if_re.c revision 176754
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 176754 2008-03-03 03:33:58Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149#include <pci/if_rlreg.h>
150
151MODULE_DEPEND(re, pci, 1, 1, 1);
152MODULE_DEPEND(re, ether, 1, 1, 1);
153MODULE_DEPEND(re, miibus, 1, 1, 1);
154
155/* "device miibus" required.  See GENERIC if you get errors here. */
156#include "miibus_if.h"
157
158/*
159 * Default to using PIO access for this driver.
160 */
161#define RE_USEIOSPACE
162
163/* Tunables. */
164static int msi_disable = 0;
165TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166
167#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
168
169/*
170 * Various supported device vendors/types and their names.
171 */
172static struct rl_type re_devs[] = {
173	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
174		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
175	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169_8110SB,
176		"D-Link DGE-528(T) Rev.B1 Gigabit Ethernet Adapter" },
177	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
178		"RealTek 8139C+ 10/100BaseTX" },
179	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
180		"RealTek 8101E PCIe 10/100baseTX" },
181	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
182		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
183	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
184		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN3,
186		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
188		"RealTek 8169 Gigabit Ethernet" },
189	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
190		"RealTek 8169S Single-chip Gigabit Ethernet" },
191	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
192		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
193	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC,
194		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
195	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
196		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
197	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
198		"RealTek 8110S Single-chip Gigabit Ethernet" },
199	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
200		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
201	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
202		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
203	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
204		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
205	{ 0, 0, 0, NULL }
206};
207
208static struct rl_hwrev re_hwrevs[] = {
209	{ RL_HWREV_8139, RL_8139,  "" },
210	{ RL_HWREV_8139A, RL_8139, "A" },
211	{ RL_HWREV_8139AG, RL_8139, "A-G" },
212	{ RL_HWREV_8139B, RL_8139, "B" },
213	{ RL_HWREV_8130, RL_8139, "8130" },
214	{ RL_HWREV_8139C, RL_8139, "C" },
215	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
216	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
217	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
218	{ RL_HWREV_8169, RL_8169, "8169"},
219	{ RL_HWREV_8169S, RL_8169, "8169S"},
220	{ RL_HWREV_8110S, RL_8169, "8110S"},
221	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
222	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
223	{ RL_HWREV_8100, RL_8139, "8100"},
224	{ RL_HWREV_8101, RL_8139, "8101"},
225	{ RL_HWREV_8100E, RL_8169, "8100E"},
226	{ RL_HWREV_8101E, RL_8169, "8101E"},
227	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
228	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
229	{ 0, 0, NULL }
230};
231
232static int re_probe		(device_t);
233static int re_attach		(device_t);
234static int re_detach		(device_t);
235
236static int re_encap		(struct rl_softc *, struct mbuf **);
237
238static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
239static int re_allocmem		(device_t, struct rl_softc *);
240static __inline void re_discard_rxbuf
241				(struct rl_softc *, int);
242static int re_newbuf		(struct rl_softc *, int);
243static int re_rx_list_init	(struct rl_softc *);
244static int re_tx_list_init	(struct rl_softc *);
245#ifdef RE_FIXUP_RX
246static __inline void re_fixup_rx
247				(struct mbuf *);
248#endif
249static int re_rxeof		(struct rl_softc *);
250static void re_txeof		(struct rl_softc *);
251#ifdef DEVICE_POLLING
252static void re_poll		(struct ifnet *, enum poll_cmd, int);
253static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
254#endif
255static int re_intr		(void *);
256static void re_tick		(void *);
257static void re_tx_task		(void *, int);
258static void re_int_task		(void *, int);
259static void re_start		(struct ifnet *);
260static int re_ioctl		(struct ifnet *, u_long, caddr_t);
261static void re_init		(void *);
262static void re_init_locked	(struct rl_softc *);
263static void re_stop		(struct rl_softc *);
264static void re_watchdog		(struct rl_softc *);
265static int re_suspend		(device_t);
266static int re_resume		(device_t);
267static int re_shutdown		(device_t);
268static int re_ifmedia_upd	(struct ifnet *);
269static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
270
271static void re_eeprom_putbyte	(struct rl_softc *, int);
272static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
273static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
274static int re_gmii_readreg	(device_t, int, int);
275static int re_gmii_writereg	(device_t, int, int, int);
276
277static int re_miibus_readreg	(device_t, int, int);
278static int re_miibus_writereg	(device_t, int, int, int);
279static void re_miibus_statchg	(device_t);
280
281static void re_setmulti		(struct rl_softc *);
282static void re_reset		(struct rl_softc *);
283static void re_setwol		(struct rl_softc *);
284static void re_clrwol		(struct rl_softc *);
285
286#ifdef RE_DIAG
287static int re_diag		(struct rl_softc *);
288#endif
289
290#ifdef RE_USEIOSPACE
291#define RL_RES			SYS_RES_IOPORT
292#define RL_RID			RL_PCI_LOIO
293#else
294#define RL_RES			SYS_RES_MEMORY
295#define RL_RID			RL_PCI_LOMEM
296#endif
297
298static device_method_t re_methods[] = {
299	/* Device interface */
300	DEVMETHOD(device_probe,		re_probe),
301	DEVMETHOD(device_attach,	re_attach),
302	DEVMETHOD(device_detach,	re_detach),
303	DEVMETHOD(device_suspend,	re_suspend),
304	DEVMETHOD(device_resume,	re_resume),
305	DEVMETHOD(device_shutdown,	re_shutdown),
306
307	/* bus interface */
308	DEVMETHOD(bus_print_child,	bus_generic_print_child),
309	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
310
311	/* MII interface */
312	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
313	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
314	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
315
316	{ 0, 0 }
317};
318
319static driver_t re_driver = {
320	"re",
321	re_methods,
322	sizeof(struct rl_softc)
323};
324
325static devclass_t re_devclass;
326
327DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
328DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
329DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
330
331#define EE_SET(x)					\
332	CSR_WRITE_1(sc, RL_EECMD,			\
333		CSR_READ_1(sc, RL_EECMD) | x)
334
335#define EE_CLR(x)					\
336	CSR_WRITE_1(sc, RL_EECMD,			\
337		CSR_READ_1(sc, RL_EECMD) & ~x)
338
339/*
340 * Send a read command and address to the EEPROM, check for ACK.
