010		device_printf(dev, "could not allocate TX DMA ring tag\n");
1011		return (error);
1012	}
1013
1014	/* Allocate DMA'able memory for the TX ring */
1015
1016	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1017	    (void **)&sc->rl_ldata.rl_tx_list,
1018	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1019	    &sc->rl_ldata.rl_tx_list_map);
1020	if (error) {
1021		device_printf(dev, "could not allocate TX DMA ring\n");
1022		return (error);
1023	}
1024
1025	/* Load the map for the TX ring. */
1026
1027	sc->rl_ldata.rl_tx_list_addr = 0;
1028	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030	     tx_list_size, re_dma_map_addr,
1031	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1033		device_printf(dev, "could not load TX DMA ring\n");
1034		return (ENOMEM);
1035	}
1036
1037	/* Create DMA maps for TX buffers */
1038
1039	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1040		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1041		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1042		if (error) {
1043			device_printf(dev, "could not create DMA map for TX\n");
1044			return (error);
1045		}
1046	}
1047
1048	/*
1049	 * Allocate map for RX descriptor list.
1050	 */
1051	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1052	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1053	    NULL, rx_list_size, 1, rx_list_size, 0,
1054	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1055	if (error) {
1056		device_printf(dev, "could not create RX DMA ring tag\n");
1057		return (error);
1058	}
1059
1060	/* Allocate DMA'able memory for the RX ring */
1061
1062	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1063	    (void **)&sc->rl_ldata.rl_rx_list,
1064	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1065	    &sc->rl_ldata.rl_rx_list_map);
1066	if (error) {
1067		device_printf(dev, "could not allocate RX DMA ring\n");
1068		return (error);
1069	}
1070
1071	/* Load the map for the RX ring. */
1072
1073	sc->rl_ldata.rl_rx_list_addr = 0;
1074	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1075	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1076	     rx_list_size, re_dma_map_addr,
1077	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1078	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1079		device_printf(dev, "could not load RX DMA ring\n");
1080		return (ENOMEM);
1081	}
1082
1083	/* Create DMA maps for RX buffers */
1084
1085	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1086	    &sc->rl_ldata.rl_rx_sparemap);
1087	if (error) {
1088		device_printf(dev, "could not create spare DMA map for RX\n");
1089		return (error);
1090	}
1091	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1092		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1093		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1094		if (error) {
1095			device_printf(dev, "could not create DMA map for RX\n");
1096			return (error);
1097		}
1098	}
1099
1100	return (0);
1101}
1102
1103/*
1104 * Attach the interface. Allocate softc structures, do ifmedia
1105 * setup and ethernet/BPF attach.
1106 */
1107static int
1108re_attach(device_t dev)
1109{
1110	u_char			eaddr[ETHER_ADDR_LEN];
1111	u_int16_t		as[ETHER_ADDR_LEN / 2];
1112	struct rl_softc		*sc;
1113	struct ifnet		*ifp;
1114	struct rl_hwrev		*hw_rev;
1115	int			hwrev;
1116	u_int16_t		devid, re_did = 0;
1117	int			error = 0, rid, i;
1118	int			msic, reg;
1119	uint8_t			cfg;
1120
1121	sc = device_get_softc(dev);
1122	sc->rl_dev = dev;
1123
1124	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1125	    MTX_DEF);
1126	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1127
1128	/*
1129	 * Map control/status registers.
1130	 */
1131	pci_enable_busmaster(dev);
1132
1133	devid = pci_get_device(dev);
1134	/* Prefer memory space register mapping over IO space. */
1135	sc->rl_res_id = PCIR_BAR(1);
1136	sc->rl_res_type = SYS_RES_MEMORY;
1137	/* RTL8168/8101E seems to use different BARs. */
1138	if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1139		sc->rl_res_id = PCIR_BAR(2);
1140	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1141	    &sc->rl_res_id, RF_ACTIVE);
1142
1143	if (sc->rl_res == NULL) {
1144		sc->rl_res_id = PCIR_BAR(0);
1145		sc->rl_res_type = SYS_RES_IOPORT;
1146		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1147		    &sc->rl_res_id, RF_ACTIVE);
1148		if (sc->rl_res == NULL) {
1149			device_printf(dev, "couldn't map ports/memory\n");
1150			error = ENXIO;
1151			goto fail;
1152		}
1153	}
1154
1155	sc->rl_btag = rman_get_bustag(sc->rl_res);
1156	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1157
1158	msic = 0;
1159	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1160		msic = pci_msi_count(dev);
1161		if (bootverbose)
1162			device_printf(dev, "MSI count : %d\n", msic);
1163	}
1164	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1165		if (pci_alloc_msi(dev, &msic) == 0) {
1166			if (msic == RL_MSI_MESSAGES) {
1167				device_printf(dev, "Using %d MSI messages\n",
1168				    msic);
1169				sc->rl_flags |= RL_FLAG_MSI;
1170				/* Explicitly set MSI enable bit. */
1171				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1172				cfg = CSR_READ_1(sc, RL_CFG2);
1173				cfg |= RL_CFG2_MSI;
1174				CSR_WRITE_1(sc, RL_CFG2, cfg);
1175				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1176			} else
1177				pci_release_msi(dev);
1178		}
1179	}
1180
1181	/* Allocate interrupt */
1182	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1183		rid = 0;
1184		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1185		    RF_SHAREABLE | RF_ACTIVE);
1186		if (sc->rl_irq[0] == NULL) {
1187			device_printf(dev, "couldn't allocate IRQ resources\n");
1188			error = ENXIO;
1189			goto fail;
1190		}
1191	} else {
1192		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1193			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1194			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1195			if (sc->rl_irq[i] == NULL) {
1196				device_printf(dev,
1197				    "couldn't llocate IRQ resources for "
1198				    "message %d\n", rid);
1199				error = ENXIO;
1200				goto fail;
1201			}
1202		}
1203	}
1204
1205	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1206		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1207		cfg = CSR_READ_1(sc, RL_CFG2);
1208		if ((cfg & RL_CFG2_MSI) != 0) {
1209			device_printf(dev, "turning off MSI enable bit.\n");
1210			cfg &= ~RL_CFG2_MSI;
1211			CSR_WRITE_1(sc, RL_CFG2, cfg);
1212		}
1213		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1214	}
1215
1216	/* Reset the adapter. */
1217	RL_LOCK(sc);
1218	re_reset(sc);
1219	RL_UNLOCK(sc);
1220
1221	hw_rev = re_hwrevs;
1222	hwrev = CSR_READ_4(sc, RL_TXCFG);
1223	device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1224	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1225	hwrev &= RL_TXCFG_HWREV;
1226	while (hw_rev->rl_desc != NULL) {
1227		if (hw_rev->rl_rev == hwrev) {
1228			sc->rl_type = hw_rev->rl_type;
1229			break;
1230		}
1231		hw_rev++;
1232	}
1233	if (hw_rev->rl_desc == NULL) {
1234		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1235		error = ENXIO;
1236		goto fail;
1237	}
1238
1239	switch (hw_rev->rl_rev) {
1240	case RL_HWREV_8139CPLUS:
1241		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER;
1242		break;
1243	case RL_HWREV_8110S:
1244		sc->rl_flags |= RL_FLAG_PHY8110S;
1245		break;
1246	case RL_HWREV_8100E:
1247	case RL_HWREV_8101E:
1248		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1249		    RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1250		break;
1251	case RL_HWREV_8102E:
1252	case RL_HWREV_8102EL:
1253		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1254		    RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1255		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP;
1256		break;
1257	case RL_HWREV_8168_SPIN1:
1258	case RL_HWREV_8168_SPIN2:
1259		sc->rl_flags |= RL_FLAG_WOLRXENB;
1260		/* FALLTHROUGH */
1261	case RL_HWREV_8168_SPIN3:
1262		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1263		    RL_FLAG_MACSTAT;
1264		break;
1265	case RL_HWREV_8168C:
1266	case RL_HWREV_8168C_SPIN2:
1267	case RL_HWREV_8168CP:
1268	case RL_HWREV_8168D:
1269		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1270		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1271		    RL_FLAG_CMDSTOP;
1272		/*
1273		 * These controllers support jumbo frame but it seems
1274		 * that enabling it requires touching additional magic
1275		 * registers. Depending on MAC revisions some
1276		 * controllers need to disable checksum offload. So
1277		 * disable jumbo frame until I have better idea what
1278		 * it really requires to make it support.
