if_re.c revision 180173
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 180173 2008-07-02 06:41:46Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/* Tunables. */
159static int msi_disable = 1;
160TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161
162#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163
164/*
165 * Various supported device vendors/types and their names.
166 */
167static struct rl_type re_devs[] = {
168	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170	{ RT_VENDORID, RT_DEVICEID_8139, 0,
171	    "RealTek 8139C+ 10/100BaseTX" },
172	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
173	    "RealTek 8101E PCIe 10/100baseTX" },
174	{ RT_VENDORID, RT_DEVICEID_8168, 0,
175	    "RealTek 8168/8168B/8111B PCIe Gigabit Ethernet" },
176	{ RT_VENDORID, RT_DEVICEID_8169, 0,
177	    "RealTek 8169/8169S/8169SB/8110S/8110SB Gigabit Ethernet" },
178	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
179	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
180	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
181	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
182	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
183	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
184	{ USR_VENDORID, USR_DEVICEID_997902, 0,
185	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
186};
187
188static struct rl_hwrev re_hwrevs[] = {
189	{ RL_HWREV_8139, RL_8139,  "" },
190	{ RL_HWREV_8139A, RL_8139, "A" },
191	{ RL_HWREV_8139AG, RL_8139, "A-G" },
192	{ RL_HWREV_8139B, RL_8139, "B" },
193	{ RL_HWREV_8130, RL_8139, "8130" },
194	{ RL_HWREV_8139C, RL_8139, "C" },
195	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
196	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
197	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
198	{ RL_HWREV_8169, RL_8169, "8169"},
199	{ RL_HWREV_8169S, RL_8169, "8169S"},
200	{ RL_HWREV_8110S, RL_8169, "8110S"},
201	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
202	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
203	{ RL_HWREV_8100, RL_8139, "8100"},
204	{ RL_HWREV_8101, RL_8139, "8101"},
205	{ RL_HWREV_8100E, RL_8169, "8100E"},
206	{ RL_HWREV_8101E, RL_8169, "8101E"},
207	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
208	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
209	{ 0, 0, NULL }
210};
211
212static int re_probe		(device_t);
213static int re_attach		(device_t);
214static int re_detach		(device_t);
215
216static int re_encap		(struct rl_softc *, struct mbuf **);
217
218static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
219static int re_allocmem		(device_t, struct rl_softc *);
220static __inline void re_discard_rxbuf
221				(struct rl_softc *, int);
222static int re_newbuf		(struct rl_softc *, int);
223static int re_rx_list_init	(struct rl_softc *);
224static int re_tx_list_init	(struct rl_softc *);
225#ifdef RE_FIXUP_RX
226static __inline void re_fixup_rx
227				(struct mbuf *);
228#endif
229static int re_rxeof		(struct rl_softc *);
230static void re_txeof		(struct rl_softc *);
231#ifdef DEVICE_POLLING
232static void re_poll		(struct ifnet *, enum poll_cmd, int);
233static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
234#endif
235static int re_intr		(void *);
236static void re_tick		(void *);
237static void re_tx_task		(void *, int);
238static void re_int_task		(void *, int);
239static void re_start		(struct ifnet *);
240static int re_ioctl		(struct ifnet *, u_long, caddr_t);
241static void re_init		(void *);
242static void re_init_locked	(struct rl_softc *);
243static void re_stop		(struct rl_softc *);
244static void re_watchdog		(struct rl_softc *);
245static int re_suspend		(device_t);
246static int re_resume		(device_t);
247static int re_shutdown		(device_t);
248static int re_ifmedia_upd	(struct ifnet *);
249static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
250
251static void re_eeprom_putbyte	(struct rl_softc *, int);
252static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
253static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
254static int re_gmii_readreg	(device_t, int, int);
255static int re_gmii_writereg	(device_t, int, int, int);
256
257static int re_miibus_readreg	(device_t, int, int);
258static int re_miibus_writereg	(device_t, int, int, int);
259static void re_miibus_statchg	(device_t);
260
261static void re_setmulti		(struct rl_softc *);
262static void re_reset		(struct rl_softc *);
263static void re_setwol		(struct rl_softc *);
264static void re_clrwol		(struct rl_softc *);
265
266#ifdef RE_DIAG
267static int re_diag		(struct rl_softc *);
268#endif
269
270static device_method_t re_methods[] = {
271	/* Device interface */
272	DEVMETHOD(device_probe,		re_probe),
273	DEVMETHOD(device_attach,	re_attach),
274	DEVMETHOD(device_detach,	re_detach),
275	DEVMETHOD(device_suspend,	re_suspend),
276	DEVMETHOD(device_resume,	re_resume),
277	DEVMETHOD(device_shutdown,	re_shutdown),
278
279	/* bus interface */
280	DEVMETHOD(bus_print_child,	bus_generic_print_child),
281	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
282
283	/* MII interface */
284	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
285	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
286	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
287
288	{ 0, 0 }
289};
290
291static driver_t re_driver = {
292	"re",
293	re_methods,
294	sizeof(struct rl_softc)
295};
296
297static devclass_t re_devclass;
298
299DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
300DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
301DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
302
303#define EE_SET(x)					\
304	CSR_WRITE_1(sc, RL_EECMD,			\
305		CSR_READ_1(sc, RL_EECMD) | x)
306
307#define EE_CLR(x)					\
308	CSR_WRITE_1(sc, RL_EECMD,			\
309		CSR_READ_1(sc, RL_EECMD) & ~x)
310
311/*
312 * Send a read command and address to the EEPROM, check for ACK.
313 */
314static void
315re_eeprom_putbyte(sc, addr)
316	struct rl_softc		*sc;
317	int			addr;
318{
319	register int		d, i;
320
321	d = addr | (RL_9346_READ << sc->rl_eewidth);
322
323	/*
324	 * Feed in each bit and strobe the clock.
325	 */
326
327	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
328		if (d & i) {
329			EE_SET(RL_EE_DATAIN);
330		} else {
331			EE_CLR(RL_EE_DATAIN);
332		}
333		DELAY(100);
334		EE_SET(RL_EE_CLK);
335		DELAY(150);
336		EE_CLR(RL_EE_CLK);
337		DELAY(100);
338	}
339
340	return;
341}
342
343/*
344 * Read a word of data stored in the EEPROM at address 'addr.'
345 */
346static void
347re_eeprom_getword(sc, addr, dest)
348	struct rl_softc		*sc;
349	int			addr;
350	u_int16_t		*dest;
351{
352	register int		i;
353	u_int16_t		word = 0;
354
355	/*
356	 * Send address of word we want to read.
357	 */
358	re_eeprom_putbyte(sc, addr);
359
360	/*
361	 * Start reading bits from EEPROM.
362	 */
363	for (i = 0x8000; i; i >>= 1) {
364		EE_SET(RL_EE_CLK);
365		DELAY(100);
366		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
367			word |= i;
368		EE_CLR(RL_EE_CLK);
369		DELAY(100);
370	}
371
372	*dest = word;
373
374	return;
375}
376
377/*
378 * Read a sequence of words from the EEPROM.
379 */
380static void
381re_read_eeprom(sc, dest, off, cnt)
382	struct rl_softc		*sc;
383	caddr_t			dest;
384	int			off;
385	int			cnt;
386{
387	int			i;
388	u_int16_t		word = 0, *ptr;
389
390	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
391
392        DELAY(100);
393
394	for (i = 0; i < cnt; i++) {
395		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
396		re_eeprom_getword(sc, off + i, &word);
397		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
398		ptr = (u_int16_t *)(dest + (i * 2));
399                *ptr = word;
400	}
401
402	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
403
404	return;
405}
406
407static int
408re_gmii_readreg(dev, phy, reg)
409	device_t		dev;
410	int			phy, reg;
411{
412	struct rl_softc		*sc;
413	u_int32_t		rval;
414	int			i;
415
416	if (phy != 1)
417		return (0);
418
419	sc = device_get_softc(dev);
420
421	/* Let the rgephy driver read the GMEDIASTAT register */
422
423	if (reg == RL_GMEDIASTAT) {
424		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
425		return (rval);
426	}
427
428	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
429	DELAY(1000);
430
431	for (i = 0; i < RL_TIMEOUT; i++) {
432		rval = CSR_READ_4(sc, RL_PHYAR);
433		if (rval & RL_PHYAR_BUSY)
434			break;
435		DELAY(100);
436	}
437
438	if (i == RL_TIMEOUT) {
439		device_printf(sc->rl_dev, "PHY read failed\n");
440		return (0);
441	}
442
443	return (rval & RL_PHYAR_PHYDATA);
444}
445
446static int
447re_gmii_writereg(dev, phy, reg, data)
448	device_t		dev;
449	int			phy, reg, data;
450{
451	struct rl_softc		*sc;
452	u_int32_t		rval;
453	int			i;
454
455	sc = device_get_softc(dev);
456
457	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
458	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
459	DELAY(1000);
460
461	for (i = 0; i < RL_TIMEOUT; i++) {
462		rval = CSR_READ_4(sc, RL_PHYAR);
463		if (!(rval & RL_PHYAR_BUSY))
464			break;
465		DELAY(100);
466	}
467
468	if (i == RL_TIMEOUT) {
469		device_printf(sc->rl_dev, "PHY write failed\n");
470		return (0);
471	}
472
473	return (0);
474}
475
476static int
477re_miibus_readreg(dev, phy, reg)
478	device_t		dev;
479	int			phy, reg;
480{
481	struct rl_softc		*sc;
482	u_int16_t		rval = 0;
483	u_int16_t		re8139_reg = 0;
484
485	sc = device_get_softc(dev);
486
487	if (sc->rl_type == RL_8169) {
488		rval = re_gmii_readreg(dev, phy, reg);
489		return (rval);
490	}
491
492	/* Pretend the internal PHY is only at address 0 */
493	if (phy) {
494		return (0);
495	}
496	switch (reg) {
497	case MII_BMCR:
498		re8139_reg = RL_BMCR;
499		break;
500	case MII_BMSR:
501		re8139_reg = RL_BMSR;
502		break;
503	case MII_ANAR:
504		re8139_reg = RL_ANAR;
505		break;
506	case MII_ANER:
507		re8139_reg = RL_ANER;
508		break;
509	case MII_ANLPAR:
510		re8139_reg = RL_LPAR;
511		break;
512	case MII_PHYIDR1:
513	case MII_PHYIDR2:
514		return (0);
515	/*
516	 * Allow the rlphy driver to read the media status
517	 * register. If we have a link partner which does not
518	 * support NWAY, this is the register which will tell
519	 * us the results of parallel detection.