341 */
342static void
343re_eeprom_putbyte(sc, addr)
344	struct rl_softc		*sc;
345	int			addr;
346{
347	register int		d, i;
348
349	d = addr | (RL_9346_READ << sc->rl_eewidth);
350
351	/*
352	 * Feed in each bit and strobe the clock.
353	 */
354
355	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
356		if (d & i) {
357			EE_SET(RL_EE_DATAIN);
358		} else {
359			EE_CLR(RL_EE_DATAIN);
360		}
361		DELAY(100);
362		EE_SET(RL_EE_CLK);
363		DELAY(150);
364		EE_CLR(RL_EE_CLK);
365		DELAY(100);
366	}
367
368	return;
369}
370
371/*
372 * Read a word of data stored in the EEPROM at address 'addr.'
373 */
374static void
375re_eeprom_getword(sc, addr, dest)
376	struct rl_softc		*sc;
377	int			addr;
378	u_int16_t		*dest;
379{
380	register int		i;
381	u_int16_t		word = 0;
382
383	/*
384	 * Send address of word we want to read.
385	 */
386	re_eeprom_putbyte(sc, addr);
387
388	/*
389	 * Start reading bits from EEPROM.
390	 */
391	for (i = 0x8000; i; i >>= 1) {
392		EE_SET(RL_EE_CLK);
393		DELAY(100);
394		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
395			word |= i;
396		EE_CLR(RL_EE_CLK);
397		DELAY(100);
398	}
399
400	*dest = word;
401
402	return;
403}
404
405/*
406 * Read a sequence of words from the EEPROM.
407 */
408static void
409re_read_eeprom(sc, dest, off, cnt)
410	struct rl_softc		*sc;
411	caddr_t			dest;
412	int			off;
413	int			cnt;
414{
415	int			i;
416	u_int16_t		word = 0, *ptr;
417
418	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
419
420        DELAY(100);
421
422	for (i = 0; i < cnt; i++) {
423		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
424		re_eeprom_getword(sc, off + i, &word);
425		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
426		ptr = (u_int16_t *)(dest + (i * 2));
427                *ptr = word;
428	}
429
430	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
431
432	return;
433}
434
435static int
436re_gmii_readreg(dev, phy, reg)
437	device_t		dev;
438	int			phy, reg;
439{
440	struct rl_softc		*sc;
441	u_int32_t		rval;
442	int			i;
443
444	if (phy != 1)
445		return (0);
446
447	sc = device_get_softc(dev);
448
449	/* Let the rgephy driver read the GMEDIASTAT register */
450
451	if (reg == RL_GMEDIASTAT) {
452		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
453		return (rval);
454	}
455
456	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
457	DELAY(1000);
458
459	for (i = 0; i < RL_TIMEOUT; i++) {
460		rval = CSR_READ_4(sc, RL_PHYAR);
461		if (rval & RL_PHYAR_BUSY)
462			break;
463		DELAY(100);
464	}
465
466	if (i == RL_TIMEOUT) {
467		device_printf(sc->rl_dev, "PHY read failed\n");
468		return (0);
469	}
470
471	return (rval & RL_PHYAR_PHYDATA);
472}
473
474static int
475re_gmii_writereg(dev, phy, reg, data)
476	device_t		dev;
477	int			phy, reg, data;
478{
479	struct rl_softc		*sc;
480	u_int32_t		rval;
481	int			i;
482
483	sc = device_get_softc(dev);
484
485	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
486	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
487	DELAY(1000);
488
489	for (i = 0; i < RL_TIMEOUT; i++) {
490		rval = CSR_READ_4(sc, RL_PHYAR);
491		if (!(rval & RL_PHYAR_BUSY))
492			break;
493		DELAY(100);
494	}
495
496	if (i == RL_TIMEOUT) {
497		device_printf(sc->rl_dev, "PHY write failed\n");
498		return (0);
499	}
500
501	return (0);
502}
503
504static int
505re_miibus_readreg(dev, phy, reg)
506	device_t		dev;
507	int			phy, reg;
508{
509	struct rl_softc		*sc;
510	u_int16_t		rval = 0;
511	u_int16_t		re8139_reg = 0;
512
513	sc = device_get_softc(dev);
514
515	if (sc->rl_type == RL_8169) {
516		rval = re_gmii_readreg(dev, phy, reg);
517		return (rval);
518	}
519
520	/* Pretend the internal PHY is only at address 0 */
521	if (phy) {
522		return (0);
523	}
524	switch (reg) {
525	case MII_BMCR:
526		re8139_reg = RL_BMCR;
527		break;
528	case MII_BMSR:
529		re8139_reg = RL_BMSR;
530		break;
531	case MII_ANAR:
532		re8139_reg = RL_ANAR;
533		break;
534	case MII_ANER:
535		re8139_reg = RL_ANER;
536		break;
537	case MII_ANLPAR:
538		re8139_reg = RL_LPAR;
539		break;
540	case MII_PHYIDR1:
541	case MII_PHYIDR2:
542		return (0);
543	/*
544	 * Allow the rlphy driver to read the media status
545	 * register. If we have a link partner which does not
546	 * support NWAY, this is the register which will tell
547	 * us the results of parallel detection.
