if_re.c revision 177520
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 177520 2008-03-23 05:06:16Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/*
159 * Default to using PIO access for this driver.
160 */
161#define RE_USEIOSPACE
162
163/* Tunables. */
164static int msi_disable = 0;
165TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166
167#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
168
169/*
170 * Various supported device vendors/types and their names.
171 */
172static struct rl_type re_devs[] = {
173	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
174		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
175	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169_8110SB,
176		"D-Link DGE-528(T) Rev.B1 Gigabit Ethernet Adapter" },
177	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
178		"RealTek 8139C+ 10/100BaseTX" },
179	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
180		"RealTek 8101E PCIe 10/100baseTX" },
181	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
182		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
183	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
184		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN3,
186		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
188		"RealTek 8169 Gigabit Ethernet" },
189	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
190		"RealTek 8169S Single-chip Gigabit Ethernet" },
191	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
192		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
193	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC,
194		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
195	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
196		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
197	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
198		"RealTek 8110S Single-chip Gigabit Ethernet" },
199	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
200		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
201	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
202		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
203	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
204		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
205};
206
207static struct rl_hwrev re_hwrevs[] = {
208	{ RL_HWREV_8139, RL_8139,  "" },
209	{ RL_HWREV_8139A, RL_8139, "A" },
210	{ RL_HWREV_8139AG, RL_8139, "A-G" },
211	{ RL_HWREV_8139B, RL_8139, "B" },
212	{ RL_HWREV_8130, RL_8139, "8130" },
213	{ RL_HWREV_8139C, RL_8139, "C" },
214	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
215	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
216	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
217	{ RL_HWREV_8169, RL_8169, "8169"},
218	{ RL_HWREV_8169S, RL_8169, "8169S"},
219	{ RL_HWREV_8110S, RL_8169, "8110S"},
220	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
221	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
222	{ RL_HWREV_8100, RL_8139, "8100"},
223	{ RL_HWREV_8101, RL_8139, "8101"},
224	{ RL_HWREV_8100E, RL_8169, "8100E"},
225	{ RL_HWREV_8101E, RL_8169, "8101E"},
226	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
227	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
228	{ 0, 0, NULL }
229};
230
231static int re_probe		(device_t);
232static int re_attach		(device_t);
233static int re_detach		(device_t);
234
235static int re_encap		(struct rl_softc *, struct mbuf **);
236
237static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
238static int re_allocmem		(device_t, struct rl_softc *);
239static __inline void re_discard_rxbuf
240				(struct rl_softc *, int);
241static int re_newbuf		(struct rl_softc *, int);
242static int re_rx_list_init	(struct rl_softc *);
243static int re_tx_list_init	(struct rl_softc *);
244#ifdef RE_FIXUP_RX
245static __inline void re_fixup_rx
246				(struct mbuf *);
247#endif
248static int re_rxeof		(struct rl_softc *);
249static void re_txeof		(struct rl_softc *);
250#ifdef DEVICE_POLLING
251static void re_poll		(struct ifnet *, enum poll_cmd, int);
252static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
253#endif
254static int re_intr		(void *);
255static void re_tick		(void *);
256static void re_tx_task		(void *, int);
257static void re_int_task		(void *, int);
258static void re_start		(struct ifnet *);
259static int re_ioctl		(struct ifnet *, u_long, caddr_t);
260static void re_init		(void *);
261static void re_init_locked	(struct rl_softc *);
262static void re_stop		(struct rl_softc *);
263static void re_watchdog		(struct rl_softc *);
264static int re_suspend		(device_t);
265static int re_resume		(device_t);
266static int re_shutdown		(device_t);
267static int re_ifmedia_upd	(struct ifnet *);
268static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
269
270static void re_eeprom_putbyte	(struct rl_softc *, int);
271static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
272static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
273static int re_gmii_readreg	(device_t, int, int);
274static int re_gmii_writereg	(device_t, int, int, int);
275
276static int re_miibus_readreg	(device_t, int, int);
277static int re_miibus_writereg	(device_t, int, int, int);
278static void re_miibus_statchg	(device_t);
279
280static void re_setmulti		(struct rl_softc *);
281static void re_reset		(struct rl_softc *);
282static void re_setwol		(struct rl_softc *);
283static void re_clrwol		(struct rl_softc *);
284
285#ifdef RE_DIAG
286static int re_diag		(struct rl_softc *);
287#endif
288
289#ifdef RE_USEIOSPACE
290#define RL_RES			SYS_RES_IOPORT
291#define RL_RID			RL_PCI_LOIO
292#else
293#define RL_RES			SYS_RES_MEMORY
294#define RL_RID			RL_PCI_LOMEM
295#endif
296
297static device_method_t re_methods[] = {
298	/* Device interface */
299	DEVMETHOD(device_probe,		re_probe),
300	DEVMETHOD(device_attach,	re_attach),
301	DEVMETHOD(device_detach,	re_detach),
302	DEVMETHOD(device_suspend,	re_suspend),
303	DEVMETHOD(device_resume,	re_resume),
304	DEVMETHOD(device_shutdown,	re_shutdown),
305
306	/* bus interface */
307	DEVMETHOD(bus_print_child,	bus_generic_print_child),
308	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
309
310	/* MII interface */
311	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
312	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
313	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
314
315	{ 0, 0 }
316};
317
318static driver_t re_driver = {
319	"re",
320	re_methods,
321	sizeof(struct rl_softc)
322};
323
324static devclass_t re_devclass;
325
326DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
327DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
328DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
329
330#define EE_SET(x)					\
331	CSR_WRITE_1(sc, RL_EECMD,			\
332		CSR_READ_1(sc, RL_EECMD) | x)
333
334#define EE_CLR(x)					\
335	CSR_WRITE_1(sc, RL_EECMD,			\
336		CSR_READ_1(sc, RL_EECMD) & ~x)
337
338/*
339 * Send a read command and address to the EEPROM, check for ACK.
340 */
341static void
342re_eeprom_putbyte(sc, addr)
343	struct rl_softc		*sc;
344	int			addr;
345{
346	register int		d, i;
347
348	d = addr | (RL_9346_READ << sc->rl_eewidth);
349
350	/*
351	 * Feed in each bit and strobe the clock.
352	 */
353
354	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
355		if (d & i) {
356			EE_SET(RL_EE_DATAIN);
357		} else {
358			EE_CLR(RL_EE_DATAIN);
359		}
360		DELAY(100);
361		EE_SET(RL_EE_CLK);
362		DELAY(150);
363		EE_CLR(RL_EE_CLK);
364		DELAY(100);
365	}
366
367	return;
368}
369
370/*
371 * Read a word of data stored in the EEPROM at address 'addr.'
372 */
373static void
374re_eeprom_getword(sc, addr, dest)
375	struct rl_softc		*sc;
376	int			addr;
377	u_int16_t		*dest;
378{
379	register int		i;
380	u_int16_t		word = 0;
381
382	/*
383	 * Send address of word we want to read.
384	 */
385	re_eeprom_putbyte(sc, addr);
386
387	/*
388	 * Start reading bits from EEPROM.
389	 */
390	for (i = 0x8000; i; i >>= 1) {
391		EE_SET(RL_EE_CLK);
392		DELAY(100);
393		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
394			word |= i;
395		EE_CLR(RL_EE_CLK);
396		DELAY(100);
397	}
398
399	*dest = word;
400
401	return;
402}
403
404/*
405 * Read a sequence of words from the EEPROM.
406 */
407static void
408re_read_eeprom(sc, dest, off, cnt)
409	struct rl_softc		*sc;
410	caddr_t			dest;
411	int			off;
412	int			cnt;
413{
414	int			i;
415	u_int16_t		word = 0, *ptr;
416
417	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
418
419        DELAY(100);
420
421	for (i = 0; i < cnt; i++) {
422		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
423		re_eeprom_getword(sc, off + i, &word);
424		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
425		ptr = (u_int16_t *)(dest + (i * 2));
426                *ptr = word;
427	}
428
429	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
430
431	return;
432}
433
434static int
435re_gmii_readreg(dev, phy, reg)
436	device_t		dev;
437	int			phy, reg;
438{
439	struct rl_softc		*sc;
440	u_int32_t		rval;
441	int			i;
442
443	if (phy != 1)
444		return (0);
445
446	sc = device_get_softc(dev);
447
448	/* Let the rgephy driver read the GMEDIASTAT register */
449
450	if (reg == RL_GMEDIASTAT) {
451		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
452		return (rval);
453	}
454
455	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
456	DELAY(1000);
457
458	for (i = 0; i < RL_TIMEOUT; i++) {
459		rval = CSR_READ_4(sc, RL_PHYAR);
460		if (rval & RL_PHYAR_BUSY)
461			break;
462		DELAY(100);
463	}
464
465	if (i == RL_TIMEOUT) {
466		device_printf(sc->rl_dev, "PHY read failed\n");
467		return (0);
468	}
469
470	return (rval & RL_PHYAR_PHYDATA);
471}
472
473static int
474re_gmii_writereg(dev, phy, reg, data)
475	device_t		dev;
476	int			phy, reg, data;
477{
478	struct rl_softc		*sc;
479	u_int32_t		rval;
480	int			i;
481
482	sc = device_get_softc(dev);
483
484	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
485	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
486	DELAY(1000);
487
488	for (i = 0; i < RL_TIMEOUT; i++) {
489		rval = CSR_READ_4(sc, RL_PHYAR);
490		if (!(rval & RL_PHYAR_BUSY))
491			break;
492		DELAY(100);
493	}
494
495	if (i == RL_TIMEOUT) {
496		device_printf(sc->rl_dev, "PHY write failed\n");
497		return (0);
498	}
499
500	return (0);
501}
502
503static int
504re_miibus_readreg(dev, phy, reg)
505	device_t		dev;
506	int			phy, reg;
507{
508	struct rl_softc		*sc;
509	u_int16_t		rval = 0;
510	u_int16_t		re8139_reg = 0;
511
512	sc = device_get_softc(dev);
513
514	if (sc->rl_type == RL_8169) {
515		rval = re_gmii_readreg(dev, phy, reg);
516		return (rval);
517	}
518
519	/* Pretend the internal PHY is only at address 0 */
520	if (phy) {
521		return (0);
522	}
523	switch (reg) {
524	case MII_BMCR:
525		re8139_reg = RL_BMCR;
526		break;
527	case MII_BMSR:
528		re8139_reg = RL_BMSR;
529		break;
530	case MII_ANAR:
531		re8139_reg = RL_ANAR;
532		break;
533	case MII_ANER:
534		re8139_reg = RL_ANER;
535		break;
536	case MII_ANLPAR:
537		re8139_reg = RL_LPAR;
538		break;
539	case MII_PHYIDR1:
540	case MII_PHYIDR2:
541		return (0);
542	/*
543	 * Allow the rlphy driver to read the media status
544	 * register. If we have a link partner which does not
545	 * support NWAY, this is the register which will tell
546	 * us the results of parallel detection.