1279		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1280		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1281		 */
1282		sc->rl_flags |= RL_FLAG_NOJUMBO;
1283		break;
1284	case RL_HWREV_8169:
1285	case RL_HWREV_8169S:
1286		sc->rl_flags |= RL_FLAG_PHY8169;
1287		break;
1288	case RL_HWREV_8169_8110SB:
1289	case RL_HWREV_8169_8110SC:
1290	case RL_HWREV_8169_8110SBL:
1291		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHY8169;
1292		break;
1293	default:
1294		break;
1295	}
1296
1297	/* Enable PME. */
1298	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1299	cfg = CSR_READ_1(sc, RL_CFG1);
1300	cfg |= RL_CFG1_PME;
1301	CSR_WRITE_1(sc, RL_CFG1, cfg);
1302	cfg = CSR_READ_1(sc, RL_CFG5);
1303	cfg &= RL_CFG5_PME_STS;
1304	CSR_WRITE_1(sc, RL_CFG5, cfg);
1305	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1306
1307	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1308		/*
1309		 * XXX Should have a better way to extract station
1310		 * address from EEPROM.
1311		 */
1312		for (i = 0; i < ETHER_ADDR_LEN; i++)
1313			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1314	} else {
1315		sc->rl_eewidth = RL_9356_ADDR_LEN;
1316		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1317		if (re_did != 0x8129)
1318			sc->rl_eewidth = RL_9346_ADDR_LEN;
1319
1320		/*
1321		 * Get station address from the EEPROM.
1322		 */
1323		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1324		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1325			as[i] = le16toh(as[i]);
1326		bcopy(as, eaddr, sizeof(eaddr));
1327	}
1328
1329	if (sc->rl_type == RL_8169) {
1330		/* Set RX length mask and number of descriptors. */
1331		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1332		sc->rl_txstart = RL_GTXSTART;
1333		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1334		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1335	} else {
1336		/* Set RX length mask and number of descriptors. */
1337		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1338		sc->rl_txstart = RL_TXSTART;
1339		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1340		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1341	}
1342
1343	error = re_allocmem(dev, sc);
1344	if (error)
1345		goto fail;
1346
1347	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1348	if (ifp == NULL) {
1349		device_printf(dev, "can not if_alloc()\n");
1350		error = ENOSPC;
1351		goto fail;
1352	}
1353
1354	/* Take PHY out of power down mode. */
1355	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1356		re_gmii_writereg(dev, 1, 0x1f, 0);
1357		re_gmii_writereg(dev, 1, 0x0e, 0);
1358	}
1359
1360	/* Do MII setup */
1361	if (mii_phy_probe(dev, &sc->rl_miibus,
1362	    re_ifmedia_upd, re_ifmedia_sts)) {
1363		device_printf(dev, "MII without any phy!\n");
1364		error = ENXIO;
1365		goto fail;
1366	}
1367
1368	ifp->if_softc = sc;
1369	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1370	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1371	ifp->if_ioctl = re_ioctl;
1372	ifp->if_start = re_start;
1373	ifp->if_hwassist = RE_CSUM_FEATURES;
1374	ifp->if_capabilities = IFCAP_HWCSUM;
1375	ifp->if_capenable = ifp->if_capabilities;
1376	ifp->if_init = re_init;
1377	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1378	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1379	IFQ_SET_READY(&ifp->if_snd);
1380
1381	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1382	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1383
1384	/*
1385	 * XXX
1386	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1387	 * 8111C and 8111CP.
1388	 */
1389	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1390		ifp->if_hwassist |= CSUM_TSO;
1391		ifp->if_capabilities |= IFCAP_TSO4;
1392	}
1393
1394	/*
1395	 * Call MI attach routine.
1396	 */
1397	ether_ifattach(ifp, eaddr);
1398
1399	/* VLAN capability setup */
1400	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1401	if (ifp->if_capabilities & IFCAP_HWCSUM)
1402		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1403	/* Enable WOL if PM is supported. */
1404	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1405		ifp->if_capabilities |= IFCAP_WOL;
1406	ifp->if_capenable = ifp->if_capabilities;
1407	/*
1408	 * Don't enable TSO by default. Under certain
1409	 * circumtances the controller generated corrupted
1410	 * packets in TSO size.
1411	 */
1412	ifp->if_hwassist &= ~CSUM_TSO;
1413	ifp->if_capenable &= ~IFCAP_TSO4;
1414#ifdef DEVICE_POLLING
1415	ifp->if_capabilities |= IFCAP_POLLING;
1416#endif
1417	/*
1418	 * Tell the upper layer(s) we support long frames.
1419	 * Must appear after the call to ether_ifattach() because
1420	 * ether_ifattach() sets ifi_hdrlen to the default value.
1421	 */
1422	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1423
1424#ifdef RE_DIAG
1425	/*
1426	 * Perform hardware diagnostic on the original RTL8169.
1427	 * Some 32-bit cards were incorrectly wired and would
1428	 * malfunction if plugged into a 64-bit slot.
1429	 */
1430
1431	if (hwrev == RL_HWREV_8169) {
1432		error = re_diag(sc);
1433		if (error) {
1434			device_printf(dev,
1435		    	"attach aborted due to hardware diag failure\n");
1436			ether_ifdetach(ifp);
1437			goto fail;
1438		}
1439	}
1440#endif
1441
1442	/* Hook interrupt last to avoid having to lock softc */
1443	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1444		error = bus_setup_intr(dev, sc->rl_irq[0],
1445		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1446		    &sc->rl_intrhand[0]);
1447	else {
1448		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1449			error = bus_setup_intr(dev, sc->rl_irq[i],
1450			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1451		    	    &sc->rl_intrhand[i]);
1452			if (error != 0)
1453				break;
1454		}
1455	}
1456	if (error) {
1457		device_printf(dev, "couldn't set up irq\n");
1458		ether_ifdetach(ifp);
1459	}
1460
1461fail:
1462
1463	if (error)
1464		re_detach(dev);
1465
1466	return (error);
1467}
1468
1469/*
1470 * Shutdown hardware and free up resources. This can be called any
1471 * time after the mutex has been initialized. It is called in both
1472 * the error case in attach and the normal detach case so it needs
1473 * to be careful about only freeing resources that have actually been
1474 * allocated.
1475 */
1476static int
1477re_detach(device_t dev)
1478{
1479	struct rl_softc		*sc;
1480	struct ifnet		*ifp;
1481	int			i, rid;
1482
1483	sc = device_get_softc(dev);
1484	ifp = sc->rl_ifp;
1485	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1486
1487	/* These should only be active if attach succeeded */
1488	if (device_is_attached(dev)) {
1489#ifdef DEVICE_POLLING
1490		if (ifp->if_capenable & IFCAP_POLLING)
1491			ether_poll_deregister(ifp);
1492#endif
1493		RL_LOCK(sc);
1494#if 0
1495		sc->suspended = 1;
1496#endif
1497		re_stop(sc);
1498		RL_UNLOCK(sc);
1499		callout_drain(&sc->rl_stat_callout);
1500		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1501		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1502		/*
1503		 * Force off the IFF_UP flag here, in case someone
1504		 * still had a BPF descriptor attached to this
1505		 * interface. If they do, ether_ifdetach() will cause
1506		 * the BPF code to try and clear the promisc mode
1507		 * flag, which will bubble down to re_ioctl(),
1508		 * which will try to call re_init() again. This will
1509		 * turn the NIC back on and restart the MII ticker,
1510		 * which will panic the system when the kernel tries
1511		 * to invoke the re_tick() function that isn't there
1512		 * anymore.