520	 */
521	case RL_MEDIASTAT:
522		rval = CSR_READ_1(sc, RL_MEDIASTAT);
523		return (rval);
524	default:
525		device_printf(sc->rl_dev, "bad phy register\n");
526		return (0);
527	}
528	rval = CSR_READ_2(sc, re8139_reg);
529	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
530		/* 8139C+ has different bit layout. */
531		rval &= ~(BMCR_LOOP | BMCR_ISO);
532	}
533	return (rval);
534}
535
536static int
537re_miibus_writereg(dev, phy, reg, data)
538	device_t		dev;
539	int			phy, reg, data;
540{
541	struct rl_softc		*sc;
542	u_int16_t		re8139_reg = 0;
543	int			rval = 0;
544
545	sc = device_get_softc(dev);
546
547	if (sc->rl_type == RL_8169) {
548		rval = re_gmii_writereg(dev, phy, reg, data);
549		return (rval);
550	}
551
552	/* Pretend the internal PHY is only at address 0 */
553	if (phy)
554		return (0);
555
556	switch (reg) {
557	case MII_BMCR:
558		re8139_reg = RL_BMCR;
559		if (sc->rl_type == RL_8139CPLUS) {
560			/* 8139C+ has different bit layout. */
561			data &= ~(BMCR_LOOP | BMCR_ISO);
562		}
563		break;
564	case MII_BMSR:
565		re8139_reg = RL_BMSR;
566		break;
567	case MII_ANAR:
568		re8139_reg = RL_ANAR;
569		break;
570	case MII_ANER:
571		re8139_reg = RL_ANER;
572		break;
573	case MII_ANLPAR:
574		re8139_reg = RL_LPAR;
575		break;
576	case MII_PHYIDR1:
577	case MII_PHYIDR2:
578		return (0);
579		break;
580	default:
581		device_printf(sc->rl_dev, "bad phy register\n");
582		return (0);
583	}
584	CSR_WRITE_2(sc, re8139_reg, data);
585	return (0);
586}
587
588static void
589re_miibus_statchg(dev)
590	device_t		dev;
591{
592
593}
594
595/*
596 * Program the 64-bit multicast hash filter.
597 */
598static void
599re_setmulti(sc)
600	struct rl_softc		*sc;
601{
602	struct ifnet		*ifp;
603	int			h = 0;
604	u_int32_t		hashes[2] = { 0, 0 };
605	struct ifmultiaddr	*ifma;
606	u_int32_t		rxfilt;
607	int			mcnt = 0;
608
609	RL_LOCK_ASSERT(sc);
610
611	ifp = sc->rl_ifp;
612
613
614	rxfilt = CSR_READ_4(sc, RL_RXCFG);
615	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
616	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
617		if (ifp->if_flags & IFF_PROMISC)
618			rxfilt |= RL_RXCFG_RX_ALLPHYS;
619		/*
620		 * Unlike other hardwares, we have to explicitly set
621		 * RL_RXCFG_RX_MULTI to receive multicast frames in
622		 * promiscuous mode.
623		 */
624		rxfilt |= RL_RXCFG_RX_MULTI;
625		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
626		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
627		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
628		return;
629	}
630
631	/* first, zot all the existing hash bits */
632	CSR_WRITE_4(sc, RL_MAR0, 0);
633	CSR_WRITE_4(sc, RL_MAR4, 0);
634
635	/* now program new ones */
636	IF_ADDR_LOCK(ifp);
637	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
638		if (ifma->ifma_addr->sa_family != AF_LINK)
639			continue;
640		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
641		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
642		if (h < 32)
643			hashes[0] |= (1 << h);
644		else
645			hashes[1] |= (1 << (h - 32));
646		mcnt++;
647	}
648	IF_ADDR_UNLOCK(ifp);
649
650	if (mcnt)
651		rxfilt |= RL_RXCFG_RX_MULTI;
652	else
653		rxfilt &= ~RL_RXCFG_RX_MULTI;
654
655	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
656
657	/*
658	 * For some unfathomable reason, RealTek decided to reverse
659	 * the order of the multicast hash registers in the PCI Express
660	 * parts. This means we have to write the hash pattern in reverse
661	 * order for those devices.
662	 */
663
664	if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
665		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
666		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
667	} else {
668		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
669		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
670	}
671}
672
673static void
674re_reset(sc)
675	struct rl_softc		*sc;
676{
677	register int		i;
678
679	RL_LOCK_ASSERT(sc);
680
681	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
682
683	for (i = 0; i < RL_TIMEOUT; i++) {
684		DELAY(10);
685		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
686			break;
687	}
688	if (i == RL_TIMEOUT)
689		device_printf(sc->rl_dev, "reset never completed!\n");
690
691	CSR_WRITE_1(sc, 0x82, 1);
692}
693
694#ifdef RE_DIAG
695
696/*
697 * The following routine is designed to test for a defect on some
698 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
699 * lines connected to the bus, however for a 32-bit only card, they
700 * should be pulled high. The result of this defect is that the
701 * NIC will not work right if you plug it into a 64-bit slot: DMA
702 * operations will be done with 64-bit transfers, which will fail
703 * because the 64-bit data lines aren't connected.
704 *
705 * There's no way to work around this (short of talking a soldering
706 * iron to the board), however we can detect it. The method we use
707 * here is to put the NIC into digital loopback mode, set the receiver
708 * to promiscuous mode, and then try to send a frame. We then compare
709 * the frame data we sent to what was received. If the data matches,
710 * then the NIC is working correctly, otherwise we know the user has
711 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
712 * slot. In the latter case, there's no way the NIC can work correctly,
713 * so we print out a message on the console and abort the device attach.
714 */
715
716static int
717re_diag(sc)
718	struct rl_softc		*sc;
719{
720	struct ifnet		*ifp = sc->rl_ifp;
721	struct mbuf		*m0;
722	struct ether_header	*eh;
723	struct rl_desc		*cur_rx;
724	u_int16_t		status;
725	u_int32_t		rxstat;
726	int			total_len, i, error = 0, phyaddr;
727	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
728	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
729
730	/* Allocate a single mbuf */
731	MGETHDR(m0, M_DONTWAIT, MT_DATA);
732	if (m0 == NULL)
733		return (ENOBUFS);
734
735	RL_LOCK(sc);
736
737	/*
738	 * Initialize the NIC in test mode. This sets the chip up
739	 * so that it can send and receive frames, but performs the
740	 * following special functions:
741	 * - Puts receiver in promiscuous mode
742	 * - Enables digital loopback mode
743	 * - Leaves interrupts turned off
744	 */
745
746	ifp->if_flags |= IFF_PROMISC;
747	sc->rl_testmode = 1;
748	re_reset(sc);
749	re_init_locked(sc);
750	sc->rl_flags |= RL_FLAG_LINK;
751	if (sc->rl_type == RL_8169)
752		phyaddr = 1;
753	else
754		phyaddr = 0;
755
756	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
757	for (i = 0; i < RL_TIMEOUT; i++) {
758		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
759		if (!(status & BMCR_RESET))
760			break;
761	}
762
763	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
764	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
765
766	DELAY(100000);
767
768	/* Put some data in the mbuf */
769
770	eh = mtod(m0, struct ether_header *);
771	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
772	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
773	eh->ether_type = htons(ETHERTYPE_IP);
774	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
775
776	/*
777	 * Queue the packet, start transmission.
778	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
779	 */
780
781	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
782	RL_UNLOCK(sc);
783	/* XXX: re_diag must not be called when in ALTQ mode */
784	IF_HANDOFF(&ifp->if_snd, m0, ifp);
785	RL_LOCK(sc);
786	m0 = NULL;
787
788	/* Wait for it to propagate through the chip */
789
790	DELAY(100000);
791	for (i = 0; i < RL_TIMEOUT; i++) {
792		status = CSR_READ_2(sc, RL_ISR);
793		CSR_WRITE_2(sc, RL_ISR, status);
794		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
795		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
796			break;
797		DELAY(10);
798	}
799
800	if (i == RL_TIMEOUT) {
801		device_printf(sc->rl_dev,
802		    "diagnostic failed, failed to receive packet in"
803		    " loopback mode\n");
804		error = EIO;
805		goto done;
806	}
807
808	/*
809	 * The packet should have been dumped into the first
810	 * entry in the RX DMA ring. Grab it from there.
811	 */
812
813	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
814	    sc->rl_ldata.rl_rx_list_map,
815	    BUS_DMASYNC_POSTREAD);
816	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
817	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
818	    BUS_DMASYNC_POSTREAD);
819	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
820	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
821
822	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
823	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
824	eh = mtod(m0, struct ether_header *);
825
826	cur_rx = &sc->rl_ldata.rl_rx_list[0];
827	total_len = RL_RXBYTES(cur_rx);
828	rxstat = le32toh(cur_rx->rl_cmdstat);
829
830	if (total_len != ETHER_MIN_LEN) {
831		device_printf(sc->rl_dev,
832		    "diagnostic failed, received short packet\n");
833		error = EIO;
834		goto done;
835	}
836
837	/* Test that the received packet data matches what we sent. */
838
839	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
840	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
841	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
842		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
843		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
844		    dst, ":", src, ":", ETHERTYPE_IP);
845		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
846		    eh->ether_dhost, ":",  eh->ether_shost, ":",
847		    ntohs(eh->ether_type));
848		device_printf(sc->rl_dev, "You may have a defective 32-bit "
849		    "NIC plugged into a 64-bit PCI slot.\n");
850		device_printf(sc->rl_dev, "Please re-install the NIC in a "
851		    "32-bit slot for proper operation.\n");
852		device_printf(sc->rl_dev, "Read the re(4) man page for more "
853		    "details.\n");
854		error = EIO;
855	}
856
857done:
858	/* Turn interface off, release resources */
859
860	sc->rl_testmode = 0;
861	sc->rl_flags &= ~RL_FLAG_LINK;
862	ifp->if_flags &= ~IFF_PROMISC;
863	re_stop(sc);
864	if (m0 != NULL)
865		m_freem(m0);
866
867	RL_UNLOCK(sc);
868
869	return (error);
870}
871
872#endif
873
874/*
875 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
876 * IDs against our list and return a device name if we find a match.