547	 */
548	case RL_MEDIASTAT:
549		rval = CSR_READ_1(sc, RL_MEDIASTAT);
550		return (rval);
551	default:
552		device_printf(sc->rl_dev, "bad phy register\n");
553		return (0);
554	}
555	rval = CSR_READ_2(sc, re8139_reg);
556	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
557		/* 8139C+ has different bit layout. */
558		rval &= ~(BMCR_LOOP | BMCR_ISO);
559	}
560	return (rval);
561}
562
563static int
564re_miibus_writereg(dev, phy, reg, data)
565	device_t		dev;
566	int			phy, reg, data;
567{
568	struct rl_softc		*sc;
569	u_int16_t		re8139_reg = 0;
570	int			rval = 0;
571
572	sc = device_get_softc(dev);
573
574	if (sc->rl_type == RL_8169) {
575		rval = re_gmii_writereg(dev, phy, reg, data);
576		return (rval);
577	}
578
579	/* Pretend the internal PHY is only at address 0 */
580	if (phy)
581		return (0);
582
583	switch (reg) {
584	case MII_BMCR:
585		re8139_reg = RL_BMCR;
586		if (sc->rl_type == RL_8139CPLUS) {
587			/* 8139C+ has different bit layout. */
588			data &= ~(BMCR_LOOP | BMCR_ISO);
589		}
590		break;
591	case MII_BMSR:
592		re8139_reg = RL_BMSR;
593		break;
594	case MII_ANAR:
595		re8139_reg = RL_ANAR;
596		break;
597	case MII_ANER:
598		re8139_reg = RL_ANER;
599		break;
600	case MII_ANLPAR:
601		re8139_reg = RL_LPAR;
602		break;
603	case MII_PHYIDR1:
604	case MII_PHYIDR2:
605		return (0);
606		break;
607	default:
608		device_printf(sc->rl_dev, "bad phy register\n");
609		return (0);
610	}
611	CSR_WRITE_2(sc, re8139_reg, data);
612	return (0);
613}
614
615static void
616re_miibus_statchg(dev)
617	device_t		dev;
618{
619
620}
621
622/*
623 * Program the 64-bit multicast hash filter.
624 */
625static void
626re_setmulti(sc)
627	struct rl_softc		*sc;
628{
629	struct ifnet		*ifp;
630	int			h = 0;
631	u_int32_t		hashes[2] = { 0, 0 };
632	struct ifmultiaddr	*ifma;
633	u_int32_t		rxfilt;
634	int			mcnt = 0;
635	u_int32_t		hwrev;
636
637	RL_LOCK_ASSERT(sc);
638
639	ifp = sc->rl_ifp;
640
641
642	rxfilt = CSR_READ_4(sc, RL_RXCFG);
643	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
644	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
645		if (ifp->if_flags & IFF_PROMISC)
646			rxfilt |= RL_RXCFG_RX_ALLPHYS;
647		/*
648		 * Unlike other hardwares, we have to explicitly set
649		 * RL_RXCFG_RX_MULTI to receive multicast frames in
650		 * promiscuous mode.
651		 */
652		rxfilt |= RL_RXCFG_RX_MULTI;
653		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
654		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
655		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
656		return;
657	}
658
659	/* first, zot all the existing hash bits */
660	CSR_WRITE_4(sc, RL_MAR0, 0);
661	CSR_WRITE_4(sc, RL_MAR4, 0);
662
663	/* now program new ones */
664	IF_ADDR_LOCK(ifp);
665	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
666		if (ifma->ifma_addr->sa_family != AF_LINK)
667			continue;
668		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
669		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
670		if (h < 32)
671			hashes[0] |= (1 << h);
672		else
673			hashes[1] |= (1 << (h - 32));
674		mcnt++;
675	}
676	IF_ADDR_UNLOCK(ifp);
677
678	if (mcnt)
679		rxfilt |= RL_RXCFG_RX_MULTI;
680	else
681		rxfilt &= ~RL_RXCFG_RX_MULTI;
682
683	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
684
685	/*
686	 * For some unfathomable reason, RealTek decided to reverse
687	 * the order of the multicast hash registers in the PCI Express
688	 * parts. This means we have to write the hash pattern in reverse
689	 * order for those devices.
690	 */
691
692	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
693
694	switch (hwrev) {
695	case RL_HWREV_8100E:
696	case RL_HWREV_8101E:
697	case RL_HWREV_8168_SPIN1:
698	case RL_HWREV_8168_SPIN2:
699	case RL_HWREV_8168_SPIN3:
700		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
701		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
702		break;
703	default:
704		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
705		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
706		break;
707	}
708}
709
710static void
711re_reset(sc)
712	struct rl_softc		*sc;
713{
714	register int		i;
715
716	RL_LOCK_ASSERT(sc);
717
718	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
719
720	for (i = 0; i < RL_TIMEOUT; i++) {
721		DELAY(10);
722		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
723			break;
724	}
725	if (i == RL_TIMEOUT)
726		device_printf(sc->rl_dev, "reset never completed!\n");
727
728	CSR_WRITE_1(sc, 0x82, 1);
729}
730
731#ifdef RE_DIAG
732
733/*
734 * The following routine is designed to test for a defect on some
735 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
736 * lines connected to the bus, however for a 32-bit only card, they
737 * should be pulled high. The result of this defect is that the
738 * NIC will not work right if you plug it into a 64-bit slot: DMA
739 * operations will be done with 64-bit transfers, which will fail
740 * because the 64-bit data lines aren't connected.
741 *
742 * There's no way to work around this (short of talking a soldering
743 * iron to the board), however we can detect it. The method we use
744 * here is to put the NIC into digital loopback mode, set the receiver
745 * to promiscuous mode, and then try to send a frame. We then compare
746 * the frame data we sent to what was received. If the data matches,
747 * then the NIC is working correctly, otherwise we know the user has
748 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
749 * slot. In the latter case, there's no way the NIC can work correctly,
750 * so we print out a message on the console and abort the device attach.
751 */
752
753static int
754re_diag(sc)
755	struct rl_softc		*sc;
756{
757	struct ifnet		*ifp = sc->rl_ifp;
758	struct mbuf		*m0;
759	struct ether_header	*eh;
760	struct rl_desc		*cur_rx;
761	u_int16_t		status;
762	u_int32_t		rxstat;
763	int			total_len, i, error = 0, phyaddr;
764	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
765	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
766
767	/* Allocate a single mbuf */
768	MGETHDR(m0, M_DONTWAIT, MT_DATA);
769	if (m0 == NULL)
770		return (ENOBUFS);
771
772	RL_LOCK(sc);
773
774	/*
775	 * Initialize the NIC in test mode. This sets the chip up
776	 * so that it can send and receive frames, but performs the
777	 * following special functions:
778	 * - Puts receiver in promiscuous mode
779	 * - Enables digital loopback mode
780	 * - Leaves interrupts turned off
781	 */
782
783	ifp->if_flags |= IFF_PROMISC;
784	sc->rl_testmode = 1;
785	re_reset(sc);
786	re_init_locked(sc);
787	sc->rl_link = 1;
788	if (sc->rl_type == RL_8169)
789		phyaddr = 1;
790	else
791		phyaddr = 0;
792
793	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
794	for (i = 0; i < RL_TIMEOUT; i++) {
795		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
796		if (!(status & BMCR_RESET))
797			break;
798	}
799
800	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
801	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
802
803	DELAY(100000);
804
805	/* Put some data in the mbuf */
806
807	eh = mtod(m0, struct ether_header *);
808	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
809	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
810	eh->ether_type = htons(ETHERTYPE_IP);
811	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
812
813	/*
814	 * Queue the packet, start transmission.
815	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
816	 */
817
818	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
819	RL_UNLOCK(sc);
820	/* XXX: re_diag must not be called when in ALTQ mode */
821	IF_HANDOFF(&ifp->if_snd, m0, ifp);
822	RL_LOCK(sc);
823	m0 = NULL;
824
825	/* Wait for it to propagate through the chip */
826
827	DELAY(100000);
828	for (i = 0; i < RL_TIMEOUT; i++) {
829		status = CSR_READ_2(sc, RL_ISR);
830		CSR_WRITE_2(sc, RL_ISR, status);
831		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
832		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
833			break;
834		DELAY(10);
835	}
836
837	if (i == RL_TIMEOUT) {
838		device_printf(sc->rl_dev,
839		    "diagnostic failed, failed to receive packet in"
840		    " loopback mode\n");
841		error = EIO;
842		goto done;
843	}
844
845	/*
846	 * The packet should have been dumped into the first
847	 * entry in the RX DMA ring. Grab it from there.
848	 */
849
850	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
851	    sc->rl_ldata.rl_rx_list_map,
852	    BUS_DMASYNC_POSTREAD);
853	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
854	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
855	    BUS_DMASYNC_POSTREAD);
856	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
857	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
858
859	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
860	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
861	eh = mtod(m0, struct ether_header *);
862
863	cur_rx = &sc->rl_ldata.rl_rx_list[0];
864	total_len = RL_RXBYTES(cur_rx);
865	rxstat = le32toh(cur_rx->rl_cmdstat);
866
867	if (total_len != ETHER_MIN_LEN) {
868		device_printf(sc->rl_dev,
869		    "diagnostic failed, received short packet\n");
870		error = EIO;
871		goto done;
872	}
873
874	/* Test that the received packet data matches what we sent. */
875
876	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
877	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
878	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
879		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
880		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
881		    dst, ":", src, ":", ETHERTYPE_IP);
882		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
883		    eh->ether_dhost, ":",  eh->ether_shost, ":",
884		    ntohs(eh->ether_type));
885		device_printf(sc->rl_dev, "You may have a defective 32-bit "
886		    "NIC plugged into a 64-bit PCI slot.\n");
887		device_printf(sc->rl_dev, "Please re-install the NIC in a "
888		    "32-bit slot for proper operation.\n");
889		device_printf(sc->rl_dev, "Read the re(4) man page for more "
890		    "details.\n");
891		error = EIO;
892	}
893
894done:
895	/* Turn interface off, release resources */
896
897	sc->rl_testmode = 0;
898	sc->rl_link = 0;
899	ifp->if_flags &= ~IFF_PROMISC;
900	re_stop(sc);
901	if (m0 != NULL)
902		m_freem(m0);
903
904	RL_UNLOCK(sc);
905
906	return (error);
907}
908
909#endif
910
911/*
912 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
913 * IDs against our list and return a device name if we find a match.
