if_re.c revision 180168
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 180168 2008-07-02 05:01:19Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/*
159 * Default to using PIO access for this driver.
160 */
161#define RE_USEIOSPACE
162
163/* Tunables. */
164static int msi_disable = 1;
165TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166
167#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
168
169/*
170 * Various supported device vendors/types and their names.
171 */
172static struct rl_type re_devs[] = {
173	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
174	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
175	{ RT_VENDORID, RT_DEVICEID_8139, 0,
176	    "RealTek 8139C+ 10/100BaseTX" },
177	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
178	    "RealTek 8101E PCIe 10/100baseTX" },
179	{ RT_VENDORID, RT_DEVICEID_8168, 0,
180	    "RealTek 8168/8168B/8111B PCIe Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169, 0,
182	    "RealTek 8169/8169S/8169SB/8110S/8110SB Gigabit Ethernet" },
183	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
184	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
185	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
186	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
187	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
188	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
189	{ USR_VENDORID, USR_DEVICEID_997902, 0,
190	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
191};
192
193static struct rl_hwrev re_hwrevs[] = {
194	{ RL_HWREV_8139, RL_8139,  "" },
195	{ RL_HWREV_8139A, RL_8139, "A" },
196	{ RL_HWREV_8139AG, RL_8139, "A-G" },
197	{ RL_HWREV_8139B, RL_8139, "B" },
198	{ RL_HWREV_8130, RL_8139, "8130" },
199	{ RL_HWREV_8139C, RL_8139, "C" },
200	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
201	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
202	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
203	{ RL_HWREV_8169, RL_8169, "8169"},
204	{ RL_HWREV_8169S, RL_8169, "8169S"},
205	{ RL_HWREV_8110S, RL_8169, "8110S"},
206	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
207	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
208	{ RL_HWREV_8100, RL_8139, "8100"},
209	{ RL_HWREV_8101, RL_8139, "8101"},
210	{ RL_HWREV_8100E, RL_8169, "8100E"},
211	{ RL_HWREV_8101E, RL_8169, "8101E"},
212	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
213	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
214	{ 0, 0, NULL }
215};
216
217static int re_probe		(device_t);
218static int re_attach		(device_t);
219static int re_detach		(device_t);
220
221static int re_encap		(struct rl_softc *, struct mbuf **);
222
223static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
224static int re_allocmem		(device_t, struct rl_softc *);
225static __inline void re_discard_rxbuf
226				(struct rl_softc *, int);
227static int re_newbuf		(struct rl_softc *, int);
228static int re_rx_list_init	(struct rl_softc *);
229static int re_tx_list_init	(struct rl_softc *);
230#ifdef RE_FIXUP_RX
231static __inline void re_fixup_rx
232				(struct mbuf *);
233#endif
234static int re_rxeof		(struct rl_softc *);
235static void re_txeof		(struct rl_softc *);
236#ifdef DEVICE_POLLING
237static void re_poll		(struct ifnet *, enum poll_cmd, int);
238static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
239#endif
240static int re_intr		(void *);
241static void re_tick		(void *);
242static void re_tx_task		(void *, int);
243static void re_int_task		(void *, int);
244static void re_start		(struct ifnet *);
245static int re_ioctl		(struct ifnet *, u_long, caddr_t);
246static void re_init		(void *);
247static void re_init_locked	(struct rl_softc *);
248static void re_stop		(struct rl_softc *);
249static void re_watchdog		(struct rl_softc *);
250static int re_suspend		(device_t);
251static int re_resume		(device_t);
252static int re_shutdown		(device_t);
253static int re_ifmedia_upd	(struct ifnet *);
254static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
255
256static void re_eeprom_putbyte	(struct rl_softc *, int);
257static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
258static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
259static int re_gmii_readreg	(device_t, int, int);
260static int re_gmii_writereg	(device_t, int, int, int);
261
262static int re_miibus_readreg	(device_t, int, int);
263static int re_miibus_writereg	(device_t, int, int, int);
264static void re_miibus_statchg	(device_t);
265
266static void re_setmulti		(struct rl_softc *);
267static void re_reset		(struct rl_softc *);
268static void re_setwol		(struct rl_softc *);
269static void re_clrwol		(struct rl_softc *);
270
271#ifdef RE_DIAG
272static int re_diag		(struct rl_softc *);
273#endif
274
275#ifdef RE_USEIOSPACE
276#define RL_RES			SYS_RES_IOPORT
277#define RL_RID			RL_PCI_LOIO
278#else
279#define RL_RES			SYS_RES_MEMORY
280#define RL_RID			RL_PCI_LOMEM
281#endif
282
283static device_method_t re_methods[] = {
284	/* Device interface */
285	DEVMETHOD(device_probe,		re_probe),
286	DEVMETHOD(device_attach,	re_attach),
287	DEVMETHOD(device_detach,	re_detach),
288	DEVMETHOD(device_suspend,	re_suspend),
289	DEVMETHOD(device_resume,	re_resume),
290	DEVMETHOD(device_shutdown,	re_shutdown),
291
292	/* bus interface */
293	DEVMETHOD(bus_print_child,	bus_generic_print_child),
294	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
295
296	/* MII interface */
297	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
298	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
299	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
300
301	{ 0, 0 }
302};
303
304static driver_t re_driver = {
305	"re",
306	re_methods,
307	sizeof(struct rl_softc)
308};
309
310static devclass_t re_devclass;
311
312DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
313DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
314DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
315
316#define EE_SET(x)					\
317	CSR_WRITE_1(sc, RL_EECMD,			\
318		CSR_READ_1(sc, RL_EECMD) | x)
319
320#define EE_CLR(x)					\
321	CSR_WRITE_1(sc, RL_EECMD,			\
322		CSR_READ_1(sc, RL_EECMD) & ~x)
323
324/*
325 * Send a read command and address to the EEPROM, check for ACK.
326 */
327static void
328re_eeprom_putbyte(sc, addr)
329	struct rl_softc		*sc;
330	int			addr;
331{
332	register int		d, i;
333
334	d = addr | (RL_9346_READ << sc->rl_eewidth);
335
336	/*
337	 * Feed in each bit and strobe the clock.
338	 */
339
340	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
341		if (d & i) {
342			EE_SET(RL_EE_DATAIN);
343		} else {
344			EE_CLR(RL_EE_DATAIN);
345		}
346		DELAY(100);
347		EE_SET(RL_EE_CLK);
348		DELAY(150);
349		EE_CLR(RL_EE_CLK);
350		DELAY(100);
351	}
352
353	return;
354}
355
356/*
357 * Read a word of data stored in the EEPROM at address 'addr.'
358 */
359static void
360re_eeprom_getword(sc, addr, dest)
361	struct rl_softc		*sc;
362	int			addr;
363	u_int16_t		*dest;
364{
365	register int		i;
366	u_int16_t		word = 0;
367
368	/*
369	 * Send address of word we want to read.
370	 */
371	re_eeprom_putbyte(sc, addr);
372
373	/*
374	 * Start reading bits from EEPROM.
375	 */
376	for (i = 0x8000; i; i >>= 1) {
377		EE_SET(RL_EE_CLK);
378		DELAY(100);
379		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
380			word |= i;
381		EE_CLR(RL_EE_CLK);
382		DELAY(100);
383	}
384
385	*dest = word;
386
387	return;
388}
389
390/*
391 * Read a sequence of words from the EEPROM.
392 */
393static void
394re_read_eeprom(sc, dest, off, cnt)
395	struct rl_softc		*sc;
396	caddr_t			dest;
397	int			off;
398	int			cnt;
399{
400	int			i;
401	u_int16_t		word = 0, *ptr;
402
403	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
404
405        DELAY(100);
406
407	for (i = 0; i < cnt; i++) {
408		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
409		re_eeprom_getword(sc, off + i, &word);
410		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
411		ptr = (u_int16_t *)(dest + (i * 2));
412                *ptr = word;
413	}
414
415	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
416
417	return;
418}
419
420static int
421re_gmii_readreg(dev, phy, reg)
422	device_t		dev;
423	int			phy, reg;
424{
425	struct rl_softc		*sc;
426	u_int32_t		rval;
427	int			i;
428
429	if (phy != 1)
430		return (0);
431
432	sc = device_get_softc(dev);
433
434	/* Let the rgephy driver read the GMEDIASTAT register */
435
436	if (reg == RL_GMEDIASTAT) {
437		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
438		return (rval);
439	}
440
441	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
442	DELAY(1000);
443
444	for (i = 0; i < RL_TIMEOUT; i++) {
445		rval = CSR_READ_4(sc, RL_PHYAR);
446		if (rval & RL_PHYAR_BUSY)
447			break;
448		DELAY(100);
449	}
450
451	if (i == RL_TIMEOUT) {
452		device_printf(sc->rl_dev, "PHY read failed\n");
453		return (0);
454	}
455
456	return (rval & RL_PHYAR_PHYDATA);
457}
458
459static int
460re_gmii_writereg(dev, phy, reg, data)
461	device_t		dev;
462	int			phy, reg, data;
463{
464	struct rl_softc		*sc;
465	u_int32_t		rval;
466	int			i;
467
468	sc = device_get_softc(dev);
469
470	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
471	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
472	DELAY(1000);
473
474	for (i = 0; i < RL_TIMEOUT; i++) {
475		rval = CSR_READ_4(sc, RL_PHYAR);
476		if (!(rval & RL_PHYAR_BUSY))
477			break;
478		DELAY(100);
479	}
480
481	if (i == RL_TIMEOUT) {
482		device_printf(sc->rl_dev, "PHY write failed\n");
483		return (0);
484	}
485
486	return (0);
487}
488
489static int
490re_miibus_readreg(dev, phy, reg)
491	device_t		dev;
492	int			phy, reg;
493{
494	struct rl_softc		*sc;
495	u_int16_t		rval = 0;
496	u_int16_t		re8139_reg = 0;
497
498	sc = device_get_softc(dev);
499
500	if (sc->rl_type == RL_8169) {
501		rval = re_gmii_readreg(dev, phy, reg);
502		return (rval);
503	}
504
505	/* Pretend the internal PHY is only at address 0 */
506	if (phy) {
507		return (0);
508	}
509	switch (reg) {
510	case MII_BMCR:
511		re8139_reg = RL_BMCR;
512		break;
513	case MII_BMSR:
514		re8139_reg = RL_BMSR;
515		break;
516	case MII_ANAR:
517		re8139_reg = RL_ANAR;
518		break;
519	case MII_ANER:
520		re8139_reg = RL_ANER;
521		break;
522	case MII_ANLPAR:
523		re8139_reg = RL_LPAR;
524		break;
525	case MII_PHYIDR1:
526	case MII_PHYIDR2:
527		return (0);
528	/*
529	 * Allow the rlphy driver to read the media status
530	 * register. If we have a link partner which does not
531	 * support NWAY, this is the register which will tell
532	 * us the results of parallel detection.
