if_re.c revision 181275
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 181275 2008-08-04 04:00:10Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/* Tunables. */
159static int msi_disable = 1;
160TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161
162#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163
164/*
165 * Various supported device vendors/types and their names.
166 */
167static struct rl_type re_devs[] = {
168	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170	{ RT_VENDORID, RT_DEVICEID_8139, 0,
171	    "RealTek 8139C+ 10/100BaseTX" },
172	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
173	    "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
174	{ RT_VENDORID, RT_DEVICEID_8168, 0,
175	    "RealTek 8168/8168B/8168C/8168CP/8111B/8111C/8111CP PCIe "
176	    "Gigabit Ethernet" },
177	{ RT_VENDORID, RT_DEVICEID_8169, 0,
178	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
180	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
182	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
183	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
184	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
185	{ USR_VENDORID, USR_DEVICEID_997902, 0,
186	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
187};
188
189static struct rl_hwrev re_hwrevs[] = {
190	{ RL_HWREV_8139, RL_8139,  "" },
191	{ RL_HWREV_8139A, RL_8139, "A" },
192	{ RL_HWREV_8139AG, RL_8139, "A-G" },
193	{ RL_HWREV_8139B, RL_8139, "B" },
194	{ RL_HWREV_8130, RL_8139, "8130" },
195	{ RL_HWREV_8139C, RL_8139, "C" },
196	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
197	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
198	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
199	{ RL_HWREV_8169, RL_8169, "8169"},
200	{ RL_HWREV_8169S, RL_8169, "8169S"},
201	{ RL_HWREV_8110S, RL_8169, "8110S"},
202	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
203	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
204	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"},
205	{ RL_HWREV_8100, RL_8139, "8100"},
206	{ RL_HWREV_8101, RL_8139, "8101"},
207	{ RL_HWREV_8100E, RL_8169, "8100E"},
208	{ RL_HWREV_8101E, RL_8169, "8101E"},
209	{ RL_HWREV_8102E, RL_8169, "8102E"},
210	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
211	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
212	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
213	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
214	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
215	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
216	{ 0, 0, NULL }
217};
218
219static int re_probe		(device_t);
220static int re_attach		(device_t);
221static int re_detach		(device_t);
222
223static int re_encap		(struct rl_softc *, struct mbuf **);
224
225static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
226static int re_allocmem		(device_t, struct rl_softc *);
227static __inline void re_discard_rxbuf
228				(struct rl_softc *, int);
229static int re_newbuf		(struct rl_softc *, int);
230static int re_rx_list_init	(struct rl_softc *);
231static int re_tx_list_init	(struct rl_softc *);
232#ifdef RE_FIXUP_RX
233static __inline void re_fixup_rx
234				(struct mbuf *);
235#endif
236static int re_rxeof		(struct rl_softc *);
237static void re_txeof		(struct rl_softc *);
238#ifdef DEVICE_POLLING
239static void re_poll		(struct ifnet *, enum poll_cmd, int);
240static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
241#endif
242static int re_intr		(void *);
243static void re_tick		(void *);
244static void re_tx_task		(void *, int);
245static void re_int_task		(void *, int);
246static void re_start		(struct ifnet *);
247static int re_ioctl		(struct ifnet *, u_long, caddr_t);
248static void re_init		(void *);
249static void re_init_locked	(struct rl_softc *);
250static void re_stop		(struct rl_softc *);
251static void re_watchdog		(struct rl_softc *);
252static int re_suspend		(device_t);
253static int re_resume		(device_t);
254static int re_shutdown		(device_t);
255static int re_ifmedia_upd	(struct ifnet *);
256static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
257
258static void re_eeprom_putbyte	(struct rl_softc *, int);
259static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
260static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
261static int re_gmii_readreg	(device_t, int, int);
262static int re_gmii_writereg	(device_t, int, int, int);
263
264static int re_miibus_readreg	(device_t, int, int);
265static int re_miibus_writereg	(device_t, int, int, int);
266static void re_miibus_statchg	(device_t);
267
268static void re_setmulti		(struct rl_softc *);
269static void re_reset		(struct rl_softc *);
270static void re_setwol		(struct rl_softc *);
271static void re_clrwol		(struct rl_softc *);
272
273#ifdef RE_DIAG
274static int re_diag		(struct rl_softc *);
275#endif
276
277static device_method_t re_methods[] = {
278	/* Device interface */
279	DEVMETHOD(device_probe,		re_probe),
280	DEVMETHOD(device_attach,	re_attach),
281	DEVMETHOD(device_detach,	re_detach),
282	DEVMETHOD(device_suspend,	re_suspend),
283	DEVMETHOD(device_resume,	re_resume),
284	DEVMETHOD(device_shutdown,	re_shutdown),
285
286	/* bus interface */
287	DEVMETHOD(bus_print_child,	bus_generic_print_child),
288	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
289
290	/* MII interface */
291	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
292	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
293	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
294
295	{ 0, 0 }
296};
297
298static driver_t re_driver = {
299	"re",
300	re_methods,
301	sizeof(struct rl_softc)
302};
303
304static devclass_t re_devclass;
305
306DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
307DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
308DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
309
310#define EE_SET(x)					\
311	CSR_WRITE_1(sc, RL_EECMD,			\
312		CSR_READ_1(sc, RL_EECMD) | x)
313
314#define EE_CLR(x)					\
315	CSR_WRITE_1(sc, RL_EECMD,			\
316		CSR_READ_1(sc, RL_EECMD) & ~x)
317
318/*
319 * Send a read command and address to the EEPROM, check for ACK.
320 */
321static void
322re_eeprom_putbyte(struct rl_softc *sc, int addr)
323{
324	int			d, i;
325
326	d = addr | (RL_9346_READ << sc->rl_eewidth);
327
328	/*
329	 * Feed in each bit and strobe the clock.
330	 */
331
332	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
333		if (d & i) {
334			EE_SET(RL_EE_DATAIN);
335		} else {
336			EE_CLR(RL_EE_DATAIN);
337		}
338		DELAY(100);
339		EE_SET(RL_EE_CLK);
340		DELAY(150);
341		EE_CLR(RL_EE_CLK);
342		DELAY(100);
343	}
344}
345
346/*
347 * Read a word of data stored in the EEPROM at address 'addr.'
348 */
349static void
350re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
351{
352	int			i;
353	u_int16_t		word = 0;
354
355	/*
356	 * Send address of word we want to read.
357	 */
358	re_eeprom_putbyte(sc, addr);
359
360	/*
361	 * Start reading bits from EEPROM.
362	 */
363	for (i = 0x8000; i; i >>= 1) {
364		EE_SET(RL_EE_CLK);
365		DELAY(100);
366		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
367			word |= i;
368		EE_CLR(RL_EE_CLK);
369		DELAY(100);
370	}
371
372	*dest = word;
373}
374
375/*
376 * Read a sequence of words from the EEPROM.
377 */
378static void
379re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
380{
381	int			i;
382	u_int16_t		word = 0, *ptr;
383
384	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
385
386        DELAY(100);
387
388	for (i = 0; i < cnt; i++) {
389		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
390		re_eeprom_getword(sc, off + i, &word);
391		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
392		ptr = (u_int16_t *)(dest + (i * 2));
393                *ptr = word;
394	}
395
396	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
397}
398
399static int
400re_gmii_readreg(device_t dev, int phy, int reg)
401{
402	struct rl_softc		*sc;
403	u_int32_t		rval;
404	int			i;
405
406	if (phy != 1)
407		return (0);
408
409	sc = device_get_softc(dev);
410
411	/* Let the rgephy driver read the GMEDIASTAT register */
412
413	if (reg == RL_GMEDIASTAT) {
414		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
415		return (rval);
416	}
417
418	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
419	DELAY(1000);
420
421	for (i = 0; i < RL_TIMEOUT; i++) {
422		rval = CSR_READ_4(sc, RL_PHYAR);
423		if (rval & RL_PHYAR_BUSY)
424			break;
425		DELAY(100);
426	}
427
428	if (i == RL_TIMEOUT) {
429		device_printf(sc->rl_dev, "PHY read failed\n");
430		return (0);
431	}
432
433	return (rval & RL_PHYAR_PHYDATA);
434}
435
436static int
437re_gmii_writereg(device_t dev, int phy, int reg, int data)
438{
439	struct rl_softc		*sc;
440	u_int32_t		rval;
441	int			i;
442
443	sc = device_get_softc(dev);
444
445	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
446	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
447	DELAY(1000);
448
449	for (i = 0; i < RL_TIMEOUT; i++) {
450		rval = CSR_READ_4(sc, RL_PHYAR);
451		if (!(rval & RL_PHYAR_BUSY))
452			break;
453		DELAY(100);
454	}
455
456	if (i == RL_TIMEOUT) {
457		device_printf(sc->rl_dev, "PHY write failed\n");
458		return (0);
459	}
460
461	return (0);
462}
463
464static int
465re_miibus_readreg(device_t dev, int phy, int reg)
466{
467	struct rl_softc		*sc;
468	u_int16_t		rval = 0;
469	u_int16_t		re8139_reg = 0;
470
471	sc = device_get_softc(dev);
472
473	if (sc->rl_type == RL_8169) {
474		rval = re_gmii_readreg(dev, phy, reg);
475		return (rval);
476	}
477
478	/* Pretend the internal PHY is only at address 0 */
479	if (phy) {
480		return (0);
481	}
482	switch (reg) {
483	case MII_BMCR:
484		re8139_reg = RL_BMCR;
485		break;
486	case MII_BMSR:
487		re8139_reg = RL_BMSR;
488		break;
489	case MII_ANAR:
490		re8139_reg = RL_ANAR;
491		break;
492	case MII_ANER:
493		re8139_reg = RL_ANER;
494		break;
495	case MII_ANLPAR:
496		re8139_reg = RL_LPAR;
497		break;
498	case MII_PHYIDR1:
499	case MII_PHYIDR2:
500		return (0);
501	/*
502	 * Allow the rlphy driver to read the media status
503	 * register. If we have a link partner which does not
504	 * support NWAY, this is the register which will tell
505	 * us the results of parallel detection.