914 */
915static int
916re_probe(dev)
917	device_t		dev;
918{
919	struct rl_type		*t;
920	uint16_t		devid, vendor;
921	uint16_t		revid, sdevid;
922	int			i;
923
924	vendor = pci_get_vendor(dev);
925	devid = pci_get_device(dev);
926	revid = pci_get_revid(dev);
927	sdevid = pci_get_subdevice(dev);
928
929	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
930		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
931			/*
932			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
933			 * Rev. 2 is supported by sk(4).
934			 */
935			return (ENXIO);
936		}
937	}
938
939	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
940		if (revid != 0x20) {
941			/* 8139, let rl(4) take care of this device. */
942			return (ENXIO);
943		}
944	}
945
946	t = re_devs;
947	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
948		if (vendor == t->rl_vid && devid == t->rl_did) {
949			device_set_desc(dev, t->rl_name);
950			return (BUS_PROBE_DEFAULT);
951		}
952	}
953
954	return (ENXIO);
955}
956
957/*
958 * Map a single buffer address.
959 */
960
961static void
962re_dma_map_addr(arg, segs, nseg, error)
963	void			*arg;
964	bus_dma_segment_t	*segs;
965	int			nseg;
966	int			error;
967{
968	bus_addr_t		*addr;
969
970	if (error)
971		return;
972
973	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
974	addr = arg;
975	*addr = segs->ds_addr;
976}
977
978static int
979re_allocmem(dev, sc)
980	device_t		dev;
981	struct rl_softc		*sc;
982{
983	bus_size_t		rx_list_size, tx_list_size;
984	int			error;
985	int			i;
986
987	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
988	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
989
990	/*
991	 * Allocate the parent bus DMA tag appropriate for PCI.
992	 */
993	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
994	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
995	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
996	    NULL, NULL, &sc->rl_parent_tag);
997	if (error) {
998		device_printf(dev, "could not allocate parent DMA tag\n");
999		return (error);
1000	}
1001
1002	/*
1003	 * Allocate map for TX mbufs.
1004	 */
1005	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1006	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1007	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1008	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1009	if (error) {
1010		device_printf(dev, "could not allocate TX DMA tag\n");
1011		return (error);
1012	}
1013
1014	/*
1015	 * Allocate map for RX mbufs.
1016	 */
1017
1018	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1019	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1020	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1021	if (error) {
1022		device_printf(dev, "could not allocate RX DMA tag\n");
1023		return (error);
1024	}
1025
1026	/*
1027	 * Allocate map for TX descriptor list.
1028	 */
1029	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1030	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1031	    NULL, tx_list_size, 1, tx_list_size, 0,
1032	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1033	if (error) {
1034		device_printf(dev, "could not allocate TX DMA ring tag\n");
1035		return (error);
1036	}
1037
1038	/* Allocate DMA'able memory for the TX ring */
1039
1040	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1041	    (void **)&sc->rl_ldata.rl_tx_list,
1042	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1043	    &sc->rl_ldata.rl_tx_list_map);
1044	if (error) {
1045		device_printf(dev, "could not allocate TX DMA ring\n");
1046		return (error);
1047	}
1048
1049	/* Load the map for the TX ring. */
1050
1051	sc->rl_ldata.rl_tx_list_addr = 0;
1052	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1053	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1054	     tx_list_size, re_dma_map_addr,
1055	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1056	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1057		device_printf(dev, "could not load TX DMA ring\n");
1058		return (ENOMEM);
1059	}
1060
1061	/* Create DMA maps for TX buffers */
1062
1063	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1064		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1065		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1066		if (error) {
1067			device_printf(dev, "could not create DMA map for TX\n");
1068			return (error);
1069		}
1070	}
1071
1072	/*
1073	 * Allocate map for RX descriptor list.
1074	 */
1075	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1076	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1077	    NULL, rx_list_size, 1, rx_list_size, 0,
1078	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1079	if (error) {
1080		device_printf(dev, "could not create RX DMA ring tag\n");
1081		return (error);
1082	}
1083
1084	/* Allocate DMA'able memory for the RX ring */
1085
1086	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1087	    (void **)&sc->rl_ldata.rl_rx_list,
1088	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1089	    &sc->rl_ldata.rl_rx_list_map);
1090	if (error) {
1091		device_printf(dev, "could not allocate RX DMA ring\n");
1092		return (error);
1093	}
1094
1095	/* Load the map for the RX ring. */
1096
1097	sc->rl_ldata.rl_rx_list_addr = 0;
1098	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1099	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1100	     rx_list_size, re_dma_map_addr,
1101	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1102	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1103		device_printf(dev, "could not load RX DMA ring\n");
1104		return (ENOMEM);
1105	}
1106
1107	/* Create DMA maps for RX buffers */
1108
1109	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1110	    &sc->rl_ldata.rl_rx_sparemap);
1111	if (error) {
1112		device_printf(dev, "could not create spare DMA map for RX\n");
1113		return (error);
1114	}
1115	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1116		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1117		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1118		if (error) {
1119			device_printf(dev, "could not create DMA map for RX\n");
1120			return (error);
1121		}
1122	}
1123
1124	return (0);
1125}
1126
1127/*
1128 * Attach the interface. Allocate softc structures, do ifmedia
1129 * setup and ethernet/BPF attach.
1130 */
1131static int
1132re_attach(dev)
1133	device_t		dev;
1134{
1135	u_char			eaddr[ETHER_ADDR_LEN];
1136	u_int16_t		as[ETHER_ADDR_LEN / 2];
1137	struct rl_softc		*sc;
1138	struct ifnet		*ifp;
1139	struct rl_hwrev		*hw_rev;
1140	int			hwrev;
1141	u_int16_t		re_did = 0;
1142	int			error = 0, rid, i;
1143	int			msic, reg;
1144
1145	sc = device_get_softc(dev);
1146	sc->rl_dev = dev;
1147
1148	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1149	    MTX_DEF);
1150	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1151
1152	/*
1153	 * Map control/status registers.
1154	 */
1155	pci_enable_busmaster(dev);
1156
1157	rid = RL_RID;
1158	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1159	    RF_ACTIVE);
1160
1161	if (sc->rl_res == NULL) {
1162		device_printf(dev, "couldn't map ports/memory\n");
1163		error = ENXIO;
1164		goto fail;
1165	}
1166
1167	sc->rl_btag = rman_get_bustag(sc->rl_res);
1168	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1169
1170	msic = 0;
1171	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1172		msic = pci_msi_count(dev);
1173		if (bootverbose)
1174			device_printf(dev, "MSI count : %d\n", msic);
1175	}
1176	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1177		if (pci_alloc_msi(dev, &msic) == 0) {
1178			if (msic == RL_MSI_MESSAGES) {
1179				device_printf(dev, "Using %d MSI messages\n",
1180				    msic);
1181				sc->rl_msi = 1;
1182			} else
1183				pci_release_msi(dev);
1184		}
1185	}
1186
1187	/* Allocate interrupt */
1188	if (sc->rl_msi == 0) {
1189		rid = 0;
1190		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1191		    RF_SHAREABLE | RF_ACTIVE);
1192		if (sc->rl_irq[0] == NULL) {
1193			device_printf(dev, "couldn't allocate IRQ resources\n");
1194			error = ENXIO;
1195			goto fail;
1196		}
1197	} else {
1198		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1199			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1200			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1201			if (sc->rl_irq[i] == NULL) {
1202				device_printf(dev,
1203				    "couldn't llocate IRQ resources for "
1204				    "message %d\n", rid);
1205				error = ENXIO;
1206				goto fail;
1207			}
1208		}
1209	}
1210
1211	/* Reset the adapter. */
1212	RL_LOCK(sc);
1213	re_reset(sc);
1214	RL_UNLOCK(sc);
1215
1216	hw_rev = re_hwrevs;
1217	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1218	while (hw_rev->rl_desc != NULL) {
1219		if (hw_rev->rl_rev == hwrev) {
1220			sc->rl_type = hw_rev->rl_type;
1221			break;
1222		}
1223		hw_rev++;
1224	}
1225	if (hw_rev->rl_desc == NULL) {
1226		device_printf(dev, "Unknown H/W revision: %08x\n", hwrev);
1227		error = ENXIO;
1228		goto fail;
1229	}
1230
1231	sc->rl_eewidth = RL_9356_ADDR_LEN;
1232	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1233	if (re_did != 0x8129)
1234	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1235
1236	/*
1237	 * Get station address from the EEPROM.