533	 */
534	case RL_MEDIASTAT:
535		rval = CSR_READ_1(sc, RL_MEDIASTAT);
536		return (rval);
537	default:
538		device_printf(sc->rl_dev, "bad phy register\n");
539		return (0);
540	}
541	rval = CSR_READ_2(sc, re8139_reg);
542	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
543		/* 8139C+ has different bit layout. */
544		rval &= ~(BMCR_LOOP | BMCR_ISO);
545	}
546	return (rval);
547}
548
549static int
550re_miibus_writereg(dev, phy, reg, data)
551	device_t		dev;
552	int			phy, reg, data;
553{
554	struct rl_softc		*sc;
555	u_int16_t		re8139_reg = 0;
556	int			rval = 0;
557
558	sc = device_get_softc(dev);
559
560	if (sc->rl_type == RL_8169) {
561		rval = re_gmii_writereg(dev, phy, reg, data);
562		return (rval);
563	}
564
565	/* Pretend the internal PHY is only at address 0 */
566	if (phy)
567		return (0);
568
569	switch (reg) {
570	case MII_BMCR:
571		re8139_reg = RL_BMCR;
572		if (sc->rl_type == RL_8139CPLUS) {
573			/* 8139C+ has different bit layout. */
574			data &= ~(BMCR_LOOP | BMCR_ISO);
575		}
576		break;
577	case MII_BMSR:
578		re8139_reg = RL_BMSR;
579		break;
580	case MII_ANAR:
581		re8139_reg = RL_ANAR;
582		break;
583	case MII_ANER:
584		re8139_reg = RL_ANER;
585		break;
586	case MII_ANLPAR:
587		re8139_reg = RL_LPAR;
588		break;
589	case MII_PHYIDR1:
590	case MII_PHYIDR2:
591		return (0);
592		break;
593	default:
594		device_printf(sc->rl_dev, "bad phy register\n");
595		return (0);
596	}
597	CSR_WRITE_2(sc, re8139_reg, data);
598	return (0);
599}
600
601static void
602re_miibus_statchg(dev)
603	device_t		dev;
604{
605
606}
607
608/*
609 * Program the 64-bit multicast hash filter.
610 */
611static void
612re_setmulti(sc)
613	struct rl_softc		*sc;
614{
615	struct ifnet		*ifp;
616	int			h = 0;
617	u_int32_t		hashes[2] = { 0, 0 };
618	struct ifmultiaddr	*ifma;
619	u_int32_t		rxfilt;
620	int			mcnt = 0;
621	u_int32_t		hwrev;
622
623	RL_LOCK_ASSERT(sc);
624
625	ifp = sc->rl_ifp;
626
627
628	rxfilt = CSR_READ_4(sc, RL_RXCFG);
629	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
630	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631		if (ifp->if_flags & IFF_PROMISC)
632			rxfilt |= RL_RXCFG_RX_ALLPHYS;
633		/*
634		 * Unlike other hardwares, we have to explicitly set
635		 * RL_RXCFG_RX_MULTI to receive multicast frames in
636		 * promiscuous mode.
637		 */
638		rxfilt |= RL_RXCFG_RX_MULTI;
639		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
640		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
641		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
642		return;
643	}
644
645	/* first, zot all the existing hash bits */
646	CSR_WRITE_4(sc, RL_MAR0, 0);
647	CSR_WRITE_4(sc, RL_MAR4, 0);
648
649	/* now program new ones */
650	IF_ADDR_LOCK(ifp);
651	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
652		if (ifma->ifma_addr->sa_family != AF_LINK)
653			continue;
654		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
655		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
656		if (h < 32)
657			hashes[0] |= (1 << h);
658		else
659			hashes[1] |= (1 << (h - 32));
660		mcnt++;
661	}
662	IF_ADDR_UNLOCK(ifp);
663
664	if (mcnt)
665		rxfilt |= RL_RXCFG_RX_MULTI;
666	else
667		rxfilt &= ~RL_RXCFG_RX_MULTI;
668
669	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
670
671	/*
672	 * For some unfathomable reason, RealTek decided to reverse
673	 * the order of the multicast hash registers in the PCI Express
674	 * parts. This means we have to write the hash pattern in reverse
675	 * order for those devices.
676	 */
677
678	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
679
680	switch (hwrev) {
681	case RL_HWREV_8100E:
682	case RL_HWREV_8101E:
683	case RL_HWREV_8168_SPIN1:
684	case RL_HWREV_8168_SPIN2:
685	case RL_HWREV_8168_SPIN3:
686		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
687		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
688		break;
689	default:
690		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
691		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
692		break;
693	}
694}
695
696static void
697re_reset(sc)
698	struct rl_softc		*sc;
699{
700	register int		i;
701
702	RL_LOCK_ASSERT(sc);
703
704	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
705
706	for (i = 0; i < RL_TIMEOUT; i++) {
707		DELAY(10);
708		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
709			break;
710	}
711	if (i == RL_TIMEOUT)
712		device_printf(sc->rl_dev, "reset never completed!\n");
713
714	CSR_WRITE_1(sc, 0x82, 1);
715}
716
717#ifdef RE_DIAG
718
719/*
720 * The following routine is designed to test for a defect on some
721 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
722 * lines connected to the bus, however for a 32-bit only card, they
723 * should be pulled high. The result of this defect is that the
724 * NIC will not work right if you plug it into a 64-bit slot: DMA
725 * operations will be done with 64-bit transfers, which will fail
726 * because the 64-bit data lines aren't connected.
727 *
728 * There's no way to work around this (short of talking a soldering
729 * iron to the board), however we can detect it. The method we use
730 * here is to put the NIC into digital loopback mode, set the receiver
731 * to promiscuous mode, and then try to send a frame. We then compare
732 * the frame data we sent to what was received. If the data matches,
733 * then the NIC is working correctly, otherwise we know the user has
734 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
735 * slot. In the latter case, there's no way the NIC can work correctly,
736 * so we print out a message on the console and abort the device attach.
737 */
738
739static int
740re_diag(sc)
741	struct rl_softc		*sc;
742{
743	struct ifnet		*ifp = sc->rl_ifp;
744	struct mbuf		*m0;
745	struct ether_header	*eh;
746	struct rl_desc		*cur_rx;
747	u_int16_t		status;
748	u_int32_t		rxstat;
749	int			total_len, i, error = 0, phyaddr;
750	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
751	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
752
753	/* Allocate a single mbuf */
754	MGETHDR(m0, M_DONTWAIT, MT_DATA);
755	if (m0 == NULL)
756		return (ENOBUFS);
757
758	RL_LOCK(sc);
759
760	/*
761	 * Initialize the NIC in test mode. This sets the chip up
762	 * so that it can send and receive frames, but performs the
763	 * following special functions:
764	 * - Puts receiver in promiscuous mode
765	 * - Enables digital loopback mode
766	 * - Leaves interrupts turned off
767	 */
768
769	ifp->if_flags |= IFF_PROMISC;
770	sc->rl_testmode = 1;
771	re_reset(sc);
772	re_init_locked(sc);
773	sc->rl_link = 1;
774	if (sc->rl_type == RL_8169)
775		phyaddr = 1;
776	else
777		phyaddr = 0;
778
779	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
780	for (i = 0; i < RL_TIMEOUT; i++) {
781		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
782		if (!(status & BMCR_RESET))
783			break;
784	}
785
786	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
787	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
788
789	DELAY(100000);
790
791	/* Put some data in the mbuf */
792
793	eh = mtod(m0, struct ether_header *);
794	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
795	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
796	eh->ether_type = htons(ETHERTYPE_IP);
797	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
798
799	/*
800	 * Queue the packet, start transmission.
801	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
802	 */
803
804	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
805	RL_UNLOCK(sc);
806	/* XXX: re_diag must not be called when in ALTQ mode */
807	IF_HANDOFF(&ifp->if_snd, m0, ifp);
808	RL_LOCK(sc);
809	m0 = NULL;
810
811	/* Wait for it to propagate through the chip */
812
813	DELAY(100000);
814	for (i = 0; i < RL_TIMEOUT; i++) {
815		status = CSR_READ_2(sc, RL_ISR);
816		CSR_WRITE_2(sc, RL_ISR, status);
817		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
818		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
819			break;
820		DELAY(10);
821	}
822
823	if (i == RL_TIMEOUT) {
824		device_printf(sc->rl_dev,
825		    "diagnostic failed, failed to receive packet in"
826		    " loopback mode\n");
827		error = EIO;
828		goto done;
829	}
830
831	/*
832	 * The packet should have been dumped into the first
833	 * entry in the RX DMA ring. Grab it from there.
834	 */
835
836	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
837	    sc->rl_ldata.rl_rx_list_map,
838	    BUS_DMASYNC_POSTREAD);
839	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
840	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
841	    BUS_DMASYNC_POSTREAD);
842	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
843	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
844
845	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
846	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
847	eh = mtod(m0, struct ether_header *);
848
849	cur_rx = &sc->rl_ldata.rl_rx_list[0];
850	total_len = RL_RXBYTES(cur_rx);
851	rxstat = le32toh(cur_rx->rl_cmdstat);
852
853	if (total_len != ETHER_MIN_LEN) {
854		device_printf(sc->rl_dev,
855		    "diagnostic failed, received short packet\n");
856		error = EIO;
857		goto done;
858	}
859
860	/* Test that the received packet data matches what we sent. */
861
862	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
863	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
864	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
865		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
866		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
867		    dst, ":", src, ":", ETHERTYPE_IP);
868		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
869		    eh->ether_dhost, ":",  eh->ether_shost, ":",
870		    ntohs(eh->ether_type));
871		device_printf(sc->rl_dev, "You may have a defective 32-bit "
872		    "NIC plugged into a 64-bit PCI slot.\n");
873		device_printf(sc->rl_dev, "Please re-install the NIC in a "
874		    "32-bit slot for proper operation.\n");
875		device_printf(sc->rl_dev, "Read the re(4) man page for more "
876		    "details.\n");
877		error = EIO;
878	}
879
880done:
881	/* Turn interface off, release resources */
882
883	sc->rl_testmode = 0;
884	sc->rl_link = 0;
885	ifp->if_flags &= ~IFF_PROMISC;
886	re_stop(sc);
887	if (m0 != NULL)
888		m_freem(m0);
889
890	RL_UNLOCK(sc);
891
892	return (error);
893}
894
895#endif
896
897/*
898 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
899 * IDs against our list and return a device name if we find a match.