877 */
878static int
879re_probe(dev)
880	device_t		dev;
881{
882	struct rl_type		*t;
883	uint16_t		devid, vendor;
884	uint16_t		revid, sdevid;
885	int			i;
886
887	vendor = pci_get_vendor(dev);
888	devid = pci_get_device(dev);
889	revid = pci_get_revid(dev);
890	sdevid = pci_get_subdevice(dev);
891
892	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
893		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
894			/*
895			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
896			 * Rev. 2 is supported by sk(4).
897			 */
898			return (ENXIO);
899		}
900	}
901
902	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
903		if (revid != 0x20) {
904			/* 8139, let rl(4) take care of this device. */
905			return (ENXIO);
906		}
907	}
908
909	t = re_devs;
910	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
911		if (vendor == t->rl_vid && devid == t->rl_did) {
912			device_set_desc(dev, t->rl_name);
913			return (BUS_PROBE_DEFAULT);
914		}
915	}
916
917	return (ENXIO);
918}
919
920/*
921 * Map a single buffer address.
922 */
923
924static void
925re_dma_map_addr(arg, segs, nseg, error)
926	void			*arg;
927	bus_dma_segment_t	*segs;
928	int			nseg;
929	int			error;
930{
931	bus_addr_t		*addr;
932
933	if (error)
934		return;
935
936	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
937	addr = arg;
938	*addr = segs->ds_addr;
939}
940
941static int
942re_allocmem(dev, sc)
943	device_t		dev;
944	struct rl_softc		*sc;
945{
946	bus_size_t		rx_list_size, tx_list_size;
947	int			error;
948	int			i;
949
950	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
951	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
952
953	/*
954	 * Allocate the parent bus DMA tag appropriate for PCI.
955	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
956	 * register should be set. However some RealTek chips are known
957	 * to be buggy on DAC handling, therefore disable DAC by limiting
958	 * DMA address space to 32bit. PCIe variants of RealTek chips
959	 * may not have the limitation but I took safer path.
960	 */
961	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
962	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
963	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
964	    NULL, NULL, &sc->rl_parent_tag);
965	if (error) {
966		device_printf(dev, "could not allocate parent DMA tag\n");
967		return (error);
968	}
969
970	/*
971	 * Allocate map for TX mbufs.
972	 */
973	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
974	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
975	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
976	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
977	if (error) {
978		device_printf(dev, "could not allocate TX DMA tag\n");
979		return (error);
980	}
981
982	/*
983	 * Allocate map for RX mbufs.
984	 */
985
986	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
987	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
988	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
989	if (error) {
990		device_printf(dev, "could not allocate RX DMA tag\n");
991		return (error);
992	}
993
994	/*
995	 * Allocate map for TX descriptor list.
996	 */
997	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
998	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999	    NULL, tx_list_size, 1, tx_list_size, 0,
1000	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1001	if (error) {
1002		device_printf(dev, "could not allocate TX DMA ring tag\n");
1003		return (error);
1004	}
1005
1006	/* Allocate DMA'able memory for the TX ring */
1007
1008	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1009	    (void **)&sc->rl_ldata.rl_tx_list,
1010	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1011	    &sc->rl_ldata.rl_tx_list_map);
1012	if (error) {
1013		device_printf(dev, "could not allocate TX DMA ring\n");
1014		return (error);
1015	}
1016
1017	/* Load the map for the TX ring. */
1018
1019	sc->rl_ldata.rl_tx_list_addr = 0;
1020	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1021	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1022	     tx_list_size, re_dma_map_addr,
1023	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1024	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1025		device_printf(dev, "could not load TX DMA ring\n");
1026		return (ENOMEM);
1027	}
1028
1029	/* Create DMA maps for TX buffers */
1030
1031	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1032		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1033		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1034		if (error) {
1035			device_printf(dev, "could not create DMA map for TX\n");
1036			return (error);
1037		}
1038	}
1039
1040	/*
1041	 * Allocate map for RX descriptor list.
1042	 */
1043	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1044	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1045	    NULL, rx_list_size, 1, rx_list_size, 0,
1046	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1047	if (error) {
1048		device_printf(dev, "could not create RX DMA ring tag\n");
1049		return (error);
1050	}
1051
1052	/* Allocate DMA'able memory for the RX ring */
1053
1054	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1055	    (void **)&sc->rl_ldata.rl_rx_list,
1056	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1057	    &sc->rl_ldata.rl_rx_list_map);
1058	if (error) {
1059		device_printf(dev, "could not allocate RX DMA ring\n");
1060		return (error);
1061	}
1062
1063	/* Load the map for the RX ring. */
1064
1065	sc->rl_ldata.rl_rx_list_addr = 0;
1066	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068	     rx_list_size, re_dma_map_addr,
1069	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1071		device_printf(dev, "could not load RX DMA ring\n");
1072		return (ENOMEM);
1073	}
1074
1075	/* Create DMA maps for RX buffers */
1076
1077	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1078	    &sc->rl_ldata.rl_rx_sparemap);
1079	if (error) {
1080		device_printf(dev, "could not create spare DMA map for RX\n");
1081		return (error);
1082	}
1083	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1084		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1085		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1086		if (error) {
1087			device_printf(dev, "could not create DMA map for RX\n");
1088			return (error);
1089		}
1090	}
1091
1092	return (0);
1093}
1094
1095/*
1096 * Attach the interface. Allocate softc structures, do ifmedia
1097 * setup and ethernet/BPF attach.
1098 */
1099static int
1100re_attach(dev)
1101	device_t		dev;
1102{
1103	u_char			eaddr[ETHER_ADDR_LEN];
1104	u_int16_t		as[ETHER_ADDR_LEN / 2];
1105	struct rl_softc		*sc;
1106	struct ifnet		*ifp;
1107	struct rl_hwrev		*hw_rev;
1108	int			hwrev;
1109	u_int16_t		devid, re_did = 0;
1110	int			error = 0, rid, i;
1111	int			msic, reg;
1112	uint8_t			cfg;
1113
1114	sc = device_get_softc(dev);
1115	sc->rl_dev = dev;
1116
1117	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1118	    MTX_DEF);
1119	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1120
1121	/*
1122	 * Map control/status registers.
1123	 */
1124	pci_enable_busmaster(dev);
1125
1126	devid = pci_get_device(dev);
1127	/* Prefer memory space register mapping over IO space. */
1128	sc->rl_res_id = PCIR_BAR(1);
1129	sc->rl_res_type = SYS_RES_MEMORY;
1130	/* RTL8168/8101E seems to use different BARs. */
1131	if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1132		sc->rl_res_id = PCIR_BAR(2);
1133	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1134	    &sc->rl_res_id, RF_ACTIVE);
1135
1136	if (sc->rl_res == NULL) {
1137		sc->rl_res_id = PCIR_BAR(0);
1138		sc->rl_res_type = SYS_RES_IOPORT;
1139		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1140		    &sc->rl_res_id, RF_ACTIVE);
1141		if (sc->rl_res == NULL) {
1142			device_printf(dev, "couldn't map ports/memory\n");
1143			error = ENXIO;
1144			goto fail;
1145		}
1146	}
1147
1148	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150
1151	msic = 0;
1152	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1153		msic = pci_msi_count(dev);
1154		if (bootverbose)
1155			device_printf(dev, "MSI count : %d\n", msic);
1156	}
1157	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1158		if (pci_alloc_msi(dev, &msic) == 0) {
1159			if (msic == RL_MSI_MESSAGES) {
1160				device_printf(dev, "Using %d MSI messages\n",
1161				    msic);
1162				sc->rl_flags |= RL_FLAG_MSI;
1163				/* Explicitly set MSI enable bit. */
1164				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1165				cfg = CSR_READ_1(sc, RL_CFG2);
1166				cfg |= RL_CFG2_MSI;
1167				CSR_WRITE_1(sc, RL_CFG2, cfg);
1168				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1169			} else
1170				pci_release_msi(dev);
1171		}
1172	}
1173
1174	/* Allocate interrupt */
1175	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1176		rid = 0;
1177		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1178		    RF_SHAREABLE | RF_ACTIVE);
1179		if (sc->rl_irq[0] == NULL) {
1180			device_printf(dev, "couldn't allocate IRQ resources\n");
1181			error = ENXIO;
1182			goto fail;
1183		}
1184	} else {
1185		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1186			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1187			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1188			if (sc->rl_irq[i] == NULL) {
1189				device_printf(dev,
1190				    "couldn't llocate IRQ resources for "
1191				    "message %d\n", rid);
1192				error = ENXIO;
1193				goto fail;
1194			}
1195		}
1196	}
1197
1198	/* Reset the adapter. */
1199	RL_LOCK(sc);
1200	re_reset(sc);
1201	RL_UNLOCK(sc);
1202
1203	hw_rev = re_hwrevs;
1204	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1205	while (hw_rev->rl_desc != NULL) {
1206		if (hw_rev->rl_rev == hwrev) {
1207			sc->rl_type = hw_rev->rl_type;
1208			break;
1209		}
1210		hw_rev++;
1211	}
1212	if (hw_rev->rl_desc == NULL) {
1213		device_printf(dev, "Unknown H/W revision: %08x\n", hwrev);
1214		error = ENXIO;
1215		goto fail;
1216	}
1217
1218	switch (hw_rev->rl_rev) {
1219	case RL_HWREV_8139CPLUS:
1220		sc->rl_flags |= RL_FLAG_NOJUMBO;
1221		break;
1222	case RL_HWREV_8100E:
1223	case RL_HWREV_8101E:
1224		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE;
1225		break;
1226	case RL_HWREV_8168_SPIN1:
1227	case RL_HWREV_8168_SPIN2:
1228	case RL_HWREV_8168_SPIN3:
1229		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE;
1230		break;
1231	case RL_HWREV_8169_8110SB:
1232	case RL_HWREV_8169_8110SC:
1233		sc->rl_flags |= RL_FLAG_PHYWAKE;
1234		break;
1235	default:
1236		break;
1237	}
1238
1239	sc->rl_eewidth = RL_9356_ADDR_LEN;
1240	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1241	if (re_did != 0x8129)
1242	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1243
1244	/*
1245	 * Get station address from the EEPROM.