1238	 */
1239	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1240	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1241		as[i] = le16toh(as[i]);
1242	bcopy(as, eaddr, sizeof(eaddr));
1243
1244	if (sc->rl_type == RL_8169) {
1245		/* Set RX length mask and number of descriptors. */
1246		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1247		sc->rl_txstart = RL_GTXSTART;
1248		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1249		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1250	} else {
1251		/* Set RX length mask and number of descriptors. */
1252		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1253		sc->rl_txstart = RL_TXSTART;
1254		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1255		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1256	}
1257	if (hw_rev->rl_desc == NULL) {
1258		device_printf(dev, "Unsupported revision : 0x%08x\n", hwrev);
1259		error = ENXIO;
1260		goto fail;
1261	}
1262
1263	error = re_allocmem(dev, sc);
1264	if (error)
1265		goto fail;
1266
1267	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1268	if (ifp == NULL) {
1269		device_printf(dev, "can not if_alloc()\n");
1270		error = ENOSPC;
1271		goto fail;
1272	}
1273
1274	/* Do MII setup */
1275	if (mii_phy_probe(dev, &sc->rl_miibus,
1276	    re_ifmedia_upd, re_ifmedia_sts)) {
1277		device_printf(dev, "MII without any phy!\n");
1278		error = ENXIO;
1279		goto fail;
1280	}
1281
1282	/* Take PHY out of power down mode. */
1283	if (sc->rl_type == RL_8169) {
1284		uint32_t rev;
1285
1286		rev = CSR_READ_4(sc, RL_TXCFG);
1287		/* HWVERID 0, 1 and 2 :  bit26-30, bit23 */
1288		rev &= 0x7c800000;
1289		if (rev != 0) {
1290			/* RTL8169S single chip */
1291			switch (rev) {
1292			case RL_HWREV_8169_8110SB:
1293			case RL_HWREV_8169_8110SC:
1294			case RL_HWREV_8168_SPIN2:
1295			case RL_HWREV_8168_SPIN3:
1296				re_gmii_writereg(dev, 1, 0x1f, 0);
1297				re_gmii_writereg(dev, 1, 0x0e, 0);
1298				break;
1299			default:
1300				break;
1301			}
1302		}
1303	}
1304
1305	ifp->if_softc = sc;
1306	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1307	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1308	ifp->if_ioctl = re_ioctl;
1309	ifp->if_start = re_start;
1310	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1311	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1312	ifp->if_capenable = ifp->if_capabilities;
1313	ifp->if_init = re_init;
1314	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1315	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1316	IFQ_SET_READY(&ifp->if_snd);
1317
1318	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1319	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1320
1321	/*
1322	 * Call MI attach routine.
1323	 */
1324	ether_ifattach(ifp, eaddr);
1325
1326	/* VLAN capability setup */
1327	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1328	if (ifp->if_capabilities & IFCAP_HWCSUM)
1329		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1330	/* Enable WOL if PM is supported. */
1331	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1332		ifp->if_capabilities |= IFCAP_WOL;
1333	ifp->if_capenable = ifp->if_capabilities;
1334#ifdef DEVICE_POLLING
1335	ifp->if_capabilities |= IFCAP_POLLING;
1336#endif
1337	/*
1338	 * Tell the upper layer(s) we support long frames.
1339	 * Must appear after the call to ether_ifattach() because
1340	 * ether_ifattach() sets ifi_hdrlen to the default value.
1341	 */
1342	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1343
1344#ifdef RE_DIAG
1345	/*
1346	 * Perform hardware diagnostic on the original RTL8169.
1347	 * Some 32-bit cards were incorrectly wired and would
1348	 * malfunction if plugged into a 64-bit slot.
1349	 */
1350
1351	if (hwrev == RL_HWREV_8169) {
1352		error = re_diag(sc);
1353		if (error) {
1354			device_printf(dev,
1355		    	"attach aborted due to hardware diag failure\n");
1356			ether_ifdetach(ifp);
1357			goto fail;
1358		}
1359	}
1360#endif
1361
1362	/* Hook interrupt last to avoid having to lock softc */
1363	if (sc->rl_msi == 0)
1364		error = bus_setup_intr(dev, sc->rl_irq[0],
1365		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1366		    &sc->rl_intrhand[0]);
1367	else {
1368		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1369			error = bus_setup_intr(dev, sc->rl_irq[i],
1370			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1371		    	    &sc->rl_intrhand[i]);
1372			if (error != 0)
1373				break;
1374		}
1375	}
1376	if (error) {
1377		device_printf(dev, "couldn't set up irq\n");
1378		ether_ifdetach(ifp);
1379	}
1380
1381fail:
1382
1383	if (error)
1384		re_detach(dev);
1385
1386	return (error);
1387}
1388
1389/*
1390 * Shutdown hardware and free up resources. This can be called any
1391 * time after the mutex has been initialized. It is called in both
1392 * the error case in attach and the normal detach case so it needs
1393 * to be careful about only freeing resources that have actually been
1394 * allocated.
1395 */
1396static int
1397re_detach(dev)
1398	device_t		dev;
1399{
1400	struct rl_softc		*sc;
1401	struct ifnet		*ifp;
1402	int			i, rid;
1403
1404	sc = device_get_softc(dev);
1405	ifp = sc->rl_ifp;
1406	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1407
1408#ifdef DEVICE_POLLING
1409	if (ifp->if_capenable & IFCAP_POLLING)
1410		ether_poll_deregister(ifp);
1411#endif
1412	/* These should only be active if attach succeeded */
1413	if (device_is_attached(dev)) {
1414		RL_LOCK(sc);
1415#if 0
1416		sc->suspended = 1;
1417#endif
1418		re_stop(sc);
1419		RL_UNLOCK(sc);
1420		callout_drain(&sc->rl_stat_callout);
1421		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1422		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1423		/*
1424		 * Force off the IFF_UP flag here, in case someone
1425		 * still had a BPF descriptor attached to this
1426		 * interface. If they do, ether_ifdetach() will cause
1427		 * the BPF code to try and clear the promisc mode
1428		 * flag, which will bubble down to re_ioctl(),
1429		 * which will try to call re_init() again. This will
1430		 * turn the NIC back on and restart the MII ticker,
1431		 * which will panic the system when the kernel tries
1432		 * to invoke the re_tick() function that isn't there
1433		 * anymore.
1434		 */
1435		ifp->if_flags &= ~IFF_UP;
1436		ether_ifdetach(ifp);
1437	}
1438	if (sc->rl_miibus)
1439		device_delete_child(dev, sc->rl_miibus);
1440	bus_generic_detach(dev);
1441
1442	/*
1443	 * The rest is resource deallocation, so we should already be
1444	 * stopped here.
1445	 */
1446
1447	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1448		if (sc->rl_intrhand[i] != NULL) {
1449			bus_teardown_intr(dev, sc->rl_irq[i],
1450			    sc->rl_intrhand[i]);
1451			sc->rl_intrhand[i] = NULL;
1452		}
1453	}
1454	if (ifp != NULL)
1455		if_free(ifp);
1456	if (sc->rl_msi == 0) {
1457		if (sc->rl_irq[0] != NULL) {
1458			bus_release_resource(dev, SYS_RES_IRQ, 0,
1459			    sc->rl_irq[0]);
1460			sc->rl_irq[0] = NULL;
1461		}
1462	} else {
1463		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1464			if (sc->rl_irq[i] != NULL) {
1465				bus_release_resource(dev, SYS_RES_IRQ, rid,
1466				    sc->rl_irq[i]);
1467				sc->rl_irq[i] = NULL;
1468			}
1469		}
1470		pci_release_msi(dev);
1471	}
1472	if (sc->rl_res)
1473		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1474
1475	/* Unload and free the RX DMA ring memory and map */
1476
1477	if (sc->rl_ldata.rl_rx_list_tag) {
1478		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1479		    sc->rl_ldata.rl_rx_list_map);
1480		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1481		    sc->rl_ldata.rl_rx_list,
1482		    sc->rl_ldata.rl_rx_list_map);
1483		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1484	}
1485
1486	/* Unload and free the TX DMA ring memory and map */
1487
1488	if (sc->rl_ldata.rl_tx_list_tag) {
1489		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1490		    sc->rl_ldata.rl_tx_list_map);
1491		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1492		    sc->rl_ldata.rl_tx_list,
1493		    sc->rl_ldata.rl_tx_list_map);
1494		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1495	}
1496
1497	/* Destroy all the RX and TX buffer maps */
1498
1499	if (sc->rl_ldata.rl_tx_mtag) {
1500		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1501			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1502			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1503		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1504	}
1505	if (sc->rl_ldata.rl_rx_mtag) {
1506		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1507			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1508			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1509		if (sc->rl_ldata.rl_rx_sparemap)
1510			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1511			    sc->rl_ldata.rl_rx_sparemap);
1512		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1513	}
1514
1515	/* Unload and free the stats buffer and map */
1516
1517	if (sc->rl_ldata.rl_stag) {
1518		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1519		    sc->rl_ldata.rl_rx_list_map);
1520		bus_dmamem_free(sc->rl_ldata.rl_stag,
1521		    sc->rl_ldata.rl_stats,
1522		    sc->rl_ldata.rl_smap);
1523		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1524	}
1525
1526	if (sc->rl_parent_tag)
1527		bus_dma_tag_destroy(sc->rl_parent_tag);
1528
1529	mtx_destroy(&sc->rl_mtx);
1530
1531	return (0);
1532}
1533
1534static __inline void
1535re_discard_rxbuf(sc, idx)
1536	struct rl_softc		*sc;
1537	int			idx;
1538{
1539	struct rl_desc		*desc;
1540	struct rl_rxdesc	*rxd;
1541	uint32_t		cmdstat;
1542
1543	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1544	desc = &sc->rl_ldata.rl_rx_list[idx];
1545	desc->rl_vlanctl = 0;
1546	cmdstat = rxd->rx_size;
1547	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1548		cmdstat |= RL_RDESC_CMD_EOR;
1549	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1550}
1551
1552static int
1553re_newbuf(sc, idx)
1554	struct rl_softc		*sc;
1555	int			idx;
1556{
1557	struct mbuf		*m;
1558	struct rl_rxdesc	*rxd;
1559	bus_dma_segment_t	segs[1];
1560	bus_dmamap_t		map;
1561	struct rl_desc		*desc;
1562	uint32_t		cmdstat;
1563	int			error, nsegs;
1564
1565	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1566	if (m == NULL)
1567		return (ENOBUFS);
1568
1569	m->m_len = m->m_pkthdr.len = MCLBYTES;
1570#ifdef RE_FIXUP_RX
1571	/*
1572	 * This is part of an evil trick to deal with non-x86 platforms.
1573	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1574	 * boundaries, but that will hose non-x86 machines. To get around
1575	 * this, we leave some empty space at the start of each buffer
1576	 * and for non-x86 hosts, we copy the buffer back six bytes
1577	 * to achieve word alignment. This is slightly more efficient
1578	 * than allocating a new buffer, copying the contents, and
1579	 * discarding the old buffer.