1513		 */
1514		ifp->if_flags &= ~IFF_UP;
1515		ether_ifdetach(ifp);
1516	}
1517	if (sc->rl_miibus)
1518		device_delete_child(dev, sc->rl_miibus);
1519	bus_generic_detach(dev);
1520
1521	/*
1522	 * The rest is resource deallocation, so we should already be
1523	 * stopped here.
1524	 */
1525
1526	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1527		if (sc->rl_intrhand[i] != NULL) {
1528			bus_teardown_intr(dev, sc->rl_irq[i],
1529			    sc->rl_intrhand[i]);
1530			sc->rl_intrhand[i] = NULL;
1531		}
1532	}
1533	if (ifp != NULL)
1534		if_free(ifp);
1535	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1536		if (sc->rl_irq[0] != NULL) {
1537			bus_release_resource(dev, SYS_RES_IRQ, 0,
1538			    sc->rl_irq[0]);
1539			sc->rl_irq[0] = NULL;
1540		}
1541	} else {
1542		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1543			if (sc->rl_irq[i] != NULL) {
1544				bus_release_resource(dev, SYS_RES_IRQ, rid,
1545				    sc->rl_irq[i]);
1546				sc->rl_irq[i] = NULL;
1547			}
1548		}
1549		pci_release_msi(dev);
1550	}
1551	if (sc->rl_res)
1552		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1553		    sc->rl_res);
1554
1555	/* Unload and free the RX DMA ring memory and map */
1556
1557	if (sc->rl_ldata.rl_rx_list_tag) {
1558		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1559		    sc->rl_ldata.rl_rx_list_map);
1560		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1561		    sc->rl_ldata.rl_rx_list,
1562		    sc->rl_ldata.rl_rx_list_map);
1563		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1564	}
1565
1566	/* Unload and free the TX DMA ring memory and map */
1567
1568	if (sc->rl_ldata.rl_tx_list_tag) {
1569		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1570		    sc->rl_ldata.rl_tx_list_map);
1571		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1572		    sc->rl_ldata.rl_tx_list,
1573		    sc->rl_ldata.rl_tx_list_map);
1574		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1575	}
1576
1577	/* Destroy all the RX and TX buffer maps */
1578
1579	if (sc->rl_ldata.rl_tx_mtag) {
1580		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1581			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1582			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1583		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1584	}
1585	if (sc->rl_ldata.rl_rx_mtag) {
1586		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1587			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1588			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1589		if (sc->rl_ldata.rl_rx_sparemap)
1590			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1591			    sc->rl_ldata.rl_rx_sparemap);
1592		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1593	}
1594
1595	/* Unload and free the stats buffer and map */
1596
1597	if (sc->rl_ldata.rl_stag) {
1598		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1599		    sc->rl_ldata.rl_rx_list_map);
1600		bus_dmamem_free(sc->rl_ldata.rl_stag,
1601		    sc->rl_ldata.rl_stats,
1602		    sc->rl_ldata.rl_smap);
1603		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1604	}
1605
1606	if (sc->rl_parent_tag)
1607		bus_dma_tag_destroy(sc->rl_parent_tag);
1608
1609	mtx_destroy(&sc->rl_mtx);
1610
1611	return (0);
1612}
1613
1614static __inline void
1615re_discard_rxbuf(struct rl_softc *sc, int idx)
1616{
1617	struct rl_desc		*desc;
1618	struct rl_rxdesc	*rxd;
1619	uint32_t		cmdstat;
1620
1621	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1622	desc = &sc->rl_ldata.rl_rx_list[idx];
1623	desc->rl_vlanctl = 0;
1624	cmdstat = rxd->rx_size;
1625	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1626		cmdstat |= RL_RDESC_CMD_EOR;
1627	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1628}
1629
1630static int
1631re_newbuf(struct rl_softc *sc, int idx)
1632{
1633	struct mbuf		*m;
1634	struct rl_rxdesc	*rxd;
1635	bus_dma_segment_t	segs[1];
1636	bus_dmamap_t		map;
1637	struct rl_desc		*desc;
1638	uint32_t		cmdstat;
1639	int			error, nsegs;
1640
1641	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1642	if (m == NULL)
1643		return (ENOBUFS);
1644
1645	m->m_len = m->m_pkthdr.len = MCLBYTES;
1646#ifdef RE_FIXUP_RX
1647	/*
1648	 * This is part of an evil trick to deal with non-x86 platforms.
1649	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1650	 * boundaries, but that will hose non-x86 machines. To get around
1651	 * this, we leave some empty space at the start of each buffer
1652	 * and for non-x86 hosts, we copy the buffer back six bytes
1653	 * to achieve word alignment. This is slightly more efficient
1654	 * than allocating a new buffer, copying the contents, and
1655	 * discarding the old buffer.
1656	 */
1657	m_adj(m, RE_ETHER_ALIGN);
1658#endif
1659	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1660	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1661	if (error != 0) {
1662		m_freem(m);
1663		return (ENOBUFS);
1664	}
1665	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1666
1667	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1668	if (rxd->rx_m != NULL) {
1669		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1670		    BUS_DMASYNC_POSTREAD);
1671		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1672	}
1673
1674	rxd->rx_m = m;
1675	map = rxd->rx_dmamap;
1676	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1677	rxd->rx_size = segs[0].ds_len;
1678	sc->rl_ldata.rl_rx_sparemap = map;
1679	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1680	    BUS_DMASYNC_PREREAD);
1681
1682	desc = &sc->rl_ldata.rl_rx_list[idx];
1683	desc->rl_vlanctl = 0;
1684	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1685	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1686	cmdstat = segs[0].ds_len;
1687	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1688		cmdstat |= RL_RDESC_CMD_EOR;
1689	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1690
1691	return (0);
1692}
1693
1694#ifdef RE_FIXUP_RX
1695static __inline void
1696re_fixup_rx(struct mbuf *m)
1697{
1698	int                     i;
1699	uint16_t                *src, *dst;
1700
1701	src = mtod(m, uint16_t *);
1702	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1703
1704	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1705		*dst++ = *src++;
1706
1707	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1708}
1709#endif
1710
1711static int
1712re_tx_list_init(struct rl_softc *sc)
1713{
1714	struct rl_desc		*desc;
1715	int			i;
1716
1717	RL_LOCK_ASSERT(sc);
1718
1719	bzero(sc->rl_ldata.rl_tx_list,
1720	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1721	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1722		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1723	/* Set EOR. */
1724	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1725	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1726
1727	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1728	    sc->rl_ldata.rl_tx_list_map,
1729	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1730
1731	sc->rl_ldata.rl_tx_prodidx = 0;
1732	sc->rl_ldata.rl_tx_considx = 0;
1733	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1734
1735	return (0);
1736}
1737
1738static int
1739re_rx_list_init(struct rl_softc *sc)
1740{
1741	int			error, i;
1742
1743	bzero(sc->rl_ldata.rl_rx_list,
1744	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1745	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1746		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1747		if ((error = re_newbuf(sc, i)) != 0)
1748			return (error);
1749	}
1750
1751	/* Flush the RX descriptors */
1752
1753	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1754	    sc->rl_ldata.rl_rx_list_map,
1755	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1756
1757	sc->rl_ldata.rl_rx_prodidx = 0;
1758	sc->rl_head = sc->rl_tail = NULL;
1759
1760	return (0);
1761}
1762
1763/*
1764 * RX handler for C+ and 8169. For the gigE chips, we support
1765 * the reception of jumbo frames that have been fragmented
1766 * across multiple 2K mbuf cluster buffers.