506	 */
507	case RL_MEDIASTAT:
508		rval = CSR_READ_1(sc, RL_MEDIASTAT);
509		return (rval);
510	default:
511		device_printf(sc->rl_dev, "bad phy register\n");
512		return (0);
513	}
514	rval = CSR_READ_2(sc, re8139_reg);
515	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
516		/* 8139C+ has different bit layout. */
517		rval &= ~(BMCR_LOOP | BMCR_ISO);
518	}
519	return (rval);
520}
521
522static int
523re_miibus_writereg(device_t dev, int phy, int reg, int data)
524{
525	struct rl_softc		*sc;
526	u_int16_t		re8139_reg = 0;
527	int			rval = 0;
528
529	sc = device_get_softc(dev);
530
531	if (sc->rl_type == RL_8169) {
532		rval = re_gmii_writereg(dev, phy, reg, data);
533		return (rval);
534	}
535
536	/* Pretend the internal PHY is only at address 0 */
537	if (phy)
538		return (0);
539
540	switch (reg) {
541	case MII_BMCR:
542		re8139_reg = RL_BMCR;
543		if (sc->rl_type == RL_8139CPLUS) {
544			/* 8139C+ has different bit layout. */
545			data &= ~(BMCR_LOOP | BMCR_ISO);
546		}
547		break;
548	case MII_BMSR:
549		re8139_reg = RL_BMSR;
550		break;
551	case MII_ANAR:
552		re8139_reg = RL_ANAR;
553		break;
554	case MII_ANER:
555		re8139_reg = RL_ANER;
556		break;
557	case MII_ANLPAR:
558		re8139_reg = RL_LPAR;
559		break;
560	case MII_PHYIDR1:
561	case MII_PHYIDR2:
562		return (0);
563		break;
564	default:
565		device_printf(sc->rl_dev, "bad phy register\n");
566		return (0);
567	}
568	CSR_WRITE_2(sc, re8139_reg, data);
569	return (0);
570}
571
572static void
573re_miibus_statchg(device_t dev)
574{
575
576}
577
578/*
579 * Program the 64-bit multicast hash filter.
580 */
581static void
582re_setmulti(struct rl_softc *sc)
583{
584	struct ifnet		*ifp;
585	int			h = 0;
586	u_int32_t		hashes[2] = { 0, 0 };
587	struct ifmultiaddr	*ifma;
588	u_int32_t		rxfilt;
589	int			mcnt = 0;
590
591	RL_LOCK_ASSERT(sc);
592
593	ifp = sc->rl_ifp;
594
595
596	rxfilt = CSR_READ_4(sc, RL_RXCFG);
597	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
598	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
599		if (ifp->if_flags & IFF_PROMISC)
600			rxfilt |= RL_RXCFG_RX_ALLPHYS;
601		/*
602		 * Unlike other hardwares, we have to explicitly set
603		 * RL_RXCFG_RX_MULTI to receive multicast frames in
604		 * promiscuous mode.
605		 */
606		rxfilt |= RL_RXCFG_RX_MULTI;
607		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
608		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
609		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
610		return;
611	}
612
613	/* first, zot all the existing hash bits */
614	CSR_WRITE_4(sc, RL_MAR0, 0);
615	CSR_WRITE_4(sc, RL_MAR4, 0);
616
617	/* now program new ones */
618	IF_ADDR_LOCK(ifp);
619	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
620		if (ifma->ifma_addr->sa_family != AF_LINK)
621			continue;
622		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
623		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
624		if (h < 32)
625			hashes[0] |= (1 << h);
626		else
627			hashes[1] |= (1 << (h - 32));
628		mcnt++;
629	}
630	IF_ADDR_UNLOCK(ifp);
631
632	if (mcnt)
633		rxfilt |= RL_RXCFG_RX_MULTI;
634	else
635		rxfilt &= ~RL_RXCFG_RX_MULTI;
636
637	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
638
639	/*
640	 * For some unfathomable reason, RealTek decided to reverse
641	 * the order of the multicast hash registers in the PCI Express
642	 * parts. This means we have to write the hash pattern in reverse
643	 * order for those devices.
644	 */
645
646	if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
647		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
648		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
649	} else {
650		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
651		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
652	}
653}
654
655static void
656re_reset(struct rl_softc *sc)
657{
658	int			i;
659
660	RL_LOCK_ASSERT(sc);
661
662	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
663
664	for (i = 0; i < RL_TIMEOUT; i++) {
665		DELAY(10);
666		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
667			break;
668	}
669	if (i == RL_TIMEOUT)
670		device_printf(sc->rl_dev, "reset never completed!\n");
671
672	CSR_WRITE_1(sc, 0x82, 1);
673}
674
675#ifdef RE_DIAG
676
677/*
678 * The following routine is designed to test for a defect on some
679 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
680 * lines connected to the bus, however for a 32-bit only card, they
681 * should be pulled high. The result of this defect is that the
682 * NIC will not work right if you plug it into a 64-bit slot: DMA
683 * operations will be done with 64-bit transfers, which will fail
684 * because the 64-bit data lines aren't connected.
685 *
686 * There's no way to work around this (short of talking a soldering
687 * iron to the board), however we can detect it. The method we use
688 * here is to put the NIC into digital loopback mode, set the receiver
689 * to promiscuous mode, and then try to send a frame. We then compare
690 * the frame data we sent to what was received. If the data matches,
691 * then the NIC is working correctly, otherwise we know the user has
692 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
693 * slot. In the latter case, there's no way the NIC can work correctly,
694 * so we print out a message on the console and abort the device attach.
695 */
696
697static int
698re_diag(struct rl_softc *sc)
699{
700	struct ifnet		*ifp = sc->rl_ifp;
701	struct mbuf		*m0;
702	struct ether_header	*eh;
703	struct rl_desc		*cur_rx;
704	u_int16_t		status;
705	u_int32_t		rxstat;
706	int			total_len, i, error = 0, phyaddr;
707	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
708	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
709
710	/* Allocate a single mbuf */
711	MGETHDR(m0, M_DONTWAIT, MT_DATA);
712	if (m0 == NULL)
713		return (ENOBUFS);
714
715	RL_LOCK(sc);
716
717	/*
718	 * Initialize the NIC in test mode. This sets the chip up
719	 * so that it can send and receive frames, but performs the
720	 * following special functions:
721	 * - Puts receiver in promiscuous mode
722	 * - Enables digital loopback mode
723	 * - Leaves interrupts turned off
724	 */
725
726	ifp->if_flags |= IFF_PROMISC;
727	sc->rl_testmode = 1;
728	re_reset(sc);
729	re_init_locked(sc);
730	sc->rl_flags |= RL_FLAG_LINK;
731	if (sc->rl_type == RL_8169)
732		phyaddr = 1;
733	else
734		phyaddr = 0;
735
736	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
737	for (i = 0; i < RL_TIMEOUT; i++) {
738		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
739		if (!(status & BMCR_RESET))
740			break;
741	}
742
743	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
744	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
745
746	DELAY(100000);
747
748	/* Put some data in the mbuf */
749
750	eh = mtod(m0, struct ether_header *);
751	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
752	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
753	eh->ether_type = htons(ETHERTYPE_IP);
754	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
755
756	/*
757	 * Queue the packet, start transmission.
758	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
759	 */
760
761	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
762	RL_UNLOCK(sc);
763	/* XXX: re_diag must not be called when in ALTQ mode */
764	IF_HANDOFF(&ifp->if_snd, m0, ifp);
765	RL_LOCK(sc);
766	m0 = NULL;
767
768	/* Wait for it to propagate through the chip */
769
770	DELAY(100000);
771	for (i = 0; i < RL_TIMEOUT; i++) {
772		status = CSR_READ_2(sc, RL_ISR);
773		CSR_WRITE_2(sc, RL_ISR, status);
774		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
775		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
776			break;
777		DELAY(10);
778	}
779
780	if (i == RL_TIMEOUT) {
781		device_printf(sc->rl_dev,
782		    "diagnostic failed, failed to receive packet in"
783		    " loopback mode\n");
784		error = EIO;
785		goto done;
786	}
787
788	/*
789	 * The packet should have been dumped into the first
790	 * entry in the RX DMA ring. Grab it from there.
791	 */
792
793	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
794	    sc->rl_ldata.rl_rx_list_map,
795	    BUS_DMASYNC_POSTREAD);
796	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
797	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
798	    BUS_DMASYNC_POSTREAD);
799	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
800	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
801
802	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
803	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
804	eh = mtod(m0, struct ether_header *);
805
806	cur_rx = &sc->rl_ldata.rl_rx_list[0];
807	total_len = RL_RXBYTES(cur_rx);
808	rxstat = le32toh(cur_rx->rl_cmdstat);
809
810	if (total_len != ETHER_MIN_LEN) {
811		device_printf(sc->rl_dev,
812		    "diagnostic failed, received short packet\n");
813		error = EIO;
814		goto done;
815	}
816
817	/* Test that the received packet data matches what we sent. */
818
819	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
820	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
821	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
822		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
823		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
824		    dst, ":", src, ":", ETHERTYPE_IP);
825		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
826		    eh->ether_dhost, ":",  eh->ether_shost, ":",
827		    ntohs(eh->ether_type));
828		device_printf(sc->rl_dev, "You may have a defective 32-bit "
829		    "NIC plugged into a 64-bit PCI slot.\n");
830		device_printf(sc->rl_dev, "Please re-install the NIC in a "
831		    "32-bit slot for proper operation.\n");
832		device_printf(sc->rl_dev, "Read the re(4) man page for more "
833		    "details.\n");
834		error = EIO;
835	}
836
837done:
838	/* Turn interface off, release resources */
839
840	sc->rl_testmode = 0;
841	sc->rl_flags &= ~RL_FLAG_LINK;
842	ifp->if_flags &= ~IFF_PROMISC;
843	re_stop(sc);
844	if (m0 != NULL)
845		m_freem(m0);
846
847	RL_UNLOCK(sc);
848
849	return (error);
850}
851
852#endif
853
854/*
855 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
856 * IDs against our list and return a device name if we find a match.
857 */
858static int
859re_probe(device_t dev)
860{
861	struct rl_type		*t;
862	uint16_t		devid, vendor;
863	uint16_t		revid, sdevid;
864	int			i;
865
866	vendor = pci_get_vendor(dev);
867	devid = pci_get_device(dev);
868	revid = pci_get_revid(dev);
869	sdevid = pci_get_subdevice(dev);
870
871	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
872		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
873			/*
874			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
875			 * Rev. 2 is supported by sk(4).
876			 */
877			return (ENXIO);
878		}
879	}
880
881	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
882		if (revid != 0x20) {
883			/* 8139, let rl(4) take care of this device. */
884			return (ENXIO);
885		}
886	}
887
888	t = re_devs;
889	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
890		if (vendor == t->rl_vid && devid == t->rl_did) {
891			device_set_desc(dev, t->rl_name);
892			return (BUS_PROBE_DEFAULT);
893		}
894	}
895
896	return (ENXIO);
897}
898
899/*
900 * Map a single buffer address.