900 */
901static int
902re_probe(dev)
903	device_t		dev;
904{
905	struct rl_type		*t;
906	uint16_t		devid, vendor;
907	uint16_t		revid, sdevid;
908	int			i;
909
910	vendor = pci_get_vendor(dev);
911	devid = pci_get_device(dev);
912	revid = pci_get_revid(dev);
913	sdevid = pci_get_subdevice(dev);
914
915	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
916		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
917			/*
918			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
919			 * Rev. 2 is supported by sk(4).
920			 */
921			return (ENXIO);
922		}
923	}
924
925	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
926		if (revid != 0x20) {
927			/* 8139, let rl(4) take care of this device. */
928			return (ENXIO);
929		}
930	}
931
932	t = re_devs;
933	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
934		if (vendor == t->rl_vid && devid == t->rl_did) {
935			device_set_desc(dev, t->rl_name);
936			return (BUS_PROBE_DEFAULT);
937		}
938	}
939
940	return (ENXIO);
941}
942
943/*
944 * Map a single buffer address.
945 */
946
947static void
948re_dma_map_addr(arg, segs, nseg, error)
949	void			*arg;
950	bus_dma_segment_t	*segs;
951	int			nseg;
952	int			error;
953{
954	bus_addr_t		*addr;
955
956	if (error)
957		return;
958
959	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
960	addr = arg;
961	*addr = segs->ds_addr;
962}
963
964static int
965re_allocmem(dev, sc)
966	device_t		dev;
967	struct rl_softc		*sc;
968{
969	bus_size_t		rx_list_size, tx_list_size;
970	int			error;
971	int			i;
972
973	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
974	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
975
976	/*
977	 * Allocate the parent bus DMA tag appropriate for PCI.
978	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
979	 * register should be set. However some RealTek chips are known
980	 * to be buggy on DAC handling, therefore disable DAC by limiting
981	 * DMA address space to 32bit. PCIe variants of RealTek chips
982	 * may not have the limitation but I took safer path.
983	 */
984	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
985	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
986	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
987	    NULL, NULL, &sc->rl_parent_tag);
988	if (error) {
989		device_printf(dev, "could not allocate parent DMA tag\n");
990		return (error);
991	}
992
993	/*
994	 * Allocate map for TX mbufs.
995	 */
996	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
997	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
998	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
999	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1000	if (error) {
1001		device_printf(dev, "could not allocate TX DMA tag\n");
1002		return (error);
1003	}
1004
1005	/*
1006	 * Allocate map for RX mbufs.
1007	 */
1008
1009	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1010	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1011	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1012	if (error) {
1013		device_printf(dev, "could not allocate RX DMA tag\n");
1014		return (error);
1015	}
1016
1017	/*
1018	 * Allocate map for TX descriptor list.
1019	 */
1020	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1021	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1022	    NULL, tx_list_size, 1, tx_list_size, 0,
1023	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1024	if (error) {
1025		device_printf(dev, "could not allocate TX DMA ring tag\n");
1026		return (error);
1027	}
1028
1029	/* Allocate DMA'able memory for the TX ring */
1030
1031	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1032	    (void **)&sc->rl_ldata.rl_tx_list,
1033	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1034	    &sc->rl_ldata.rl_tx_list_map);
1035	if (error) {
1036		device_printf(dev, "could not allocate TX DMA ring\n");
1037		return (error);
1038	}
1039
1040	/* Load the map for the TX ring. */
1041
1042	sc->rl_ldata.rl_tx_list_addr = 0;
1043	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1044	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1045	     tx_list_size, re_dma_map_addr,
1046	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1047	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1048		device_printf(dev, "could not load TX DMA ring\n");
1049		return (ENOMEM);
1050	}
1051
1052	/* Create DMA maps for TX buffers */
1053
1054	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1055		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1056		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1057		if (error) {
1058			device_printf(dev, "could not create DMA map for TX\n");
1059			return (error);
1060		}
1061	}
1062
1063	/*
1064	 * Allocate map for RX descriptor list.
1065	 */
1066	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1067	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1068	    NULL, rx_list_size, 1, rx_list_size, 0,
1069	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1070	if (error) {
1071		device_printf(dev, "could not create RX DMA ring tag\n");
1072		return (error);
1073	}
1074
1075	/* Allocate DMA'able memory for the RX ring */
1076
1077	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1078	    (void **)&sc->rl_ldata.rl_rx_list,
1079	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1080	    &sc->rl_ldata.rl_rx_list_map);
1081	if (error) {
1082		device_printf(dev, "could not allocate RX DMA ring\n");
1083		return (error);
1084	}
1085
1086	/* Load the map for the RX ring. */
1087
1088	sc->rl_ldata.rl_rx_list_addr = 0;
1089	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1090	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1091	     rx_list_size, re_dma_map_addr,
1092	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1093	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1094		device_printf(dev, "could not load RX DMA ring\n");
1095		return (ENOMEM);
1096	}
1097
1098	/* Create DMA maps for RX buffers */
1099
1100	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1101	    &sc->rl_ldata.rl_rx_sparemap);
1102	if (error) {
1103		device_printf(dev, "could not create spare DMA map for RX\n");
1104		return (error);
1105	}
1106	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1107		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1108		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1109		if (error) {
1110			device_printf(dev, "could not create DMA map for RX\n");
1111			return (error);
1112		}
1113	}
1114
1115	return (0);
1116}
1117
1118/*
1119 * Attach the interface. Allocate softc structures, do ifmedia
1120 * setup and ethernet/BPF attach.
1121 */
1122static int
1123re_attach(dev)
1124	device_t		dev;
1125{
1126	u_char			eaddr[ETHER_ADDR_LEN];
1127	u_int16_t		as[ETHER_ADDR_LEN / 2];
1128	struct rl_softc		*sc;
1129	struct ifnet		*ifp;
1130	struct rl_hwrev		*hw_rev;
1131	int			hwrev;
1132	u_int16_t		re_did = 0;
1133	int			error = 0, rid, i;
1134	int			msic, reg;
1135	uint8_t			cfg;
1136
1137	sc = device_get_softc(dev);
1138	sc->rl_dev = dev;
1139
1140	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1141	    MTX_DEF);
1142	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1143
1144	/*
1145	 * Map control/status registers.
1146	 */
1147	pci_enable_busmaster(dev);
1148
1149	rid = RL_RID;
1150	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1151	    RF_ACTIVE);
1152
1153	if (sc->rl_res == NULL) {
1154		device_printf(dev, "couldn't map ports/memory\n");
1155		error = ENXIO;
1156		goto fail;
1157	}
1158
1159	sc->rl_btag = rman_get_bustag(sc->rl_res);
1160	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1161
1162	msic = 0;
1163	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1164		msic = pci_msi_count(dev);
1165		if (bootverbose)
1166			device_printf(dev, "MSI count : %d\n", msic);
1167	}
1168	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1169		if (pci_alloc_msi(dev, &msic) == 0) {
1170			if (msic == RL_MSI_MESSAGES) {
1171				device_printf(dev, "Using %d MSI messages\n",
1172				    msic);
1173				sc->rl_msi = 1;
1174				/* Explicitly set MSI enable bit. */
1175				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1176				cfg = CSR_READ_1(sc, RL_CFG2);
1177				cfg |= RL_CFG2_MSI;
1178				CSR_WRITE_1(sc, RL_CFG2, cfg);
1179				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1180			} else
1181				pci_release_msi(dev);
1182		}
1183	}
1184
1185	/* Allocate interrupt */
1186	if (sc->rl_msi == 0) {
1187		rid = 0;
1188		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1189		    RF_SHAREABLE | RF_ACTIVE);
1190		if (sc->rl_irq[0] == NULL) {
1191			device_printf(dev, "couldn't allocate IRQ resources\n");
1192			error = ENXIO;
1193			goto fail;
1194		}
1195	} else {
1196		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1197			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1198			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1199			if (sc->rl_irq[i] == NULL) {
1200				device_printf(dev,
1201				    "couldn't llocate IRQ resources for "
1202				    "message %d\n", rid);
1203				error = ENXIO;
1204				goto fail;
1205			}
1206		}
1207	}
1208
1209	/* Reset the adapter. */
1210	RL_LOCK(sc);
1211	re_reset(sc);
1212	RL_UNLOCK(sc);
1213
1214	hw_rev = re_hwrevs;
1215	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1216	while (hw_rev->rl_desc != NULL) {
1217		if (hw_rev->rl_rev == hwrev) {
1218			sc->rl_type = hw_rev->rl_type;
1219			break;
1220		}
1221		hw_rev++;
1222	}
1223	if (hw_rev->rl_desc == NULL) {
1224		device_printf(dev, "Unknown H/W revision: %08x\n", hwrev);
1225		error = ENXIO;
1226		goto fail;
1227	}
1228
1229	sc->rl_eewidth = RL_9356_ADDR_LEN;
1230	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1231	if (re_did != 0x8129)
1232	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1233
1234	/*
1235	 * Get station address from the EEPROM.