1580	 */
1581	m_adj(m, RE_ETHER_ALIGN);
1582#endif
1583	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1584	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1585	if (error != 0) {
1586		m_freem(m);
1587		return (ENOBUFS);
1588	}
1589	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1590
1591	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1592	if (rxd->rx_m != NULL) {
1593		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1594		    BUS_DMASYNC_POSTREAD);
1595		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1596	}
1597
1598	rxd->rx_m = m;
1599	map = rxd->rx_dmamap;
1600	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1601	rxd->rx_size = segs[0].ds_len;
1602	sc->rl_ldata.rl_rx_sparemap = map;
1603	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1604	    BUS_DMASYNC_PREREAD);
1605
1606	desc = &sc->rl_ldata.rl_rx_list[idx];
1607	desc->rl_vlanctl = 0;
1608	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1609	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1610	cmdstat = segs[0].ds_len;
1611	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1612		cmdstat |= RL_RDESC_CMD_EOR;
1613	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1614
1615	return (0);
1616}
1617
1618#ifdef RE_FIXUP_RX
1619static __inline void
1620re_fixup_rx(m)
1621	struct mbuf		*m;
1622{
1623	int                     i;
1624	uint16_t                *src, *dst;
1625
1626	src = mtod(m, uint16_t *);
1627	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1628
1629	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1630		*dst++ = *src++;
1631
1632	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1633
1634	return;
1635}
1636#endif
1637
1638static int
1639re_tx_list_init(sc)
1640	struct rl_softc		*sc;
1641{
1642	struct rl_desc		*desc;
1643	int			i;
1644
1645	RL_LOCK_ASSERT(sc);
1646
1647	bzero(sc->rl_ldata.rl_tx_list,
1648	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1649	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1650		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1651	/* Set EOR. */
1652	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1653	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1654
1655	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1656	    sc->rl_ldata.rl_tx_list_map,
1657	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1658
1659	sc->rl_ldata.rl_tx_prodidx = 0;
1660	sc->rl_ldata.rl_tx_considx = 0;
1661	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1662
1663	return (0);
1664}
1665
1666static int
1667re_rx_list_init(sc)
1668	struct rl_softc		*sc;
1669{
1670	int			error, i;
1671
1672	bzero(sc->rl_ldata.rl_rx_list,
1673	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1674	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1675		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1676		if ((error = re_newbuf(sc, i)) != 0)
1677			return (error);
1678	}
1679
1680	/* Flush the RX descriptors */
1681
1682	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1683	    sc->rl_ldata.rl_rx_list_map,
1684	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1685
1686	sc->rl_ldata.rl_rx_prodidx = 0;
1687	sc->rl_head = sc->rl_tail = NULL;
1688
1689	return (0);
1690}
1691
1692/*
1693 * RX handler for C+ and 8169. For the gigE chips, we support
1694 * the reception of jumbo frames that have been fragmented
1695 * across multiple 2K mbuf cluster buffers.
1696 */
1697static int
1698re_rxeof(sc)
1699	struct rl_softc		*sc;
1700{
1701	struct mbuf		*m;
1702	struct ifnet		*ifp;
1703	int			i, total_len;
1704	struct rl_desc		*cur_rx;
1705	u_int32_t		rxstat, rxvlan;
1706	int			maxpkt = 16;
1707
1708	RL_LOCK_ASSERT(sc);
1709
1710	ifp = sc->rl_ifp;
1711
1712	/* Invalidate the descriptor memory */
1713
1714	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1715	    sc->rl_ldata.rl_rx_list_map,
1716	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1717
1718	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1719	    i = RL_RX_DESC_NXT(sc, i)) {
1720		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1721		rxstat = le32toh(cur_rx->rl_cmdstat);
1722		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1723			break;
1724		total_len = rxstat & sc->rl_rxlenmask;
1725		rxvlan = le32toh(cur_rx->rl_vlanctl);
1726		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1727
1728		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1729			if (re_newbuf(sc, i) != 0) {
1730				/*
1731				 * If this is part of a multi-fragment packet,
1732				 * discard all the pieces.
1733				 */
1734				if (sc->rl_head != NULL) {
1735					m_freem(sc->rl_head);
1736					sc->rl_head = sc->rl_tail = NULL;
1737				}
1738				re_discard_rxbuf(sc, i);
1739				continue;
1740			}
1741			m->m_len = RE_RX_DESC_BUFLEN;
1742			if (sc->rl_head == NULL)
1743				sc->rl_head = sc->rl_tail = m;
1744			else {
1745				m->m_flags &= ~M_PKTHDR;
1746				sc->rl_tail->m_next = m;
1747				sc->rl_tail = m;
1748			}
1749			continue;
1750		}
1751
1752		/*
1753		 * NOTE: for the 8139C+, the frame length field
1754		 * is always 12 bits in size, but for the gigE chips,
1755		 * it is 13 bits (since the max RX frame length is 16K).
1756		 * Unfortunately, all 32 bits in the status word
1757		 * were already used, so to make room for the extra
1758		 * length bit, RealTek took out the 'frame alignment
1759		 * error' bit and shifted the other status bits
1760		 * over one slot. The OWN, EOR, FS and LS bits are
1761		 * still in the same places. We have already extracted
1762		 * the frame length and checked the OWN bit, so rather
1763		 * than using an alternate bit mapping, we shift the
1764		 * status bits one space to the right so we can evaluate
1765		 * them using the 8169 status as though it was in the
1766		 * same format as that of the 8139C+.
1767		 */
1768		if (sc->rl_type == RL_8169)
1769			rxstat >>= 1;
1770
1771		/*
1772		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1773		 * set, but if CRC is clear, it will still be a valid frame.
1774		 */
1775		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1776		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1777			ifp->if_ierrors++;
1778			/*
1779			 * If this is part of a multi-fragment packet,
1780			 * discard all the pieces.
1781			 */
1782			if (sc->rl_head != NULL) {
1783				m_freem(sc->rl_head);
1784				sc->rl_head = sc->rl_tail = NULL;
1785			}
1786			re_discard_rxbuf(sc, i);
1787			continue;
1788		}
1789
1790		/*
1791		 * If allocating a replacement mbuf fails,
1792		 * reload the current one.
1793		 */
1794
1795		if (re_newbuf(sc, i) != 0) {
1796			ifp->if_iqdrops++;
1797			if (sc->rl_head != NULL) {
1798				m_freem(sc->rl_head);
1799				sc->rl_head = sc->rl_tail = NULL;
1800			}
1801			re_discard_rxbuf(sc, i);
1802			continue;
1803		}
1804
1805		if (sc->rl_head != NULL) {
1806			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1807			if (m->m_len == 0)
1808				m->m_len = RE_RX_DESC_BUFLEN;
1809			/*
1810			 * Special case: if there's 4 bytes or less
1811			 * in this buffer, the mbuf can be discarded:
1812			 * the last 4 bytes is the CRC, which we don't
1813			 * care about anyway.
1814			 */
1815			if (m->m_len <= ETHER_CRC_LEN) {
1816				sc->rl_tail->m_len -=
1817				    (ETHER_CRC_LEN - m->m_len);
1818				m_freem(m);
1819			} else {
1820				m->m_len -= ETHER_CRC_LEN;
1821				m->m_flags &= ~M_PKTHDR;
1822				sc->rl_tail->m_next = m;
1823			}
1824			m = sc->rl_head;
1825			sc->rl_head = sc->rl_tail = NULL;
1826			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1827		} else
1828			m->m_pkthdr.len = m->m_len =
1829			    (total_len - ETHER_CRC_LEN);
1830
1831#ifdef RE_FIXUP_RX
1832		re_fixup_rx(m);
1833#endif
1834		ifp->if_ipackets++;
1835		m->m_pkthdr.rcvif = ifp;
1836
1837		/* Do RX checksumming if enabled */
1838
1839		if (ifp->if_capenable & IFCAP_RXCSUM) {
1840
1841			/* Check IP header checksum */
1842			if (rxstat & RL_RDESC_STAT_PROTOID)
1843				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1844			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1845				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1846
1847			/* Check TCP/UDP checksum */
1848			if ((RL_TCPPKT(rxstat) &&
1849			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1850			    (RL_UDPPKT(rxstat) &&
1851			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1852				m->m_pkthdr.csum_flags |=
1853				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1854				m->m_pkthdr.csum_data = 0xffff;
1855			}
1856		}
1857		maxpkt--;
1858		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1859			m->m_pkthdr.ether_vtag =
1860			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1861			m->m_flags |= M_VLANTAG;
1862		}
1863		RL_UNLOCK(sc);
1864		(*ifp->if_input)(ifp, m);
1865		RL_LOCK(sc);
1866	}
1867
1868	/* Flush the RX DMA ring */
1869
1870	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1871	    sc->rl_ldata.rl_rx_list_map,
1872	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1873
1874	sc->rl_ldata.rl_rx_prodidx = i;
1875
1876	if (maxpkt)
1877		return(EAGAIN);
1878
1879	return(0);
1880}
1881
1882static void
1883re_txeof(sc)
1884	struct rl_softc		*sc;
1885{
1886	struct ifnet		*ifp;
1887	struct rl_txdesc	*txd;
1888	u_int32_t		txstat;
1889	int			cons;
1890
1891	cons = sc->rl_ldata.rl_tx_considx;
1892	if (cons == sc->rl_ldata.rl_tx_prodidx)
1893		return;
1894
1895	ifp = sc->rl_ifp;
1896	/* Invalidate the TX descriptor list */
1897	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1898	    sc->rl_ldata.rl_tx_list_map,
1899	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1900
1901	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1902	    cons = RL_TX_DESC_NXT(sc, cons)) {
1903		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1904		if (txstat & RL_TDESC_STAT_OWN)
1905			break;
1906		/*
1907		 * We only stash mbufs in the last descriptor
1908		 * in a fragment chain, which also happens to
1909		 * be the only place where the TX status bits
1910		 * are valid.