901 */
902
903static void
904re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
905{
906	bus_addr_t		*addr;
907
908	if (error)
909		return;
910
911	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
912	addr = arg;
913	*addr = segs->ds_addr;
914}
915
916static int
917re_allocmem(device_t dev, struct rl_softc *sc)
918{
919	bus_size_t		rx_list_size, tx_list_size;
920	int			error;
921	int			i;
922
923	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
924	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
925
926	/*
927	 * Allocate the parent bus DMA tag appropriate for PCI.
928	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
929	 * register should be set. However some RealTek chips are known
930	 * to be buggy on DAC handling, therefore disable DAC by limiting
931	 * DMA address space to 32bit. PCIe variants of RealTek chips
932	 * may not have the limitation but I took safer path.
933	 */
934	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
935	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
936	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
937	    NULL, NULL, &sc->rl_parent_tag);
938	if (error) {
939		device_printf(dev, "could not allocate parent DMA tag\n");
940		return (error);
941	}
942
943	/*
944	 * Allocate map for TX mbufs.
945	 */
946	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
947	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
948	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
949	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
950	if (error) {
951		device_printf(dev, "could not allocate TX DMA tag\n");
952		return (error);
953	}
954
955	/*
956	 * Allocate map for RX mbufs.
957	 */
958
959	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
960	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
961	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
962	if (error) {
963		device_printf(dev, "could not allocate RX DMA tag\n");
964		return (error);
965	}
966
967	/*
968	 * Allocate map for TX descriptor list.
969	 */
970	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
971	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
972	    NULL, tx_list_size, 1, tx_list_size, 0,
973	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
974	if (error) {
975		device_printf(dev, "could not allocate TX DMA ring tag\n");
976		return (error);
977	}
978
979	/* Allocate DMA'able memory for the TX ring */
980
981	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
982	    (void **)&sc->rl_ldata.rl_tx_list,
983	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
984	    &sc->rl_ldata.rl_tx_list_map);
985	if (error) {
986		device_printf(dev, "could not allocate TX DMA ring\n");
987		return (error);
988	}
989
990	/* Load the map for the TX ring. */
991
992	sc->rl_ldata.rl_tx_list_addr = 0;
993	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
994	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
995	     tx_list_size, re_dma_map_addr,
996	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
997	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
998		device_printf(dev, "could not load TX DMA ring\n");
999		return (ENOMEM);
1000	}
1001
1002	/* Create DMA maps for TX buffers */
1003
1004	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1005		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1006		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1007		if (error) {
1008			device_printf(dev, "could not create DMA map for TX\n");
1009			return (error);
1010		}
1011	}
1012
1013	/*
1014	 * Allocate map for RX descriptor list.
1015	 */
1016	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1017	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1018	    NULL, rx_list_size, 1, rx_list_size, 0,
1019	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1020	if (error) {
1021		device_printf(dev, "could not create RX DMA ring tag\n");
1022		return (error);
1023	}
1024
1025	/* Allocate DMA'able memory for the RX ring */
1026
1027	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1028	    (void **)&sc->rl_ldata.rl_rx_list,
1029	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1030	    &sc->rl_ldata.rl_rx_list_map);
1031	if (error) {
1032		device_printf(dev, "could not allocate RX DMA ring\n");
1033		return (error);
1034	}
1035
1036	/* Load the map for the RX ring. */
1037
1038	sc->rl_ldata.rl_rx_list_addr = 0;
1039	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1040	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1041	     rx_list_size, re_dma_map_addr,
1042	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1043	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1044		device_printf(dev, "could not load RX DMA ring\n");
1045		return (ENOMEM);
1046	}
1047
1048	/* Create DMA maps for RX buffers */
1049
1050	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1051	    &sc->rl_ldata.rl_rx_sparemap);
1052	if (error) {
1053		device_printf(dev, "could not create spare DMA map for RX\n");
1054		return (error);
1055	}
1056	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1057		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1058		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1059		if (error) {
1060			device_printf(dev, "could not create DMA map for RX\n");
1061			return (error);
1062		}
1063	}
1064
1065	return (0);
1066}
1067
1068/*
1069 * Attach the interface. Allocate softc structures, do ifmedia
1070 * setup and ethernet/BPF attach.
1071 */
1072static int
1073re_attach(device_t dev)
1074{
1075	u_char			eaddr[ETHER_ADDR_LEN];
1076	u_int16_t		as[ETHER_ADDR_LEN / 2];
1077	struct rl_softc		*sc;
1078	struct ifnet		*ifp;
1079	struct rl_hwrev		*hw_rev;
1080	int			hwrev;
1081	u_int16_t		devid, re_did = 0;
1082	int			error = 0, rid, i;
1083	int			msic, reg;
1084	uint8_t			cfg;
1085
1086	sc = device_get_softc(dev);
1087	sc->rl_dev = dev;
1088
1089	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1090	    MTX_DEF);
1091	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1092
1093	/*
1094	 * Map control/status registers.
1095	 */
1096	pci_enable_busmaster(dev);
1097
1098	devid = pci_get_device(dev);
1099	/* Prefer memory space register mapping over IO space. */
1100	sc->rl_res_id = PCIR_BAR(1);
1101	sc->rl_res_type = SYS_RES_MEMORY;
1102	/* RTL8168/8101E seems to use different BARs. */
1103	if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1104		sc->rl_res_id = PCIR_BAR(2);
1105	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1106	    &sc->rl_res_id, RF_ACTIVE);
1107
1108	if (sc->rl_res == NULL) {
1109		sc->rl_res_id = PCIR_BAR(0);
1110		sc->rl_res_type = SYS_RES_IOPORT;
1111		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1112		    &sc->rl_res_id, RF_ACTIVE);
1113		if (sc->rl_res == NULL) {
1114			device_printf(dev, "couldn't map ports/memory\n");
1115			error = ENXIO;
1116			goto fail;
1117		}
1118	}
1119
1120	sc->rl_btag = rman_get_bustag(sc->rl_res);
1121	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1122
1123	msic = 0;
1124	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1125		msic = pci_msi_count(dev);
1126		if (bootverbose)
1127			device_printf(dev, "MSI count : %d\n", msic);
1128	}
1129	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1130		if (pci_alloc_msi(dev, &msic) == 0) {
1131			if (msic == RL_MSI_MESSAGES) {
1132				device_printf(dev, "Using %d MSI messages\n",
1133				    msic);
1134				sc->rl_flags |= RL_FLAG_MSI;
1135				/* Explicitly set MSI enable bit. */
1136				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1137				cfg = CSR_READ_1(sc, RL_CFG2);
1138				cfg |= RL_CFG2_MSI;
1139				CSR_WRITE_1(sc, RL_CFG2, cfg);
1140				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1141			} else
1142				pci_release_msi(dev);
1143		}
1144	}
1145
1146	/* Allocate interrupt */
1147	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1148		rid = 0;
1149		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1150		    RF_SHAREABLE | RF_ACTIVE);
1151		if (sc->rl_irq[0] == NULL) {
1152			device_printf(dev, "couldn't allocate IRQ resources\n");
1153			error = ENXIO;
1154			goto fail;
1155		}
1156	} else {
1157		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1158			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1159			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1160			if (sc->rl_irq[i] == NULL) {
1161				device_printf(dev,
1162				    "couldn't llocate IRQ resources for "
1163				    "message %d\n", rid);
1164				error = ENXIO;
1165				goto fail;
1166			}
1167		}
1168	}
1169
1170	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1171		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1172		cfg = CSR_READ_1(sc, RL_CFG2);
1173		if ((cfg & RL_CFG2_MSI) != 0) {
1174			device_printf(dev, "turning off MSI enable bit.\n");
1175			cfg &= ~RL_CFG2_MSI;
1176			CSR_WRITE_1(sc, RL_CFG2, cfg);
1177		}
1178		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1179	}
1180
1181	/* Reset the adapter. */
1182	RL_LOCK(sc);
1183	re_reset(sc);
1184	RL_UNLOCK(sc);
1185
1186	hw_rev = re_hwrevs;
1187	hwrev = CSR_READ_4(sc, RL_TXCFG);
1188	device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1189	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1190	hwrev &= RL_TXCFG_HWREV;
1191	while (hw_rev->rl_desc != NULL) {
1192		if (hw_rev->rl_rev == hwrev) {
1193			sc->rl_type = hw_rev->rl_type;
1194			break;
1195		}
1196		hw_rev++;
1197	}
1198	if (hw_rev->rl_desc == NULL) {
1199		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1200		error = ENXIO;
1201		goto fail;
1202	}
1203
1204	switch (hw_rev->rl_rev) {
1205	case RL_HWREV_8139CPLUS:
1206		sc->rl_flags |= RL_FLAG_NOJUMBO;
1207		break;
1208	case RL_HWREV_8100E:
1209	case RL_HWREV_8101E:
1210		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1211		    RL_FLAG_PHYWAKE;
1212		break;
1213	case RL_HWREV_8102E:
1214	case RL_HWREV_8102EL:
1215		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1216		    RL_FLAG_PHYWAKE | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1217		break;
1218	case RL_HWREV_8168_SPIN1:
1219	case RL_HWREV_8168_SPIN2:
1220	case RL_HWREV_8168_SPIN3:
1221		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1222		    RL_FLAG_MACSTAT;
1223		break;
1224	case RL_HWREV_8168C:
1225	case RL_HWREV_8168C_SPIN2:
1226	case RL_HWREV_8168CP:
1227		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1228		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1229		/*
1230		 * These controllers support jumbo frame but it seems
1231		 * that enabling it requires touching additional magic
1232		 * registers. Depending on MAC revisions some
1233		 * controllers need to disable checksum offload. So
1234		 * disable jumbo frame until I have better idea what
1235		 * it really requires to make it support.
1236		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1237		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1238		 */
1239		sc->rl_flags |= RL_FLAG_NOJUMBO;
1240		break;
1241	case RL_HWREV_8169_8110SB:
1242	case RL_HWREV_8169_8110SC:
1243	case RL_HWREV_8169_8110SBL:
1244		sc->rl_flags |= RL_FLAG_PHYWAKE;
1245		break;
1246	default:
1247		break;
1248	}
1249
1250	/* Enable PME. */
1251	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1252	cfg = CSR_READ_1(sc, RL_CFG1);
1253	cfg |= RL_CFG1_PME;
1254	CSR_WRITE_1(sc, RL_CFG1, cfg);
1255	cfg = CSR_READ_1(sc, RL_CFG5);
1256	cfg &= RL_CFG5_PME_STS;
1257	CSR_WRITE_1(sc, RL_CFG5, cfg);
1258	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1259
1260	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1261		/*
1262		 * XXX Should have a better way to extract station
1263		 * address from EEPROM.