1236	 */
1237	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1238	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1239		as[i] = le16toh(as[i]);
1240	bcopy(as, eaddr, sizeof(eaddr));
1241
1242	if (sc->rl_type == RL_8169) {
1243		/* Set RX length mask and number of descriptors. */
1244		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1245		sc->rl_txstart = RL_GTXSTART;
1246		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1247		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1248	} else {
1249		/* Set RX length mask and number of descriptors. */
1250		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1251		sc->rl_txstart = RL_TXSTART;
1252		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1253		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1254	}
1255
1256	error = re_allocmem(dev, sc);
1257	if (error)
1258		goto fail;
1259
1260	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1261	if (ifp == NULL) {
1262		device_printf(dev, "can not if_alloc()\n");
1263		error = ENOSPC;
1264		goto fail;
1265	}
1266
1267	/* Do MII setup */
1268	if (mii_phy_probe(dev, &sc->rl_miibus,
1269	    re_ifmedia_upd, re_ifmedia_sts)) {
1270		device_printf(dev, "MII without any phy!\n");
1271		error = ENXIO;
1272		goto fail;
1273	}
1274
1275	/* Take PHY out of power down mode. */
1276	if (sc->rl_type == RL_8169) {
1277		uint32_t rev;
1278
1279		rev = CSR_READ_4(sc, RL_TXCFG);
1280		/* HWVERID 0, 1 and 2 :  bit26-30, bit23 */
1281		rev &= 0x7c800000;
1282		if (rev != 0) {
1283			/* RTL8169S single chip */
1284			switch (rev) {
1285			case RL_HWREV_8169_8110SB:
1286			case RL_HWREV_8169_8110SC:
1287			case RL_HWREV_8168_SPIN2:
1288			case RL_HWREV_8168_SPIN3:
1289				re_gmii_writereg(dev, 1, 0x1f, 0);
1290				re_gmii_writereg(dev, 1, 0x0e, 0);
1291				break;
1292			default:
1293				break;
1294			}
1295		}
1296	}
1297
1298	ifp->if_softc = sc;
1299	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1300	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1301	ifp->if_ioctl = re_ioctl;
1302	ifp->if_start = re_start;
1303	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1304	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1305	ifp->if_capenable = ifp->if_capabilities;
1306	ifp->if_init = re_init;
1307	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1308	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1309	IFQ_SET_READY(&ifp->if_snd);
1310
1311	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1312	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1313
1314	/*
1315	 * Call MI attach routine.
1316	 */
1317	ether_ifattach(ifp, eaddr);
1318
1319	/* VLAN capability setup */
1320	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1321	if (ifp->if_capabilities & IFCAP_HWCSUM)
1322		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1323	/* Enable WOL if PM is supported. */
1324	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1325		ifp->if_capabilities |= IFCAP_WOL;
1326	ifp->if_capenable = ifp->if_capabilities;
1327#ifdef DEVICE_POLLING
1328	ifp->if_capabilities |= IFCAP_POLLING;
1329#endif
1330	/*
1331	 * Tell the upper layer(s) we support long frames.
1332	 * Must appear after the call to ether_ifattach() because
1333	 * ether_ifattach() sets ifi_hdrlen to the default value.
1334	 */
1335	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1336
1337#ifdef RE_DIAG
1338	/*
1339	 * Perform hardware diagnostic on the original RTL8169.
1340	 * Some 32-bit cards were incorrectly wired and would
1341	 * malfunction if plugged into a 64-bit slot.
1342	 */
1343
1344	if (hwrev == RL_HWREV_8169) {
1345		error = re_diag(sc);
1346		if (error) {
1347			device_printf(dev,
1348		    	"attach aborted due to hardware diag failure\n");
1349			ether_ifdetach(ifp);
1350			goto fail;
1351		}
1352	}
1353#endif
1354
1355	/* Hook interrupt last to avoid having to lock softc */
1356	if (sc->rl_msi == 0)
1357		error = bus_setup_intr(dev, sc->rl_irq[0],
1358		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1359		    &sc->rl_intrhand[0]);
1360	else {
1361		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1362			error = bus_setup_intr(dev, sc->rl_irq[i],
1363			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1364		    	    &sc->rl_intrhand[i]);
1365			if (error != 0)
1366				break;
1367		}
1368	}
1369	if (error) {
1370		device_printf(dev, "couldn't set up irq\n");
1371		ether_ifdetach(ifp);
1372	}
1373
1374fail:
1375
1376	if (error)
1377		re_detach(dev);
1378
1379	return (error);
1380}
1381
1382/*
1383 * Shutdown hardware and free up resources. This can be called any
1384 * time after the mutex has been initialized. It is called in both
1385 * the error case in attach and the normal detach case so it needs
1386 * to be careful about only freeing resources that have actually been
1387 * allocated.
1388 */
1389static int
1390re_detach(dev)
1391	device_t		dev;
1392{
1393	struct rl_softc		*sc;
1394	struct ifnet		*ifp;
1395	int			i, rid;
1396
1397	sc = device_get_softc(dev);
1398	ifp = sc->rl_ifp;
1399	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1400
1401#ifdef DEVICE_POLLING
1402	if (ifp->if_capenable & IFCAP_POLLING)
1403		ether_poll_deregister(ifp);
1404#endif
1405	/* These should only be active if attach succeeded */
1406	if (device_is_attached(dev)) {
1407		RL_LOCK(sc);
1408#if 0
1409		sc->suspended = 1;
1410#endif
1411		re_stop(sc);
1412		RL_UNLOCK(sc);
1413		callout_drain(&sc->rl_stat_callout);
1414		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1415		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1416		/*
1417		 * Force off the IFF_UP flag here, in case someone
1418		 * still had a BPF descriptor attached to this
1419		 * interface. If they do, ether_ifdetach() will cause
1420		 * the BPF code to try and clear the promisc mode
1421		 * flag, which will bubble down to re_ioctl(),
1422		 * which will try to call re_init() again. This will
1423		 * turn the NIC back on and restart the MII ticker,
1424		 * which will panic the system when the kernel tries
1425		 * to invoke the re_tick() function that isn't there
1426		 * anymore.
1427		 */
1428		ifp->if_flags &= ~IFF_UP;
1429		ether_ifdetach(ifp);
1430	}
1431	if (sc->rl_miibus)
1432		device_delete_child(dev, sc->rl_miibus);
1433	bus_generic_detach(dev);
1434
1435	/*
1436	 * The rest is resource deallocation, so we should already be
1437	 * stopped here.
1438	 */
1439
1440	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1441		if (sc->rl_intrhand[i] != NULL) {
1442			bus_teardown_intr(dev, sc->rl_irq[i],
1443			    sc->rl_intrhand[i]);
1444			sc->rl_intrhand[i] = NULL;
1445		}
1446	}
1447	if (ifp != NULL)
1448		if_free(ifp);
1449	if (sc->rl_msi == 0) {
1450		if (sc->rl_irq[0] != NULL) {
1451			bus_release_resource(dev, SYS_RES_IRQ, 0,
1452			    sc->rl_irq[0]);
1453			sc->rl_irq[0] = NULL;
1454		}
1455	} else {
1456		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1457			if (sc->rl_irq[i] != NULL) {
1458				bus_release_resource(dev, SYS_RES_IRQ, rid,
1459				    sc->rl_irq[i]);
1460				sc->rl_irq[i] = NULL;
1461			}
1462		}
1463		pci_release_msi(dev);
1464	}
1465	if (sc->rl_res)
1466		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1467
1468	/* Unload and free the RX DMA ring memory and map */
1469
1470	if (sc->rl_ldata.rl_rx_list_tag) {
1471		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1472		    sc->rl_ldata.rl_rx_list_map);
1473		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1474		    sc->rl_ldata.rl_rx_list,
1475		    sc->rl_ldata.rl_rx_list_map);
1476		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1477	}
1478
1479	/* Unload and free the TX DMA ring memory and map */
1480
1481	if (sc->rl_ldata.rl_tx_list_tag) {
1482		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1483		    sc->rl_ldata.rl_tx_list_map);
1484		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1485		    sc->rl_ldata.rl_tx_list,
1486		    sc->rl_ldata.rl_tx_list_map);
1487		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1488	}
1489
1490	/* Destroy all the RX and TX buffer maps */
1491
1492	if (sc->rl_ldata.rl_tx_mtag) {
1493		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1494			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1495			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1496		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1497	}
1498	if (sc->rl_ldata.rl_rx_mtag) {
1499		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1500			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1501			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1502		if (sc->rl_ldata.rl_rx_sparemap)
1503			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1504			    sc->rl_ldata.rl_rx_sparemap);
1505		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1506	}
1507
1508	/* Unload and free the stats buffer and map */
1509
1510	if (sc->rl_ldata.rl_stag) {
1511		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1512		    sc->rl_ldata.rl_rx_list_map);
1513		bus_dmamem_free(sc->rl_ldata.rl_stag,
1514		    sc->rl_ldata.rl_stats,
1515		    sc->rl_ldata.rl_smap);
1516		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1517	}
1518
1519	if (sc->rl_parent_tag)
1520		bus_dma_tag_destroy(sc->rl_parent_tag);
1521
1522	mtx_destroy(&sc->rl_mtx);
1523
1524	return (0);
1525}
1526
1527static __inline void
1528re_discard_rxbuf(sc, idx)
1529	struct rl_softc		*sc;
1530	int			idx;
1531{
1532	struct rl_desc		*desc;
1533	struct rl_rxdesc	*rxd;
1534	uint32_t		cmdstat;
1535
1536	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1537	desc = &sc->rl_ldata.rl_rx_list[idx];
1538	desc->rl_vlanctl = 0;
1539	cmdstat = rxd->rx_size;
1540	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1541		cmdstat |= RL_RDESC_CMD_EOR;
1542	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1543}
1544
1545static int
1546re_newbuf(sc, idx)
1547	struct rl_softc		*sc;
1548	int			idx;
1549{
1550	struct mbuf		*m;
1551	struct rl_rxdesc	*rxd;
1552	bus_dma_segment_t	segs[1];
1553	bus_dmamap_t		map;
1554	struct rl_desc		*desc;
1555	uint32_t		cmdstat;
1556	int			error, nsegs;
1557
1558	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1559	if (m == NULL)
1560		return (ENOBUFS);
1561
1562	m->m_len = m->m_pkthdr.len = MCLBYTES;
1563#ifdef RE_FIXUP_RX
1564	/*
1565	 * This is part of an evil trick to deal with non-x86 platforms.
1566	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1567	 * boundaries, but that will hose non-x86 machines. To get around
1568	 * this, we leave some empty space at the start of each buffer
1569	 * and for non-x86 hosts, we copy the buffer back six bytes
1570	 * to achieve word alignment. This is slightly more efficient
1571	 * than allocating a new buffer, copying the contents, and
1572	 * discarding the old buffer.