1767 */
1768static int
1769re_rxeof(struct rl_softc *sc)
1770{
1771	struct mbuf		*m;
1772	struct ifnet		*ifp;
1773	int			i, total_len;
1774	struct rl_desc		*cur_rx;
1775	u_int32_t		rxstat, rxvlan;
1776	int			maxpkt = 16;
1777
1778	RL_LOCK_ASSERT(sc);
1779
1780	ifp = sc->rl_ifp;
1781
1782	/* Invalidate the descriptor memory */
1783
1784	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1785	    sc->rl_ldata.rl_rx_list_map,
1786	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1787
1788	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1789	    i = RL_RX_DESC_NXT(sc, i)) {
1790		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1791		rxstat = le32toh(cur_rx->rl_cmdstat);
1792		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1793			break;
1794		total_len = rxstat & sc->rl_rxlenmask;
1795		rxvlan = le32toh(cur_rx->rl_vlanctl);
1796		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1797
1798		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1799			if (re_newbuf(sc, i) != 0) {
1800				/*
1801				 * If this is part of a multi-fragment packet,
1802				 * discard all the pieces.
1803				 */
1804				if (sc->rl_head != NULL) {
1805					m_freem(sc->rl_head);
1806					sc->rl_head = sc->rl_tail = NULL;
1807				}
1808				re_discard_rxbuf(sc, i);
1809				continue;
1810			}
1811			m->m_len = RE_RX_DESC_BUFLEN;
1812			if (sc->rl_head == NULL)
1813				sc->rl_head = sc->rl_tail = m;
1814			else {
1815				m->m_flags &= ~M_PKTHDR;
1816				sc->rl_tail->m_next = m;
1817				sc->rl_tail = m;
1818			}
1819			continue;
1820		}
1821
1822		/*
1823		 * NOTE: for the 8139C+, the frame length field
1824		 * is always 12 bits in size, but for the gigE chips,
1825		 * it is 13 bits (since the max RX frame length is 16K).
1826		 * Unfortunately, all 32 bits in the status word
1827		 * were already used, so to make room for the extra
1828		 * length bit, RealTek took out the 'frame alignment
1829		 * error' bit and shifted the other status bits
1830		 * over one slot. The OWN, EOR, FS and LS bits are
1831		 * still in the same places. We have already extracted
1832		 * the frame length and checked the OWN bit, so rather
1833		 * than using an alternate bit mapping, we shift the
1834		 * status bits one space to the right so we can evaluate
1835		 * them using the 8169 status as though it was in the
1836		 * same format as that of the 8139C+.
1837		 */
1838		if (sc->rl_type == RL_8169)
1839			rxstat >>= 1;
1840
1841		/*
1842		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1843		 * set, but if CRC is clear, it will still be a valid frame.
1844		 */
1845		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1846		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1847			ifp->if_ierrors++;
1848			/*
1849			 * If this is part of a multi-fragment packet,
1850			 * discard all the pieces.
1851			 */
1852			if (sc->rl_head != NULL) {
1853				m_freem(sc->rl_head);
1854				sc->rl_head = sc->rl_tail = NULL;
1855			}
1856			re_discard_rxbuf(sc, i);
1857			continue;
1858		}
1859
1860		/*
1861		 * If allocating a replacement mbuf fails,
1862		 * reload the current one.
1863		 */
1864
1865		if (re_newbuf(sc, i) != 0) {
1866			ifp->if_iqdrops++;
1867			if (sc->rl_head != NULL) {
1868				m_freem(sc->rl_head);
1869				sc->rl_head = sc->rl_tail = NULL;
1870			}
1871			re_discard_rxbuf(sc, i);
1872			continue;
1873		}
1874
1875		if (sc->rl_head != NULL) {
1876			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1877			if (m->m_len == 0)
1878				m->m_len = RE_RX_DESC_BUFLEN;
1879			/*
1880			 * Special case: if there's 4 bytes or less
1881			 * in this buffer, the mbuf can be discarded:
1882			 * the last 4 bytes is the CRC, which we don't
1883			 * care about anyway.
1884			 */
1885			if (m->m_len <= ETHER_CRC_LEN) {
1886				sc->rl_tail->m_len -=
1887				    (ETHER_CRC_LEN - m->m_len);
1888				m_freem(m);
1889			} else {
1890				m->m_len -= ETHER_CRC_LEN;
1891				m->m_flags &= ~M_PKTHDR;
1892				sc->rl_tail->m_next = m;
1893			}
1894			m = sc->rl_head;
1895			sc->rl_head = sc->rl_tail = NULL;
1896			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1897		} else
1898			m->m_pkthdr.len = m->m_len =
1899			    (total_len - ETHER_CRC_LEN);
1900
1901#ifdef RE_FIXUP_RX
1902		re_fixup_rx(m);
1903#endif
1904		ifp->if_ipackets++;
1905		m->m_pkthdr.rcvif = ifp;
1906
1907		/* Do RX checksumming if enabled */
1908
1909		if (ifp->if_capenable & IFCAP_RXCSUM) {
1910			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1911				/* Check IP header checksum */
1912				if (rxstat & RL_RDESC_STAT_PROTOID)
1913					m->m_pkthdr.csum_flags |=
1914					    CSUM_IP_CHECKED;
1915				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1916					m->m_pkthdr.csum_flags |=
1917					    CSUM_IP_VALID;
1918
1919				/* Check TCP/UDP checksum */
1920				if ((RL_TCPPKT(rxstat) &&
1921				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1922				    (RL_UDPPKT(rxstat) &&
1923				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1924					m->m_pkthdr.csum_flags |=
1925						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1926					m->m_pkthdr.csum_data = 0xffff;
1927				}
1928			} else {
1929				/*
1930				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1931				 */
1932				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1933				    (rxvlan & RL_RDESC_IPV4))
1934					m->m_pkthdr.csum_flags |=
1935					    CSUM_IP_CHECKED;
1936				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1937				    (rxvlan & RL_RDESC_IPV4))
1938					m->m_pkthdr.csum_flags |=
1939					    CSUM_IP_VALID;
1940				if (((rxstat & RL_RDESC_STAT_TCP) &&
1941				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1942				    ((rxstat & RL_RDESC_STAT_UDP) &&
1943				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1944					m->m_pkthdr.csum_flags |=
1945						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1946					m->m_pkthdr.csum_data = 0xffff;
1947				}
1948			}
1949		}
1950		maxpkt--;
1951		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1952			m->m_pkthdr.ether_vtag =
1953			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
1954			m->m_flags |= M_VLANTAG;
1955		}
1956		RL_UNLOCK(sc);
1957		(*ifp->if_input)(ifp, m);
1958		RL_LOCK(sc);
1959	}
1960
1961	/* Flush the RX DMA ring */
1962
1963	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1964	    sc->rl_ldata.rl_rx_list_map,
1965	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1966
1967	sc->rl_ldata.rl_rx_prodidx = i;
1968
1969	if (maxpkt)
1970		return(EAGAIN);
1971
1972	return(0);
1973}
1974
1975static void
1976re_txeof(struct rl_softc *sc)
1977{
1978	struct ifnet		*ifp;
1979	struct rl_txdesc	*txd;
1980	u_int32_t		txstat;
1981	int			cons;
1982
1983	cons = sc->rl_ldata.rl_tx_considx;
1984	if (cons == sc->rl_ldata.rl_tx_prodidx)
1985		return;
1986
1987	ifp = sc->rl_ifp;
1988	/* Invalidate the TX descriptor list */
1989	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1990	    sc->rl_ldata.rl_tx_list_map,
1991	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1992
1993	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1994	    cons = RL_TX_DESC_NXT(sc, cons)) {
1995		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1996		if (txstat & RL_TDESC_STAT_OWN)
1997			break;
1998		/*
1999		 * We only stash mbufs in the last descriptor
2000		 * in a fragment chain, which also happens to
2001		 * be the only place where the TX status bits
2002		 * are valid.