1264		 */
1265		for (i = 0; i < ETHER_ADDR_LEN; i++)
1266			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1267	} else {
1268		sc->rl_eewidth = RL_9356_ADDR_LEN;
1269		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1270		if (re_did != 0x8129)
1271			sc->rl_eewidth = RL_9346_ADDR_LEN;
1272
1273		/*
1274		 * Get station address from the EEPROM.
1275		 */
1276		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1277		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1278			as[i] = le16toh(as[i]);
1279		bcopy(as, eaddr, sizeof(eaddr));
1280	}
1281
1282	if (sc->rl_type == RL_8169) {
1283		/* Set RX length mask and number of descriptors. */
1284		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1285		sc->rl_txstart = RL_GTXSTART;
1286		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1287		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1288	} else {
1289		/* Set RX length mask and number of descriptors. */
1290		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1291		sc->rl_txstart = RL_TXSTART;
1292		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1293		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1294	}
1295
1296	error = re_allocmem(dev, sc);
1297	if (error)
1298		goto fail;
1299
1300	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1301	if (ifp == NULL) {
1302		device_printf(dev, "can not if_alloc()\n");
1303		error = ENOSPC;
1304		goto fail;
1305	}
1306
1307	/* Take PHY out of power down mode. */
1308	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1309		re_gmii_writereg(dev, 1, 0x1f, 0);
1310		re_gmii_writereg(dev, 1, 0x0e, 0);
1311	}
1312
1313	/* Do MII setup */
1314	if (mii_phy_probe(dev, &sc->rl_miibus,
1315	    re_ifmedia_upd, re_ifmedia_sts)) {
1316		device_printf(dev, "MII without any phy!\n");
1317		error = ENXIO;
1318		goto fail;
1319	}
1320
1321	ifp->if_softc = sc;
1322	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1323	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1324	ifp->if_ioctl = re_ioctl;
1325	ifp->if_start = re_start;
1326	ifp->if_hwassist = RE_CSUM_FEATURES;
1327	ifp->if_capabilities = IFCAP_HWCSUM;
1328	ifp->if_capenable = ifp->if_capabilities;
1329	ifp->if_init = re_init;
1330	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1331	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1332	IFQ_SET_READY(&ifp->if_snd);
1333
1334	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1335	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1336
1337	/*
1338	 * XXX
1339	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1340	 * 8111C and 8111CP.
1341	 */
1342	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1343		ifp->if_hwassist |= CSUM_TSO;
1344		ifp->if_capabilities |= IFCAP_TSO4;
1345	}
1346
1347	/*
1348	 * Call MI attach routine.
1349	 */
1350	ether_ifattach(ifp, eaddr);
1351
1352	/* VLAN capability setup */
1353	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1354	if (ifp->if_capabilities & IFCAP_HWCSUM)
1355		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1356	/* Enable WOL if PM is supported. */
1357	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1358		ifp->if_capabilities |= IFCAP_WOL;
1359	ifp->if_capenable = ifp->if_capabilities;
1360	/*
1361	 * Don't enable TSO by default. Under certain
1362	 * circumtances the controller generated corrupted
1363	 * packets in TSO size.
1364	 */
1365	ifp->if_hwassist &= ~CSUM_TSO;
1366	ifp->if_capenable &= ~IFCAP_TSO4;
1367#ifdef DEVICE_POLLING
1368	ifp->if_capabilities |= IFCAP_POLLING;
1369#endif
1370	/*
1371	 * Tell the upper layer(s) we support long frames.
1372	 * Must appear after the call to ether_ifattach() because
1373	 * ether_ifattach() sets ifi_hdrlen to the default value.
1374	 */
1375	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1376
1377#ifdef RE_DIAG
1378	/*
1379	 * Perform hardware diagnostic on the original RTL8169.
1380	 * Some 32-bit cards were incorrectly wired and would
1381	 * malfunction if plugged into a 64-bit slot.
1382	 */
1383
1384	if (hwrev == RL_HWREV_8169) {
1385		error = re_diag(sc);
1386		if (error) {
1387			device_printf(dev,
1388		    	"attach aborted due to hardware diag failure\n");
1389			ether_ifdetach(ifp);
1390			goto fail;
1391		}
1392	}
1393#endif
1394
1395	/* Hook interrupt last to avoid having to lock softc */
1396	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1397		error = bus_setup_intr(dev, sc->rl_irq[0],
1398		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1399		    &sc->rl_intrhand[0]);
1400	else {
1401		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1402			error = bus_setup_intr(dev, sc->rl_irq[i],
1403			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1404		    	    &sc->rl_intrhand[i]);
1405			if (error != 0)
1406				break;
1407		}
1408	}
1409	if (error) {
1410		device_printf(dev, "couldn't set up irq\n");
1411		ether_ifdetach(ifp);
1412	}
1413
1414fail:
1415
1416	if (error)
1417		re_detach(dev);
1418
1419	return (error);
1420}
1421
1422/*
1423 * Shutdown hardware and free up resources. This can be called any
1424 * time after the mutex has been initialized. It is called in both
1425 * the error case in attach and the normal detach case so it needs
1426 * to be careful about only freeing resources that have actually been
1427 * allocated.
1428 */
1429static int
1430re_detach(device_t dev)
1431{
1432	struct rl_softc		*sc;
1433	struct ifnet		*ifp;
1434	int			i, rid;
1435
1436	sc = device_get_softc(dev);
1437	ifp = sc->rl_ifp;
1438	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1439
1440	/* These should only be active if attach succeeded */
1441	if (device_is_attached(dev)) {
1442#ifdef DEVICE_POLLING
1443		if (ifp->if_capenable & IFCAP_POLLING)
1444			ether_poll_deregister(ifp);
1445#endif
1446		RL_LOCK(sc);
1447#if 0
1448		sc->suspended = 1;
1449#endif
1450		re_stop(sc);
1451		RL_UNLOCK(sc);
1452		callout_drain(&sc->rl_stat_callout);
1453		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1454		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1455		/*
1456		 * Force off the IFF_UP flag here, in case someone
1457		 * still had a BPF descriptor attached to this
1458		 * interface. If they do, ether_ifdetach() will cause
1459		 * the BPF code to try and clear the promisc mode
1460		 * flag, which will bubble down to re_ioctl(),
1461		 * which will try to call re_init() again. This will
1462		 * turn the NIC back on and restart the MII ticker,
1463		 * which will panic the system when the kernel tries
1464		 * to invoke the re_tick() function that isn't there
1465		 * anymore.
1466		 */
1467		ifp->if_flags &= ~IFF_UP;
1468		ether_ifdetach(ifp);
1469	}
1470	if (sc->rl_miibus)
1471		device_delete_child(dev, sc->rl_miibus);
1472	bus_generic_detach(dev);
1473
1474	/*
1475	 * The rest is resource deallocation, so we should already be
1476	 * stopped here.
1477	 */
1478
1479	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1480		if (sc->rl_intrhand[i] != NULL) {
1481			bus_teardown_intr(dev, sc->rl_irq[i],
1482			    sc->rl_intrhand[i]);
1483			sc->rl_intrhand[i] = NULL;
1484		}
1485	}
1486	if (ifp != NULL)
1487		if_free(ifp);
1488	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1489		if (sc->rl_irq[0] != NULL) {
1490			bus_release_resource(dev, SYS_RES_IRQ, 0,
1491			    sc->rl_irq[0]);
1492			sc->rl_irq[0] = NULL;
1493		}
1494	} else {
1495		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1496			if (sc->rl_irq[i] != NULL) {
1497				bus_release_resource(dev, SYS_RES_IRQ, rid,
1498				    sc->rl_irq[i]);
1499				sc->rl_irq[i] = NULL;
1500			}
1501		}
1502		pci_release_msi(dev);
1503	}
1504	if (sc->rl_res)
1505		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1506		    sc->rl_res);
1507
1508	/* Unload and free the RX DMA ring memory and map */
1509
1510	if (sc->rl_ldata.rl_rx_list_tag) {
1511		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1512		    sc->rl_ldata.rl_rx_list_map);
1513		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1514		    sc->rl_ldata.rl_rx_list,
1515		    sc->rl_ldata.rl_rx_list_map);
1516		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1517	}
1518
1519	/* Unload and free the TX DMA ring memory and map */
1520
1521	if (sc->rl_ldata.rl_tx_list_tag) {
1522		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1523		    sc->rl_ldata.rl_tx_list_map);
1524		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1525		    sc->rl_ldata.rl_tx_list,
1526		    sc->rl_ldata.rl_tx_list_map);
1527		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1528	}
1529
1530	/* Destroy all the RX and TX buffer maps */
1531
1532	if (sc->rl_ldata.rl_tx_mtag) {
1533		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1534			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1535			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1536		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1537	}
1538	if (sc->rl_ldata.rl_rx_mtag) {
1539		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1540			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1541			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1542		if (sc->rl_ldata.rl_rx_sparemap)
1543			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1544			    sc->rl_ldata.rl_rx_sparemap);
1545		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1546	}
1547
1548	/* Unload and free the stats buffer and map */
1549
1550	if (sc->rl_ldata.rl_stag) {
1551		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1552		    sc->rl_ldata.rl_rx_list_map);
1553		bus_dmamem_free(sc->rl_ldata.rl_stag,
1554		    sc->rl_ldata.rl_stats,
1555		    sc->rl_ldata.rl_smap);
1556		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1557	}
1558
1559	if (sc->rl_parent_tag)
1560		bus_dma_tag_destroy(sc->rl_parent_tag);
1561
1562	mtx_destroy(&sc->rl_mtx);
1563
1564	return (0);
1565}
1566
1567static __inline void
1568re_discard_rxbuf(struct rl_softc *sc, int idx)
1569{
1570	struct rl_desc		*desc;
1571	struct rl_rxdesc	*rxd;
1572	uint32_t		cmdstat;
1573
1574	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1575	desc = &sc->rl_ldata.rl_rx_list[idx];
1576	desc->rl_vlanctl = 0;
1577	cmdstat = rxd->rx_size;
1578	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1579		cmdstat |= RL_RDESC_CMD_EOR;
1580	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1581}
1582
1583static int
1584re_newbuf(struct rl_softc *sc, int idx)
1585{
1586	struct mbuf		*m;
1587	struct rl_rxdesc	*rxd;
1588	bus_dma_segment_t	segs[1];
1589	bus_dmamap_t		map;
1590	struct rl_desc		*desc;
1591	uint32_t		cmdstat;
1592	int			error, nsegs;
1593
1594	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1595	if (m == NULL)
1596		return (ENOBUFS);
1597
1598	m->m_len = m->m_pkthdr.len = MCLBYTES;
1599#ifdef RE_FIXUP_RX
1600	/*
1601	 * This is part of an evil trick to deal with non-x86 platforms.