1573	 */
1574	m_adj(m, RE_ETHER_ALIGN);
1575#endif
1576	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1577	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1578	if (error != 0) {
1579		m_freem(m);
1580		return (ENOBUFS);
1581	}
1582	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1583
1584	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1585	if (rxd->rx_m != NULL) {
1586		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1587		    BUS_DMASYNC_POSTREAD);
1588		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1589	}
1590
1591	rxd->rx_m = m;
1592	map = rxd->rx_dmamap;
1593	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1594	rxd->rx_size = segs[0].ds_len;
1595	sc->rl_ldata.rl_rx_sparemap = map;
1596	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1597	    BUS_DMASYNC_PREREAD);
1598
1599	desc = &sc->rl_ldata.rl_rx_list[idx];
1600	desc->rl_vlanctl = 0;
1601	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1602	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1603	cmdstat = segs[0].ds_len;
1604	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1605		cmdstat |= RL_RDESC_CMD_EOR;
1606	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1607
1608	return (0);
1609}
1610
1611#ifdef RE_FIXUP_RX
1612static __inline void
1613re_fixup_rx(m)
1614	struct mbuf		*m;
1615{
1616	int                     i;
1617	uint16_t                *src, *dst;
1618
1619	src = mtod(m, uint16_t *);
1620	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1621
1622	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1623		*dst++ = *src++;
1624
1625	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1626
1627	return;
1628}
1629#endif
1630
1631static int
1632re_tx_list_init(sc)
1633	struct rl_softc		*sc;
1634{
1635	struct rl_desc		*desc;
1636	int			i;
1637
1638	RL_LOCK_ASSERT(sc);
1639
1640	bzero(sc->rl_ldata.rl_tx_list,
1641	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1642	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1643		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1644	/* Set EOR. */
1645	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1646	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1647
1648	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1649	    sc->rl_ldata.rl_tx_list_map,
1650	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1651
1652	sc->rl_ldata.rl_tx_prodidx = 0;
1653	sc->rl_ldata.rl_tx_considx = 0;
1654	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1655
1656	return (0);
1657}
1658
1659static int
1660re_rx_list_init(sc)
1661	struct rl_softc		*sc;
1662{
1663	int			error, i;
1664
1665	bzero(sc->rl_ldata.rl_rx_list,
1666	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1667	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1668		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1669		if ((error = re_newbuf(sc, i)) != 0)
1670			return (error);
1671	}
1672
1673	/* Flush the RX descriptors */
1674
1675	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1676	    sc->rl_ldata.rl_rx_list_map,
1677	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1678
1679	sc->rl_ldata.rl_rx_prodidx = 0;
1680	sc->rl_head = sc->rl_tail = NULL;
1681
1682	return (0);
1683}
1684
1685/*
1686 * RX handler for C+ and 8169. For the gigE chips, we support
1687 * the reception of jumbo frames that have been fragmented
1688 * across multiple 2K mbuf cluster buffers.
1689 */
1690static int
1691re_rxeof(sc)
1692	struct rl_softc		*sc;
1693{
1694	struct mbuf		*m;
1695	struct ifnet		*ifp;
1696	int			i, total_len;
1697	struct rl_desc		*cur_rx;
1698	u_int32_t		rxstat, rxvlan;
1699	int			maxpkt = 16;
1700
1701	RL_LOCK_ASSERT(sc);
1702
1703	ifp = sc->rl_ifp;
1704
1705	/* Invalidate the descriptor memory */
1706
1707	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1708	    sc->rl_ldata.rl_rx_list_map,
1709	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1710
1711	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1712	    i = RL_RX_DESC_NXT(sc, i)) {
1713		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1714		rxstat = le32toh(cur_rx->rl_cmdstat);
1715		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1716			break;
1717		total_len = rxstat & sc->rl_rxlenmask;
1718		rxvlan = le32toh(cur_rx->rl_vlanctl);
1719		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1720
1721		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1722			if (re_newbuf(sc, i) != 0) {
1723				/*
1724				 * If this is part of a multi-fragment packet,
1725				 * discard all the pieces.
1726				 */
1727				if (sc->rl_head != NULL) {
1728					m_freem(sc->rl_head);
1729					sc->rl_head = sc->rl_tail = NULL;
1730				}
1731				re_discard_rxbuf(sc, i);
1732				continue;
1733			}
1734			m->m_len = RE_RX_DESC_BUFLEN;
1735			if (sc->rl_head == NULL)
1736				sc->rl_head = sc->rl_tail = m;
1737			else {
1738				m->m_flags &= ~M_PKTHDR;
1739				sc->rl_tail->m_next = m;
1740				sc->rl_tail = m;
1741			}
1742			continue;
1743		}
1744
1745		/*
1746		 * NOTE: for the 8139C+, the frame length field
1747		 * is always 12 bits in size, but for the gigE chips,
1748		 * it is 13 bits (since the max RX frame length is 16K).
1749		 * Unfortunately, all 32 bits in the status word
1750		 * were already used, so to make room for the extra
1751		 * length bit, RealTek took out the 'frame alignment
1752		 * error' bit and shifted the other status bits
1753		 * over one slot. The OWN, EOR, FS and LS bits are
1754		 * still in the same places. We have already extracted
1755		 * the frame length and checked the OWN bit, so rather
1756		 * than using an alternate bit mapping, we shift the
1757		 * status bits one space to the right so we can evaluate
1758		 * them using the 8169 status as though it was in the
1759		 * same format as that of the 8139C+.
1760		 */
1761		if (sc->rl_type == RL_8169)
1762			rxstat >>= 1;
1763
1764		/*
1765		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1766		 * set, but if CRC is clear, it will still be a valid frame.
1767		 */
1768		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1769		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1770			ifp->if_ierrors++;
1771			/*
1772			 * If this is part of a multi-fragment packet,
1773			 * discard all the pieces.
1774			 */
1775			if (sc->rl_head != NULL) {
1776				m_freem(sc->rl_head);
1777				sc->rl_head = sc->rl_tail = NULL;
1778			}
1779			re_discard_rxbuf(sc, i);
1780			continue;
1781		}
1782
1783		/*
1784		 * If allocating a replacement mbuf fails,
1785		 * reload the current one.
1786		 */
1787
1788		if (re_newbuf(sc, i) != 0) {
1789			ifp->if_iqdrops++;
1790			if (sc->rl_head != NULL) {
1791				m_freem(sc->rl_head);
1792				sc->rl_head = sc->rl_tail = NULL;
1793			}
1794			re_discard_rxbuf(sc, i);
1795			continue;
1796		}
1797
1798		if (sc->rl_head != NULL) {
1799			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1800			if (m->m_len == 0)
1801				m->m_len = RE_RX_DESC_BUFLEN;
1802			/*
1803			 * Special case: if there's 4 bytes or less
1804			 * in this buffer, the mbuf can be discarded:
1805			 * the last 4 bytes is the CRC, which we don't
1806			 * care about anyway.
1807			 */
1808			if (m->m_len <= ETHER_CRC_LEN) {
1809				sc->rl_tail->m_len -=
1810				    (ETHER_CRC_LEN - m->m_len);
1811				m_freem(m);
1812			} else {
1813				m->m_len -= ETHER_CRC_LEN;
1814				m->m_flags &= ~M_PKTHDR;
1815				sc->rl_tail->m_next = m;
1816			}
1817			m = sc->rl_head;
1818			sc->rl_head = sc->rl_tail = NULL;
1819			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1820		} else
1821			m->m_pkthdr.len = m->m_len =
1822			    (total_len - ETHER_CRC_LEN);
1823
1824#ifdef RE_FIXUP_RX
1825		re_fixup_rx(m);
1826#endif
1827		ifp->if_ipackets++;
1828		m->m_pkthdr.rcvif = ifp;
1829
1830		/* Do RX checksumming if enabled */
1831
1832		if (ifp->if_capenable & IFCAP_RXCSUM) {
1833
1834			/* Check IP header checksum */
1835			if (rxstat & RL_RDESC_STAT_PROTOID)
1836				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1837			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1838				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1839
1840			/* Check TCP/UDP checksum */
1841			if ((RL_TCPPKT(rxstat) &&
1842			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1843			    (RL_UDPPKT(rxstat) &&
1844			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1845				m->m_pkthdr.csum_flags |=
1846				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1847				m->m_pkthdr.csum_data = 0xffff;
1848			}
1849		}
1850		maxpkt--;
1851		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1852			m->m_pkthdr.ether_vtag =
1853			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1854			m->m_flags |= M_VLANTAG;
1855		}
1856		RL_UNLOCK(sc);
1857		(*ifp->if_input)(ifp, m);
1858		RL_LOCK(sc);
1859	}
1860
1861	/* Flush the RX DMA ring */
1862
1863	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1864	    sc->rl_ldata.rl_rx_list_map,
1865	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1866
1867	sc->rl_ldata.rl_rx_prodidx = i;
1868
1869	if (maxpkt)
1870		return(EAGAIN);
1871
1872	return(0);
1873}
1874
1875static void
1876re_txeof(sc)
1877	struct rl_softc		*sc;
1878{
1879	struct ifnet		*ifp;
1880	struct rl_txdesc	*txd;
1881	u_int32_t		txstat;
1882	int			cons;
1883
1884	cons = sc->rl_ldata.rl_tx_considx;
1885	if (cons == sc->rl_ldata.rl_tx_prodidx)
1886		return;
1887
1888	ifp = sc->rl_ifp;
1889	/* Invalidate the TX descriptor list */
1890	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1891	    sc->rl_ldata.rl_tx_list_map,
1892	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1893
1894	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1895	    cons = RL_TX_DESC_NXT(sc, cons)) {
1896		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1897		if (txstat & RL_TDESC_STAT_OWN)
1898			break;
1899		/*
1900		 * We only stash mbufs in the last descriptor
1901		 * in a fragment chain, which also happens to
1902		 * be the only place where the TX status bits
1903		 * are valid.