2003		 */
2004		if (txstat & RL_TDESC_CMD_EOF) {
2005			txd = &sc->rl_ldata.rl_tx_desc[cons];
2006			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2007			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2008			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2009			    txd->tx_dmamap);
2010			KASSERT(txd->tx_m != NULL,
2011			    ("%s: freeing NULL mbufs!", __func__));
2012			m_freem(txd->tx_m);
2013			txd->tx_m = NULL;
2014			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2015			    RL_TDESC_STAT_COLCNT))
2016				ifp->if_collisions++;
2017			if (txstat & RL_TDESC_STAT_TXERRSUM)
2018				ifp->if_oerrors++;
2019			else
2020				ifp->if_opackets++;
2021		}
2022		sc->rl_ldata.rl_tx_free++;
2023		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2024	}
2025	sc->rl_ldata.rl_tx_considx = cons;
2026
2027	/* No changes made to the TX ring, so no flush needed */
2028
2029	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2030		/*
2031		 * Some chips will ignore a second TX request issued
2032		 * while an existing transmission is in progress. If
2033		 * the transmitter goes idle but there are still
2034		 * packets waiting to be sent, we need to restart the
2035		 * channel here to flush them out. This only seems to
2036		 * be required with the PCIe devices.
2037		 */
2038		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2039
2040#ifdef RE_TX_MODERATION
2041		/*
2042		 * If not all descriptors have been reaped yet, reload
2043		 * the timer so that we will eventually get another
2044		 * interrupt that will cause us to re-enter this routine.
2045		 * This is done in case the transmitter has gone idle.
2046		 */
2047		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2048#endif
2049	} else
2050		sc->rl_watchdog_timer = 0;
2051}
2052
2053static void
2054re_tick(void *xsc)
2055{
2056	struct rl_softc		*sc;
2057	struct mii_data		*mii;
2058
2059	sc = xsc;
2060
2061	RL_LOCK_ASSERT(sc);
2062
2063	mii = device_get_softc(sc->rl_miibus);
2064	mii_tick(mii);
2065	re_watchdog(sc);
2066	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2067}
2068
2069#ifdef DEVICE_POLLING
2070static void
2071re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2072{
2073	struct rl_softc *sc = ifp->if_softc;
2074
2075	RL_LOCK(sc);
2076	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2077		re_poll_locked(ifp, cmd, count);
2078	RL_UNLOCK(sc);
2079}
2080
2081static void
2082re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2083{
2084	struct rl_softc *sc = ifp->if_softc;
2085
2086	RL_LOCK_ASSERT(sc);
2087
2088	sc->rxcycles = count;
2089	re_rxeof(sc);
2090	re_txeof(sc);
2091
2092	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2093		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2094
2095	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2096		u_int16_t       status;
2097
2098		status = CSR_READ_2(sc, RL_ISR);
2099		if (status == 0xffff)
2100			return;
2101		if (status)
2102			CSR_WRITE_2(sc, RL_ISR, status);
2103
2104		/*
2105		 * XXX check behaviour on receiver stalls.
2106		 */
2107
2108		if (status & RL_ISR_SYSTEM_ERR)
2109			re_init_locked(sc);
2110	}
2111}
2112#endif /* DEVICE_POLLING */
2113
2114static int
2115re_intr(void *arg)
2116{
2117	struct rl_softc		*sc;
2118	uint16_t		status;
2119
2120	sc = arg;
2121
2122	status = CSR_READ_2(sc, RL_ISR);
2123	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2124                return (FILTER_STRAY);
2125	CSR_WRITE_2(sc, RL_IMR, 0);
2126
2127	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2128
2129	return (FILTER_HANDLED);
2130}
2131
2132static void
2133re_int_task(void *arg, int npending)
2134{
2135	struct rl_softc		*sc;
2136	struct ifnet		*ifp;
2137	u_int16_t		status;
2138	int			rval = 0;
2139
2140	sc = arg;
2141	ifp = sc->rl_ifp;
2142
2143	RL_LOCK(sc);
2144
2145	status = CSR_READ_2(sc, RL_ISR);
2146        CSR_WRITE_2(sc, RL_ISR, status);
2147
2148	if (sc->suspended ||
2149	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2150		RL_UNLOCK(sc);
2151		return;
2152	}
2153
2154#ifdef DEVICE_POLLING
2155	if  (ifp->if_capenable & IFCAP_POLLING) {
2156		RL_UNLOCK(sc);
2157		return;
2158	}
2159#endif
2160
2161	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2162		rval = re_rxeof(sc);
2163
2164	if (status & (
2165#ifdef RE_TX_MODERATION
2166	    RL_ISR_TIMEOUT_EXPIRED|
2167#else
2168	    RL_ISR_TX_OK|
2169#endif
2170	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2171		re_txeof(sc);
2172
2173	if (status & RL_ISR_SYSTEM_ERR)
2174		re_init_locked(sc);
2175
2176	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2177		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2178
2179	RL_UNLOCK(sc);
2180
2181        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2182		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2183		return;
2184	}
2185
2186	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2187}
2188
2189static int
2190re_encap(struct rl_softc *sc, struct mbuf **m_head)
2191{
2192	struct rl_txdesc	*txd, *txd_last;
2193	bus_dma_segment_t	segs[RL_NTXSEGS];
2194	bus_dmamap_t		map;
2195	struct mbuf		*m_new;
2196	struct rl_desc		*desc;
2197	int			nsegs, prod;
2198	int			i, error, ei, si;
2199	int			padlen;
2200	uint32_t		cmdstat, csum_flags, vlanctl;
2201
2202	RL_LOCK_ASSERT(sc);
2203	M_ASSERTPKTHDR((*m_head));
2204
2205	/*
2206	 * With some of the RealTek chips, using the checksum offload
2207	 * support in conjunction with the autopadding feature results
2208	 * in the transmission of corrupt frames. For example, if we
2209	 * need to send a really small IP fragment that's less than 60
2210	 * bytes in size, and IP header checksumming is enabled, the
2211	 * resulting ethernet frame that appears on the wire will
2212	 * have garbled payload. To work around this, if TX IP checksum
2213	 * offload is enabled, we always manually pad short frames out
2214	 * to the minimum ethernet frame size.
2215	 */
2216	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2217	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2218	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2219		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2220		if (M_WRITABLE(*m_head) == 0) {
2221			/* Get a writable copy. */
2222			m_new = m_dup(*m_head, M_DONTWAIT);
2223			m_freem(*m_head);
2224			if (m_new == NULL) {
2225				*m_head = NULL;
2226				return (ENOBUFS);
2227			}
2228			*m_head = m_new;
2229		}
2230		if ((*m_head)->m_next != NULL ||
2231		    M_TRAILINGSPACE(*m_head) < padlen) {
2232			m_new = m_defrag(*m_head, M_DONTWAIT);
2233			if (m_new == NULL) {
2234				m_freem(*m_head);
2235				*m_head = NULL;
2236				return (ENOBUFS);
2237			}
2238		} else
2239			m_new = *m_head;
2240
2241		/*
2242		 * Manually pad short frames, and zero the pad space
2243		 * to avoid leaking data.