1602	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1603	 * boundaries, but that will hose non-x86 machines. To get around
1604	 * this, we leave some empty space at the start of each buffer
1605	 * and for non-x86 hosts, we copy the buffer back six bytes
1606	 * to achieve word alignment. This is slightly more efficient
1607	 * than allocating a new buffer, copying the contents, and
1608	 * discarding the old buffer.
1609	 */
1610	m_adj(m, RE_ETHER_ALIGN);
1611#endif
1612	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1613	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1614	if (error != 0) {
1615		m_freem(m);
1616		return (ENOBUFS);
1617	}
1618	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1619
1620	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1621	if (rxd->rx_m != NULL) {
1622		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1623		    BUS_DMASYNC_POSTREAD);
1624		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1625	}
1626
1627	rxd->rx_m = m;
1628	map = rxd->rx_dmamap;
1629	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1630	rxd->rx_size = segs[0].ds_len;
1631	sc->rl_ldata.rl_rx_sparemap = map;
1632	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1633	    BUS_DMASYNC_PREREAD);
1634
1635	desc = &sc->rl_ldata.rl_rx_list[idx];
1636	desc->rl_vlanctl = 0;
1637	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1638	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1639	cmdstat = segs[0].ds_len;
1640	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1641		cmdstat |= RL_RDESC_CMD_EOR;
1642	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1643
1644	return (0);
1645}
1646
1647#ifdef RE_FIXUP_RX
1648static __inline void
1649re_fixup_rx(struct mbuf *m)
1650{
1651	int                     i;
1652	uint16_t                *src, *dst;
1653
1654	src = mtod(m, uint16_t *);
1655	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1656
1657	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1658		*dst++ = *src++;
1659
1660	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1661}
1662#endif
1663
1664static int
1665re_tx_list_init(struct rl_softc *sc)
1666{
1667	struct rl_desc		*desc;
1668	int			i;
1669
1670	RL_LOCK_ASSERT(sc);
1671
1672	bzero(sc->rl_ldata.rl_tx_list,
1673	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1674	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1675		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1676	/* Set EOR. */
1677	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1678	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1679
1680	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1681	    sc->rl_ldata.rl_tx_list_map,
1682	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1683
1684	sc->rl_ldata.rl_tx_prodidx = 0;
1685	sc->rl_ldata.rl_tx_considx = 0;
1686	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1687
1688	return (0);
1689}
1690
1691static int
1692re_rx_list_init(struct rl_softc *sc)
1693{
1694	int			error, i;
1695
1696	bzero(sc->rl_ldata.rl_rx_list,
1697	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1698	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1699		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1700		if ((error = re_newbuf(sc, i)) != 0)
1701			return (error);
1702	}
1703
1704	/* Flush the RX descriptors */
1705
1706	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1707	    sc->rl_ldata.rl_rx_list_map,
1708	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1709
1710	sc->rl_ldata.rl_rx_prodidx = 0;
1711	sc->rl_head = sc->rl_tail = NULL;
1712
1713	return (0);
1714}
1715
1716/*
1717 * RX handler for C+ and 8169. For the gigE chips, we support
1718 * the reception of jumbo frames that have been fragmented
1719 * across multiple 2K mbuf cluster buffers.
1720 */
1721static int
1722re_rxeof(struct rl_softc *sc)
1723{
1724	struct mbuf		*m;
1725	struct ifnet		*ifp;
1726	int			i, total_len;
1727	struct rl_desc		*cur_rx;
1728	u_int32_t		rxstat, rxvlan;
1729	int			maxpkt = 16;
1730
1731	RL_LOCK_ASSERT(sc);
1732
1733	ifp = sc->rl_ifp;
1734
1735	/* Invalidate the descriptor memory */
1736
1737	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1738	    sc->rl_ldata.rl_rx_list_map,
1739	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1740
1741	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1742	    i = RL_RX_DESC_NXT(sc, i)) {
1743		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1744		rxstat = le32toh(cur_rx->rl_cmdstat);
1745		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1746			break;
1747		total_len = rxstat & sc->rl_rxlenmask;
1748		rxvlan = le32toh(cur_rx->rl_vlanctl);
1749		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1750
1751		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1752			if (re_newbuf(sc, i) != 0) {
1753				/*
1754				 * If this is part of a multi-fragment packet,
1755				 * discard all the pieces.
1756				 */
1757				if (sc->rl_head != NULL) {
1758					m_freem(sc->rl_head);
1759					sc->rl_head = sc->rl_tail = NULL;
1760				}
1761				re_discard_rxbuf(sc, i);
1762				continue;
1763			}
1764			m->m_len = RE_RX_DESC_BUFLEN;
1765			if (sc->rl_head == NULL)
1766				sc->rl_head = sc->rl_tail = m;
1767			else {
1768				m->m_flags &= ~M_PKTHDR;
1769				sc->rl_tail->m_next = m;
1770				sc->rl_tail = m;
1771			}
1772			continue;
1773		}
1774
1775		/*
1776		 * NOTE: for the 8139C+, the frame length field
1777		 * is always 12 bits in size, but for the gigE chips,
1778		 * it is 13 bits (since the max RX frame length is 16K).
1779		 * Unfortunately, all 32 bits in the status word
1780		 * were already used, so to make room for the extra
1781		 * length bit, RealTek took out the 'frame alignment
1782		 * error' bit and shifted the other status bits
1783		 * over one slot. The OWN, EOR, FS and LS bits are
1784		 * still in the same places. We have already extracted
1785		 * the frame length and checked the OWN bit, so rather
1786		 * than using an alternate bit mapping, we shift the
1787		 * status bits one space to the right so we can evaluate
1788		 * them using the 8169 status as though it was in the
1789		 * same format as that of the 8139C+.
1790		 */
1791		if (sc->rl_type == RL_8169)
1792			rxstat >>= 1;
1793
1794		/*
1795		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1796		 * set, but if CRC is clear, it will still be a valid frame.
1797		 */
1798		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1799		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1800			ifp->if_ierrors++;
1801			/*
1802			 * If this is part of a multi-fragment packet,
1803			 * discard all the pieces.
1804			 */
1805			if (sc->rl_head != NULL) {
1806				m_freem(sc->rl_head);
1807				sc->rl_head = sc->rl_tail = NULL;
1808			}
1809			re_discard_rxbuf(sc, i);
1810			continue;
1811		}
1812
1813		/*
1814		 * If allocating a replacement mbuf fails,
1815		 * reload the current one.
1816		 */
1817
1818		if (re_newbuf(sc, i) != 0) {
1819			ifp->if_iqdrops++;
1820			if (sc->rl_head != NULL) {
1821				m_freem(sc->rl_head);
1822				sc->rl_head = sc->rl_tail = NULL;
1823			}
1824			re_discard_rxbuf(sc, i);
1825			continue;
1826		}
1827
1828		if (sc->rl_head != NULL) {
1829			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1830			if (m->m_len == 0)
1831				m->m_len = RE_RX_DESC_BUFLEN;
1832			/*
1833			 * Special case: if there's 4 bytes or less
1834			 * in this buffer, the mbuf can be discarded:
1835			 * the last 4 bytes is the CRC, which we don't
1836			 * care about anyway.
1837			 */
1838			if (m->m_len <= ETHER_CRC_LEN) {
1839				sc->rl_tail->m_len -=
1840				    (ETHER_CRC_LEN - m->m_len);
1841				m_freem(m);
1842			} else {
1843				m->m_len -= ETHER_CRC_LEN;
1844				m->m_flags &= ~M_PKTHDR;
1845				sc->rl_tail->m_next = m;
1846			}
1847			m = sc->rl_head;
1848			sc->rl_head = sc->rl_tail = NULL;
1849			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1850		} else
1851			m->m_pkthdr.len = m->m_len =
1852			    (total_len - ETHER_CRC_LEN);
1853
1854#ifdef RE_FIXUP_RX
1855		re_fixup_rx(m);
1856#endif
1857		ifp->if_ipackets++;
1858		m->m_pkthdr.rcvif = ifp;
1859
1860		/* Do RX checksumming if enabled */
1861
1862		if (ifp->if_capenable & IFCAP_RXCSUM) {
1863			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1864				/* Check IP header checksum */
1865				if (rxstat & RL_RDESC_STAT_PROTOID)
1866					m->m_pkthdr.csum_flags |=
1867					    CSUM_IP_CHECKED;
1868				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1869					m->m_pkthdr.csum_flags |=
1870					    CSUM_IP_VALID;
1871
1872				/* Check TCP/UDP checksum */
1873				if ((RL_TCPPKT(rxstat) &&
1874				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1875				    (RL_UDPPKT(rxstat) &&
1876				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1877					m->m_pkthdr.csum_flags |=
1878						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1879					m->m_pkthdr.csum_data = 0xffff;
1880				}
1881			} else {
1882				/*
1883				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1884				 */
1885				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1886				    (rxvlan & RL_RDESC_IPV4))
1887					m->m_pkthdr.csum_flags |=
1888					    CSUM_IP_CHECKED;
1889				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1890				    (rxvlan & RL_RDESC_IPV4))
1891					m->m_pkthdr.csum_flags |=
1892					    CSUM_IP_VALID;
1893				if (((rxstat & RL_RDESC_STAT_TCP) &&
1894				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1895				    ((rxstat & RL_RDESC_STAT_UDP) &&
1896				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1897					m->m_pkthdr.csum_flags |=
1898						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1899					m->m_pkthdr.csum_data = 0xffff;
1900				}
1901			}
1902		}
1903		maxpkt--;
1904		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1905			m->m_pkthdr.ether_vtag =
1906			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1907			m->m_flags |= M_VLANTAG;
1908		}
1909		RL_UNLOCK(sc);
1910		(*ifp->if_input)(ifp, m);
1911		RL_LOCK(sc);
1912	}
1913
1914	/* Flush the RX DMA ring */
1915
1916	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1917	    sc->rl_ldata.rl_rx_list_map,
1918	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1919
1920	sc->rl_ldata.rl_rx_prodidx = i;
1921
1922	if (maxpkt)
1923		return(EAGAIN);
1924
1925	return(0);
1926}
1927
1928static void
1929re_txeof(struct rl_softc *sc)
1930{
1931	struct ifnet		*ifp;
1932	struct rl_txdesc	*txd;
1933	u_int32_t		txstat;
1934	int			cons;
1935
1936	cons = sc->rl_ldata.rl_tx_considx;
1937	if (cons == sc->rl_ldata.rl_tx_prodidx)
1938		return;
1939
1940	ifp = sc->rl_ifp;
1941	/* Invalidate the TX descriptor list */
1942	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1943	    sc->rl_ldata.rl_tx_list_map,
1944	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1945
1946	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1947	    cons = RL_TX_DESC_NXT(sc, cons)) {
1948		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1949		if (txstat & RL_TDESC_STAT_OWN)
1950			break;
1951		/*
1952		 * We only stash mbufs in the last descriptor
1953		 * in a fragment chain, which also happens to
1954		 * be the only place where the TX status bits
1955		 * are valid.