1904		 */
1905		if (txstat & RL_TDESC_CMD_EOF) {
1906			txd = &sc->rl_ldata.rl_tx_desc[cons];
1907			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1908			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1909			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1910			    txd->tx_dmamap);
1911			KASSERT(txd->tx_m != NULL,
1912			    ("%s: freeing NULL mbufs!", __func__));
1913			m_freem(txd->tx_m);
1914			txd->tx_m = NULL;
1915			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1916			    RL_TDESC_STAT_COLCNT))
1917				ifp->if_collisions++;
1918			if (txstat & RL_TDESC_STAT_TXERRSUM)
1919				ifp->if_oerrors++;
1920			else
1921				ifp->if_opackets++;
1922		}
1923		sc->rl_ldata.rl_tx_free++;
1924		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1925	}
1926	sc->rl_ldata.rl_tx_considx = cons;
1927
1928	/* No changes made to the TX ring, so no flush needed */
1929
1930	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1931		/*
1932		 * Some chips will ignore a second TX request issued
1933		 * while an existing transmission is in progress. If
1934		 * the transmitter goes idle but there are still
1935		 * packets waiting to be sent, we need to restart the
1936		 * channel here to flush them out. This only seems to
1937		 * be required with the PCIe devices.
1938		 */
1939		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1940
1941#ifdef RE_TX_MODERATION
1942		/*
1943		 * If not all descriptors have been reaped yet, reload
1944		 * the timer so that we will eventually get another
1945		 * interrupt that will cause us to re-enter this routine.
1946		 * This is done in case the transmitter has gone idle.
1947		 */
1948		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1949#endif
1950	} else
1951		sc->rl_watchdog_timer = 0;
1952}
1953
1954static void
1955re_tick(xsc)
1956	void			*xsc;
1957{
1958	struct rl_softc		*sc;
1959	struct mii_data		*mii;
1960	struct ifnet		*ifp;
1961
1962	sc = xsc;
1963	ifp = sc->rl_ifp;
1964
1965	RL_LOCK_ASSERT(sc);
1966
1967	re_watchdog(sc);
1968
1969	mii = device_get_softc(sc->rl_miibus);
1970	mii_tick(mii);
1971	if (sc->rl_link) {
1972		if (!(mii->mii_media_status & IFM_ACTIVE))
1973			sc->rl_link = 0;
1974	} else {
1975		if (mii->mii_media_status & IFM_ACTIVE &&
1976		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1977			sc->rl_link = 1;
1978			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1979				taskqueue_enqueue_fast(taskqueue_fast,
1980				    &sc->rl_txtask);
1981		}
1982	}
1983
1984	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1985}
1986
1987#ifdef DEVICE_POLLING
1988static void
1989re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1990{
1991	struct rl_softc *sc = ifp->if_softc;
1992
1993	RL_LOCK(sc);
1994	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1995		re_poll_locked(ifp, cmd, count);
1996	RL_UNLOCK(sc);
1997}
1998
1999static void
2000re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2001{
2002	struct rl_softc *sc = ifp->if_softc;
2003
2004	RL_LOCK_ASSERT(sc);
2005
2006	sc->rxcycles = count;
2007	re_rxeof(sc);
2008	re_txeof(sc);
2009
2010	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2011		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2012
2013	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2014		u_int16_t       status;
2015
2016		status = CSR_READ_2(sc, RL_ISR);
2017		if (status == 0xffff)
2018			return;
2019		if (status)
2020			CSR_WRITE_2(sc, RL_ISR, status);
2021
2022		/*
2023		 * XXX check behaviour on receiver stalls.
2024		 */
2025
2026		if (status & RL_ISR_SYSTEM_ERR) {
2027			re_reset(sc);
2028			re_init_locked(sc);
2029		}
2030	}
2031}
2032#endif /* DEVICE_POLLING */
2033
2034static int
2035re_intr(arg)
2036	void			*arg;
2037{
2038	struct rl_softc		*sc;
2039	uint16_t		status;
2040
2041	sc = arg;
2042
2043	status = CSR_READ_2(sc, RL_ISR);
2044	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2045                return (FILTER_STRAY);
2046	CSR_WRITE_2(sc, RL_IMR, 0);
2047
2048	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2049
2050	return (FILTER_HANDLED);
2051}
2052
2053static void
2054re_int_task(arg, npending)
2055	void			*arg;
2056	int			npending;
2057{
2058	struct rl_softc		*sc;
2059	struct ifnet		*ifp;
2060	u_int16_t		status;
2061	int			rval = 0;
2062
2063	sc = arg;
2064	ifp = sc->rl_ifp;
2065
2066	RL_LOCK(sc);
2067
2068	status = CSR_READ_2(sc, RL_ISR);
2069        CSR_WRITE_2(sc, RL_ISR, status);
2070
2071	if (sc->suspended ||
2072	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2073		RL_UNLOCK(sc);
2074		return;
2075	}
2076
2077#ifdef DEVICE_POLLING
2078	if  (ifp->if_capenable & IFCAP_POLLING) {
2079		RL_UNLOCK(sc);
2080		return;
2081	}
2082#endif
2083
2084	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2085		rval = re_rxeof(sc);
2086
2087#ifdef RE_TX_MODERATION
2088	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2089#else
2090	if (status & (RL_ISR_TX_OK|
2091#endif
2092	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2093		re_txeof(sc);
2094
2095	if (status & RL_ISR_SYSTEM_ERR) {
2096		re_reset(sc);
2097		re_init_locked(sc);
2098	}
2099
2100	if (status & RL_ISR_LINKCHG) {
2101		callout_stop(&sc->rl_stat_callout);
2102		re_tick(sc);
2103	}
2104
2105	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2106		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2107
2108	RL_UNLOCK(sc);
2109
2110        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2111		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2112		return;
2113	}
2114
2115	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2116
2117	return;
2118}
2119
2120static int
2121re_encap(sc, m_head)
2122	struct rl_softc		*sc;
2123	struct mbuf		**m_head;
2124{
2125	struct rl_txdesc	*txd, *txd_last;
2126	bus_dma_segment_t	segs[RL_NTXSEGS];
2127	bus_dmamap_t		map;
2128	struct mbuf		*m_new;
2129	struct rl_desc		*desc;
2130	int			nsegs, prod;
2131	int			i, error, ei, si;
2132	int			padlen;
2133	uint32_t		cmdstat, csum_flags, vlanctl;
2134
2135	RL_LOCK_ASSERT(sc);
2136	M_ASSERTPKTHDR((*m_head));
2137
2138	/*
2139	 * With some of the RealTek chips, using the checksum offload
2140	 * support in conjunction with the autopadding feature results
2141	 * in the transmission of corrupt frames. For example, if we
2142	 * need to send a really small IP fragment that's less than 60
2143	 * bytes in size, and IP header checksumming is enabled, the
2144	 * resulting ethernet frame that appears on the wire will
2145	 * have garbled payload. To work around this, if TX IP checksum
2146	 * offload is enabled, we always manually pad short frames out
2147	 * to the minimum ethernet frame size.
2148	 */
2149	if ((*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2150	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2151		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2152		if (M_WRITABLE(*m_head) == 0) {
2153			/* Get a writable copy. */
2154			m_new = m_dup(*m_head, M_DONTWAIT);
2155			m_freem(*m_head);
2156			if (m_new == NULL) {
2157				*m_head = NULL;
2158				return (ENOBUFS);
2159			}
2160			*m_head = m_new;
2161		}
2162		if ((*m_head)->m_next != NULL ||
2163		    M_TRAILINGSPACE(*m_head) < padlen) {
2164			m_new = m_defrag(*m_head, M_DONTWAIT);
2165			if (m_new == NULL) {
2166				m_freem(*m_head);
2167				*m_head = NULL;
2168				return (ENOBUFS);
2169			}
2170		} else
2171			m_new = *m_head;
2172
2173		/*
2174		 * Manually pad short frames, and zero the pad space
2175		 * to avoid leaking data.
2176		 */
2177		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2178		m_new->m_pkthdr.len += padlen;
2179		m_new->m_len = m_new->m_pkthdr.len;
2180		*m_head = m_new;
2181	}
2182
2183	prod = sc->rl_ldata.rl_tx_prodidx;
2184	txd = &sc->rl_ldata.rl_tx_desc[prod];
2185	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2186	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2187	if (error == EFBIG) {
2188		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2189		if (m_new == NULL) {
2190			m_freem(*m_head);
2191			*m_head = NULL;
2192			return (ENOBUFS);
2193		}
2194		*m_head = m_new;
2195		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2196		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2197		if (error != 0) {
2198			m_freem(*m_head);
2199			*m_head = NULL;
2200			return (error);
2201		}
2202	} else if (error != 0)
2203		return (error);
2204	if (nsegs == 0) {
2205		m_freem(*m_head);
2206		*m_head = NULL;
2207		return (EIO);
2208	}
2209
2210	/* Check for number of available descriptors. */
2211	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2212		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2213		return (ENOBUFS);
2214	}
2215
2216	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2217	    BUS_DMASYNC_PREWRITE);
2218
2219	/*
2220	 * Set up checksum offload. Note: checksum offload bits must
2221	 * appear in all descriptors of a multi-descriptor transmit
2222	 * attempt. This is according to testing done with an 8169
2223	 * chip. This is a requirement.
2224	 */
2225	csum_flags = 0;
2226	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2227		csum_flags = RL_TDESC_CMD_LGSEND |
2228		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2229		    RL_TDESC_CMD_MSSVAL_SHIFT);
2230	else {
2231		/*
2232		 * Unconditionally enable IP checksum if TCP or UDP
2233		 * checksum is required. Otherwise, TCP/UDP checksum
2234		 * does't make effects.
2235		 */
2236		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2237			csum_flags |= RL_TDESC_CMD_IPCSUM;
2238			if (((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) != 0)
2239				csum_flags |= RL_TDESC_CMD_TCPCSUM;
2240			if (((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) != 0)
2241				csum_flags |= RL_TDESC_CMD_UDPCSUM;
2242		}
2243	}
2244
2245	/*
2246	 * Set up hardware VLAN tagging. Note: vlan tag info must
2247	 * appear in all descriptors of a multi-descriptor
2248	 * transmission attempt.