548	 */
549	case RL_MEDIASTAT:
550		rval = CSR_READ_1(sc, RL_MEDIASTAT);
551		return (rval);
552	default:
553		device_printf(sc->rl_dev, "bad phy register\n");
554		return (0);
555	}
556	rval = CSR_READ_2(sc, re8139_reg);
557	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
558		/* 8139C+ has different bit layout. */
559		rval &= ~(BMCR_LOOP | BMCR_ISO);
560	}
561	return (rval);
562}
563
564static int
565re_miibus_writereg(dev, phy, reg, data)
566	device_t		dev;
567	int			phy, reg, data;
568{
569	struct rl_softc		*sc;
570	u_int16_t		re8139_reg = 0;
571	int			rval = 0;
572
573	sc = device_get_softc(dev);
574
575	if (sc->rl_type == RL_8169) {
576		rval = re_gmii_writereg(dev, phy, reg, data);
577		return (rval);
578	}
579
580	/* Pretend the internal PHY is only at address 0 */
581	if (phy)
582		return (0);
583
584	switch (reg) {
585	case MII_BMCR:
586		re8139_reg = RL_BMCR;
587		if (sc->rl_type == RL_8139CPLUS) {
588			/* 8139C+ has different bit layout. */
589			data &= ~(BMCR_LOOP | BMCR_ISO);
590		}
591		break;
592	case MII_BMSR:
593		re8139_reg = RL_BMSR;
594		break;
595	case MII_ANAR:
596		re8139_reg = RL_ANAR;
597		break;
598	case MII_ANER:
599		re8139_reg = RL_ANER;
600		break;
601	case MII_ANLPAR:
602		re8139_reg = RL_LPAR;
603		break;
604	case MII_PHYIDR1:
605	case MII_PHYIDR2:
606		return (0);
607		break;
608	default:
609		device_printf(sc->rl_dev, "bad phy register\n");
610		return (0);
611	}
612	CSR_WRITE_2(sc, re8139_reg, data);
613	return (0);
614}
615
616static void
617re_miibus_statchg(dev)
618	device_t		dev;
619{
620
621}
622
623/*
624 * Program the 64-bit multicast hash filter.
625 */
626static void
627re_setmulti(sc)
628	struct rl_softc		*sc;
629{
630	struct ifnet		*ifp;
631	int			h = 0;
632	u_int32_t		hashes[2] = { 0, 0 };
633	struct ifmultiaddr	*ifma;
634	u_int32_t		rxfilt;
635	int			mcnt = 0;
636	u_int32_t		hwrev;
637
638	RL_LOCK_ASSERT(sc);
639
640	ifp = sc->rl_ifp;
641
642
643	rxfilt = CSR_READ_4(sc, RL_RXCFG);
644	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
645	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
646		if (ifp->if_flags & IFF_PROMISC)
647			rxfilt |= RL_RXCFG_RX_ALLPHYS;
648		/*
649		 * Unlike other hardwares, we have to explicitly set
650		 * RL_RXCFG_RX_MULTI to receive multicast frames in
651		 * promiscuous mode.
652		 */
653		rxfilt |= RL_RXCFG_RX_MULTI;
654		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
655		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
656		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
657		return;
658	}
659
660	/* first, zot all the existing hash bits */
661	CSR_WRITE_4(sc, RL_MAR0, 0);
662	CSR_WRITE_4(sc, RL_MAR4, 0);
663
664	/* now program new ones */
665	IF_ADDR_LOCK(ifp);
666	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
667		if (ifma->ifma_addr->sa_family != AF_LINK)
668			continue;
669		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
670		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
671		if (h < 32)
672			hashes[0] |= (1 << h);
673		else
674			hashes[1] |= (1 << (h - 32));
675		mcnt++;
676	}
677	IF_ADDR_UNLOCK(ifp);
678
679	if (mcnt)
680		rxfilt |= RL_RXCFG_RX_MULTI;
681	else
682		rxfilt &= ~RL_RXCFG_RX_MULTI;
683
684	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
685
686	/*
687	 * For some unfathomable reason, RealTek decided to reverse
688	 * the order of the multicast hash registers in the PCI Express
689	 * parts. This means we have to write the hash pattern in reverse
690	 * order for those devices.
691	 */
692
693	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
694
695	switch (hwrev) {
696	case RL_HWREV_8100E:
697	case RL_HWREV_8101E:
698	case RL_HWREV_8168_SPIN1:
699	case RL_HWREV_8168_SPIN2:
700	case RL_HWREV_8168_SPIN3:
701		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
702		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
703		break;
704	default:
705		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
706		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
707		break;
708	}
709}
710
711static void
712re_reset(sc)
713	struct rl_softc		*sc;
714{
715	register int		i;
716
717	RL_LOCK_ASSERT(sc);
718
719	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
720
721	for (i = 0; i < RL_TIMEOUT; i++) {
722		DELAY(10);
723		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
724			break;
725	}
726	if (i == RL_TIMEOUT)
727		device_printf(sc->rl_dev, "reset never completed!\n");
728
729	CSR_WRITE_1(sc, 0x82, 1);
730}
731
732#ifdef RE_DIAG
733
734/*
735 * The following routine is designed to test for a defect on some
736 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
737 * lines connected to the bus, however for a 32-bit only card, they
738 * should be pulled high. The result of this defect is that the
739 * NIC will not work right if you plug it into a 64-bit slot: DMA
740 * operations will be done with 64-bit transfers, which will fail
741 * because the 64-bit data lines aren't connected.