1956		 */
1957		if (txstat & RL_TDESC_CMD_EOF) {
1958			txd = &sc->rl_ldata.rl_tx_desc[cons];
1959			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1960			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1961			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1962			    txd->tx_dmamap);
1963			KASSERT(txd->tx_m != NULL,
1964			    ("%s: freeing NULL mbufs!", __func__));
1965			m_freem(txd->tx_m);
1966			txd->tx_m = NULL;
1967			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1968			    RL_TDESC_STAT_COLCNT))
1969				ifp->if_collisions++;
1970			if (txstat & RL_TDESC_STAT_TXERRSUM)
1971				ifp->if_oerrors++;
1972			else
1973				ifp->if_opackets++;
1974		}
1975		sc->rl_ldata.rl_tx_free++;
1976		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1977	}
1978	sc->rl_ldata.rl_tx_considx = cons;
1979
1980	/* No changes made to the TX ring, so no flush needed */
1981
1982	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1983		/*
1984		 * Some chips will ignore a second TX request issued
1985		 * while an existing transmission is in progress. If
1986		 * the transmitter goes idle but there are still
1987		 * packets waiting to be sent, we need to restart the
1988		 * channel here to flush them out. This only seems to
1989		 * be required with the PCIe devices.
1990		 */
1991		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1992
1993#ifdef RE_TX_MODERATION
1994		/*
1995		 * If not all descriptors have been reaped yet, reload
1996		 * the timer so that we will eventually get another
1997		 * interrupt that will cause us to re-enter this routine.
1998		 * This is done in case the transmitter has gone idle.
1999		 */
2000		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2001#endif
2002	} else
2003		sc->rl_watchdog_timer = 0;
2004}
2005
2006static void
2007re_tick(void *xsc)
2008{
2009	struct rl_softc		*sc;
2010	struct mii_data		*mii;
2011	struct ifnet		*ifp;
2012
2013	sc = xsc;
2014	ifp = sc->rl_ifp;
2015
2016	RL_LOCK_ASSERT(sc);
2017
2018	re_watchdog(sc);
2019
2020	mii = device_get_softc(sc->rl_miibus);
2021	mii_tick(mii);
2022	if ((sc->rl_flags & RL_FLAG_LINK) != 0) {
2023		if (!(mii->mii_media_status & IFM_ACTIVE))
2024			sc->rl_flags &= ~RL_FLAG_LINK;
2025	} else {
2026		if (mii->mii_media_status & IFM_ACTIVE &&
2027		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2028			sc->rl_flags |= RL_FLAG_LINK;
2029			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2030				taskqueue_enqueue_fast(taskqueue_fast,
2031				    &sc->rl_txtask);
2032		}
2033	}
2034
2035	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2036}
2037
2038#ifdef DEVICE_POLLING
2039static void
2040re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2041{
2042	struct rl_softc *sc = ifp->if_softc;
2043
2044	RL_LOCK(sc);
2045	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2046		re_poll_locked(ifp, cmd, count);
2047	RL_UNLOCK(sc);
2048}
2049
2050static void
2051re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2052{
2053	struct rl_softc *sc = ifp->if_softc;
2054
2055	RL_LOCK_ASSERT(sc);
2056
2057	sc->rxcycles = count;
2058	re_rxeof(sc);
2059	re_txeof(sc);
2060
2061	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2062		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2063
2064	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2065		u_int16_t       status;
2066
2067		status = CSR_READ_2(sc, RL_ISR);
2068		if (status == 0xffff)
2069			return;
2070		if (status)
2071			CSR_WRITE_2(sc, RL_ISR, status);
2072
2073		/*
2074		 * XXX check behaviour on receiver stalls.
2075		 */
2076
2077		if (status & RL_ISR_SYSTEM_ERR) {
2078			re_reset(sc);
2079			re_init_locked(sc);
2080		}
2081	}
2082}
2083#endif /* DEVICE_POLLING */
2084
2085static int
2086re_intr(void *arg)
2087{
2088	struct rl_softc		*sc;
2089	uint16_t		status;
2090
2091	sc = arg;
2092
2093	status = CSR_READ_2(sc, RL_ISR);
2094	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2095                return (FILTER_STRAY);
2096	CSR_WRITE_2(sc, RL_IMR, 0);
2097
2098	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2099
2100	return (FILTER_HANDLED);
2101}
2102
2103static void
2104re_int_task(void *arg, int npending)
2105{
2106	struct rl_softc		*sc;
2107	struct ifnet		*ifp;
2108	u_int16_t		status;
2109	int			rval = 0;
2110
2111	sc = arg;
2112	ifp = sc->rl_ifp;
2113
2114	RL_LOCK(sc);
2115
2116	status = CSR_READ_2(sc, RL_ISR);
2117        CSR_WRITE_2(sc, RL_ISR, status);
2118
2119	if (sc->suspended ||
2120	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2121		RL_UNLOCK(sc);
2122		return;
2123	}
2124
2125#ifdef DEVICE_POLLING
2126	if  (ifp->if_capenable & IFCAP_POLLING) {
2127		RL_UNLOCK(sc);
2128		return;
2129	}
2130#endif
2131
2132	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2133		rval = re_rxeof(sc);
2134
2135	if (status & (
2136#ifdef RE_TX_MODERATION
2137	    RL_ISR_TIMEOUT_EXPIRED|
2138#else
2139	    RL_ISR_TX_OK|
2140#endif
2141	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2142		re_txeof(sc);
2143
2144	if (status & RL_ISR_SYSTEM_ERR) {
2145		re_reset(sc);
2146		re_init_locked(sc);
2147	}
2148
2149	if (status & RL_ISR_LINKCHG) {
2150		callout_stop(&sc->rl_stat_callout);
2151		re_tick(sc);
2152	}
2153
2154	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2155		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2156
2157	RL_UNLOCK(sc);
2158
2159        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2160		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2161		return;
2162	}
2163
2164	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2165}
2166
2167static int
2168re_encap(struct rl_softc *sc, struct mbuf **m_head)
2169{
2170	struct rl_txdesc	*txd, *txd_last;
2171	bus_dma_segment_t	segs[RL_NTXSEGS];
2172	bus_dmamap_t		map;
2173	struct mbuf		*m_new;
2174	struct rl_desc		*desc;
2175	int			nsegs, prod;
2176	int			i, error, ei, si;
2177	int			padlen;
2178	uint32_t		cmdstat, csum_flags, vlanctl;
2179
2180	RL_LOCK_ASSERT(sc);
2181	M_ASSERTPKTHDR((*m_head));
2182
2183	/*
2184	 * With some of the RealTek chips, using the checksum offload
2185	 * support in conjunction with the autopadding feature results
2186	 * in the transmission of corrupt frames. For example, if we
2187	 * need to send a really small IP fragment that's less than 60
2188	 * bytes in size, and IP header checksumming is enabled, the
2189	 * resulting ethernet frame that appears on the wire will
2190	 * have garbled payload. To work around this, if TX IP checksum
2191	 * offload is enabled, we always manually pad short frames out
2192	 * to the minimum ethernet frame size.
2193	 */
2194	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2195	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2196	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2197		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2198		if (M_WRITABLE(*m_head) == 0) {
2199			/* Get a writable copy. */
2200			m_new = m_dup(*m_head, M_DONTWAIT);
2201			m_freem(*m_head);
2202			if (m_new == NULL) {
2203				*m_head = NULL;
2204				return (ENOBUFS);
2205			}
2206			*m_head = m_new;
2207		}
2208		if ((*m_head)->m_next != NULL ||
2209		    M_TRAILINGSPACE(*m_head) < padlen) {
2210			m_new = m_defrag(*m_head, M_DONTWAIT);
2211			if (m_new == NULL) {
2212				m_freem(*m_head);
2213				*m_head = NULL;
2214				return (ENOBUFS);
2215			}
2216		} else
2217			m_new = *m_head;
2218
2219		/*
2220		 * Manually pad short frames, and zero the pad space
2221		 * to avoid leaking data.
2222		 */
2223		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2224		m_new->m_pkthdr.len += padlen;
2225		m_new->m_len = m_new->m_pkthdr.len;
2226		*m_head = m_new;
2227	}
2228
2229	prod = sc->rl_ldata.rl_tx_prodidx;
2230	txd = &sc->rl_ldata.rl_tx_desc[prod];
2231	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2232	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2233	if (error == EFBIG) {
2234		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2235		if (m_new == NULL) {
2236			m_freem(*m_head);
2237			*m_head = NULL;
2238			return (ENOBUFS);
2239		}
2240		*m_head = m_new;
2241		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2242		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2243		if (error != 0) {
2244			m_freem(*m_head);
2245			*m_head = NULL;
2246			return (error);
2247		}
2248	} else if (error != 0)
2249		return (error);
2250	if (nsegs == 0) {
2251		m_freem(*m_head);
2252		*m_head = NULL;
2253		return (EIO);
2254	}
2255
2256	/* Check for number of available descriptors. */
2257	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2258		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2259		return (ENOBUFS);
2260	}
2261
2262	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2263	    BUS_DMASYNC_PREWRITE);
2264
2265	/*
2266	 * Set up checksum offload. Note: checksum offload bits must
2267	 * appear in all descriptors of a multi-descriptor transmit
2268	 * attempt. This is according to testing done with an 8169
2269	 * chip. This is a requirement.
2270	 */
2271	vlanctl = 0;
2272	csum_flags = 0;
2273	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2274		csum_flags = RL_TDESC_CMD_LGSEND |
2275		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2276		    RL_TDESC_CMD_MSSVAL_SHIFT);
2277	else {
2278		/*
2279		 * Unconditionally enable IP checksum if TCP or UDP
2280		 * checksum is required. Otherwise, TCP/UDP checksum
2281		 * does't make effects.
2282		 */
2283		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2284			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2285				csum_flags |= RL_TDESC_CMD_IPCSUM;
2286				if (((*m_head)->m_pkthdr.csum_flags &
2287				    CSUM_TCP) != 0)
2288					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2289				if (((*m_head)->m_pkthdr.csum_flags &
2290				    CSUM_UDP) != 0)
2291					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2292			} else {
2293				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2294				if (((*m_head)->m_pkthdr.csum_flags &
2295				    CSUM_TCP) != 0)
2296					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2297				if (((*m_head)->m_pkthdr.csum_flags &
2298				    CSUM_UDP) != 0)
2299					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2300			}
2301		}
2302	}
2303
2304	/*
2305	 * Set up hardware VLAN tagging. Note: vlan tag info must
2306	 * appear in all descriptors of a multi-descriptor
2307	 * transmission attempt.