2249	 */
2250	vlanctl = 0;
2251	if ((*m_head)->m_flags & M_VLANTAG)
2252		vlanctl =
2253		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2254		    RL_TDESC_VLANCTL_TAG);
2255
2256	si = prod;
2257	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2258		desc = &sc->rl_ldata.rl_tx_list[prod];
2259		desc->rl_vlanctl = vlanctl;
2260		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2261		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2262		cmdstat = segs[i].ds_len;
2263		if (i != 0)
2264			cmdstat |= RL_TDESC_CMD_OWN;
2265		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2266			cmdstat |= RL_TDESC_CMD_EOR;
2267		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2268		sc->rl_ldata.rl_tx_free--;
2269	}
2270	/* Update producer index. */
2271	sc->rl_ldata.rl_tx_prodidx = prod;
2272
2273	/* Set EOF on the last descriptor. */
2274	ei = RL_TX_DESC_PRV(sc, prod);
2275	desc = &sc->rl_ldata.rl_tx_list[ei];
2276	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2277
2278	desc = &sc->rl_ldata.rl_tx_list[si];
2279	/* Set SOF and transfer ownership of packet to the chip. */
2280	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2281
2282	/*
2283	 * Insure that the map for this transmission
2284	 * is placed at the array index of the last descriptor
2285	 * in this chain.  (Swap last and first dmamaps.)
2286	 */
2287	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2288	map = txd->tx_dmamap;
2289	txd->tx_dmamap = txd_last->tx_dmamap;
2290	txd_last->tx_dmamap = map;
2291	txd_last->tx_m = *m_head;
2292
2293	return (0);
2294}
2295
2296static void
2297re_tx_task(arg, npending)
2298	void			*arg;
2299	int			npending;
2300{
2301	struct ifnet		*ifp;
2302
2303	ifp = arg;
2304	re_start(ifp);
2305
2306	return;
2307}
2308
2309/*
2310 * Main transmit routine for C+ and gigE NICs.
2311 */
2312static void
2313re_start(ifp)
2314	struct ifnet		*ifp;
2315{
2316	struct rl_softc		*sc;
2317	struct mbuf		*m_head;
2318	int			queued;
2319
2320	sc = ifp->if_softc;
2321
2322	RL_LOCK(sc);
2323
2324	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2325	    IFF_DRV_RUNNING || sc->rl_link == 0) {
2326		RL_UNLOCK(sc);
2327		return;
2328	}
2329
2330	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2331	    sc->rl_ldata.rl_tx_free > 1;) {
2332		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2333		if (m_head == NULL)
2334			break;
2335
2336		if (re_encap(sc, &m_head) != 0) {
2337			if (m_head == NULL)
2338				break;
2339			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2340			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2341			break;
2342		}
2343
2344		/*
2345		 * If there's a BPF listener, bounce a copy of this frame
2346		 * to him.
2347		 */
2348		ETHER_BPF_MTAP(ifp, m_head);
2349
2350		queued++;
2351	}
2352
2353	if (queued == 0) {
2354#ifdef RE_TX_MODERATION
2355		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2356			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2357#endif
2358		RL_UNLOCK(sc);
2359		return;
2360	}
2361
2362	/* Flush the TX descriptors */
2363
2364	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2365	    sc->rl_ldata.rl_tx_list_map,
2366	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2367
2368	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2369
2370#ifdef RE_TX_MODERATION
2371	/*
2372	 * Use the countdown timer for interrupt moderation.
2373	 * 'TX done' interrupts are disabled. Instead, we reset the
2374	 * countdown timer, which will begin counting until it hits
2375	 * the value in the TIMERINT register, and then trigger an
2376	 * interrupt. Each time we write to the TIMERCNT register,
2377	 * the timer count is reset to 0.
2378	 */
2379	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2380#endif
2381
2382	/*
2383	 * Set a timeout in case the chip goes out to lunch.
2384	 */
2385	sc->rl_watchdog_timer = 5;
2386
2387	RL_UNLOCK(sc);
2388
2389	return;
2390}
2391
2392static void
2393re_init(xsc)
2394	void			*xsc;
2395{
2396	struct rl_softc		*sc = xsc;
2397
2398	RL_LOCK(sc);
2399	re_init_locked(sc);
2400	RL_UNLOCK(sc);
2401}
2402
2403static void
2404re_init_locked(sc)
2405	struct rl_softc		*sc;
2406{
2407	struct ifnet		*ifp = sc->rl_ifp;
2408	struct mii_data		*mii;
2409	u_int32_t		rxcfg = 0;
2410	uint16_t		cfg;
2411	union {
2412		uint32_t align_dummy;
2413		u_char eaddr[ETHER_ADDR_LEN];
2414        } eaddr;
2415
2416	RL_LOCK_ASSERT(sc);
2417
2418	mii = device_get_softc(sc->rl_miibus);
2419
2420	/*
2421	 * Cancel pending I/O and free all RX/TX buffers.
2422	 */
2423	re_stop(sc);
2424
2425	/*
2426	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2427	 * RX checksum offload. We must configure the C+ register
2428	 * before all others.
2429	 */
2430	cfg = RL_CPLUSCMD_PCI_MRW;
2431	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2432		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2433	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2434		cfg |= RL_CPLUSCMD_VLANSTRIP;
2435	CSR_WRITE_2(sc, RL_CPLUS_CMD,
2436	    cfg | RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB);
2437
2438	/*
2439	 * Init our MAC address.  Even though the chipset
2440	 * documentation doesn't mention it, we need to enter "Config
2441	 * register write enable" mode to modify the ID registers.
2442	 */
2443	/* Copy MAC address on stack to align. */
2444	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2445	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2446	CSR_WRITE_4(sc, RL_IDR0,
2447	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2448	CSR_WRITE_4(sc, RL_IDR4,
2449	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2450	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2451
2452	/*
2453	 * For C+ mode, initialize the RX descriptors and mbufs.
2454	 */
2455	re_rx_list_init(sc);
2456	re_tx_list_init(sc);
2457
2458	/*
2459	 * Load the addresses of the RX and TX lists into the chip.
2460	 */
2461
2462	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2463	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2464	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2465	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2466
2467	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2468	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2469	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2470	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2471
2472	/*
2473	 * Enable transmit and receive.
2474	 */
2475	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2476
2477	/*
2478	 * Set the initial TX and RX configuration.
2479	 */
2480	if (sc->rl_testmode) {
2481		if (sc->rl_type == RL_8169)
2482			CSR_WRITE_4(sc, RL_TXCFG,
2483			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2484		else
2485			CSR_WRITE_4(sc, RL_TXCFG,
2486			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2487	} else
2488		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2489
2490	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2491
2492	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2493
2494	/* Set the individual bit to receive frames for this host only. */
2495	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2496	rxcfg |= RL_RXCFG_RX_INDIV;
2497
2498	/* If we want promiscuous mode, set the allframes bit. */
2499	if (ifp->if_flags & IFF_PROMISC)
2500		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2501	else
2502		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2503	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2504
2505	/*
2506	 * Set capture broadcast bit to capture broadcast frames.
2507	 */
2508	if (ifp->if_flags & IFF_BROADCAST)
2509		rxcfg |= RL_RXCFG_RX_BROAD;
2510	else
2511		rxcfg &= ~RL_RXCFG_RX_BROAD;
2512	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2513
2514	/*
2515	 * Program the multicast filter, if necessary.
2516	 */
2517	re_setmulti(sc);
2518
2519#ifdef DEVICE_POLLING
2520	/*
2521	 * Disable interrupts if we are polling.
2522	 */
2523	if (ifp->if_capenable & IFCAP_POLLING)
2524		CSR_WRITE_2(sc, RL_IMR, 0);
2525	else	/* otherwise ... */
2526#endif
2527
2528	/*
2529	 * Enable interrupts.
2530	 */
2531	if (sc->rl_testmode)
2532		CSR_WRITE_2(sc, RL_IMR, 0);
2533	else
2534		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2535	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2536
2537	/* Set initial TX threshold */
2538	sc->rl_txthresh = RL_TX_THRESH_INIT;
2539
2540	/* Start RX/TX process. */
2541	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2542#ifdef notdef
2543	/* Enable receiver and transmitter. */
2544	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2545#endif
2546
2547#ifdef RE_TX_MODERATION
2548	/*
2549	 * Initialize the timer interrupt register so that
2550	 * a timer interrupt will be generated once the timer
2551	 * reaches a certain number of ticks. The timer is
2552	 * reloaded on each transmit. This gives us TX interrupt
2553	 * moderation, which dramatically improves TX frame rate.
2554	 */
2555	if (sc->rl_type == RL_8169)
2556		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2557	else
2558		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2559#endif
2560
2561	/*
2562	 * For 8169 gigE NICs, set the max allowed RX packet
2563	 * size so we can receive jumbo frames.
2564	 */
2565	if (sc->rl_type == RL_8169)
2566		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2567
2568	if (sc->rl_testmode)
2569		return;
2570
2571	mii_mediachg(mii);
2572
2573	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2574
2575	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2576	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2577
2578	sc->rl_link = 0;
2579	sc->rl_watchdog_timer = 0;
2580	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2581}
2582
2583/*
2584 * Set media options.
2585 */
2586static int
2587re_ifmedia_upd(ifp)
2588	struct ifnet		*ifp;
2589{
2590	struct rl_softc		*sc;
2591	struct mii_data		*mii;
2592
2593	sc = ifp->if_softc;
2594	mii = device_get_softc(sc->rl_miibus);
2595	RL_LOCK(sc);
2596	mii_mediachg(mii);
2597	RL_UNLOCK(sc);
2598
2599	return (0);
2600}
2601
2602/*
2603 * Report current media status.