742 *
743 * There's no way to work around this (short of talking a soldering
744 * iron to the board), however we can detect it. The method we use
745 * here is to put the NIC into digital loopback mode, set the receiver
746 * to promiscuous mode, and then try to send a frame. We then compare
747 * the frame data we sent to what was received. If the data matches,
748 * then the NIC is working correctly, otherwise we know the user has
749 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
750 * slot. In the latter case, there's no way the NIC can work correctly,
751 * so we print out a message on the console and abort the device attach.
752 */
753
754static int
755re_diag(sc)
756	struct rl_softc		*sc;
757{
758	struct ifnet		*ifp = sc->rl_ifp;
759	struct mbuf		*m0;
760	struct ether_header	*eh;
761	struct rl_desc		*cur_rx;
762	u_int16_t		status;
763	u_int32_t		rxstat;
764	int			total_len, i, error = 0, phyaddr;
765	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
766	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
767
768	/* Allocate a single mbuf */
769	MGETHDR(m0, M_DONTWAIT, MT_DATA);
770	if (m0 == NULL)
771		return (ENOBUFS);
772
773	RL_LOCK(sc);
774
775	/*
776	 * Initialize the NIC in test mode. This sets the chip up
777	 * so that it can send and receive frames, but performs the
778	 * following special functions:
779	 * - Puts receiver in promiscuous mode
780	 * - Enables digital loopback mode
781	 * - Leaves interrupts turned off
782	 */
783
784	ifp->if_flags |= IFF_PROMISC;
785	sc->rl_testmode = 1;
786	re_reset(sc);
787	re_init_locked(sc);
788	sc->rl_link = 1;
789	if (sc->rl_type == RL_8169)
790		phyaddr = 1;
791	else
792		phyaddr = 0;
793
794	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
795	for (i = 0; i < RL_TIMEOUT; i++) {
796		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
797		if (!(status & BMCR_RESET))
798			break;
799	}
800
801	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
802	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
803
804	DELAY(100000);
805
806	/* Put some data in the mbuf */
807
808	eh = mtod(m0, struct ether_header *);
809	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
810	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
811	eh->ether_type = htons(ETHERTYPE_IP);
812	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
813
814	/*
815	 * Queue the packet, start transmission.
816	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
817	 */
818
819	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
820	RL_UNLOCK(sc);
821	/* XXX: re_diag must not be called when in ALTQ mode */
822	IF_HANDOFF(&ifp->if_snd, m0, ifp);
823	RL_LOCK(sc);
824	m0 = NULL;
825
826	/* Wait for it to propagate through the chip */
827
828	DELAY(100000);
829	for (i = 0; i < RL_TIMEOUT; i++) {
830		status = CSR_READ_2(sc, RL_ISR);
831		CSR_WRITE_2(sc, RL_ISR, status);
832		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
833		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
834			break;
835		DELAY(10);
836	}
837
838	if (i == RL_TIMEOUT) {
839		device_printf(sc->rl_dev,
840		    "diagnostic failed, failed to receive packet in"
841		    " loopback mode\n");
842		error = EIO;
843		goto done;
844	}
845
846	/*
847	 * The packet should have been dumped into the first
848	 * entry in the RX DMA ring. Grab it from there.
849	 */
850
851	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
852	    sc->rl_ldata.rl_rx_list_map,
853	    BUS_DMASYNC_POSTREAD);
854	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
855	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
856	    BUS_DMASYNC_POSTREAD);
857	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
858	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
859
860	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
861	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
862	eh = mtod(m0, struct ether_header *);
863
864	cur_rx = &sc->rl_ldata.rl_rx_list[0];
865	total_len = RL_RXBYTES(cur_rx);
866	rxstat = le32toh(cur_rx->rl_cmdstat);
867
868	if (total_len != ETHER_MIN_LEN) {
869		device_printf(sc->rl_dev,
870		    "diagnostic failed, received short packet\n");
871		error = EIO;
872		goto done;
873	}
874
875	/* Test that the received packet data matches what we sent. */
876
877	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
878	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
879	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
880		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
881		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
882		    dst, ":", src, ":", ETHERTYPE_IP);
883		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
884		    eh->ether_dhost, ":",  eh->ether_shost, ":",
885		    ntohs(eh->ether_type));
886		device_printf(sc->rl_dev, "You may have a defective 32-bit "
887		    "NIC plugged into a 64-bit PCI slot.\n");
888		device_printf(sc->rl_dev, "Please re-install the NIC in a "
889		    "32-bit slot for proper operation.\n");
890		device_printf(sc->rl_dev, "Read the re(4) man page for more "
891		    "details.\n");
892		error = EIO;
893	}
894
895done:
896	/* Turn interface off, release resources */
897
898	sc->rl_testmode = 0;
899	sc->rl_link = 0;
900	ifp->if_flags &= ~IFF_PROMISC;
901	re_stop(sc);
902	if (m0 != NULL)
903		m_freem(m0);
904
905	RL_UNLOCK(sc);
906
907	return (error);
908}
909
910#endif
911
912/*
913 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
914 * IDs against our list and return a device name if we find a match.