2308	 */
2309	if ((*m_head)->m_flags & M_VLANTAG)
2310		vlanctl |= htons((*m_head)->m_pkthdr.ether_vtag) |
2311		    RL_TDESC_VLANCTL_TAG;
2312
2313	si = prod;
2314	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2315		desc = &sc->rl_ldata.rl_tx_list[prod];
2316		desc->rl_vlanctl = htole32(vlanctl);
2317		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2318		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2319		cmdstat = segs[i].ds_len;
2320		if (i != 0)
2321			cmdstat |= RL_TDESC_CMD_OWN;
2322		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2323			cmdstat |= RL_TDESC_CMD_EOR;
2324		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2325		sc->rl_ldata.rl_tx_free--;
2326	}
2327	/* Update producer index. */
2328	sc->rl_ldata.rl_tx_prodidx = prod;
2329
2330	/* Set EOF on the last descriptor. */
2331	ei = RL_TX_DESC_PRV(sc, prod);
2332	desc = &sc->rl_ldata.rl_tx_list[ei];
2333	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2334
2335	desc = &sc->rl_ldata.rl_tx_list[si];
2336	/* Set SOF and transfer ownership of packet to the chip. */
2337	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2338
2339	/*
2340	 * Insure that the map for this transmission
2341	 * is placed at the array index of the last descriptor
2342	 * in this chain.  (Swap last and first dmamaps.)
2343	 */
2344	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2345	map = txd->tx_dmamap;
2346	txd->tx_dmamap = txd_last->tx_dmamap;
2347	txd_last->tx_dmamap = map;
2348	txd_last->tx_m = *m_head;
2349
2350	return (0);
2351}
2352
2353static void
2354re_tx_task(void *arg, int npending)
2355{
2356	struct ifnet		*ifp;
2357
2358	ifp = arg;
2359	re_start(ifp);
2360}
2361
2362/*
2363 * Main transmit routine for C+ and gigE NICs.
2364 */
2365static void
2366re_start(struct ifnet *ifp)
2367{
2368	struct rl_softc		*sc;
2369	struct mbuf		*m_head;
2370	int			queued;
2371
2372	sc = ifp->if_softc;
2373
2374	RL_LOCK(sc);
2375
2376	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2377	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2378		RL_UNLOCK(sc);
2379		return;
2380	}
2381
2382	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2383	    sc->rl_ldata.rl_tx_free > 1;) {
2384		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2385		if (m_head == NULL)
2386			break;
2387
2388		if (re_encap(sc, &m_head) != 0) {
2389			if (m_head == NULL)
2390				break;
2391			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2392			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2393			break;
2394		}
2395
2396		/*
2397		 * If there's a BPF listener, bounce a copy of this frame
2398		 * to him.
2399		 */
2400		ETHER_BPF_MTAP(ifp, m_head);
2401
2402		queued++;
2403	}
2404
2405	if (queued == 0) {
2406#ifdef RE_TX_MODERATION
2407		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2408			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2409#endif
2410		RL_UNLOCK(sc);
2411		return;
2412	}
2413
2414	/* Flush the TX descriptors */
2415
2416	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2417	    sc->rl_ldata.rl_tx_list_map,
2418	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2419
2420	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2421
2422#ifdef RE_TX_MODERATION
2423	/*
2424	 * Use the countdown timer for interrupt moderation.
2425	 * 'TX done' interrupts are disabled. Instead, we reset the
2426	 * countdown timer, which will begin counting until it hits
2427	 * the value in the TIMERINT register, and then trigger an
2428	 * interrupt. Each time we write to the TIMERCNT register,
2429	 * the timer count is reset to 0.
2430	 */
2431	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2432#endif
2433
2434	/*
2435	 * Set a timeout in case the chip goes out to lunch.
2436	 */
2437	sc->rl_watchdog_timer = 5;
2438
2439	RL_UNLOCK(sc);
2440}
2441
2442static void
2443re_init(void *xsc)
2444{
2445	struct rl_softc		*sc = xsc;
2446
2447	RL_LOCK(sc);
2448	re_init_locked(sc);
2449	RL_UNLOCK(sc);
2450}
2451
2452static void
2453re_init_locked(struct rl_softc *sc)
2454{
2455	struct ifnet		*ifp = sc->rl_ifp;
2456	struct mii_data		*mii;
2457	u_int32_t		rxcfg = 0;
2458	uint16_t		cfg;
2459	union {
2460		uint32_t align_dummy;
2461		u_char eaddr[ETHER_ADDR_LEN];
2462        } eaddr;
2463
2464	RL_LOCK_ASSERT(sc);
2465
2466	mii = device_get_softc(sc->rl_miibus);
2467
2468	/*
2469	 * Cancel pending I/O and free all RX/TX buffers.
2470	 */
2471	re_stop(sc);
2472
2473	/*
2474	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2475	 * RX checksum offload. We must configure the C+ register
2476	 * before all others.
2477	 */
2478	cfg = RL_CPLUSCMD_PCI_MRW;
2479	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2480		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2481	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2482		cfg |= RL_CPLUSCMD_VLANSTRIP;
2483	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2484		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2485		/* XXX magic. */
2486		cfg |= 0x0001;
2487	} else
2488		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2489	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2490	/*
2491	 * Disable TSO if interface MTU size is greater than MSS
2492	 * allowed in controller.
2493	 */
2494	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2495		ifp->if_capenable &= ~IFCAP_TSO4;
2496		ifp->if_hwassist &= ~CSUM_TSO;
2497	}
2498
2499	/*
2500	 * Init our MAC address.  Even though the chipset
2501	 * documentation doesn't mention it, we need to enter "Config
2502	 * register write enable" mode to modify the ID registers.
2503	 */
2504	/* Copy MAC address on stack to align. */
2505	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2506	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2507	CSR_WRITE_4(sc, RL_IDR0,
2508	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2509	CSR_WRITE_4(sc, RL_IDR4,
2510	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2511	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2512
2513	/*
2514	 * For C+ mode, initialize the RX descriptors and mbufs.
2515	 */
2516	re_rx_list_init(sc);
2517	re_tx_list_init(sc);
2518
2519	/*
2520	 * Load the addresses of the RX and TX lists into the chip.
2521	 */
2522
2523	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2524	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2525	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2526	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2527
2528	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2529	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2530	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2531	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2532
2533	/*
2534	 * Enable transmit and receive.
2535	 */
2536	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2537
2538	/*
2539	 * Set the initial TX and RX configuration.
2540	 */
2541	if (sc->rl_testmode) {
2542		if (sc->rl_type == RL_8169)
2543			CSR_WRITE_4(sc, RL_TXCFG,
2544			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2545		else
2546			CSR_WRITE_4(sc, RL_TXCFG,
2547			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2548	} else
2549		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2550
2551	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2552
2553	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2554
2555	/* Set the individual bit to receive frames for this host only. */
2556	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2557	rxcfg |= RL_RXCFG_RX_INDIV;
2558
2559	/* If we want promiscuous mode, set the allframes bit. */
2560	if (ifp->if_flags & IFF_PROMISC)
2561		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2562	else
2563		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2564	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2565
2566	/*
2567	 * Set capture broadcast bit to capture broadcast frames.
2568	 */
2569	if (ifp->if_flags & IFF_BROADCAST)
2570		rxcfg |= RL_RXCFG_RX_BROAD;
2571	else
2572		rxcfg &= ~RL_RXCFG_RX_BROAD;
2573	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2574
2575	/*
2576	 * Program the multicast filter, if necessary.
2577	 */
2578	re_setmulti(sc);
2579
2580#ifdef DEVICE_POLLING
2581	/*
2582	 * Disable interrupts if we are polling.
2583	 */
2584	if (ifp->if_capenable & IFCAP_POLLING)
2585		CSR_WRITE_2(sc, RL_IMR, 0);
2586	else	/* otherwise ... */
2587#endif
2588
2589	/*
2590	 * Enable interrupts.
2591	 */
2592	if (sc->rl_testmode)
2593		CSR_WRITE_2(sc, RL_IMR, 0);
2594	else
2595		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2596	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2597
2598	/* Set initial TX threshold */
2599	sc->rl_txthresh = RL_TX_THRESH_INIT;
2600
2601	/* Start RX/TX process. */
2602	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2603#ifdef notdef
2604	/* Enable receiver and transmitter. */
2605	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2606#endif
2607
2608#ifdef RE_TX_MODERATION
2609	/*
2610	 * Initialize the timer interrupt register so that
2611	 * a timer interrupt will be generated once the timer
2612	 * reaches a certain number of ticks. The timer is
2613	 * reloaded on each transmit. This gives us TX interrupt
2614	 * moderation, which dramatically improves TX frame rate.
2615	 */
2616	if (sc->rl_type == RL_8169)
2617		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2618	else
2619		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2620#endif
2621
2622	/*
2623	 * For 8169 gigE NICs, set the max allowed RX packet
2624	 * size so we can receive jumbo frames.
2625	 */
2626	if (sc->rl_type == RL_8169)
2627		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2628
2629	if (sc->rl_testmode)
2630		return;
2631
2632	mii_mediachg(mii);
2633
2634	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2635
2636	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2637	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2638
2639	sc->rl_flags &= ~RL_FLAG_LINK;
2640	sc->rl_watchdog_timer = 0;
2641	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2642}
2643
2644/*
2645 * Set media options.
2646 */
2647static int
2648re_ifmedia_upd(struct ifnet *ifp)
2649{
2650	struct rl_softc		*sc;
2651	struct mii_data		*mii;
2652
2653	sc = ifp->if_softc;
2654	mii = device_get_softc(sc->rl_miibus);
2655	RL_LOCK(sc);
2656	mii_mediachg(mii);
2657	RL_UNLOCK(sc);
2658
2659	return (0);
2660}
2661
2662/*
2663 * Report current media status.