1246	 */
1247	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1248	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1249		as[i] = le16toh(as[i]);
1250	bcopy(as, eaddr, sizeof(eaddr));
1251
1252	if (sc->rl_type == RL_8169) {
1253		/* Set RX length mask and number of descriptors. */
1254		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1255		sc->rl_txstart = RL_GTXSTART;
1256		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1257		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1258	} else {
1259		/* Set RX length mask and number of descriptors. */
1260		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1261		sc->rl_txstart = RL_TXSTART;
1262		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1263		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1264	}
1265
1266	error = re_allocmem(dev, sc);
1267	if (error)
1268		goto fail;
1269
1270	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1271	if (ifp == NULL) {
1272		device_printf(dev, "can not if_alloc()\n");
1273		error = ENOSPC;
1274		goto fail;
1275	}
1276
1277	/* Take PHY out of power down mode. */
1278	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1279		re_gmii_writereg(dev, 1, 0x1f, 0);
1280		re_gmii_writereg(dev, 1, 0x0e, 0);
1281	}
1282
1283	/* Do MII setup */
1284	if (mii_phy_probe(dev, &sc->rl_miibus,
1285	    re_ifmedia_upd, re_ifmedia_sts)) {
1286		device_printf(dev, "MII without any phy!\n");
1287		error = ENXIO;
1288		goto fail;
1289	}
1290
1291	ifp->if_softc = sc;
1292	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1293	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1294	ifp->if_ioctl = re_ioctl;
1295	ifp->if_start = re_start;
1296	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1297	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1298	ifp->if_capenable = ifp->if_capabilities;
1299	ifp->if_init = re_init;
1300	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1301	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1302	IFQ_SET_READY(&ifp->if_snd);
1303
1304	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1305	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1306
1307	/*
1308	 * Call MI attach routine.
1309	 */
1310	ether_ifattach(ifp, eaddr);
1311
1312	/* VLAN capability setup */
1313	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1314	if (ifp->if_capabilities & IFCAP_HWCSUM)
1315		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1316	/* Enable WOL if PM is supported. */
1317	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1318		ifp->if_capabilities |= IFCAP_WOL;
1319	ifp->if_capenable = ifp->if_capabilities;
1320#ifdef DEVICE_POLLING
1321	ifp->if_capabilities |= IFCAP_POLLING;
1322#endif
1323	/*
1324	 * Tell the upper layer(s) we support long frames.
1325	 * Must appear after the call to ether_ifattach() because
1326	 * ether_ifattach() sets ifi_hdrlen to the default value.
1327	 */
1328	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1329
1330#ifdef RE_DIAG
1331	/*
1332	 * Perform hardware diagnostic on the original RTL8169.
1333	 * Some 32-bit cards were incorrectly wired and would
1334	 * malfunction if plugged into a 64-bit slot.
1335	 */
1336
1337	if (hwrev == RL_HWREV_8169) {
1338		error = re_diag(sc);
1339		if (error) {
1340			device_printf(dev,
1341		    	"attach aborted due to hardware diag failure\n");
1342			ether_ifdetach(ifp);
1343			goto fail;
1344		}
1345	}
1346#endif
1347
1348	/* Hook interrupt last to avoid having to lock softc */
1349	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1350		error = bus_setup_intr(dev, sc->rl_irq[0],
1351		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1352		    &sc->rl_intrhand[0]);
1353	else {
1354		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1355			error = bus_setup_intr(dev, sc->rl_irq[i],
1356			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1357		    	    &sc->rl_intrhand[i]);
1358			if (error != 0)
1359				break;
1360		}
1361	}
1362	if (error) {
1363		device_printf(dev, "couldn't set up irq\n");
1364		ether_ifdetach(ifp);
1365	}
1366
1367fail:
1368
1369	if (error)
1370		re_detach(dev);
1371
1372	return (error);
1373}
1374
1375/*
1376 * Shutdown hardware and free up resources. This can be called any
1377 * time after the mutex has been initialized. It is called in both
1378 * the error case in attach and the normal detach case so it needs
1379 * to be careful about only freeing resources that have actually been
1380 * allocated.
1381 */
1382static int
1383re_detach(dev)
1384	device_t		dev;
1385{
1386	struct rl_softc		*sc;
1387	struct ifnet		*ifp;
1388	int			i, rid;
1389
1390	sc = device_get_softc(dev);
1391	ifp = sc->rl_ifp;
1392	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1393
1394	/* These should only be active if attach succeeded */
1395	if (device_is_attached(dev)) {
1396#ifdef DEVICE_POLLING
1397		if (ifp->if_capenable & IFCAP_POLLING)
1398			ether_poll_deregister(ifp);
1399#endif
1400		RL_LOCK(sc);
1401#if 0
1402		sc->suspended = 1;
1403#endif
1404		re_stop(sc);
1405		RL_UNLOCK(sc);
1406		callout_drain(&sc->rl_stat_callout);
1407		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1408		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1409		/*
1410		 * Force off the IFF_UP flag here, in case someone
1411		 * still had a BPF descriptor attached to this
1412		 * interface. If they do, ether_ifdetach() will cause
1413		 * the BPF code to try and clear the promisc mode
1414		 * flag, which will bubble down to re_ioctl(),
1415		 * which will try to call re_init() again. This will
1416		 * turn the NIC back on and restart the MII ticker,
1417		 * which will panic the system when the kernel tries
1418		 * to invoke the re_tick() function that isn't there
1419		 * anymore.
1420		 */
1421		ifp->if_flags &= ~IFF_UP;
1422		ether_ifdetach(ifp);
1423	}
1424	if (sc->rl_miibus)
1425		device_delete_child(dev, sc->rl_miibus);
1426	bus_generic_detach(dev);
1427
1428	/*
1429	 * The rest is resource deallocation, so we should already be
1430	 * stopped here.
1431	 */
1432
1433	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1434		if (sc->rl_intrhand[i] != NULL) {
1435			bus_teardown_intr(dev, sc->rl_irq[i],
1436			    sc->rl_intrhand[i]);
1437			sc->rl_intrhand[i] = NULL;
1438		}
1439	}
1440	if (ifp != NULL)
1441		if_free(ifp);
1442	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1443		if (sc->rl_irq[0] != NULL) {
1444			bus_release_resource(dev, SYS_RES_IRQ, 0,
1445			    sc->rl_irq[0]);
1446			sc->rl_irq[0] = NULL;
1447		}
1448	} else {
1449		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1450			if (sc->rl_irq[i] != NULL) {
1451				bus_release_resource(dev, SYS_RES_IRQ, rid,
1452				    sc->rl_irq[i]);
1453				sc->rl_irq[i] = NULL;
1454			}
1455		}
1456		pci_release_msi(dev);
1457	}
1458	if (sc->rl_res)
1459		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1460		    sc->rl_res);
1461
1462	/* Unload and free the RX DMA ring memory and map */
1463
1464	if (sc->rl_ldata.rl_rx_list_tag) {
1465		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1466		    sc->rl_ldata.rl_rx_list_map);
1467		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1468		    sc->rl_ldata.rl_rx_list,
1469		    sc->rl_ldata.rl_rx_list_map);
1470		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1471	}
1472
1473	/* Unload and free the TX DMA ring memory and map */
1474
1475	if (sc->rl_ldata.rl_tx_list_tag) {
1476		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1477		    sc->rl_ldata.rl_tx_list_map);
1478		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1479		    sc->rl_ldata.rl_tx_list,
1480		    sc->rl_ldata.rl_tx_list_map);
1481		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1482	}
1483
1484	/* Destroy all the RX and TX buffer maps */
1485
1486	if (sc->rl_ldata.rl_tx_mtag) {
1487		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1488			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1489			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1490		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1491	}
1492	if (sc->rl_ldata.rl_rx_mtag) {
1493		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1494			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1495			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1496		if (sc->rl_ldata.rl_rx_sparemap)
1497			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1498			    sc->rl_ldata.rl_rx_sparemap);
1499		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1500	}
1501
1502	/* Unload and free the stats buffer and map */
1503
1504	if (sc->rl_ldata.rl_stag) {
1505		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1506		    sc->rl_ldata.rl_rx_list_map);
1507		bus_dmamem_free(sc->rl_ldata.rl_stag,
1508		    sc->rl_ldata.rl_stats,
1509		    sc->rl_ldata.rl_smap);
1510		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1511	}
1512
1513	if (sc->rl_parent_tag)
1514		bus_dma_tag_destroy(sc->rl_parent_tag);
1515
1516	mtx_destroy(&sc->rl_mtx);
1517
1518	return (0);
1519}
1520
1521static __inline void
1522re_discard_rxbuf(sc, idx)
1523	struct rl_softc		*sc;
1524	int			idx;
1525{
1526	struct rl_desc		*desc;
1527	struct rl_rxdesc	*rxd;
1528	uint32_t		cmdstat;
1529
1530	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1531	desc = &sc->rl_ldata.rl_rx_list[idx];
1532	desc->rl_vlanctl = 0;
1533	cmdstat = rxd->rx_size;
1534	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1535		cmdstat |= RL_RDESC_CMD_EOR;
1536	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1537}
1538
1539static int
1540re_newbuf(sc, idx)
1541	struct rl_softc		*sc;
1542	int			idx;
1543{
1544	struct mbuf		*m;
1545	struct rl_rxdesc	*rxd;
1546	bus_dma_segment_t	segs[1];
1547	bus_dmamap_t		map;
1548	struct rl_desc		*desc;
1549	uint32_t		cmdstat;
1550	int			error, nsegs;
1551
1552	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1553	if (m == NULL)
1554		return (ENOBUFS);
1555
1556	m->m_len = m->m_pkthdr.len = MCLBYTES;
1557#ifdef RE_FIXUP_RX
1558	/*
1559	 * This is part of an evil trick to deal with non-x86 platforms.
1560	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1561	 * boundaries, but that will hose non-x86 machines. To get around
1562	 * this, we leave some empty space at the start of each buffer
1563	 * and for non-x86 hosts, we copy the buffer back six bytes
1564	 * to achieve word alignment. This is slightly more efficient
1565	 * than allocating a new buffer, copying the contents, and
1566	 * discarding the old buffer.