915 */
916static int
917re_probe(dev)
918	device_t		dev;
919{
920	struct rl_type		*t;
921	struct rl_softc		*sc;
922	int			rid;
923	u_int32_t		hwrev;
924
925	t = re_devs;
926	sc = device_get_softc(dev);
927
928	while (t->rl_name != NULL) {
929		if ((pci_get_vendor(dev) == t->rl_vid) &&
930		    (pci_get_device(dev) == t->rl_did)) {
931			/*
932			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
933			 * Rev. 2 i supported by sk(4).
934			 */
935			if ((t->rl_vid == LINKSYS_VENDORID) &&
936				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
937				(pci_get_subdevice(dev) !=
938				LINKSYS_SUBDEVICE_EG1032_REV3)) {
939				t++;
940				continue;
941			}
942
943			/*
944			 * Temporarily map the I/O space
945			 * so we can read the chip ID register.
946			 */
947			rid = RL_RID;
948			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
949			    RF_ACTIVE);
950			if (sc->rl_res == NULL) {
951				device_printf(dev,
952				    "couldn't map ports/memory\n");
953				return (ENXIO);
954			}
955			sc->rl_btag = rman_get_bustag(sc->rl_res);
956			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
957			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
958			bus_release_resource(dev, RL_RES,
959			    RL_RID, sc->rl_res);
960			if (t->rl_basetype == hwrev) {
961				device_set_desc(dev, t->rl_name);
962				return (BUS_PROBE_DEFAULT);
963			}
964		}
965		t++;
966	}
967
968	return (ENXIO);
969}
970
971/*
972 * Map a single buffer address.
973 */
974
975static void
976re_dma_map_addr(arg, segs, nseg, error)
977	void			*arg;
978	bus_dma_segment_t	*segs;
979	int			nseg;
980	int			error;
981{
982	bus_addr_t		*addr;
983
984	if (error)
985		return;
986
987	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
988	addr = arg;
989	*addr = segs->ds_addr;
990}
991
992static int
993re_allocmem(dev, sc)
994	device_t		dev;
995	struct rl_softc		*sc;
996{
997	bus_size_t		rx_list_size, tx_list_size;
998	int			error;
999	int			i;
1000
1001	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
1002	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
1003
1004	/*
1005	 * Allocate the parent bus DMA tag appropriate for PCI.
1006	 */
1007	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1008	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1009	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1010	    NULL, NULL, &sc->rl_parent_tag);
1011	if (error) {
1012		device_printf(dev, "could not allocate parent DMA tag\n");
1013		return (error);
1014	}
1015
1016	/*
1017	 * Allocate map for TX mbufs.
1018	 */
1019	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1020	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1021	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1022	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1023	if (error) {
1024		device_printf(dev, "could not allocate TX DMA tag\n");
1025		return (error);
1026	}
1027
1028	/*
1029	 * Allocate map for RX mbufs.
1030	 */
1031
1032	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1033	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1034	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1035	if (error) {
1036		device_printf(dev, "could not allocate RX DMA tag\n");
1037		return (error);
1038	}
1039
1040	/*
1041	 * Allocate map for TX descriptor list.
1042	 */
1043	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1044	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1045	    NULL, tx_list_size, 1, tx_list_size, 0,
1046	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1047	if (error) {
1048		device_printf(dev, "could not allocate TX DMA ring tag\n");
1049		return (error);
1050	}
1051
1052	/* Allocate DMA'able memory for the TX ring */
1053
1054	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1055	    (void **)&sc->rl_ldata.rl_tx_list,
1056	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1057	    &sc->rl_ldata.rl_tx_list_map);
1058	if (error) {
1059		device_printf(dev, "could not allocate TX DMA ring\n");
1060		return (error);
1061	}
1062
1063	/* Load the map for the TX ring. */
1064
1065	sc->rl_ldata.rl_tx_list_addr = 0;
1066	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1067	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1068	     tx_list_size, re_dma_map_addr,
1069	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1070	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1071		device_printf(dev, "could not load TX DMA ring\n");
1072		return (ENOMEM);
1073	}
1074
1075	/* Create DMA maps for TX buffers */
1076
1077	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1078		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1079		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1080		if (error) {
1081			device_printf(dev, "could not create DMA map for TX\n");
1082			return (error);
1083		}
1084	}
1085
1086	/*
1087	 * Allocate map for RX descriptor list.
1088	 */
1089	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1090	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1091	    NULL, rx_list_size, 1, rx_list_size, 0,
1092	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1093	if (error) {
1094		device_printf(dev, "could not create RX DMA ring tag\n");
1095		return (error);
1096	}
1097
1098	/* Allocate DMA'able memory for the RX ring */
1099
1100	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1101	    (void **)&sc->rl_ldata.rl_rx_list,
1102	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1103	    &sc->rl_ldata.rl_rx_list_map);
1104	if (error) {
1105		device_printf(dev, "could not allocate RX DMA ring\n");
1106		return (error);
1107	}
1108
1109	/* Load the map for the RX ring. */
1110
1111	sc->rl_ldata.rl_rx_list_addr = 0;
1112	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1113	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1114	     rx_list_size, re_dma_map_addr,
1115	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1116	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1117		device_printf(dev, "could not load RX DMA ring\n");
1118		return (ENOMEM);
1119	}
1120
1121	/* Create DMA maps for RX buffers */
1122
1123	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1124	    &sc->rl_ldata.rl_rx_sparemap);
1125	if (error) {
1126		device_printf(dev, "could not create spare DMA map for RX\n");
1127		return (error);
1128	}
1129	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1130		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1131		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1132		if (error) {
1133			device_printf(dev, "could not create DMA map for RX\n");
1134			return (error);
1135		}
1136	}
1137
1138	return (0);
1139}
1140
1141/*
1142 * Attach the interface. Allocate softc structures, do ifmedia
1143 * setup and ethernet/BPF attach.