2604 */
2605static void
2606re_ifmedia_sts(ifp, ifmr)
2607	struct ifnet		*ifp;
2608	struct ifmediareq	*ifmr;
2609{
2610	struct rl_softc		*sc;
2611	struct mii_data		*mii;
2612
2613	sc = ifp->if_softc;
2614	mii = device_get_softc(sc->rl_miibus);
2615
2616	RL_LOCK(sc);
2617	mii_pollstat(mii);
2618	RL_UNLOCK(sc);
2619	ifmr->ifm_active = mii->mii_media_active;
2620	ifmr->ifm_status = mii->mii_media_status;
2621}
2622
2623static int
2624re_ioctl(ifp, command, data)
2625	struct ifnet		*ifp;
2626	u_long			command;
2627	caddr_t			data;
2628{
2629	struct rl_softc		*sc = ifp->if_softc;
2630	struct ifreq		*ifr = (struct ifreq *) data;
2631	struct mii_data		*mii;
2632	int			error = 0;
2633
2634	switch (command) {
2635	case SIOCSIFMTU:
2636		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2637			error = EINVAL;
2638			break;
2639		}
2640		if (sc->rl_type == RL_8139CPLUS &&
2641		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2642			error = EINVAL;
2643			break;
2644		}
2645		RL_LOCK(sc);
2646		if (ifp->if_mtu != ifr->ifr_mtu)
2647			ifp->if_mtu = ifr->ifr_mtu;
2648		RL_UNLOCK(sc);
2649		break;
2650	case SIOCSIFFLAGS:
2651		RL_LOCK(sc);
2652		if ((ifp->if_flags & IFF_UP) != 0) {
2653			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2654				if (((ifp->if_flags ^ sc->rl_if_flags)
2655				    & IFF_PROMISC) != 0)
2656					re_setmulti(sc);
2657			} else
2658				re_init_locked(sc);
2659		} else {
2660			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2661				re_stop(sc);
2662		}
2663		sc->rl_if_flags = ifp->if_flags;
2664		RL_UNLOCK(sc);
2665		break;
2666	case SIOCADDMULTI:
2667	case SIOCDELMULTI:
2668		RL_LOCK(sc);
2669		re_setmulti(sc);
2670		RL_UNLOCK(sc);
2671		break;
2672	case SIOCGIFMEDIA:
2673	case SIOCSIFMEDIA:
2674		mii = device_get_softc(sc->rl_miibus);
2675		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2676		break;
2677	case SIOCSIFCAP:
2678	    {
2679		int mask, reinit;
2680
2681		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2682		reinit = 0;
2683#ifdef DEVICE_POLLING
2684		if (mask & IFCAP_POLLING) {
2685			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2686				error = ether_poll_register(re_poll, ifp);
2687				if (error)
2688					return(error);
2689				RL_LOCK(sc);
2690				/* Disable interrupts */
2691				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2692				ifp->if_capenable |= IFCAP_POLLING;
2693				RL_UNLOCK(sc);
2694			} else {
2695				error = ether_poll_deregister(ifp);
2696				/* Enable interrupts. */
2697				RL_LOCK(sc);
2698				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2699				ifp->if_capenable &= ~IFCAP_POLLING;
2700				RL_UNLOCK(sc);
2701			}
2702		}
2703#endif /* DEVICE_POLLING */
2704		if (mask & IFCAP_HWCSUM) {
2705			ifp->if_capenable ^= IFCAP_HWCSUM;
2706			if (ifp->if_capenable & IFCAP_TXCSUM)
2707				ifp->if_hwassist |= RE_CSUM_FEATURES;
2708			else
2709				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2710			reinit = 1;
2711		}
2712		if (mask & IFCAP_VLAN_HWTAGGING) {
2713			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2714			reinit = 1;
2715		}
2716		if (mask & IFCAP_TSO4) {
2717			ifp->if_capenable ^= IFCAP_TSO4;
2718			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2719			    (IFCAP_TSO4 & ifp->if_capabilities))
2720				ifp->if_hwassist |= CSUM_TSO;
2721			else
2722				ifp->if_hwassist &= ~CSUM_TSO;
2723		}
2724		if ((mask & IFCAP_WOL) != 0 &&
2725		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2726			if ((mask & IFCAP_WOL_UCAST) != 0)
2727				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2728			if ((mask & IFCAP_WOL_MCAST) != 0)
2729				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2730			if ((mask & IFCAP_WOL_MAGIC) != 0)
2731				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2732		}
2733		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2734			re_init(sc);
2735		VLAN_CAPABILITIES(ifp);
2736	    }
2737		break;
2738	default:
2739		error = ether_ioctl(ifp, command, data);
2740		break;
2741	}
2742
2743	return (error);
2744}
2745
2746static void
2747re_watchdog(sc)
2748	struct rl_softc		*sc;
2749{
2750
2751	RL_LOCK_ASSERT(sc);
2752
2753	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2754		return;
2755
2756	device_printf(sc->rl_dev, "watchdog timeout\n");
2757	sc->rl_ifp->if_oerrors++;
2758
2759	re_txeof(sc);
2760	re_rxeof(sc);
2761	re_init_locked(sc);
2762}
2763
2764/*
2765 * Stop the adapter and free any mbufs allocated to the
2766 * RX and TX lists.
2767 */
2768static void
2769re_stop(sc)
2770	struct rl_softc		*sc;
2771{
2772	register int		i;
2773	struct ifnet		*ifp;
2774	struct rl_txdesc	*txd;
2775	struct rl_rxdesc	*rxd;
2776
2777	RL_LOCK_ASSERT(sc);
2778
2779	ifp = sc->rl_ifp;
2780
2781	sc->rl_watchdog_timer = 0;
2782	callout_stop(&sc->rl_stat_callout);
2783	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2784
2785	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2786	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2787	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2788
2789	if (sc->rl_head != NULL) {
2790		m_freem(sc->rl_head);
2791		sc->rl_head = sc->rl_tail = NULL;
2792	}
2793
2794	/* Free the TX list buffers. */
2795
2796	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2797		txd = &sc->rl_ldata.rl_tx_desc[i];
2798		if (txd->tx_m != NULL) {
2799			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2800			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2801			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2802			    txd->tx_dmamap);
2803			m_freem(txd->tx_m);
2804			txd->tx_m = NULL;
2805		}
2806	}
2807
2808	/* Free the RX list buffers. */
2809
2810	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2811		rxd = &sc->rl_ldata.rl_rx_desc[i];
2812		if (rxd->rx_m != NULL) {
2813			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2814			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2815			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2816			    rxd->rx_dmamap);
2817			m_freem(rxd->rx_m);
2818			rxd->rx_m = NULL;
2819		}
2820	}
2821}
2822
2823/*
2824 * Device suspend routine.  Stop the interface and save some PCI
2825 * settings in case the BIOS doesn't restore them properly on
2826 * resume.
2827 */
2828static int
2829re_suspend(dev)
2830	device_t		dev;
2831{
2832	struct rl_softc		*sc;
2833
2834	sc = device_get_softc(dev);
2835
2836	RL_LOCK(sc);
2837	re_stop(sc);
2838	re_setwol(sc);
2839	sc->suspended = 1;
2840	RL_UNLOCK(sc);
2841
2842	return (0);
2843}
2844
2845/*
2846 * Device resume routine.  Restore some PCI settings in case the BIOS
2847 * doesn't, re-enable busmastering, and restart the interface if
2848 * appropriate.
2849 */
2850static int
2851re_resume(dev)
2852	device_t		dev;
2853{
2854	struct rl_softc		*sc;
2855	struct ifnet		*ifp;
2856
2857	sc = device_get_softc(dev);
2858
2859	RL_LOCK(sc);
2860
2861	ifp = sc->rl_ifp;
2862
2863	/* reinitialize interface if necessary */
2864	if (ifp->if_flags & IFF_UP)
2865		re_init_locked(sc);
2866
2867	/*
2868	 * Clear WOL matching such that normal Rx filtering
2869	 * wouldn't interfere with WOL patterns.
2870	 */
2871	re_clrwol(sc);
2872	sc->suspended = 0;
2873	RL_UNLOCK(sc);
2874
2875	return (0);
2876}
2877
2878/*
2879 * Stop all chip I/O so that the kernel's probe routines don't
2880 * get confused by errant DMAs when rebooting.
2881 */
2882static int
2883re_shutdown(dev)
2884	device_t		dev;
2885{
2886	struct rl_softc		*sc;
2887
2888	sc = device_get_softc(dev);
2889
2890	RL_LOCK(sc);
2891	re_stop(sc);
2892	/*
2893	 * Mark interface as down since otherwise we will panic if
2894	 * interrupt comes in later on, which can happen in some
2895	 * cases.
2896	 */
2897	sc->rl_ifp->if_flags &= ~IFF_UP;
2898	re_setwol(sc);
2899	RL_UNLOCK(sc);
2900
2901	return (0);
2902}
2903
2904static void
2905re_setwol(sc)
2906	struct rl_softc		*sc;
2907{
2908	struct ifnet		*ifp;
2909	int			pmc;
2910	uint16_t		pmstat;
2911	uint8_t			v;
2912
2913	RL_LOCK_ASSERT(sc);
2914
2915	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2916		return;
2917
2918	ifp = sc->rl_ifp;
2919	/* Enable config register write. */
2920	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2921
2922	/* Enable PME. */
2923	v = CSR_READ_1(sc, RL_CFG1);
2924	v &= ~RL_CFG1_PME;
2925	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2926		v |= RL_CFG1_PME;
2927	CSR_WRITE_1(sc, RL_CFG1, v);
2928
2929	v = CSR_READ_1(sc, RL_CFG3);
2930	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2931	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2932		v |= RL_CFG3_WOL_MAGIC;
2933	CSR_WRITE_1(sc, RL_CFG3, v);
2934
2935	/* Config register write done. */
2936	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2937
2938	v = CSR_READ_1(sc, RL_CFG5);
2939	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2940	v &= ~RL_CFG5_WOL_LANWAKE;
2941	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2942		v |= RL_CFG5_WOL_UCAST;
2943	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2944		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2945	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2946		v |= RL_CFG5_WOL_LANWAKE;
2947	CSR_WRITE_1(sc, RL_CFG5, v);
2948
2949	/*
2950	 * It seems that hardware resets its link speed to 100Mbps in
2951	 * power down mode so switching to 100Mbps in driver is not
2952	 * needed.
2953	 */
2954
2955	/* Request PME if WOL is requested. */
2956	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2957	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2958	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2959		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2960	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2961}
2962
2963static void
2964re_clrwol(sc)
2965	struct rl_softc		*sc;
2966{
2967	int			pmc;
2968	uint8_t			v;
2969
2970	RL_LOCK_ASSERT(sc);
2971
2972	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2973		return;
2974
2975	/* Enable config register write. */
2976	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2977
2978	v = CSR_READ_1(sc, RL_CFG3);
2979	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2980	CSR_WRITE_1(sc, RL_CFG3, v);
2981
2982	/* Config register write done. */
2983	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2984
2985	v = CSR_READ_1(sc, RL_CFG5);
2986	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2987	v &= ~RL_CFG5_WOL_LANWAKE;
2988	CSR_WRITE_1(sc, RL_CFG5, v);
2989}
2990