1567	 */
1568	m_adj(m, RE_ETHER_ALIGN);
1569#endif
1570	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1571	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1572	if (error != 0) {
1573		m_freem(m);
1574		return (ENOBUFS);
1575	}
1576	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1577
1578	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1579	if (rxd->rx_m != NULL) {
1580		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1581		    BUS_DMASYNC_POSTREAD);
1582		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1583	}
1584
1585	rxd->rx_m = m;
1586	map = rxd->rx_dmamap;
1587	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1588	rxd->rx_size = segs[0].ds_len;
1589	sc->rl_ldata.rl_rx_sparemap = map;
1590	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1591	    BUS_DMASYNC_PREREAD);
1592
1593	desc = &sc->rl_ldata.rl_rx_list[idx];
1594	desc->rl_vlanctl = 0;
1595	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1596	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1597	cmdstat = segs[0].ds_len;
1598	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1599		cmdstat |= RL_RDESC_CMD_EOR;
1600	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1601
1602	return (0);
1603}
1604
1605#ifdef RE_FIXUP_RX
1606static __inline void
1607re_fixup_rx(m)
1608	struct mbuf		*m;
1609{
1610	int                     i;
1611	uint16_t                *src, *dst;
1612
1613	src = mtod(m, uint16_t *);
1614	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1615
1616	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1617		*dst++ = *src++;
1618
1619	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1620
1621	return;
1622}
1623#endif
1624
1625static int
1626re_tx_list_init(sc)
1627	struct rl_softc		*sc;
1628{
1629	struct rl_desc		*desc;
1630	int			i;
1631
1632	RL_LOCK_ASSERT(sc);
1633
1634	bzero(sc->rl_ldata.rl_tx_list,
1635	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1636	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1637		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1638	/* Set EOR. */
1639	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1640	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1641
1642	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1643	    sc->rl_ldata.rl_tx_list_map,
1644	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1645
1646	sc->rl_ldata.rl_tx_prodidx = 0;
1647	sc->rl_ldata.rl_tx_considx = 0;
1648	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1649
1650	return (0);
1651}
1652
1653static int
1654re_rx_list_init(sc)
1655	struct rl_softc		*sc;
1656{
1657	int			error, i;
1658
1659	bzero(sc->rl_ldata.rl_rx_list,
1660	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1661	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1662		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1663		if ((error = re_newbuf(sc, i)) != 0)
1664			return (error);
1665	}
1666
1667	/* Flush the RX descriptors */
1668
1669	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1670	    sc->rl_ldata.rl_rx_list_map,
1671	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1672
1673	sc->rl_ldata.rl_rx_prodidx = 0;
1674	sc->rl_head = sc->rl_tail = NULL;
1675
1676	return (0);
1677}
1678
1679/*
1680 * RX handler for C+ and 8169. For the gigE chips, we support
1681 * the reception of jumbo frames that have been fragmented
1682 * across multiple 2K mbuf cluster buffers.
1683 */
1684static int
1685re_rxeof(sc)
1686	struct rl_softc		*sc;
1687{
1688	struct mbuf		*m;
1689	struct ifnet		*ifp;
1690	int			i, total_len;
1691	struct rl_desc		*cur_rx;
1692	u_int32_t		rxstat, rxvlan;
1693	int			maxpkt = 16;
1694
1695	RL_LOCK_ASSERT(sc);
1696
1697	ifp = sc->rl_ifp;
1698
1699	/* Invalidate the descriptor memory */
1700
1701	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1702	    sc->rl_ldata.rl_rx_list_map,
1703	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1704
1705	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1706	    i = RL_RX_DESC_NXT(sc, i)) {
1707		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1708		rxstat = le32toh(cur_rx->rl_cmdstat);
1709		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1710			break;
1711		total_len = rxstat & sc->rl_rxlenmask;
1712		rxvlan = le32toh(cur_rx->rl_vlanctl);
1713		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1714
1715		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1716			if (re_newbuf(sc, i) != 0) {
1717				/*
1718				 * If this is part of a multi-fragment packet,
1719				 * discard all the pieces.
1720				 */
1721				if (sc->rl_head != NULL) {
1722					m_freem(sc->rl_head);
1723					sc->rl_head = sc->rl_tail = NULL;
1724				}
1725				re_discard_rxbuf(sc, i);
1726				continue;
1727			}
1728			m->m_len = RE_RX_DESC_BUFLEN;
1729			if (sc->rl_head == NULL)
1730				sc->rl_head = sc->rl_tail = m;
1731			else {
1732				m->m_flags &= ~M_PKTHDR;
1733				sc->rl_tail->m_next = m;
1734				sc->rl_tail = m;
1735			}
1736			continue;
1737		}
1738
1739		/*
1740		 * NOTE: for the 8139C+, the frame length field
1741		 * is always 12 bits in size, but for the gigE chips,
1742		 * it is 13 bits (since the max RX frame length is 16K).
1743		 * Unfortunately, all 32 bits in the status word
1744		 * were already used, so to make room for the extra
1745		 * length bit, RealTek took out the 'frame alignment
1746		 * error' bit and shifted the other status bits
1747		 * over one slot. The OWN, EOR, FS and LS bits are
1748		 * still in the same places. We have already extracted
1749		 * the frame length and checked the OWN bit, so rather
1750		 * than using an alternate bit mapping, we shift the
1751		 * status bits one space to the right so we can evaluate
1752		 * them using the 8169 status as though it was in the
1753		 * same format as that of the 8139C+.
1754		 */
1755		if (sc->rl_type == RL_8169)
1756			rxstat >>= 1;
1757
1758		/*
1759		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1760		 * set, but if CRC is clear, it will still be a valid frame.
1761		 */
1762		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1763		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1764			ifp->if_ierrors++;
1765			/*
1766			 * If this is part of a multi-fragment packet,
1767			 * discard all the pieces.
1768			 */
1769			if (sc->rl_head != NULL) {
1770				m_freem(sc->rl_head);
1771				sc->rl_head = sc->rl_tail = NULL;
1772			}
1773			re_discard_rxbuf(sc, i);
1774			continue;
1775		}
1776
1777		/*
1778		 * If allocating a replacement mbuf fails,
1779		 * reload the current one.
1780		 */
1781
1782		if (re_newbuf(sc, i) != 0) {
1783			ifp->if_iqdrops++;
1784			if (sc->rl_head != NULL) {
1785				m_freem(sc->rl_head);
1786				sc->rl_head = sc->rl_tail = NULL;
1787			}
1788			re_discard_rxbuf(sc, i);
1789			continue;
1790		}
1791
1792		if (sc->rl_head != NULL) {
1793			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1794			if (m->m_len == 0)
1795				m->m_len = RE_RX_DESC_BUFLEN;
1796			/*
1797			 * Special case: if there's 4 bytes or less
1798			 * in this buffer, the mbuf can be discarded:
1799			 * the last 4 bytes is the CRC, which we don't
1800			 * care about anyway.
1801			 */
1802			if (m->m_len <= ETHER_CRC_LEN) {
1803				sc->rl_tail->m_len -=
1804				    (ETHER_CRC_LEN - m->m_len);
1805				m_freem(m);
1806			} else {
1807				m->m_len -= ETHER_CRC_LEN;
1808				m->m_flags &= ~M_PKTHDR;
1809				sc->rl_tail->m_next = m;
1810			}
1811			m = sc->rl_head;
1812			sc->rl_head = sc->rl_tail = NULL;
1813			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1814		} else
1815			m->m_pkthdr.len = m->m_len =
1816			    (total_len - ETHER_CRC_LEN);
1817
1818#ifdef RE_FIXUP_RX
1819		re_fixup_rx(m);
1820#endif
1821		ifp->if_ipackets++;
1822		m->m_pkthdr.rcvif = ifp;
1823
1824		/* Do RX checksumming if enabled */
1825
1826		if (ifp->if_capenable & IFCAP_RXCSUM) {
1827
1828			/* Check IP header checksum */
1829			if (rxstat & RL_RDESC_STAT_PROTOID)
1830				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1831			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1832				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1833
1834			/* Check TCP/UDP checksum */
1835			if ((RL_TCPPKT(rxstat) &&
1836			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1837			    (RL_UDPPKT(rxstat) &&
1838			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1839				m->m_pkthdr.csum_flags |=
1840				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1841				m->m_pkthdr.csum_data = 0xffff;
1842			}
1843		}
1844		maxpkt--;
1845		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1846			m->m_pkthdr.ether_vtag =
1847			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1848			m->m_flags |= M_VLANTAG;
1849		}
1850		RL_UNLOCK(sc);
1851		(*ifp->if_input)(ifp, m);
1852		RL_LOCK(sc);
1853	}
1854
1855	/* Flush the RX DMA ring */
1856
1857	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1858	    sc->rl_ldata.rl_rx_list_map,
1859	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1860
1861	sc->rl_ldata.rl_rx_prodidx = i;
1862
1863	if (maxpkt)
1864		return(EAGAIN);
1865
1866	return(0);
1867}
1868
1869static void
1870re_txeof(sc)
1871	struct rl_softc		*sc;
1872{
1873	struct ifnet		*ifp;
1874	struct rl_txdesc	*txd;
1875	u_int32_t		txstat;
1876	int			cons;
1877
1878	cons = sc->rl_ldata.rl_tx_considx;
1879	if (cons == sc->rl_ldata.rl_tx_prodidx)
1880		return;
1881
1882	ifp = sc->rl_ifp;
1883	/* Invalidate the TX descriptor list */
1884	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1885	    sc->rl_ldata.rl_tx_list_map,
1886	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1887
1888	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1889	    cons = RL_TX_DESC_NXT(sc, cons)) {
1890		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1891		if (txstat & RL_TDESC_STAT_OWN)
1892			break;
1893		/*
1894		 * We only stash mbufs in the last descriptor
1895		 * in a fragment chain, which also happens to
1896		 * be the only place where the TX status bits
1897		 * are valid.