1144 */
1145static int
1146re_attach(dev)
1147	device_t		dev;
1148{
1149	u_char			eaddr[ETHER_ADDR_LEN];
1150	u_int16_t		as[ETHER_ADDR_LEN / 2];
1151	struct rl_softc		*sc;
1152	struct ifnet		*ifp;
1153	struct rl_hwrev		*hw_rev;
1154	int			hwrev;
1155	u_int16_t		re_did = 0;
1156	int			error = 0, rid, i;
1157	int			msic, reg;
1158
1159	sc = device_get_softc(dev);
1160	sc->rl_dev = dev;
1161
1162	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1163	    MTX_DEF);
1164	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1165
1166	/*
1167	 * Map control/status registers.
1168	 */
1169	pci_enable_busmaster(dev);
1170
1171	rid = RL_RID;
1172	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1173	    RF_ACTIVE);
1174
1175	if (sc->rl_res == NULL) {
1176		device_printf(dev, "couldn't map ports/memory\n");
1177		error = ENXIO;
1178		goto fail;
1179	}
1180
1181	sc->rl_btag = rman_get_bustag(sc->rl_res);
1182	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1183
1184	msic = 0;
1185	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1186		msic = pci_msi_count(dev);
1187		if (bootverbose)
1188			device_printf(dev, "MSI count : %d\n", msic);
1189	}
1190	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1191		if (pci_alloc_msi(dev, &msic) == 0) {
1192			if (msic == RL_MSI_MESSAGES) {
1193				device_printf(dev, "Using %d MSI messages\n",
1194				    msic);
1195				sc->rl_msi = 1;
1196			} else
1197				pci_release_msi(dev);
1198		}
1199	}
1200
1201	/* Allocate interrupt */
1202	if (sc->rl_msi == 0) {
1203		rid = 0;
1204		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1205		    RF_SHAREABLE | RF_ACTIVE);
1206		if (sc->rl_irq[0] == NULL) {
1207			device_printf(dev, "couldn't allocate IRQ resources\n");
1208			error = ENXIO;
1209			goto fail;
1210		}
1211	} else {
1212		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1213			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1214			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1215			if (sc->rl_irq[i] == NULL) {
1216				device_printf(dev,
1217				    "couldn't llocate IRQ resources for "
1218				    "message %d\n", rid);
1219				error = ENXIO;
1220				goto fail;
1221			}
1222		}
1223	}
1224
1225	/* Reset the adapter. */
1226	RL_LOCK(sc);
1227	re_reset(sc);
1228	RL_UNLOCK(sc);
1229
1230	hw_rev = re_hwrevs;
1231	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1232	while (hw_rev->rl_desc != NULL) {
1233		if (hw_rev->rl_rev == hwrev) {
1234			sc->rl_type = hw_rev->rl_type;
1235			break;
1236		}
1237		hw_rev++;
1238	}
1239	if (hw_rev->rl_desc == NULL) {
1240		device_printf(dev, "Unknown H/W revision: %08x\n", hwrev);
1241		error = ENXIO;
1242		goto fail;
1243	}
1244
1245	sc->rl_eewidth = RL_9356_ADDR_LEN;
1246	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1247	if (re_did != 0x8129)
1248	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1249
1250	/*
1251	 * Get station address from the EEPROM.
1252	 */
1253	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1254	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1255		as[i] = le16toh(as[i]);
1256	bcopy(as, eaddr, sizeof(eaddr));
1257
1258	if (sc->rl_type == RL_8169) {
1259		/* Set RX length mask and number of descriptors. */
1260		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1261		sc->rl_txstart = RL_GTXSTART;
1262		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1263		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1264	} else {
1265		/* Set RX length mask and number of descriptors. */
1266		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1267		sc->rl_txstart = RL_TXSTART;
1268		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1269		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1270	}
1271
1272	error = re_allocmem(dev, sc);
1273	if (error)
1274		goto fail;
1275
1276	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1277	if (ifp == NULL) {
1278		device_printf(dev, "can not if_alloc()\n");
1279		error = ENOSPC;
1280		goto fail;
1281	}
1282
1283	/* Do MII setup */
1284	if (mii_phy_probe(dev, &sc->rl_miibus,
1285	    re_ifmedia_upd, re_ifmedia_sts)) {
1286		device_printf(dev, "MII without any phy!\n");
1287		error = ENXIO;
1288		goto fail;
1289	}
1290
1291	/* Take PHY out of power down mode. */
1292	if (sc->rl_type == RL_8169) {
1293		uint32_t rev;
1294
1295		rev = CSR_READ_4(sc, RL_TXCFG);
1296		/* HWVERID 0, 1 and 2 :  bit26-30, bit23 */
1297		rev &= 0x7c800000;
1298		if (rev != 0) {
1299			/* RTL8169S single chip */
1300			switch (rev) {
1301			case RL_HWREV_8169_8110SB:
1302			case RL_HWREV_8169_8110SC:
1303			case RL_HWREV_8168_SPIN2:
1304			case RL_HWREV_8168_SPIN3:
1305				re_gmii_writereg(dev, 1, 0x1f, 0);
1306				re_gmii_writereg(dev, 1, 0x0e, 0);
1307				break;
1308			default:
1309				break;
1310			}
1311		}
1312	}
1313
1314	ifp->if_softc = sc;
1315	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1316	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1317	ifp->if_ioctl = re_ioctl;
1318	ifp->if_start = re_start;
1319	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1320	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1321	ifp->if_capenable = ifp->if_capabilities;
1322	ifp->if_init = re_init;
1323	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1324	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1325	IFQ_SET_READY(&ifp->if_snd);
1326
1327	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1328	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1329
1330	/*
1331	 * Call MI attach routine.