2664 */
2665static void
2666re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2667{
2668	struct rl_softc		*sc;
2669	struct mii_data		*mii;
2670
2671	sc = ifp->if_softc;
2672	mii = device_get_softc(sc->rl_miibus);
2673
2674	RL_LOCK(sc);
2675	mii_pollstat(mii);
2676	RL_UNLOCK(sc);
2677	ifmr->ifm_active = mii->mii_media_active;
2678	ifmr->ifm_status = mii->mii_media_status;
2679}
2680
2681static int
2682re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2683{
2684	struct rl_softc		*sc = ifp->if_softc;
2685	struct ifreq		*ifr = (struct ifreq *) data;
2686	struct mii_data		*mii;
2687	int			error = 0;
2688
2689	switch (command) {
2690	case SIOCSIFMTU:
2691		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2692			error = EINVAL;
2693			break;
2694		}
2695		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2696		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2697			error = EINVAL;
2698			break;
2699		}
2700		RL_LOCK(sc);
2701		if (ifp->if_mtu != ifr->ifr_mtu)
2702			ifp->if_mtu = ifr->ifr_mtu;
2703		if (ifp->if_mtu > RL_TSO_MTU &&
2704		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2705			ifp->if_capenable &= ~IFCAP_TSO4;
2706			ifp->if_hwassist &= ~CSUM_TSO;
2707		}
2708		RL_UNLOCK(sc);
2709		break;
2710	case SIOCSIFFLAGS:
2711		RL_LOCK(sc);
2712		if ((ifp->if_flags & IFF_UP) != 0) {
2713			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2714				if (((ifp->if_flags ^ sc->rl_if_flags)
2715				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2716					re_setmulti(sc);
2717			} else
2718				re_init_locked(sc);
2719		} else {
2720			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2721				re_stop(sc);
2722		}
2723		sc->rl_if_flags = ifp->if_flags;
2724		RL_UNLOCK(sc);
2725		break;
2726	case SIOCADDMULTI:
2727	case SIOCDELMULTI:
2728		RL_LOCK(sc);
2729		re_setmulti(sc);
2730		RL_UNLOCK(sc);
2731		break;
2732	case SIOCGIFMEDIA:
2733	case SIOCSIFMEDIA:
2734		mii = device_get_softc(sc->rl_miibus);
2735		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2736		break;
2737	case SIOCSIFCAP:
2738	    {
2739		int mask, reinit;
2740
2741		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2742		reinit = 0;
2743#ifdef DEVICE_POLLING
2744		if (mask & IFCAP_POLLING) {
2745			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2746				error = ether_poll_register(re_poll, ifp);
2747				if (error)
2748					return(error);
2749				RL_LOCK(sc);
2750				/* Disable interrupts */
2751				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2752				ifp->if_capenable |= IFCAP_POLLING;
2753				RL_UNLOCK(sc);
2754			} else {
2755				error = ether_poll_deregister(ifp);
2756				/* Enable interrupts. */
2757				RL_LOCK(sc);
2758				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2759				ifp->if_capenable &= ~IFCAP_POLLING;
2760				RL_UNLOCK(sc);
2761			}
2762		}
2763#endif /* DEVICE_POLLING */
2764		if (mask & IFCAP_HWCSUM) {
2765			ifp->if_capenable ^= IFCAP_HWCSUM;
2766			if (ifp->if_capenable & IFCAP_TXCSUM)
2767				ifp->if_hwassist |= RE_CSUM_FEATURES;
2768			else
2769				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2770			reinit = 1;
2771		}
2772		if (mask & IFCAP_VLAN_HWTAGGING) {
2773			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2774			reinit = 1;
2775		}
2776		if (mask & IFCAP_TSO4) {
2777			ifp->if_capenable ^= IFCAP_TSO4;
2778			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2779			    (IFCAP_TSO4 & ifp->if_capabilities))
2780				ifp->if_hwassist |= CSUM_TSO;
2781			else
2782				ifp->if_hwassist &= ~CSUM_TSO;
2783			if (ifp->if_mtu > RL_TSO_MTU &&
2784			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2785				ifp->if_capenable &= ~IFCAP_TSO4;
2786				ifp->if_hwassist &= ~CSUM_TSO;
2787			}
2788		}
2789		if ((mask & IFCAP_WOL) != 0 &&
2790		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2791			if ((mask & IFCAP_WOL_UCAST) != 0)
2792				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2793			if ((mask & IFCAP_WOL_MCAST) != 0)
2794				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2795			if ((mask & IFCAP_WOL_MAGIC) != 0)
2796				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2797		}
2798		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2799			re_init(sc);
2800		VLAN_CAPABILITIES(ifp);
2801	    }
2802		break;
2803	default:
2804		error = ether_ioctl(ifp, command, data);
2805		break;
2806	}
2807
2808	return (error);
2809}
2810
2811static void
2812re_watchdog(struct rl_softc *sc)
2813{
2814
2815	RL_LOCK_ASSERT(sc);
2816
2817	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2818		return;
2819
2820	device_printf(sc->rl_dev, "watchdog timeout\n");
2821	sc->rl_ifp->if_oerrors++;
2822
2823	re_txeof(sc);
2824	re_rxeof(sc);
2825	re_init_locked(sc);
2826}
2827
2828/*
2829 * Stop the adapter and free any mbufs allocated to the
2830 * RX and TX lists.
2831 */
2832static void
2833re_stop(struct rl_softc *sc)
2834{
2835	int			i;
2836	struct ifnet		*ifp;
2837	struct rl_txdesc	*txd;
2838	struct rl_rxdesc	*rxd;
2839
2840	RL_LOCK_ASSERT(sc);
2841
2842	ifp = sc->rl_ifp;
2843
2844	sc->rl_watchdog_timer = 0;
2845	callout_stop(&sc->rl_stat_callout);
2846	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2847
2848	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2849	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2850	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2851
2852	if (sc->rl_head != NULL) {
2853		m_freem(sc->rl_head);
2854		sc->rl_head = sc->rl_tail = NULL;
2855	}
2856
2857	/* Free the TX list buffers. */
2858
2859	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2860		txd = &sc->rl_ldata.rl_tx_desc[i];
2861		if (txd->tx_m != NULL) {
2862			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2863			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2864			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2865			    txd->tx_dmamap);
2866			m_freem(txd->tx_m);
2867			txd->tx_m = NULL;
2868		}
2869	}
2870
2871	/* Free the RX list buffers. */
2872
2873	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2874		rxd = &sc->rl_ldata.rl_rx_desc[i];
2875		if (rxd->rx_m != NULL) {
2876			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2877			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2878			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2879			    rxd->rx_dmamap);
2880			m_freem(rxd->rx_m);
2881			rxd->rx_m = NULL;
2882		}
2883	}
2884}
2885
2886/*
2887 * Device suspend routine.  Stop the interface and save some PCI
2888 * settings in case the BIOS doesn't restore them properly on
2889 * resume.
2890 */
2891static int
2892re_suspend(device_t dev)
2893{
2894	struct rl_softc		*sc;
2895
2896	sc = device_get_softc(dev);
2897
2898	RL_LOCK(sc);
2899	re_stop(sc);
2900	re_setwol(sc);
2901	sc->suspended = 1;
2902	RL_UNLOCK(sc);
2903
2904	return (0);
2905}
2906
2907/*
2908 * Device resume routine.  Restore some PCI settings in case the BIOS
2909 * doesn't, re-enable busmastering, and restart the interface if
2910 * appropriate.
2911 */
2912static int
2913re_resume(device_t dev)
2914{
2915	struct rl_softc		*sc;
2916	struct ifnet		*ifp;
2917
2918	sc = device_get_softc(dev);
2919
2920	RL_LOCK(sc);
2921
2922	ifp = sc->rl_ifp;
2923
2924	/* reinitialize interface if necessary */
2925	if (ifp->if_flags & IFF_UP)
2926		re_init_locked(sc);
2927
2928	/*
2929	 * Clear WOL matching such that normal Rx filtering
2930	 * wouldn't interfere with WOL patterns.
2931	 */
2932	re_clrwol(sc);
2933	sc->suspended = 0;
2934	RL_UNLOCK(sc);
2935
2936	return (0);
2937}
2938
2939/*
2940 * Stop all chip I/O so that the kernel's probe routines don't
2941 * get confused by errant DMAs when rebooting.
2942 */
2943static int
2944re_shutdown(device_t dev)
2945{
2946	struct rl_softc		*sc;
2947
2948	sc = device_get_softc(dev);
2949
2950	RL_LOCK(sc);
2951	re_stop(sc);
2952	/*
2953	 * Mark interface as down since otherwise we will panic if
2954	 * interrupt comes in later on, which can happen in some
2955	 * cases.
2956	 */
2957	sc->rl_ifp->if_flags &= ~IFF_UP;
2958	re_setwol(sc);
2959	RL_UNLOCK(sc);
2960
2961	return (0);
2962}
2963
2964static void
2965re_setwol(struct rl_softc *sc)
2966{
2967	struct ifnet		*ifp;
2968	int			pmc;
2969	uint16_t		pmstat;
2970	uint8_t			v;
2971
2972	RL_LOCK_ASSERT(sc);
2973
2974	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2975		return;
2976
2977	ifp = sc->rl_ifp;
2978	/* Enable config register write. */
2979	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2980
2981	/* Enable PME. */
2982	v = CSR_READ_1(sc, RL_CFG1);
2983	v &= ~RL_CFG1_PME;
2984	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2985		v |= RL_CFG1_PME;
2986	CSR_WRITE_1(sc, RL_CFG1, v);
2987
2988	v = CSR_READ_1(sc, RL_CFG3);
2989	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2990	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2991		v |= RL_CFG3_WOL_MAGIC;
2992	CSR_WRITE_1(sc, RL_CFG3, v);
2993
2994	/* Config register write done. */
2995	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2996
2997	v = CSR_READ_1(sc, RL_CFG5);
2998	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2999	v &= ~RL_CFG5_WOL_LANWAKE;
3000	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3001		v |= RL_CFG5_WOL_UCAST;
3002	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3003		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3004	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3005		v |= RL_CFG5_WOL_LANWAKE;
3006	CSR_WRITE_1(sc, RL_CFG5, v);
3007
3008	/*
3009	 * It seems that hardware resets its link speed to 100Mbps in
3010	 * power down mode so switching to 100Mbps in driver is not
3011	 * needed.
3012	 */
3013
3014	/* Request PME if WOL is requested. */
3015	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3016	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3017	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3018		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3019	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3020}
3021
3022static void
3023re_clrwol(struct rl_softc *sc)
3024{
3025	int			pmc;
3026	uint8_t			v;
3027
3028	RL_LOCK_ASSERT(sc);
3029
3030	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3031		return;
3032
3033	/* Enable config register write. */
3034	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3035
3036	v = CSR_READ_1(sc, RL_CFG3);
3037	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3038	CSR_WRITE_1(sc, RL_CFG3, v);
3039
3040	/* Config register write done. */
3041	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3042
3043	v = CSR_READ_1(sc, RL_CFG5);
3044	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3045	v &= ~RL_CFG5_WOL_LANWAKE;
3046	CSR_WRITE_1(sc, RL_CFG5, v);
3047}
3048