1911		 */
1912		if (txstat & RL_TDESC_CMD_EOF) {
1913			txd = &sc->rl_ldata.rl_tx_desc[cons];
1914			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1915			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1916			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1917			    txd->tx_dmamap);
1918			KASSERT(txd->tx_m != NULL,
1919			    ("%s: freeing NULL mbufs!", __func__));
1920			m_freem(txd->tx_m);
1921			txd->tx_m = NULL;
1922			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1923			    RL_TDESC_STAT_COLCNT))
1924				ifp->if_collisions++;
1925			if (txstat & RL_TDESC_STAT_TXERRSUM)
1926				ifp->if_oerrors++;
1927			else
1928				ifp->if_opackets++;
1929		}
1930		sc->rl_ldata.rl_tx_free++;
1931		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1932	}
1933	sc->rl_ldata.rl_tx_considx = cons;
1934
1935	/* No changes made to the TX ring, so no flush needed */
1936
1937	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1938		/*
1939		 * Some chips will ignore a second TX request issued
1940		 * while an existing transmission is in progress. If
1941		 * the transmitter goes idle but there are still
1942		 * packets waiting to be sent, we need to restart the
1943		 * channel here to flush them out. This only seems to
1944		 * be required with the PCIe devices.
1945		 */
1946		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1947
1948#ifdef RE_TX_MODERATION
1949		/*
1950		 * If not all descriptors have been reaped yet, reload
1951		 * the timer so that we will eventually get another
1952		 * interrupt that will cause us to re-enter this routine.
1953		 * This is done in case the transmitter has gone idle.
1954		 */
1955		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1956#endif
1957	} else
1958		sc->rl_watchdog_timer = 0;
1959}
1960
1961static void
1962re_tick(xsc)
1963	void			*xsc;
1964{
1965	struct rl_softc		*sc;
1966	struct mii_data		*mii;
1967	struct ifnet		*ifp;
1968
1969	sc = xsc;
1970	ifp = sc->rl_ifp;
1971
1972	RL_LOCK_ASSERT(sc);
1973
1974	re_watchdog(sc);
1975
1976	mii = device_get_softc(sc->rl_miibus);
1977	mii_tick(mii);
1978	if (sc->rl_link) {
1979		if (!(mii->mii_media_status & IFM_ACTIVE))
1980			sc->rl_link = 0;
1981	} else {
1982		if (mii->mii_media_status & IFM_ACTIVE &&
1983		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1984			sc->rl_link = 1;
1985			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1986				taskqueue_enqueue_fast(taskqueue_fast,
1987				    &sc->rl_txtask);
1988		}
1989	}
1990
1991	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1992}
1993
1994#ifdef DEVICE_POLLING
1995static void
1996re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1997{
1998	struct rl_softc *sc = ifp->if_softc;
1999
2000	RL_LOCK(sc);
2001	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2002		re_poll_locked(ifp, cmd, count);
2003	RL_UNLOCK(sc);
2004}
2005
2006static void
2007re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2008{
2009	struct rl_softc *sc = ifp->if_softc;
2010
2011	RL_LOCK_ASSERT(sc);
2012
2013	sc->rxcycles = count;
2014	re_rxeof(sc);
2015	re_txeof(sc);
2016
2017	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2018		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2019
2020	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2021		u_int16_t       status;
2022
2023		status = CSR_READ_2(sc, RL_ISR);
2024		if (status == 0xffff)
2025			return;
2026		if (status)
2027			CSR_WRITE_2(sc, RL_ISR, status);
2028
2029		/*
2030		 * XXX check behaviour on receiver stalls.
2031		 */
2032
2033		if (status & RL_ISR_SYSTEM_ERR) {
2034			re_reset(sc);
2035			re_init_locked(sc);
2036		}
2037	}
2038}
2039#endif /* DEVICE_POLLING */
2040
2041static int
2042re_intr(arg)
2043	void			*arg;
2044{
2045	struct rl_softc		*sc;
2046	uint16_t		status;
2047
2048	sc = arg;
2049
2050	status = CSR_READ_2(sc, RL_ISR);
2051	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2052                return (FILTER_STRAY);
2053	CSR_WRITE_2(sc, RL_IMR, 0);
2054
2055	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2056
2057	return (FILTER_HANDLED);
2058}
2059
2060static void
2061re_int_task(arg, npending)
2062	void			*arg;
2063	int			npending;
2064{
2065	struct rl_softc		*sc;
2066	struct ifnet		*ifp;
2067	u_int16_t		status;
2068	int			rval = 0;
2069
2070	sc = arg;
2071	ifp = sc->rl_ifp;
2072
2073	RL_LOCK(sc);
2074
2075	status = CSR_READ_2(sc, RL_ISR);
2076        CSR_WRITE_2(sc, RL_ISR, status);
2077
2078	if (sc->suspended ||
2079	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2080		RL_UNLOCK(sc);
2081		return;
2082	}
2083
2084#ifdef DEVICE_POLLING
2085	if  (ifp->if_capenable & IFCAP_POLLING) {
2086		RL_UNLOCK(sc);
2087		return;
2088	}
2089#endif
2090
2091	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2092		rval = re_rxeof(sc);
2093
2094#ifdef RE_TX_MODERATION
2095	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2096#else
2097	if (status & (RL_ISR_TX_OK|
2098#endif
2099	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2100		re_txeof(sc);
2101
2102	if (status & RL_ISR_SYSTEM_ERR) {
2103		re_reset(sc);
2104		re_init_locked(sc);
2105	}
2106
2107	if (status & RL_ISR_LINKCHG) {
2108		callout_stop(&sc->rl_stat_callout);
2109		re_tick(sc);
2110	}
2111
2112	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2113		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2114
2115	RL_UNLOCK(sc);
2116
2117        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2118		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2119		return;
2120	}
2121
2122	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2123
2124	return;
2125}
2126
2127static int
2128re_encap(sc, m_head)
2129	struct rl_softc		*sc;
2130	struct mbuf		**m_head;
2131{
2132	struct rl_txdesc	*txd, *txd_last;
2133	bus_dma_segment_t	segs[RL_NTXSEGS];
2134	bus_dmamap_t		map;
2135	struct mbuf		*m_new;
2136	struct rl_desc		*desc;
2137	int			nsegs, prod;
2138	int			i, error, ei, si;
2139	int			padlen;
2140	uint32_t		cmdstat, csum_flags, vlanctl;
2141
2142	RL_LOCK_ASSERT(sc);
2143	M_ASSERTPKTHDR((*m_head));
2144
2145	/*
2146	 * With some of the RealTek chips, using the checksum offload
2147	 * support in conjunction with the autopadding feature results
2148	 * in the transmission of corrupt frames. For example, if we
2149	 * need to send a really small IP fragment that's less than 60
2150	 * bytes in size, and IP header checksumming is enabled, the
2151	 * resulting ethernet frame that appears on the wire will
2152	 * have garbled payload. To work around this, if TX checksum
2153	 * offload is enabled, we always manually pad short frames out
2154	 * to the minimum ethernet frame size.
2155	 *
2156	 * Note: this appears unnecessary for TCP, and doing it for TCP
2157	 * with PCIe adapters seems to result in bad checksums.
2158	 */
2159	if ((*m_head)->m_pkthdr.csum_flags & (CSUM_IP | CSUM_UDP) &&
2160	    ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2161            (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN) {
2162		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2163		if (M_WRITABLE(*m_head) == 0) {
2164			/* Get a writable copy. */
2165			m_new = m_dup(*m_head, M_DONTWAIT);
2166			m_freem(*m_head);
2167			if (m_new == NULL) {
2168				*m_head = NULL;
2169				return (ENOBUFS);
2170			}
2171			*m_head = m_new;
2172		}
2173		if ((*m_head)->m_next != NULL ||
2174		    M_TRAILINGSPACE(*m_head) < padlen) {
2175			m_new = m_defrag(*m_head, M_DONTWAIT);
2176			if (m_new == NULL) {
2177				m_freem(*m_head);
2178				*m_head = NULL;
2179				return (ENOBUFS);
2180			}
2181		} else
2182			m_new = *m_head;
2183
2184		/*
2185		 * Manually pad short frames, and zero the pad space
2186		 * to avoid leaking data.
2187		 */
2188		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2189		m_new->m_pkthdr.len += padlen;
2190		m_new->m_len = m_new->m_pkthdr.len;
2191		*m_head = m_new;
2192	}
2193
2194	prod = sc->rl_ldata.rl_tx_prodidx;
2195	txd = &sc->rl_ldata.rl_tx_desc[prod];
2196	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2197	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2198	if (error == EFBIG) {
2199		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2200		if (m_new == NULL) {
2201			m_freem(*m_head);
2202			*m_head = NULL;
2203			return (ENOBUFS);
2204		}
2205		*m_head = m_new;
2206		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2207		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2208		if (error != 0) {
2209			m_freem(*m_head);
2210			*m_head = NULL;
2211			return (error);
2212		}
2213	} else if (error != 0)
2214		return (error);
2215	if (nsegs == 0) {
2216		m_freem(*m_head);
2217		*m_head = NULL;
2218		return (EIO);
2219	}
2220
2221	/* Check for number of available descriptors. */
2222	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2223		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2224		return (ENOBUFS);
2225	}
2226
2227	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2228	    BUS_DMASYNC_PREWRITE);
2229
2230	/*
2231	 * Set up checksum offload. Note: checksum offload bits must
2232	 * appear in all descriptors of a multi-descriptor transmit
2233	 * attempt. This is according to testing done with an 8169
2234	 * chip. This is a requirement.
2235	 */
2236	csum_flags = 0;
2237	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2238		csum_flags = RL_TDESC_CMD_LGSEND |
2239		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2240		    RL_TDESC_CMD_MSSVAL_SHIFT);
2241	else {
2242		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2243			csum_flags |= RL_TDESC_CMD_IPCSUM;
2244		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2245			csum_flags |= RL_TDESC_CMD_TCPCSUM;
2246		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2247			csum_flags |= RL_TDESC_CMD_UDPCSUM;
2248	}
2249
2250	/*
2251	 * Set up hardware VLAN tagging. Note: vlan tag info must
2252	 * appear in all descriptors of a multi-descriptor
2253	 * transmission attempt.