1332	 */
1333	ether_ifattach(ifp, eaddr);
1334
1335	/* VLAN capability setup */
1336	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1337	if (ifp->if_capabilities & IFCAP_HWCSUM)
1338		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1339	/* Enable WOL if PM is supported. */
1340	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1341		ifp->if_capabilities |= IFCAP_WOL;
1342	ifp->if_capenable = ifp->if_capabilities;
1343#ifdef DEVICE_POLLING
1344	ifp->if_capabilities |= IFCAP_POLLING;
1345#endif
1346	/*
1347	 * Tell the upper layer(s) we support long frames.
1348	 * Must appear after the call to ether_ifattach() because
1349	 * ether_ifattach() sets ifi_hdrlen to the default value.
1350	 */
1351	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1352
1353#ifdef RE_DIAG
1354	/*
1355	 * Perform hardware diagnostic on the original RTL8169.
1356	 * Some 32-bit cards were incorrectly wired and would
1357	 * malfunction if plugged into a 64-bit slot.
1358	 */
1359
1360	if (hwrev == RL_HWREV_8169) {
1361		error = re_diag(sc);
1362		if (error) {
1363			device_printf(dev,
1364		    	"attach aborted due to hardware diag failure\n");
1365			ether_ifdetach(ifp);
1366			goto fail;
1367		}
1368	}
1369#endif
1370
1371	/* Hook interrupt last to avoid having to lock softc */
1372	if (sc->rl_msi == 0)
1373		error = bus_setup_intr(dev, sc->rl_irq[0],
1374		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1375		    &sc->rl_intrhand[0]);
1376	else {
1377		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1378			error = bus_setup_intr(dev, sc->rl_irq[i],
1379			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1380		    	    &sc->rl_intrhand[i]);
1381			if (error != 0)
1382				break;
1383		}
1384	}
1385	if (error) {
1386		device_printf(dev, "couldn't set up irq\n");
1387		ether_ifdetach(ifp);
1388	}
1389
1390fail:
1391
1392	if (error)
1393		re_detach(dev);
1394
1395	return (error);
1396}
1397
1398/*
1399 * Shutdown hardware and free up resources. This can be called any
1400 * time after the mutex has been initialized. It is called in both
1401 * the error case in attach and the normal detach case so it needs
1402 * to be careful about only freeing resources that have actually been
1403 * allocated.
1404 */
1405static int
1406re_detach(dev)
1407	device_t		dev;
1408{
1409	struct rl_softc		*sc;
1410	struct ifnet		*ifp;
1411	int			i, rid;
1412
1413	sc = device_get_softc(dev);
1414	ifp = sc->rl_ifp;
1415	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1416
1417#ifdef DEVICE_POLLING
1418	if (ifp->if_capenable & IFCAP_POLLING)
1419		ether_poll_deregister(ifp);
1420#endif
1421	/* These should only be active if attach succeeded */
1422	if (device_is_attached(dev)) {
1423		RL_LOCK(sc);
1424#if 0
1425		sc->suspended = 1;
1426#endif
1427		re_stop(sc);
1428		RL_UNLOCK(sc);
1429		callout_drain(&sc->rl_stat_callout);
1430		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1431		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1432		/*
1433		 * Force off the IFF_UP flag here, in case someone
1434		 * still had a BPF descriptor attached to this
1435		 * interface. If they do, ether_ifdetach() will cause
1436		 * the BPF code to try and clear the promisc mode
1437		 * flag, which will bubble down to re_ioctl(),
1438		 * which will try to call re_init() again. This will
1439		 * turn the NIC back on and restart the MII ticker,
1440		 * which will panic the system when the kernel tries
1441		 * to invoke the re_tick() function that isn't there
1442		 * anymore.
1443		 */
1444		ifp->if_flags &= ~IFF_UP;
1445		ether_ifdetach(ifp);
1446	}
1447	if (sc->rl_miibus)
1448		device_delete_child(dev, sc->rl_miibus);
1449	bus_generic_detach(dev);
1450
1451	/*
1452	 * The rest is resource deallocation, so we should already be
1453	 * stopped here.