2244		 */
2245		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2246		m_new->m_pkthdr.len += padlen;
2247		m_new->m_len = m_new->m_pkthdr.len;
2248		*m_head = m_new;
2249	}
2250
2251	prod = sc->rl_ldata.rl_tx_prodidx;
2252	txd = &sc->rl_ldata.rl_tx_desc[prod];
2253	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2254	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2255	if (error == EFBIG) {
2256		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2257		if (m_new == NULL) {
2258			m_freem(*m_head);
2259			*m_head = NULL;
2260			return (ENOBUFS);
2261		}
2262		*m_head = m_new;
2263		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2264		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2265		if (error != 0) {
2266			m_freem(*m_head);
2267			*m_head = NULL;
2268			return (error);
2269		}
2270	} else if (error != 0)
2271		return (error);
2272	if (nsegs == 0) {
2273		m_freem(*m_head);
2274		*m_head = NULL;
2275		return (EIO);
2276	}
2277
2278	/* Check for number of available descriptors. */
2279	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2280		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2281		return (ENOBUFS);
2282	}
2283
2284	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2285	    BUS_DMASYNC_PREWRITE);
2286
2287	/*
2288	 * Set up checksum offload. Note: checksum offload bits must
2289	 * appear in all descriptors of a multi-descriptor transmit
2290	 * attempt. This is according to testing done with an 8169
2291	 * chip. This is a requirement.
2292	 */
2293	vlanctl = 0;
2294	csum_flags = 0;
2295	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2296		csum_flags = RL_TDESC_CMD_LGSEND |
2297		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2298		    RL_TDESC_CMD_MSSVAL_SHIFT);
2299	else {
2300		/*
2301		 * Unconditionally enable IP checksum if TCP or UDP
2302		 * checksum is required. Otherwise, TCP/UDP checksum
2303		 * does't make effects.
2304		 */
2305		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2306			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2307				csum_flags |= RL_TDESC_CMD_IPCSUM;
2308				if (((*m_head)->m_pkthdr.csum_flags &
2309				    CSUM_TCP) != 0)
2310					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2311				if (((*m_head)->m_pkthdr.csum_flags &
2312				    CSUM_UDP) != 0)
2313					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2314			} else {
2315				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2316				if (((*m_head)->m_pkthdr.csum_flags &
2317				    CSUM_TCP) != 0)
2318					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2319				if (((*m_head)->m_pkthdr.csum_flags &
2320				    CSUM_UDP) != 0)
2321					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2322			}
2323		}
2324	}
2325
2326	/*
2327	 * Set up hardware VLAN tagging. Note: vlan tag info must
2328	 * appear in all descriptors of a multi-descriptor
2329	 * transmission attempt.
2330	 */
2331	if ((*m_head)->m_flags & M_VLANTAG)
2332		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2333		    RL_TDESC_VLANCTL_TAG;
2334
2335	si = prod;
2336	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2337		desc = &sc->rl_ldata.rl_tx_list[prod];
2338		desc->rl_vlanctl = htole32(vlanctl);
2339		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2340		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2341		cmdstat = segs[i].ds_len;
2342		if (i != 0)
2343			cmdstat |= RL_TDESC_CMD_OWN;
2344		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2345			cmdstat |= RL_TDESC_CMD_EOR;
2346		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2347		sc->rl_ldata.rl_tx_free--;
2348	}
2349	/* Update producer index. */
2350	sc->rl_ldata.rl_tx_prodidx = prod;
2351
2352	/* Set EOF on the last descriptor. */
2353	ei = RL_TX_DESC_PRV(sc, prod);
2354	desc = &sc->rl_ldata.rl_tx_list[ei];
2355	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2356
2357	desc = &sc->rl_ldata.rl_tx_list[si];
2358	/* Set SOF and transfer ownership of packet to the chip. */
2359	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2360
2361	/*
2362	 * Insure that the map for this transmission
2363	 * is placed at the array index of the last descriptor
2364	 * in this chain.  (Swap last and first dmamaps.)
2365	 */
2366	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2367	map = txd->tx_dmamap;
2368	txd->tx_dmamap = txd_last->tx_dmamap;
2369	txd_last->tx_dmamap = map;
2370	txd_last->tx_m = *m_head;
2371
2372	return (0);
2373}
2374
2375static void
2376re_tx_task(void *arg, int npending)
2377{
2378	struct ifnet		*ifp;
2379
2380	ifp = arg;
2381	re_start(ifp);
2382}
2383
2384/*
2385 * Main transmit routine for C+ and gigE NICs.
2386 */
2387static void
2388re_start(struct ifnet *ifp)
2389{
2390	struct rl_softc		*sc;
2391	struct mbuf		*m_head;
2392	int			queued;
2393
2394	sc = ifp->if_softc;
2395
2396	RL_LOCK(sc);
2397
2398	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2399	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2400		RL_UNLOCK(sc);
2401		return;
2402	}
2403
2404	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2405	    sc->rl_ldata.rl_tx_free > 1;) {
2406		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2407		if (m_head == NULL)
2408			break;
2409
2410		if (re_encap(sc, &m_head) != 0) {
2411			if (m_head == NULL)
2412				break;
2413			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2414			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2415			break;
2416		}
2417
2418		/*
2419		 * If there's a BPF listener, bounce a copy of this frame
2420		 * to him.
2421		 */
2422		ETHER_BPF_MTAP(ifp, m_head);
2423
2424		queued++;
2425	}
2426
2427	if (queued == 0) {
2428#ifdef RE_TX_MODERATION
2429		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2430			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2431#endif
2432		RL_UNLOCK(sc);
2433		return;
2434	}
2435
2436	/* Flush the TX descriptors */
2437
2438	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2439	    sc->rl_ldata.rl_tx_list_map,
2440	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2441
2442	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2443
2444#ifdef RE_TX_MODERATION
2445	/*
2446	 * Use the countdown timer for interrupt moderation.
2447	 * 'TX done' interrupts are disabled. Instead, we reset the
2448	 * countdown timer, which will begin counting until it hits
2449	 * the value in the TIMERINT register, and then trigger an
2450	 * interrupt. Each time we write to the TIMERCNT register,
2451	 * the timer count is reset to 0.
2452	 */
2453	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2454#endif
2455
2456	/*
2457	 * Set a timeout in case the chip goes out to lunch.
2458	 */
2459	sc->rl_watchdog_timer = 5;
2460
2461	RL_UNLOCK(sc);
2462}
2463
2464static void
2465re_init(void *xsc)
2466{
2467	struct rl_softc		*sc = xsc;
2468
2469	RL_LOCK(sc);
2470	re_init_locked(sc);
2471	RL_UNLOCK(sc);
2472}
2473
2474static void
2475re_init_locked(struct rl_softc *sc)
2476{
2477	struct ifnet		*ifp = sc->rl_ifp;
2478	struct mii_data		*mii;
2479	u_int32_t		rxcfg = 0;
2480	uint16_t		cfg;
2481	union {
2482		uint32_t align_dummy;
2483		u_char eaddr[ETHER_ADDR_LEN];
2484        } eaddr;
2485
2486	RL_LOCK_ASSERT(sc);
2487
2488	mii = device_get_softc(sc->rl_miibus);
2489
2490	/*
2491	 * Cancel pending I/O and free all RX/TX buffers.
2492	 */
2493	re_stop(sc);
2494
2495	/* Put controller into known state. */
2496	re_reset(sc);
2497
2498	/*
2499	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2500	 * RX checksum offload. We must configure the C+ register
2501	 * before all others.
2502	 */
2503	cfg = RL_CPLUSCMD_PCI_MRW;
2504	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2505		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2506	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2507		cfg |= RL_CPLUSCMD_VLANSTRIP;
2508	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2509		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2510		/* XXX magic. */
2511		cfg |= 0x0001;
2512	} else
2513		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2514	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2515	/*
2516	 * Disable TSO if interface MTU size is greater than MSS
2517	 * allowed in controller.
2518	 */
2519	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2520		ifp->if_capenable &= ~IFCAP_TSO4;
2521		ifp->if_hwassist &= ~CSUM_TSO;
2522	}
2523
2524	/*
2525	 * Init our MAC address.  Even though the chipset
2526	 * documentation doesn't mention it, we need to enter "Config
2527	 * register write enable" mode to modify the ID registers.