1898		 */
1899		if (txstat & RL_TDESC_CMD_EOF) {
1900			txd = &sc->rl_ldata.rl_tx_desc[cons];
1901			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1902			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1903			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1904			    txd->tx_dmamap);
1905			KASSERT(txd->tx_m != NULL,
1906			    ("%s: freeing NULL mbufs!", __func__));
1907			m_freem(txd->tx_m);
1908			txd->tx_m = NULL;
1909			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1910			    RL_TDESC_STAT_COLCNT))
1911				ifp->if_collisions++;
1912			if (txstat & RL_TDESC_STAT_TXERRSUM)
1913				ifp->if_oerrors++;
1914			else
1915				ifp->if_opackets++;
1916		}
1917		sc->rl_ldata.rl_tx_free++;
1918		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1919	}
1920	sc->rl_ldata.rl_tx_considx = cons;
1921
1922	/* No changes made to the TX ring, so no flush needed */
1923
1924	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1925		/*
1926		 * Some chips will ignore a second TX request issued
1927		 * while an existing transmission is in progress. If
1928		 * the transmitter goes idle but there are still
1929		 * packets waiting to be sent, we need to restart the
1930		 * channel here to flush them out. This only seems to
1931		 * be required with the PCIe devices.
1932		 */
1933		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1934
1935#ifdef RE_TX_MODERATION
1936		/*
1937		 * If not all descriptors have been reaped yet, reload
1938		 * the timer so that we will eventually get another
1939		 * interrupt that will cause us to re-enter this routine.
1940		 * This is done in case the transmitter has gone idle.
1941		 */
1942		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1943#endif
1944	} else
1945		sc->rl_watchdog_timer = 0;
1946}
1947
1948static void
1949re_tick(xsc)
1950	void			*xsc;
1951{
1952	struct rl_softc		*sc;
1953	struct mii_data		*mii;
1954	struct ifnet		*ifp;
1955
1956	sc = xsc;
1957	ifp = sc->rl_ifp;
1958
1959	RL_LOCK_ASSERT(sc);
1960
1961	re_watchdog(sc);
1962
1963	mii = device_get_softc(sc->rl_miibus);
1964	mii_tick(mii);
1965	if ((sc->rl_flags & RL_FLAG_LINK) != 0) {
1966		if (!(mii->mii_media_status & IFM_ACTIVE))
1967			sc->rl_flags &= ~RL_FLAG_LINK;
1968	} else {
1969		if (mii->mii_media_status & IFM_ACTIVE &&
1970		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1971			sc->rl_flags |= RL_FLAG_LINK;
1972			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1973				taskqueue_enqueue_fast(taskqueue_fast,
1974				    &sc->rl_txtask);
1975		}
1976	}
1977
1978	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1979}
1980
1981#ifdef DEVICE_POLLING
1982static void
1983re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1984{
1985	struct rl_softc *sc = ifp->if_softc;
1986
1987	RL_LOCK(sc);
1988	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1989		re_poll_locked(ifp, cmd, count);
1990	RL_UNLOCK(sc);
1991}
1992
1993static void
1994re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1995{
1996	struct rl_softc *sc = ifp->if_softc;
1997
1998	RL_LOCK_ASSERT(sc);
1999
2000	sc->rxcycles = count;
2001	re_rxeof(sc);
2002	re_txeof(sc);
2003
2004	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2005		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2006
2007	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2008		u_int16_t       status;
2009
2010		status = CSR_READ_2(sc, RL_ISR);
2011		if (status == 0xffff)
2012			return;
2013		if (status)
2014			CSR_WRITE_2(sc, RL_ISR, status);
2015
2016		/*
2017		 * XXX check behaviour on receiver stalls.
2018		 */
2019
2020		if (status & RL_ISR_SYSTEM_ERR) {
2021			re_reset(sc);
2022			re_init_locked(sc);
2023		}
2024	}
2025}
2026#endif /* DEVICE_POLLING */
2027
2028static int
2029re_intr(arg)
2030	void			*arg;
2031{
2032	struct rl_softc		*sc;
2033	uint16_t		status;
2034
2035	sc = arg;
2036
2037	status = CSR_READ_2(sc, RL_ISR);
2038	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2039                return (FILTER_STRAY);
2040	CSR_WRITE_2(sc, RL_IMR, 0);
2041
2042	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2043
2044	return (FILTER_HANDLED);
2045}
2046
2047static void
2048re_int_task(arg, npending)
2049	void			*arg;
2050	int			npending;
2051{
2052	struct rl_softc		*sc;
2053	struct ifnet		*ifp;
2054	u_int16_t		status;
2055	int			rval = 0;
2056
2057	sc = arg;
2058	ifp = sc->rl_ifp;
2059
2060	RL_LOCK(sc);
2061
2062	status = CSR_READ_2(sc, RL_ISR);
2063        CSR_WRITE_2(sc, RL_ISR, status);
2064
2065	if (sc->suspended ||
2066	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2067		RL_UNLOCK(sc);
2068		return;
2069	}
2070
2071#ifdef DEVICE_POLLING
2072	if  (ifp->if_capenable & IFCAP_POLLING) {
2073		RL_UNLOCK(sc);
2074		return;
2075	}
2076#endif
2077
2078	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2079		rval = re_rxeof(sc);
2080
2081#ifdef RE_TX_MODERATION
2082	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2083#else
2084	if (status & (RL_ISR_TX_OK|
2085#endif
2086	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2087		re_txeof(sc);
2088
2089	if (status & RL_ISR_SYSTEM_ERR) {
2090		re_reset(sc);
2091		re_init_locked(sc);
2092	}
2093
2094	if (status & RL_ISR_LINKCHG) {
2095		callout_stop(&sc->rl_stat_callout);
2096		re_tick(sc);
2097	}
2098
2099	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2100		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2101
2102	RL_UNLOCK(sc);
2103
2104        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2105		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2106		return;
2107	}
2108
2109	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2110
2111	return;
2112}
2113
2114static int
2115re_encap(sc, m_head)
2116	struct rl_softc		*sc;
2117	struct mbuf		**m_head;
2118{
2119	struct rl_txdesc	*txd, *txd_last;
2120	bus_dma_segment_t	segs[RL_NTXSEGS];
2121	bus_dmamap_t		map;
2122	struct mbuf		*m_new;
2123	struct rl_desc		*desc;
2124	int			nsegs, prod;
2125	int			i, error, ei, si;
2126	int			padlen;
2127	uint32_t		cmdstat, csum_flags, vlanctl;
2128
2129	RL_LOCK_ASSERT(sc);
2130	M_ASSERTPKTHDR((*m_head));
2131
2132	/*
2133	 * With some of the RealTek chips, using the checksum offload
2134	 * support in conjunction with the autopadding feature results
2135	 * in the transmission of corrupt frames. For example, if we
2136	 * need to send a really small IP fragment that's less than 60
2137	 * bytes in size, and IP header checksumming is enabled, the
2138	 * resulting ethernet frame that appears on the wire will
2139	 * have garbled payload. To work around this, if TX IP checksum
2140	 * offload is enabled, we always manually pad short frames out
2141	 * to the minimum ethernet frame size.
2142	 */
2143	if ((*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2144	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2145		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2146		if (M_WRITABLE(*m_head) == 0) {
2147			/* Get a writable copy. */
2148			m_new = m_dup(*m_head, M_DONTWAIT);
2149			m_freem(*m_head);
2150			if (m_new == NULL) {
2151				*m_head = NULL;
2152				return (ENOBUFS);
2153			}
2154			*m_head = m_new;
2155		}
2156		if ((*m_head)->m_next != NULL ||
2157		    M_TRAILINGSPACE(*m_head) < padlen) {
2158			m_new = m_defrag(*m_head, M_DONTWAIT);
2159			if (m_new == NULL) {
2160				m_freem(*m_head);
2161				*m_head = NULL;
2162				return (ENOBUFS);
2163			}
2164		} else
2165			m_new = *m_head;
2166
2167		/*
2168		 * Manually pad short frames, and zero the pad space
2169		 * to avoid leaking data.
2170		 */
2171		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2172		m_new->m_pkthdr.len += padlen;
2173		m_new->m_len = m_new->m_pkthdr.len;
2174		*m_head = m_new;
2175	}
2176
2177	prod = sc->rl_ldata.rl_tx_prodidx;
2178	txd = &sc->rl_ldata.rl_tx_desc[prod];
2179	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2180	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2181	if (error == EFBIG) {
2182		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2183		if (m_new == NULL) {
2184			m_freem(*m_head);
2185			*m_head = NULL;
2186			return (ENOBUFS);
2187		}
2188		*m_head = m_new;
2189		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2190		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2191		if (error != 0) {
2192			m_freem(*m_head);
2193			*m_head = NULL;
2194			return (error);
2195		}
2196	} else if (error != 0)
2197		return (error);
2198	if (nsegs == 0) {
2199		m_freem(*m_head);
2200		*m_head = NULL;
2201		return (EIO);
2202	}
2203
2204	/* Check for number of available descriptors. */
2205	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2206		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2207		return (ENOBUFS);
2208	}
2209
2210	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2211	    BUS_DMASYNC_PREWRITE);
2212
2213	/*
2214	 * Set up checksum offload. Note: checksum offload bits must
2215	 * appear in all descriptors of a multi-descriptor transmit
2216	 * attempt. This is according to testing done with an 8169
2217	 * chip. This is a requirement.
2218	 */
2219	csum_flags = 0;
2220	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2221		csum_flags = RL_TDESC_CMD_LGSEND |
2222		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2223		    RL_TDESC_CMD_MSSVAL_SHIFT);
2224	else {
2225		/*
2226		 * Unconditionally enable IP checksum if TCP or UDP
2227		 * checksum is required. Otherwise, TCP/UDP checksum
2228		 * does't make effects.
2229		 */
2230		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2231			csum_flags |= RL_TDESC_CMD_IPCSUM;
2232			if (((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2233				csum_flags |= RL_TDESC_CMD_TCPCSUM;
2234			if (((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2235				csum_flags |= RL_TDESC_CMD_UDPCSUM;
2236		}
2237	}
2238
2239	/*
2240	 * Set up hardware VLAN tagging. Note: vlan tag info must
2241	 * appear in all descriptors of a multi-descriptor
2242	 * transmission attempt.