2254	 */
2255	vlanctl = 0;
2256	if ((*m_head)->m_flags & M_VLANTAG)
2257		vlanctl =
2258		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2259		    RL_TDESC_VLANCTL_TAG);
2260
2261	si = prod;
2262	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2263		desc = &sc->rl_ldata.rl_tx_list[prod];
2264		desc->rl_vlanctl = vlanctl;
2265		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2266		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2267		cmdstat = segs[i].ds_len;
2268		if (i != 0)
2269			cmdstat |= RL_TDESC_CMD_OWN;
2270		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2271			cmdstat |= RL_TDESC_CMD_EOR;
2272		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2273		sc->rl_ldata.rl_tx_free--;
2274	}
2275	/* Update producer index. */
2276	sc->rl_ldata.rl_tx_prodidx = prod;
2277
2278	/* Set EOF on the last descriptor. */
2279	ei = RL_TX_DESC_PRV(sc, prod);
2280	desc = &sc->rl_ldata.rl_tx_list[ei];
2281	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2282
2283	desc = &sc->rl_ldata.rl_tx_list[si];
2284	/* Set SOF and transfer ownership of packet to the chip. */
2285	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2286
2287	/*
2288	 * Insure that the map for this transmission
2289	 * is placed at the array index of the last descriptor
2290	 * in this chain.  (Swap last and first dmamaps.)
2291	 */
2292	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2293	map = txd->tx_dmamap;
2294	txd->tx_dmamap = txd_last->tx_dmamap;
2295	txd_last->tx_dmamap = map;
2296	txd_last->tx_m = *m_head;
2297
2298	return (0);
2299}
2300
2301static void
2302re_tx_task(arg, npending)
2303	void			*arg;
2304	int			npending;
2305{
2306	struct ifnet		*ifp;
2307
2308	ifp = arg;
2309	re_start(ifp);
2310
2311	return;
2312}
2313
2314/*
2315 * Main transmit routine for C+ and gigE NICs.
2316 */
2317static void
2318re_start(ifp)
2319	struct ifnet		*ifp;
2320{
2321	struct rl_softc		*sc;
2322	struct mbuf		*m_head;
2323	int			queued;
2324
2325	sc = ifp->if_softc;
2326
2327	RL_LOCK(sc);
2328
2329	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2330	    IFF_DRV_RUNNING || sc->rl_link == 0) {
2331		RL_UNLOCK(sc);
2332		return;
2333	}
2334
2335	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2336	    sc->rl_ldata.rl_tx_free > 1;) {
2337		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2338		if (m_head == NULL)
2339			break;
2340
2341		if (re_encap(sc, &m_head) != 0) {
2342			if (m_head == NULL)
2343				break;
2344			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2345			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2346			break;
2347		}
2348
2349		/*
2350		 * If there's a BPF listener, bounce a copy of this frame
2351		 * to him.
2352		 */
2353		ETHER_BPF_MTAP(ifp, m_head);
2354
2355		queued++;
2356	}
2357
2358	if (queued == 0) {
2359#ifdef RE_TX_MODERATION
2360		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2361			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2362#endif
2363		RL_UNLOCK(sc);
2364		return;
2365	}
2366
2367	/* Flush the TX descriptors */
2368
2369	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2370	    sc->rl_ldata.rl_tx_list_map,
2371	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2372
2373	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2374
2375#ifdef RE_TX_MODERATION
2376	/*
2377	 * Use the countdown timer for interrupt moderation.
2378	 * 'TX done' interrupts are disabled. Instead, we reset the
2379	 * countdown timer, which will begin counting until it hits
2380	 * the value in the TIMERINT register, and then trigger an
2381	 * interrupt. Each time we write to the TIMERCNT register,
2382	 * the timer count is reset to 0.
2383	 */
2384	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2385#endif
2386
2387	/*
2388	 * Set a timeout in case the chip goes out to lunch.
2389	 */
2390	sc->rl_watchdog_timer = 5;
2391
2392	RL_UNLOCK(sc);
2393
2394	return;
2395}
2396
2397static void
2398re_init(xsc)
2399	void			*xsc;
2400{
2401	struct rl_softc		*sc = xsc;
2402
2403	RL_LOCK(sc);
2404	re_init_locked(sc);
2405	RL_UNLOCK(sc);
2406}
2407
2408static void
2409re_init_locked(sc)
2410	struct rl_softc		*sc;
2411{
2412	struct ifnet		*ifp = sc->rl_ifp;
2413	struct mii_data		*mii;
2414	u_int32_t		rxcfg = 0;
2415	uint16_t		cfg;
2416	union {
2417		uint32_t align_dummy;
2418		u_char eaddr[ETHER_ADDR_LEN];
2419        } eaddr;
2420
2421	RL_LOCK_ASSERT(sc);
2422
2423	mii = device_get_softc(sc->rl_miibus);
2424
2425	/*
2426	 * Cancel pending I/O and free all RX/TX buffers.
2427	 */
2428	re_stop(sc);
2429
2430	/*
2431	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2432	 * RX checksum offload. We must configure the C+ register
2433	 * before all others.
2434	 */
2435	cfg = RL_CPLUSCMD_PCI_MRW;
2436	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2437		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2438	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2439		cfg |= RL_CPLUSCMD_VLANSTRIP;
2440	CSR_WRITE_2(sc, RL_CPLUS_CMD,
2441	    cfg | RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB);
2442
2443	/*
2444	 * Init our MAC address.  Even though the chipset
2445	 * documentation doesn't mention it, we need to enter "Config
2446	 * register write enable" mode to modify the ID registers.
2447	 */
2448	/* Copy MAC address on stack to align. */
2449	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2450	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2451	CSR_WRITE_4(sc, RL_IDR0,
2452	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2453	CSR_WRITE_4(sc, RL_IDR4,
2454	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2455	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2456
2457	/*
2458	 * For C+ mode, initialize the RX descriptors and mbufs.
2459	 */
2460	re_rx_list_init(sc);
2461	re_tx_list_init(sc);
2462
2463	/*
2464	 * Load the addresses of the RX and TX lists into the chip.
2465	 */
2466
2467	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2468	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2469	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2470	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2471
2472	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2473	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2474	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2475	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2476
2477	/*
2478	 * Enable transmit and receive.
2479	 */
2480	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2481
2482	/*
2483	 * Set the initial TX and RX configuration.
2484	 */
2485	if (sc->rl_testmode) {
2486		if (sc->rl_type == RL_8169)
2487			CSR_WRITE_4(sc, RL_TXCFG,
2488			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2489		else
2490			CSR_WRITE_4(sc, RL_TXCFG,
2491			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2492	} else
2493		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2494
2495	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2496
2497	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2498
2499	/* Set the individual bit to receive frames for this host only. */
2500	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2501	rxcfg |= RL_RXCFG_RX_INDIV;
2502
2503	/* If we want promiscuous mode, set the allframes bit. */
2504	if (ifp->if_flags & IFF_PROMISC)
2505		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2506	else
2507		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2508	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2509
2510	/*
2511	 * Set capture broadcast bit to capture broadcast frames.
2512	 */
2513	if (ifp->if_flags & IFF_BROADCAST)
2514		rxcfg |= RL_RXCFG_RX_BROAD;
2515	else
2516		rxcfg &= ~RL_RXCFG_RX_BROAD;
2517	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2518
2519	/*
2520	 * Program the multicast filter, if necessary.
2521	 */
2522	re_setmulti(sc);
2523
2524#ifdef DEVICE_POLLING
2525	/*
2526	 * Disable interrupts if we are polling.
2527	 */
2528	if (ifp->if_capenable & IFCAP_POLLING)
2529		CSR_WRITE_2(sc, RL_IMR, 0);
2530	else	/* otherwise ... */
2531#endif
2532
2533	/*
2534	 * Enable interrupts.
2535	 */
2536	if (sc->rl_testmode)
2537		CSR_WRITE_2(sc, RL_IMR, 0);
2538	else
2539		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2540	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2541
2542	/* Set initial TX threshold */
2543	sc->rl_txthresh = RL_TX_THRESH_INIT;
2544
2545	/* Start RX/TX process. */
2546	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2547#ifdef notdef
2548	/* Enable receiver and transmitter. */
2549	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2550#endif
2551
2552#ifdef RE_TX_MODERATION
2553	/*
2554	 * Initialize the timer interrupt register so that
2555	 * a timer interrupt will be generated once the timer
2556	 * reaches a certain number of ticks. The timer is
2557	 * reloaded on each transmit. This gives us TX interrupt
2558	 * moderation, which dramatically improves TX frame rate.
2559	 */
2560	if (sc->rl_type == RL_8169)
2561		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2562	else
2563		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2564#endif
2565
2566	/*
2567	 * For 8169 gigE NICs, set the max allowed RX packet
2568	 * size so we can receive jumbo frames.
2569	 */
2570	if (sc->rl_type == RL_8169)
2571		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2572
2573	if (sc->rl_testmode)
2574		return;
2575
2576	mii_mediachg(mii);
2577
2578	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2579
2580	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2581	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2582
2583	sc->rl_link = 0;
2584	sc->rl_watchdog_timer = 0;
2585	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2586}
2587
2588/*
2589 * Set media options.
2590 */
2591static int
2592re_ifmedia_upd(ifp)
2593	struct ifnet		*ifp;
2594{
2595	struct rl_softc		*sc;
2596	struct mii_data		*mii;
2597
2598	sc = ifp->if_softc;
2599	mii = device_get_softc(sc->rl_miibus);
2600	RL_LOCK(sc);
2601	mii_mediachg(mii);
2602	RL_UNLOCK(sc);
2603
2604	return (0);
2605}
2606
2607/*
2608 * Report current media status.