2528	 */
2529	/* Copy MAC address on stack to align. */
2530	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2531	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2532	CSR_WRITE_4(sc, RL_IDR0,
2533	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2534	CSR_WRITE_4(sc, RL_IDR4,
2535	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2536	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2537
2538	/*
2539	 * For C+ mode, initialize the RX descriptors and mbufs.
2540	 */
2541	re_rx_list_init(sc);
2542	re_tx_list_init(sc);
2543
2544	/*
2545	 * Load the addresses of the RX and TX lists into the chip.
2546	 */
2547
2548	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2549	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2550	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2551	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2552
2553	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2554	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2555	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2556	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2557
2558	/*
2559	 * Enable transmit and receive.
2560	 */
2561	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2562
2563	/*
2564	 * Set the initial TX and RX configuration.
2565	 */
2566	if (sc->rl_testmode) {
2567		if (sc->rl_type == RL_8169)
2568			CSR_WRITE_4(sc, RL_TXCFG,
2569			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2570		else
2571			CSR_WRITE_4(sc, RL_TXCFG,
2572			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2573	} else
2574		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2575
2576	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2577
2578	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2579
2580	/* Set the individual bit to receive frames for this host only. */
2581	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2582	rxcfg |= RL_RXCFG_RX_INDIV;
2583
2584	/* If we want promiscuous mode, set the allframes bit. */
2585	if (ifp->if_flags & IFF_PROMISC)
2586		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2587	else
2588		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2589	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2590
2591	/*
2592	 * Set capture broadcast bit to capture broadcast frames.
2593	 */
2594	if (ifp->if_flags & IFF_BROADCAST)
2595		rxcfg |= RL_RXCFG_RX_BROAD;
2596	else
2597		rxcfg &= ~RL_RXCFG_RX_BROAD;
2598	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2599
2600	/*
2601	 * Program the multicast filter, if necessary.
2602	 */
2603	re_setmulti(sc);
2604
2605#ifdef DEVICE_POLLING
2606	/*
2607	 * Disable interrupts if we are polling.
2608	 */
2609	if (ifp->if_capenable & IFCAP_POLLING)
2610		CSR_WRITE_2(sc, RL_IMR, 0);
2611	else	/* otherwise ... */
2612#endif
2613
2614	/*
2615	 * Enable interrupts.
2616	 */
2617	if (sc->rl_testmode)
2618		CSR_WRITE_2(sc, RL_IMR, 0);
2619	else
2620		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2621	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2622
2623	/* Set initial TX threshold */
2624	sc->rl_txthresh = RL_TX_THRESH_INIT;
2625
2626	/* Start RX/TX process. */
2627	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2628#ifdef notdef
2629	/* Enable receiver and transmitter. */
2630	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2631#endif
2632
2633#ifdef RE_TX_MODERATION
2634	/*
2635	 * Initialize the timer interrupt register so that
2636	 * a timer interrupt will be generated once the timer
2637	 * reaches a certain number of ticks. The timer is
2638	 * reloaded on each transmit. This gives us TX interrupt
2639	 * moderation, which dramatically improves TX frame rate.
2640	 */
2641	if (sc->rl_type == RL_8169)
2642		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2643	else
2644		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2645#endif
2646
2647	/*
2648	 * For 8169 gigE NICs, set the max allowed RX packet
2649	 * size so we can receive jumbo frames.
2650	 */
2651	if (sc->rl_type == RL_8169)
2652		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2653
2654	if (sc->rl_testmode)
2655		return;
2656
2657	mii_mediachg(mii);
2658
2659	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2660
2661	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2662	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2663
2664	sc->rl_flags &= ~RL_FLAG_LINK;
2665	sc->rl_watchdog_timer = 0;
2666	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2667}
2668
2669/*
2670 * Set media options.
2671 */
2672static int
2673re_ifmedia_upd(struct ifnet *ifp)
2674{
2675	struct rl_softc		*sc;
2676	struct mii_data		*mii;
2677	int			error;
2678
2679	sc = ifp->if_softc;
2680	mii = device_get_softc(sc->rl_miibus);
2681	RL_LOCK(sc);
2682	error = mii_mediachg(mii);
2683	RL_UNLOCK(sc);
2684
2685	return (error);
2686}
2687
2688/*
2689 * Report current media status.
2690 */
2691static void
2692re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2693{
2694	struct rl_softc		*sc;
2695	struct mii_data		*mii;
2696
2697	sc = ifp->if_softc;
2698	mii = device_get_softc(sc->rl_miibus);
2699
2700	RL_LOCK(sc);
2701	mii_pollstat(mii);
2702	RL_UNLOCK(sc);
2703	ifmr->ifm_active = mii->mii_media_active;
2704	ifmr->ifm_status = mii->mii_media_status;
2705}
2706
2707static int
2708re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2709{
2710	struct rl_softc		*sc = ifp->if_softc;
2711	struct ifreq		*ifr = (struct ifreq *) data;
2712	struct mii_data		*mii;
2713	int			error = 0;
2714
2715	switch (command) {
2716	case SIOCSIFMTU:
2717		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2718			error = EINVAL;
2719			break;
2720		}
2721		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2722		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2723			error = EINVAL;
2724			break;
2725		}
2726		RL_LOCK(sc);
2727		if (ifp->if_mtu != ifr->ifr_mtu)
2728			ifp->if_mtu = ifr->ifr_mtu;
2729		if (ifp->if_mtu > RL_TSO_MTU &&
2730		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2731			ifp->if_capenable &= ~IFCAP_TSO4;
2732			ifp->if_hwassist &= ~CSUM_TSO;
2733		}
2734		RL_UNLOCK(sc);
2735		break;
2736	case SIOCSIFFLAGS:
2737		RL_LOCK(sc);
2738		if ((ifp->if_flags & IFF_UP) != 0) {
2739			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2740				if (((ifp->if_flags ^ sc->rl_if_flags)
2741				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2742					re_setmulti(sc);
2743			} else
2744				re_init_locked(sc);
2745		} else {
2746			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2747				re_stop(sc);
2748		}
2749		sc->rl_if_flags = ifp->if_flags;
2750		RL_UNLOCK(sc);
2751		break;
2752	case SIOCADDMULTI:
2753	case SIOCDELMULTI:
2754		RL_LOCK(sc);
2755		re_setmulti(sc);
2756		RL_UNLOCK(sc);
2757		break;
2758	case SIOCGIFMEDIA:
2759	case SIOCSIFMEDIA:
2760		mii = device_get_softc(sc->rl_miibus);
2761		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2762		break;
2763	case SIOCSIFCAP:
2764	    {
2765		int mask, reinit;
2766
2767		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2768		reinit = 0;
2769#ifdef DEVICE_POLLING
2770		if (mask & IFCAP_POLLING) {
2771			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2772				error = ether_poll_register(re_poll, ifp);
2773				if (error)
2774					return(error);
2775				RL_LOCK(sc);
2776				/* Disable interrupts */
2777				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2778				ifp->if_capenable |= IFCAP_POLLING;
2779				RL_UNLOCK(sc);
2780			} else {
2781				error = ether_poll_deregister(ifp);
2782				/* Enable interrupts. */
2783				RL_LOCK(sc);
2784				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2785				ifp->if_capenable &= ~IFCAP_POLLING;
2786				RL_UNLOCK(sc);
2787			}
2788		}
2789#endif /* DEVICE_POLLING */
2790		if (mask & IFCAP_HWCSUM) {
2791			ifp->if_capenable ^= IFCAP_HWCSUM;
2792			if (ifp->if_capenable & IFCAP_TXCSUM)
2793				ifp->if_hwassist |= RE_CSUM_FEATURES;
2794			else
2795				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2796			reinit = 1;
2797		}
2798		if (mask & IFCAP_VLAN_HWTAGGING) {
2799			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2800			reinit = 1;
2801		}
2802		if (mask & IFCAP_TSO4) {
2803			ifp->if_capenable ^= IFCAP_TSO4;
2804			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2805			    (IFCAP_TSO4 & ifp->if_capabilities))
2806				ifp->if_hwassist |= CSUM_TSO;
2807			else
2808				ifp->if_hwassist &= ~CSUM_TSO;
2809			if (ifp->if_mtu > RL_TSO_MTU &&
2810			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2811				ifp->if_capenable &= ~IFCAP_TSO4;
2812				ifp->if_hwassist &= ~CSUM_TSO;
2813			}
2814		}
2815		if ((mask & IFCAP_WOL) != 0 &&
2816		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2817			if ((mask & IFCAP_WOL_UCAST) != 0)
2818				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2819			if ((mask & IFCAP_WOL_MCAST) != 0)
2820				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2821			if ((mask & IFCAP_WOL_MAGIC) != 0)
2822				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2823		}
2824		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2825			re_init(sc);
2826		VLAN_CAPABILITIES(ifp);
2827	    }
2828		break;
2829	default:
2830		error = ether_ioctl(ifp, command, data);
2831		break;
2832	}
2833
2834	return (error);
2835}
2836
2837static void
2838re_watchdog(struct rl_softc *sc)
2839{
2840	struct ifnet		*ifp;
2841
2842	RL_LOCK_ASSERT(sc);
2843
2844	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2845		return;
2846
2847	ifp = sc->rl_ifp;
2848	re_txeof(sc);
2849	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
2850		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2851		    "-- recovering\n");
2852		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2853			taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2854		return;
2855	}
2856
2857	if_printf(ifp, "watchdog timeout\n");
2858	ifp->if_oerrors++;
2859
2860	re_rxeof(sc);
2861	re_init_locked(sc);
2862	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2863		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2864}
2865
2866/*
2867 * Stop the adapter and free any mbufs allocated to the
2868 * RX and TX lists.