2243	 */
2244	vlanctl = 0;
2245	if ((*m_head)->m_flags & M_VLANTAG)
2246		vlanctl =
2247		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2248		    RL_TDESC_VLANCTL_TAG);
2249
2250	si = prod;
2251	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2252		desc = &sc->rl_ldata.rl_tx_list[prod];
2253		desc->rl_vlanctl = vlanctl;
2254		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2255		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2256		cmdstat = segs[i].ds_len;
2257		if (i != 0)
2258			cmdstat |= RL_TDESC_CMD_OWN;
2259		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2260			cmdstat |= RL_TDESC_CMD_EOR;
2261		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2262		sc->rl_ldata.rl_tx_free--;
2263	}
2264	/* Update producer index. */
2265	sc->rl_ldata.rl_tx_prodidx = prod;
2266
2267	/* Set EOF on the last descriptor. */
2268	ei = RL_TX_DESC_PRV(sc, prod);
2269	desc = &sc->rl_ldata.rl_tx_list[ei];
2270	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2271
2272	desc = &sc->rl_ldata.rl_tx_list[si];
2273	/* Set SOF and transfer ownership of packet to the chip. */
2274	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2275
2276	/*
2277	 * Insure that the map for this transmission
2278	 * is placed at the array index of the last descriptor
2279	 * in this chain.  (Swap last and first dmamaps.)
2280	 */
2281	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2282	map = txd->tx_dmamap;
2283	txd->tx_dmamap = txd_last->tx_dmamap;
2284	txd_last->tx_dmamap = map;
2285	txd_last->tx_m = *m_head;
2286
2287	return (0);
2288}
2289
2290static void
2291re_tx_task(arg, npending)
2292	void			*arg;
2293	int			npending;
2294{
2295	struct ifnet		*ifp;
2296
2297	ifp = arg;
2298	re_start(ifp);
2299
2300	return;
2301}
2302
2303/*
2304 * Main transmit routine for C+ and gigE NICs.
2305 */
2306static void
2307re_start(ifp)
2308	struct ifnet		*ifp;
2309{
2310	struct rl_softc		*sc;
2311	struct mbuf		*m_head;
2312	int			queued;
2313
2314	sc = ifp->if_softc;
2315
2316	RL_LOCK(sc);
2317
2318	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2319	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2320		RL_UNLOCK(sc);
2321		return;
2322	}
2323
2324	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2325	    sc->rl_ldata.rl_tx_free > 1;) {
2326		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2327		if (m_head == NULL)
2328			break;
2329
2330		if (re_encap(sc, &m_head) != 0) {
2331			if (m_head == NULL)
2332				break;
2333			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2334			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2335			break;
2336		}
2337
2338		/*
2339		 * If there's a BPF listener, bounce a copy of this frame
2340		 * to him.
2341		 */
2342		ETHER_BPF_MTAP(ifp, m_head);
2343
2344		queued++;
2345	}
2346
2347	if (queued == 0) {
2348#ifdef RE_TX_MODERATION
2349		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2350			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2351#endif
2352		RL_UNLOCK(sc);
2353		return;
2354	}
2355
2356	/* Flush the TX descriptors */
2357
2358	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2359	    sc->rl_ldata.rl_tx_list_map,
2360	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2361
2362	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2363
2364#ifdef RE_TX_MODERATION
2365	/*
2366	 * Use the countdown timer for interrupt moderation.
2367	 * 'TX done' interrupts are disabled. Instead, we reset the
2368	 * countdown timer, which will begin counting until it hits
2369	 * the value in the TIMERINT register, and then trigger an
2370	 * interrupt. Each time we write to the TIMERCNT register,
2371	 * the timer count is reset to 0.
2372	 */
2373	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2374#endif
2375
2376	/*
2377	 * Set a timeout in case the chip goes out to lunch.
2378	 */
2379	sc->rl_watchdog_timer = 5;
2380
2381	RL_UNLOCK(sc);
2382
2383	return;
2384}
2385
2386static void
2387re_init(xsc)
2388	void			*xsc;
2389{
2390	struct rl_softc		*sc = xsc;
2391
2392	RL_LOCK(sc);
2393	re_init_locked(sc);
2394	RL_UNLOCK(sc);
2395}
2396
2397static void
2398re_init_locked(sc)
2399	struct rl_softc		*sc;
2400{
2401	struct ifnet		*ifp = sc->rl_ifp;
2402	struct mii_data		*mii;
2403	u_int32_t		rxcfg = 0;
2404	uint16_t		cfg;
2405	union {
2406		uint32_t align_dummy;
2407		u_char eaddr[ETHER_ADDR_LEN];
2408        } eaddr;
2409
2410	RL_LOCK_ASSERT(sc);
2411
2412	mii = device_get_softc(sc->rl_miibus);
2413
2414	/*
2415	 * Cancel pending I/O and free all RX/TX buffers.
2416	 */
2417	re_stop(sc);
2418
2419	/*
2420	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2421	 * RX checksum offload. We must configure the C+ register
2422	 * before all others.
2423	 */
2424	cfg = RL_CPLUSCMD_PCI_MRW;
2425	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2426		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2427	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2428		cfg |= RL_CPLUSCMD_VLANSTRIP;
2429	CSR_WRITE_2(sc, RL_CPLUS_CMD,
2430	    cfg | RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB);
2431
2432	/*
2433	 * Init our MAC address.  Even though the chipset
2434	 * documentation doesn't mention it, we need to enter "Config
2435	 * register write enable" mode to modify the ID registers.
2436	 */
2437	/* Copy MAC address on stack to align. */
2438	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2439	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2440	CSR_WRITE_4(sc, RL_IDR0,
2441	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2442	CSR_WRITE_4(sc, RL_IDR4,
2443	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2444	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2445
2446	/*
2447	 * For C+ mode, initialize the RX descriptors and mbufs.
2448	 */
2449	re_rx_list_init(sc);
2450	re_tx_list_init(sc);
2451
2452	/*
2453	 * Load the addresses of the RX and TX lists into the chip.
2454	 */
2455
2456	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2457	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2458	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2459	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2460
2461	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2462	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2463	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2464	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2465
2466	/*
2467	 * Enable transmit and receive.
2468	 */
2469	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2470
2471	/*
2472	 * Set the initial TX and RX configuration.
2473	 */
2474	if (sc->rl_testmode) {
2475		if (sc->rl_type == RL_8169)
2476			CSR_WRITE_4(sc, RL_TXCFG,
2477			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2478		else
2479			CSR_WRITE_4(sc, RL_TXCFG,
2480			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2481	} else
2482		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2483
2484	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2485
2486	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2487
2488	/* Set the individual bit to receive frames for this host only. */
2489	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2490	rxcfg |= RL_RXCFG_RX_INDIV;
2491
2492	/* If we want promiscuous mode, set the allframes bit. */
2493	if (ifp->if_flags & IFF_PROMISC)
2494		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2495	else
2496		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2497	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2498
2499	/*
2500	 * Set capture broadcast bit to capture broadcast frames.
2501	 */
2502	if (ifp->if_flags & IFF_BROADCAST)
2503		rxcfg |= RL_RXCFG_RX_BROAD;
2504	else
2505		rxcfg &= ~RL_RXCFG_RX_BROAD;
2506	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2507
2508	/*
2509	 * Program the multicast filter, if necessary.
2510	 */
2511	re_setmulti(sc);
2512
2513#ifdef DEVICE_POLLING
2514	/*
2515	 * Disable interrupts if we are polling.
2516	 */
2517	if (ifp->if_capenable & IFCAP_POLLING)
2518		CSR_WRITE_2(sc, RL_IMR, 0);
2519	else	/* otherwise ... */
2520#endif
2521
2522	/*
2523	 * Enable interrupts.
2524	 */
2525	if (sc->rl_testmode)
2526		CSR_WRITE_2(sc, RL_IMR, 0);
2527	else
2528		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2529	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2530
2531	/* Set initial TX threshold */
2532	sc->rl_txthresh = RL_TX_THRESH_INIT;
2533
2534	/* Start RX/TX process. */
2535	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2536#ifdef notdef
2537	/* Enable receiver and transmitter. */
2538	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2539#endif
2540
2541#ifdef RE_TX_MODERATION
2542	/*
2543	 * Initialize the timer interrupt register so that
2544	 * a timer interrupt will be generated once the timer
2545	 * reaches a certain number of ticks. The timer is
2546	 * reloaded on each transmit. This gives us TX interrupt
2547	 * moderation, which dramatically improves TX frame rate.
2548	 */
2549	if (sc->rl_type == RL_8169)
2550		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2551	else
2552		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2553#endif
2554
2555	/*
2556	 * For 8169 gigE NICs, set the max allowed RX packet
2557	 * size so we can receive jumbo frames.
2558	 */
2559	if (sc->rl_type == RL_8169)
2560		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2561
2562	if (sc->rl_testmode)
2563		return;
2564
2565	mii_mediachg(mii);
2566
2567	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2568
2569	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2570	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2571
2572	sc->rl_flags &= ~RL_FLAG_LINK;
2573	sc->rl_watchdog_timer = 0;
2574	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2575}
2576
2577/*
2578 * Set media options.
2579 */
2580static int
2581re_ifmedia_upd(ifp)
2582	struct ifnet		*ifp;
2583{
2584	struct rl_softc		*sc;
2585	struct mii_data		*mii;
2586
2587	sc = ifp->if_softc;
2588	mii = device_get_softc(sc->rl_miibus);
2589	RL_LOCK(sc);
2590	mii_mediachg(mii);
2591	RL_UNLOCK(sc);
2592
2593	return (0);
2594}
2595
2596/*
2597 * Report current media status.