2609 */
2610static void
2611re_ifmedia_sts(ifp, ifmr)
2612	struct ifnet		*ifp;
2613	struct ifmediareq	*ifmr;
2614{
2615	struct rl_softc		*sc;
2616	struct mii_data		*mii;
2617
2618	sc = ifp->if_softc;
2619	mii = device_get_softc(sc->rl_miibus);
2620
2621	RL_LOCK(sc);
2622	mii_pollstat(mii);
2623	RL_UNLOCK(sc);
2624	ifmr->ifm_active = mii->mii_media_active;
2625	ifmr->ifm_status = mii->mii_media_status;
2626}
2627
2628static int
2629re_ioctl(ifp, command, data)
2630	struct ifnet		*ifp;
2631	u_long			command;
2632	caddr_t			data;
2633{
2634	struct rl_softc		*sc = ifp->if_softc;
2635	struct ifreq		*ifr = (struct ifreq *) data;
2636	struct mii_data		*mii;
2637	int			error = 0;
2638
2639	switch (command) {
2640	case SIOCSIFMTU:
2641		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2642			error = EINVAL;
2643			break;
2644		}
2645		if (sc->rl_type == RL_8139CPLUS &&
2646		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2647			error = EINVAL;
2648			break;
2649		}
2650		RL_LOCK(sc);
2651		if (ifp->if_mtu != ifr->ifr_mtu)
2652			ifp->if_mtu = ifr->ifr_mtu;
2653		RL_UNLOCK(sc);
2654		break;
2655	case SIOCSIFFLAGS:
2656		RL_LOCK(sc);
2657		if ((ifp->if_flags & IFF_UP) != 0) {
2658			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2659				if (((ifp->if_flags ^ sc->rl_if_flags)
2660				    & IFF_PROMISC) != 0)
2661					re_setmulti(sc);
2662			} else
2663				re_init_locked(sc);
2664		} else {
2665			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2666				re_stop(sc);
2667		}
2668		sc->rl_if_flags = ifp->if_flags;
2669		RL_UNLOCK(sc);
2670		break;
2671	case SIOCADDMULTI:
2672	case SIOCDELMULTI:
2673		RL_LOCK(sc);
2674		re_setmulti(sc);
2675		RL_UNLOCK(sc);
2676		break;
2677	case SIOCGIFMEDIA:
2678	case SIOCSIFMEDIA:
2679		mii = device_get_softc(sc->rl_miibus);
2680		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2681		break;
2682	case SIOCSIFCAP:
2683	    {
2684		int mask, reinit;
2685
2686		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2687		reinit = 0;
2688#ifdef DEVICE_POLLING
2689		if (mask & IFCAP_POLLING) {
2690			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2691				error = ether_poll_register(re_poll, ifp);
2692				if (error)
2693					return(error);
2694				RL_LOCK(sc);
2695				/* Disable interrupts */
2696				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2697				ifp->if_capenable |= IFCAP_POLLING;
2698				RL_UNLOCK(sc);
2699			} else {
2700				error = ether_poll_deregister(ifp);
2701				/* Enable interrupts. */
2702				RL_LOCK(sc);
2703				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2704				ifp->if_capenable &= ~IFCAP_POLLING;
2705				RL_UNLOCK(sc);
2706			}
2707		}
2708#endif /* DEVICE_POLLING */
2709		if (mask & IFCAP_HWCSUM) {
2710			ifp->if_capenable ^= IFCAP_HWCSUM;
2711			if (ifp->if_capenable & IFCAP_TXCSUM)
2712				ifp->if_hwassist |= RE_CSUM_FEATURES;
2713			else
2714				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2715			reinit = 1;
2716		}
2717		if (mask & IFCAP_VLAN_HWTAGGING) {
2718			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2719			reinit = 1;
2720		}
2721		if (mask & IFCAP_TSO4) {
2722			ifp->if_capenable ^= IFCAP_TSO4;
2723			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2724			    (IFCAP_TSO4 & ifp->if_capabilities))
2725				ifp->if_hwassist |= CSUM_TSO;
2726			else
2727				ifp->if_hwassist &= ~CSUM_TSO;
2728		}
2729		if ((mask & IFCAP_WOL) != 0 &&
2730		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2731			if ((mask & IFCAP_WOL_UCAST) != 0)
2732				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2733			if ((mask & IFCAP_WOL_MCAST) != 0)
2734				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2735			if ((mask & IFCAP_WOL_MAGIC) != 0)
2736				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2737		}
2738		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2739			re_init(sc);
2740		VLAN_CAPABILITIES(ifp);
2741	    }
2742		break;
2743	default:
2744		error = ether_ioctl(ifp, command, data);
2745		break;
2746	}
2747
2748	return (error);
2749}
2750
2751static void
2752re_watchdog(sc)
2753	struct rl_softc		*sc;
2754{
2755
2756	RL_LOCK_ASSERT(sc);
2757
2758	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2759		return;
2760
2761	device_printf(sc->rl_dev, "watchdog timeout\n");
2762	sc->rl_ifp->if_oerrors++;
2763
2764	re_txeof(sc);
2765	re_rxeof(sc);
2766	re_init_locked(sc);
2767}
2768
2769/*
2770 * Stop the adapter and free any mbufs allocated to the
2771 * RX and TX lists.
2772 */
2773static void
2774re_stop(sc)
2775	struct rl_softc		*sc;
2776{
2777	register int		i;
2778	struct ifnet		*ifp;
2779	struct rl_txdesc	*txd;
2780	struct rl_rxdesc	*rxd;
2781
2782	RL_LOCK_ASSERT(sc);
2783
2784	ifp = sc->rl_ifp;
2785
2786	sc->rl_watchdog_timer = 0;
2787	callout_stop(&sc->rl_stat_callout);
2788	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2789
2790	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2791	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2792	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2793
2794	if (sc->rl_head != NULL) {
2795		m_freem(sc->rl_head);
2796		sc->rl_head = sc->rl_tail = NULL;
2797	}
2798
2799	/* Free the TX list buffers. */
2800
2801	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2802		txd = &sc->rl_ldata.rl_tx_desc[i];
2803		if (txd->tx_m != NULL) {
2804			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2805			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2806			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2807			    txd->tx_dmamap);
2808			m_freem(txd->tx_m);
2809			txd->tx_m = NULL;
2810		}
2811	}
2812
2813	/* Free the RX list buffers. */
2814
2815	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2816		rxd = &sc->rl_ldata.rl_rx_desc[i];
2817		if (rxd->rx_m != NULL) {
2818			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2819			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2820			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2821			    rxd->rx_dmamap);
2822			m_freem(rxd->rx_m);
2823			rxd->rx_m = NULL;
2824		}
2825	}
2826}
2827
2828/*
2829 * Device suspend routine.  Stop the interface and save some PCI
2830 * settings in case the BIOS doesn't restore them properly on
2831 * resume.
2832 */
2833static int
2834re_suspend(dev)
2835	device_t		dev;
2836{
2837	struct rl_softc		*sc;
2838
2839	sc = device_get_softc(dev);
2840
2841	RL_LOCK(sc);
2842	re_stop(sc);
2843	re_setwol(sc);
2844	sc->suspended = 1;
2845	RL_UNLOCK(sc);
2846
2847	return (0);
2848}
2849
2850/*
2851 * Device resume routine.  Restore some PCI settings in case the BIOS
2852 * doesn't, re-enable busmastering, and restart the interface if
2853 * appropriate.
2854 */
2855static int
2856re_resume(dev)
2857	device_t		dev;
2858{
2859	struct rl_softc		*sc;
2860	struct ifnet		*ifp;
2861
2862	sc = device_get_softc(dev);
2863
2864	RL_LOCK(sc);
2865
2866	ifp = sc->rl_ifp;
2867
2868	/* reinitialize interface if necessary */
2869	if (ifp->if_flags & IFF_UP)
2870		re_init_locked(sc);
2871
2872	/*
2873	 * Clear WOL matching such that normal Rx filtering
2874	 * wouldn't interfere with WOL patterns.
2875	 */
2876	re_clrwol(sc);
2877	sc->suspended = 0;
2878	RL_UNLOCK(sc);
2879
2880	return (0);
2881}
2882
2883/*
2884 * Stop all chip I/O so that the kernel's probe routines don't
2885 * get confused by errant DMAs when rebooting.
2886 */
2887static int
2888re_shutdown(dev)
2889	device_t		dev;
2890{
2891	struct rl_softc		*sc;
2892
2893	sc = device_get_softc(dev);
2894
2895	RL_LOCK(sc);
2896	re_stop(sc);
2897	/*
2898	 * Mark interface as down since otherwise we will panic if
2899	 * interrupt comes in later on, which can happen in some
2900	 * cases.
2901	 */
2902	sc->rl_ifp->if_flags &= ~IFF_UP;
2903	re_setwol(sc);
2904	RL_UNLOCK(sc);
2905
2906	return (0);
2907}
2908
2909static void
2910re_setwol(sc)
2911	struct rl_softc		*sc;
2912{
2913	struct ifnet		*ifp;
2914	int			pmc;
2915	uint16_t		pmstat;
2916	uint8_t			v;
2917
2918	RL_LOCK_ASSERT(sc);
2919
2920	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2921		return;
2922
2923	ifp = sc->rl_ifp;
2924	/* Enable config register write. */
2925	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2926
2927	/* Enable PME. */
2928	v = CSR_READ_1(sc, RL_CFG1);
2929	v &= ~RL_CFG1_PME;
2930	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2931		v |= RL_CFG1_PME;
2932	CSR_WRITE_1(sc, RL_CFG1, v);
2933
2934	v = CSR_READ_1(sc, RL_CFG3);
2935	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2936	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2937		v |= RL_CFG3_WOL_MAGIC;
2938	CSR_WRITE_1(sc, RL_CFG3, v);
2939
2940	/* Config register write done. */
2941	CSR_WRITE_1(sc, RL_EECMD, 0);
2942
2943	v = CSR_READ_1(sc, RL_CFG5);
2944	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2945	v &= ~RL_CFG5_WOL_LANWAKE;
2946	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2947		v |= RL_CFG5_WOL_UCAST;
2948	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2949		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2950	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2951		v |= RL_CFG5_WOL_LANWAKE;
2952	CSR_WRITE_1(sc, RL_CFG5, v);
2953
2954	/*
2955	 * It seems that hardware resets its link speed to 100Mbps in
2956	 * power down mode so switching to 100Mbps in driver is not
2957	 * needed.
2958	 */
2959
2960	/* Request PME if WOL is requested. */
2961	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2962	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2963	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2964		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2965	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2966}
2967
2968static void
2969re_clrwol(sc)
2970	struct rl_softc		*sc;
2971{
2972	int			pmc;
2973	uint8_t			v;
2974
2975	RL_LOCK_ASSERT(sc);
2976
2977	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2978		return;
2979
2980	/* Enable config register write. */
2981	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2982
2983	v = CSR_READ_1(sc, RL_CFG3);
2984	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2985	CSR_WRITE_1(sc, RL_CFG3, v);
2986
2987	/* Config register write done. */
2988	CSR_WRITE_1(sc, RL_EECMD, 0);
2989
2990	v = CSR_READ_1(sc, RL_CFG5);
2991	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2992	v &= ~RL_CFG5_WOL_LANWAKE;
2993	CSR_WRITE_1(sc, RL_CFG5, v);
2994}
2995