2869 */
2870static void
2871re_stop(struct rl_softc *sc)
2872{
2873	int			i;
2874	struct ifnet		*ifp;
2875	struct rl_txdesc	*txd;
2876	struct rl_rxdesc	*rxd;
2877
2878	RL_LOCK_ASSERT(sc);
2879
2880	ifp = sc->rl_ifp;
2881
2882	sc->rl_watchdog_timer = 0;
2883	callout_stop(&sc->rl_stat_callout);
2884	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2885
2886	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
2887		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
2888		    RL_CMD_RX_ENB);
2889	else
2890		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2891	DELAY(1000);
2892	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2893	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2894
2895	if (sc->rl_head != NULL) {
2896		m_freem(sc->rl_head);
2897		sc->rl_head = sc->rl_tail = NULL;
2898	}
2899
2900	/* Free the TX list buffers. */
2901
2902	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2903		txd = &sc->rl_ldata.rl_tx_desc[i];
2904		if (txd->tx_m != NULL) {
2905			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2906			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2907			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2908			    txd->tx_dmamap);
2909			m_freem(txd->tx_m);
2910			txd->tx_m = NULL;
2911		}
2912	}
2913
2914	/* Free the RX list buffers. */
2915
2916	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2917		rxd = &sc->rl_ldata.rl_rx_desc[i];
2918		if (rxd->rx_m != NULL) {
2919			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2920			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2921			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2922			    rxd->rx_dmamap);
2923			m_freem(rxd->rx_m);
2924			rxd->rx_m = NULL;
2925		}
2926	}
2927}
2928
2929/*
2930 * Device suspend routine.  Stop the interface and save some PCI
2931 * settings in case the BIOS doesn't restore them properly on
2932 * resume.
2933 */
2934static int
2935re_suspend(device_t dev)
2936{
2937	struct rl_softc		*sc;
2938
2939	sc = device_get_softc(dev);
2940
2941	RL_LOCK(sc);
2942	re_stop(sc);
2943	re_setwol(sc);
2944	sc->suspended = 1;
2945	RL_UNLOCK(sc);
2946
2947	return (0);
2948}
2949
2950/*
2951 * Device resume routine.  Restore some PCI settings in case the BIOS
2952 * doesn't, re-enable busmastering, and restart the interface if
2953 * appropriate.
2954 */
2955static int
2956re_resume(device_t dev)
2957{
2958	struct rl_softc		*sc;
2959	struct ifnet		*ifp;
2960
2961	sc = device_get_softc(dev);
2962
2963	RL_LOCK(sc);
2964
2965	ifp = sc->rl_ifp;
2966
2967	/* reinitialize interface if necessary */
2968	if (ifp->if_flags & IFF_UP)
2969		re_init_locked(sc);
2970
2971	/*
2972	 * Clear WOL matching such that normal Rx filtering
2973	 * wouldn't interfere with WOL patterns.
2974	 */
2975	re_clrwol(sc);
2976	sc->suspended = 0;
2977	RL_UNLOCK(sc);
2978
2979	return (0);
2980}
2981
2982/*
2983 * Stop all chip I/O so that the kernel's probe routines don't
2984 * get confused by errant DMAs when rebooting.
2985 */
2986static int
2987re_shutdown(device_t dev)
2988{
2989	struct rl_softc		*sc;
2990
2991	sc = device_get_softc(dev);
2992
2993	RL_LOCK(sc);
2994	re_stop(sc);
2995	/*
2996	 * Mark interface as down since otherwise we will panic if
2997	 * interrupt comes in later on, which can happen in some
2998	 * cases.
2999	 */
3000	sc->rl_ifp->if_flags &= ~IFF_UP;
3001	re_setwol(sc);
3002	RL_UNLOCK(sc);
3003
3004	return (0);
3005}
3006
3007static void
3008re_setwol(struct rl_softc *sc)
3009{
3010	struct ifnet		*ifp;
3011	int			pmc;
3012	uint16_t		pmstat;
3013	uint8_t			v;
3014
3015	RL_LOCK_ASSERT(sc);
3016
3017	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3018		return;
3019
3020	ifp = sc->rl_ifp;
3021	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3022	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3023		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3024	/* Enable config register write. */
3025	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3026
3027	/* Enable PME. */
3028	v = CSR_READ_1(sc, RL_CFG1);
3029	v &= ~RL_CFG1_PME;
3030	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3031		v |= RL_CFG1_PME;
3032	CSR_WRITE_1(sc, RL_CFG1, v);
3033
3034	v = CSR_READ_1(sc, RL_CFG3);
3035	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3036	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3037		v |= RL_CFG3_WOL_MAGIC;
3038	CSR_WRITE_1(sc, RL_CFG3, v);
3039
3040	/* Config register write done. */
3041	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3042
3043	v = CSR_READ_1(sc, RL_CFG5);
3044	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3045	v &= ~RL_CFG5_WOL_LANWAKE;
3046	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3047		v |= RL_CFG5_WOL_UCAST;
3048	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3049		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3050	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3051		v |= RL_CFG5_WOL_LANWAKE;
3052	CSR_WRITE_1(sc, RL_CFG5, v);
3053
3054	/*
3055	 * It seems that hardware resets its link speed to 100Mbps in
3056	 * power down mode so switching to 100Mbps in driver is not
3057	 * needed.
3058	 */
3059
3060	/* Request PME if WOL is requested. */
3061	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3062	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3063	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3064		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3065	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3066}
3067
3068static void
3069re_clrwol(struct rl_softc *sc)
3070{
3071	int			pmc;
3072	uint8_t			v;
3073
3074	RL_LOCK_ASSERT(sc);
3075
3076	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3077		return;
3078
3079	/* Enable config register write. */
3080	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3081
3082	v = CSR_READ_1(sc, RL_CFG3);
3083	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3084	CSR_WRITE_1(sc, RL_CFG3, v);
3085
3086	/* Config register write done. */
3087	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3088
3089	v = CSR_READ_1(sc, RL_CFG5);
3090	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3091	v &= ~RL_CFG5_WOL_LANWAKE;
3092	CSR_WRITE_1(sc, RL_CFG5, v);
3093}
3094