2598 */
2599static void
2600re_ifmedia_sts(ifp, ifmr)
2601	struct ifnet		*ifp;
2602	struct ifmediareq	*ifmr;
2603{
2604	struct rl_softc		*sc;
2605	struct mii_data		*mii;
2606
2607	sc = ifp->if_softc;
2608	mii = device_get_softc(sc->rl_miibus);
2609
2610	RL_LOCK(sc);
2611	mii_pollstat(mii);
2612	RL_UNLOCK(sc);
2613	ifmr->ifm_active = mii->mii_media_active;
2614	ifmr->ifm_status = mii->mii_media_status;
2615}
2616
2617static int
2618re_ioctl(ifp, command, data)
2619	struct ifnet		*ifp;
2620	u_long			command;
2621	caddr_t			data;
2622{
2623	struct rl_softc		*sc = ifp->if_softc;
2624	struct ifreq		*ifr = (struct ifreq *) data;
2625	struct mii_data		*mii;
2626	int			error = 0;
2627
2628	switch (command) {
2629	case SIOCSIFMTU:
2630		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2631			error = EINVAL;
2632			break;
2633		}
2634		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2635		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2636			error = EINVAL;
2637			break;
2638		}
2639		RL_LOCK(sc);
2640		if (ifp->if_mtu != ifr->ifr_mtu)
2641			ifp->if_mtu = ifr->ifr_mtu;
2642		RL_UNLOCK(sc);
2643		break;
2644	case SIOCSIFFLAGS:
2645		RL_LOCK(sc);
2646		if ((ifp->if_flags & IFF_UP) != 0) {
2647			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2648				if (((ifp->if_flags ^ sc->rl_if_flags)
2649				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2650					re_setmulti(sc);
2651			} else
2652				re_init_locked(sc);
2653		} else {
2654			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2655				re_stop(sc);
2656		}
2657		sc->rl_if_flags = ifp->if_flags;
2658		RL_UNLOCK(sc);
2659		break;
2660	case SIOCADDMULTI:
2661	case SIOCDELMULTI:
2662		RL_LOCK(sc);
2663		re_setmulti(sc);
2664		RL_UNLOCK(sc);
2665		break;
2666	case SIOCGIFMEDIA:
2667	case SIOCSIFMEDIA:
2668		mii = device_get_softc(sc->rl_miibus);
2669		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2670		break;
2671	case SIOCSIFCAP:
2672	    {
2673		int mask, reinit;
2674
2675		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2676		reinit = 0;
2677#ifdef DEVICE_POLLING
2678		if (mask & IFCAP_POLLING) {
2679			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2680				error = ether_poll_register(re_poll, ifp);
2681				if (error)
2682					return(error);
2683				RL_LOCK(sc);
2684				/* Disable interrupts */
2685				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2686				ifp->if_capenable |= IFCAP_POLLING;
2687				RL_UNLOCK(sc);
2688			} else {
2689				error = ether_poll_deregister(ifp);
2690				/* Enable interrupts. */
2691				RL_LOCK(sc);
2692				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2693				ifp->if_capenable &= ~IFCAP_POLLING;
2694				RL_UNLOCK(sc);
2695			}
2696		}
2697#endif /* DEVICE_POLLING */
2698		if (mask & IFCAP_HWCSUM) {
2699			ifp->if_capenable ^= IFCAP_HWCSUM;
2700			if (ifp->if_capenable & IFCAP_TXCSUM)
2701				ifp->if_hwassist |= RE_CSUM_FEATURES;
2702			else
2703				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2704			reinit = 1;
2705		}
2706		if (mask & IFCAP_VLAN_HWTAGGING) {
2707			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2708			reinit = 1;
2709		}
2710		if (mask & IFCAP_TSO4) {
2711			ifp->if_capenable ^= IFCAP_TSO4;
2712			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2713			    (IFCAP_TSO4 & ifp->if_capabilities))
2714				ifp->if_hwassist |= CSUM_TSO;
2715			else
2716				ifp->if_hwassist &= ~CSUM_TSO;
2717		}
2718		if ((mask & IFCAP_WOL) != 0 &&
2719		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2720			if ((mask & IFCAP_WOL_UCAST) != 0)
2721				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2722			if ((mask & IFCAP_WOL_MCAST) != 0)
2723				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2724			if ((mask & IFCAP_WOL_MAGIC) != 0)
2725				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2726		}
2727		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2728			re_init(sc);
2729		VLAN_CAPABILITIES(ifp);
2730	    }
2731		break;
2732	default:
2733		error = ether_ioctl(ifp, command, data);
2734		break;
2735	}
2736
2737	return (error);
2738}
2739
2740static void
2741re_watchdog(sc)
2742	struct rl_softc		*sc;
2743{
2744
2745	RL_LOCK_ASSERT(sc);
2746
2747	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2748		return;
2749
2750	device_printf(sc->rl_dev, "watchdog timeout\n");
2751	sc->rl_ifp->if_oerrors++;
2752
2753	re_txeof(sc);
2754	re_rxeof(sc);
2755	re_init_locked(sc);
2756}
2757
2758/*
2759 * Stop the adapter and free any mbufs allocated to the
2760 * RX and TX lists.
2761 */
2762static void
2763re_stop(sc)
2764	struct rl_softc		*sc;
2765{
2766	register int		i;
2767	struct ifnet		*ifp;
2768	struct rl_txdesc	*txd;
2769	struct rl_rxdesc	*rxd;
2770
2771	RL_LOCK_ASSERT(sc);
2772
2773	ifp = sc->rl_ifp;
2774
2775	sc->rl_watchdog_timer = 0;
2776	callout_stop(&sc->rl_stat_callout);
2777	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2778
2779	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2780	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2781	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2782
2783	if (sc->rl_head != NULL) {
2784		m_freem(sc->rl_head);
2785		sc->rl_head = sc->rl_tail = NULL;
2786	}
2787
2788	/* Free the TX list buffers. */
2789
2790	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2791		txd = &sc->rl_ldata.rl_tx_desc[i];
2792		if (txd->tx_m != NULL) {
2793			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2794			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2795			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2796			    txd->tx_dmamap);
2797			m_freem(txd->tx_m);
2798			txd->tx_m = NULL;
2799		}
2800	}
2801
2802	/* Free the RX list buffers. */
2803
2804	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2805		rxd = &sc->rl_ldata.rl_rx_desc[i];
2806		if (rxd->rx_m != NULL) {
2807			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2808			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2809			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2810			    rxd->rx_dmamap);
2811			m_freem(rxd->rx_m);
2812			rxd->rx_m = NULL;
2813		}
2814	}
2815}
2816
2817/*
2818 * Device suspend routine.  Stop the interface and save some PCI
2819 * settings in case the BIOS doesn't restore them properly on
2820 * resume.
2821 */
2822static int
2823re_suspend(dev)
2824	device_t		dev;
2825{
2826	struct rl_softc		*sc;
2827
2828	sc = device_get_softc(dev);
2829
2830	RL_LOCK(sc);
2831	re_stop(sc);
2832	re_setwol(sc);
2833	sc->suspended = 1;
2834	RL_UNLOCK(sc);
2835
2836	return (0);
2837}
2838
2839/*
2840 * Device resume routine.  Restore some PCI settings in case the BIOS
2841 * doesn't, re-enable busmastering, and restart the interface if
2842 * appropriate.
2843 */
2844static int
2845re_resume(dev)
2846	device_t		dev;
2847{
2848	struct rl_softc		*sc;
2849	struct ifnet		*ifp;
2850
2851	sc = device_get_softc(dev);
2852
2853	RL_LOCK(sc);
2854
2855	ifp = sc->rl_ifp;
2856
2857	/* reinitialize interface if necessary */
2858	if (ifp->if_flags & IFF_UP)
2859		re_init_locked(sc);
2860
2861	/*
2862	 * Clear WOL matching such that normal Rx filtering
2863	 * wouldn't interfere with WOL patterns.
2864	 */
2865	re_clrwol(sc);
2866	sc->suspended = 0;
2867	RL_UNLOCK(sc);
2868
2869	return (0);
2870}
2871
2872/*
2873 * Stop all chip I/O so that the kernel's probe routines don't
2874 * get confused by errant DMAs when rebooting.
2875 */
2876static int
2877re_shutdown(dev)
2878	device_t		dev;
2879{
2880	struct rl_softc		*sc;
2881
2882	sc = device_get_softc(dev);
2883
2884	RL_LOCK(sc);
2885	re_stop(sc);
2886	/*
2887	 * Mark interface as down since otherwise we will panic if
2888	 * interrupt comes in later on, which can happen in some
2889	 * cases.
2890	 */
2891	sc->rl_ifp->if_flags &= ~IFF_UP;
2892	re_setwol(sc);
2893	RL_UNLOCK(sc);
2894
2895	return (0);
2896}
2897
2898static void
2899re_setwol(sc)
2900	struct rl_softc		*sc;
2901{
2902	struct ifnet		*ifp;
2903	int			pmc;
2904	uint16_t		pmstat;
2905	uint8_t			v;
2906
2907	RL_LOCK_ASSERT(sc);
2908
2909	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2910		return;
2911
2912	ifp = sc->rl_ifp;
2913	/* Enable config register write. */
2914	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2915
2916	/* Enable PME. */
2917	v = CSR_READ_1(sc, RL_CFG1);
2918	v &= ~RL_CFG1_PME;
2919	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2920		v |= RL_CFG1_PME;
2921	CSR_WRITE_1(sc, RL_CFG1, v);
2922
2923	v = CSR_READ_1(sc, RL_CFG3);
2924	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2925	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2926		v |= RL_CFG3_WOL_MAGIC;
2927	CSR_WRITE_1(sc, RL_CFG3, v);
2928
2929	/* Config register write done. */
2930	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2931
2932	v = CSR_READ_1(sc, RL_CFG5);
2933	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2934	v &= ~RL_CFG5_WOL_LANWAKE;
2935	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2936		v |= RL_CFG5_WOL_UCAST;
2937	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2938		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2939	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2940		v |= RL_CFG5_WOL_LANWAKE;
2941	CSR_WRITE_1(sc, RL_CFG5, v);
2942
2943	/*
2944	 * It seems that hardware resets its link speed to 100Mbps in
2945	 * power down mode so switching to 100Mbps in driver is not
2946	 * needed.
2947	 */
2948
2949	/* Request PME if WOL is requested. */
2950	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2951	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2952	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2953		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2954	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2955}
2956
2957static void
2958re_clrwol(sc)
2959	struct rl_softc		*sc;
2960{
2961	int			pmc;
2962	uint8_t			v;
2963
2964	RL_LOCK_ASSERT(sc);
2965
2966	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2967		return;
2968
2969	/* Enable config register write. */
2970	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2971
2972	v = CSR_READ_1(sc, RL_CFG3);
2973	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2974	CSR_WRITE_1(sc, RL_CFG3, v);
2975
2976	/* Config register write done. */
2977	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2978
2979	v = CSR_READ_1(sc, RL_CFG5);
2980	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2981	v &= ~RL_CFG5_WOL_LANWAKE;
2982	CSR_WRITE_1(sc, RL_CFG5, v);
2983}
2984