1454	 */
1455
1456	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1457		if (sc->rl_intrhand[i] != NULL) {
1458			bus_teardown_intr(dev, sc->rl_irq[i],
1459			    sc->rl_intrhand[i]);
1460			sc->rl_intrhand[i] = NULL;
1461		}
1462	}
1463	if (ifp != NULL)
1464		if_free(ifp);
1465	if (sc->rl_msi == 0) {
1466		if (sc->rl_irq[0] != NULL) {
1467			bus_release_resource(dev, SYS_RES_IRQ, 0,
1468			    sc->rl_irq[0]);
1469			sc->rl_irq[0] = NULL;
1470		}
1471	} else {
1472		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1473			if (sc->rl_irq[i] != NULL) {
1474				bus_release_resource(dev, SYS_RES_IRQ, rid,
1475				    sc->rl_irq[i]);
1476				sc->rl_irq[i] = NULL;
1477			}
1478		}
1479		pci_release_msi(dev);
1480	}
1481	if (sc->rl_res)
1482		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1483
1484	/* Unload and free the RX DMA ring memory and map */
1485
1486	if (sc->rl_ldata.rl_rx_list_tag) {
1487		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1488		    sc->rl_ldata.rl_rx_list_map);
1489		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1490		    sc->rl_ldata.rl_rx_list,
1491		    sc->rl_ldata.rl_rx_list_map);
1492		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1493	}
1494
1495	/* Unload and free the TX DMA ring memory and map */
1496
1497	if (sc->rl_ldata.rl_tx_list_tag) {
1498		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1499		    sc->rl_ldata.rl_tx_list_map);
1500		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1501		    sc->rl_ldata.rl_tx_list,
1502		    sc->rl_ldata.rl_tx_list_map);
1503		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1504	}
1505
1506	/* Destroy all the RX and TX buffer maps */
1507
1508	if (sc->rl_ldata.rl_tx_mtag) {
1509		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1510			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1511			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1512		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1513	}
1514	if (sc->rl_ldata.rl_rx_mtag) {
1515		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1516			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1517			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1518		if (sc->rl_ldata.rl_rx_sparemap)
1519			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1520			    sc->rl_ldata.rl_rx_sparemap);
1521		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1522	}
1523
1524	/* Unload and free the stats buffer and map */
1525
1526	if (sc->rl_ldata.rl_stag) {
1527		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1528		    sc->rl_ldata.rl_rx_list_map);
1529		bus_dmamem_free(sc->rl_ldata.rl_stag,
1530		    sc->rl_ldata.rl_stats,
1531		    sc->rl_ldata.rl_smap);
1532		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1533	}
1534
1535	if (sc->rl_parent_tag)
1536		bus_dma_tag_destroy(sc->rl_parent_tag);
1537
1538	mtx_destroy(&sc->rl_mtx);
1539
1540	return (0);
1541}
1542
1543static __inline void
1544re_discard_rxbuf(sc, idx)
1545	struct rl_softc		*sc;
1546	int			idx;
1547{
1548	struct rl_desc		*desc;
1549	struct rl_rxdesc	*rxd;
1550	uint32_t		cmdstat;
1551
1552	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1553	desc = &sc->rl_ldata.rl_rx_list[idx];
1554	desc->rl_vlanctl = 0;
1555	cmdstat = rxd->rx_size;
1556	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1557		cmdstat |= RL_RDESC_CMD_EOR;
1558	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1559}
1560
1561static int
1562re_newbuf(sc, idx)
1563	struct rl_softc		*sc;
1564	int			idx;
1565{
1566	struct mbuf		*m;
1567	struct rl_rxdesc	*rxd;
1568	bus_dma_segment_t	segs[1];
1569	bus_dmamap_t		map;
1570	struct rl_desc		*desc;
1571	uint32_t		cmdstat;
1572	int			error, nsegs;
1573
1574	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1575	if (m == NULL)
1576		return (ENOBUFS);
1577
1578	m->m_len = m->m_pkthdr.len = MCLBYTES;
1579#ifdef RE_FIXUP_RX
1580	/*
1581	 * This is part of an evil trick to deal with non-x86 platforms.
1582	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1583	 * boundaries, but that will hose non-x86 machines. To get around
1584	 * this, we leave some empty space at the start of each buffer
1585	 * and for non-x86 hosts, we copy the buffer back six bytes
1586	 * to achieve word alignment. This is slightly more efficient
1587	 * than allocating a new buffer, copying the contents, and
1588	 * discarding the old buffer.
1589	 */
1590	m_adj(m, RE_ETHER_ALIGN);
1591#endif
1592	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1593	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1594	if (error != 0) {
1595		m_freem(m);
1596		return (ENOBUFS);
1597	}
1598	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1599
1600	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1601	if (rxd->rx_m != NULL) {
1602		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1603		    BUS_DMASYNC_POSTREAD);
1604		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1605	}
1606
1607	rxd->rx_m = m;
1608	map = rxd->rx_dmamap;
1609	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1610	rxd->rx_size = segs[0].ds_len;
1611	sc->rl_ldata.rl_rx_sparemap = map;
1612	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1613	    BUS_DMASYNC_PREREAD);
1614
1615	desc = &sc->rl_ldata.rl_rx_list[idx];
1616	desc->rl_vlanctl = 0;
1617	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1618	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1619	cmdstat = segs[0].ds_len;
1620	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1621		cmdstat |= RL_RDESC_CMD_EOR;
1622	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1623
1624	return (0);
1625}
1626
1627#ifdef RE_FIXUP_RX
1628static __inline void
1629re_fixup_rx(m)
1630	struct mbuf		*m;
1631{
1632	int                     i;
1633	uint16_t                *src, *dst;
1634
1635	src = mtod(m, uint16_t *);
1636	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1637
1638	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1639		*dst++ = *src++;
1640
1641	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1642
1643	return;
1644}
1645#endif
1646
1647static int
1648re_tx_list_init(sc)
1649	struct rl_softc		*sc;
1650{
1651	struct rl_desc		*desc;
1652	int			i;
1653
1654	RL_LOCK_ASSERT(sc);
1655
1656	bzero(sc->rl_ldata.rl_tx_list,
1657	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1658	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1659		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1660	/* Set EOR. */
1661	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1662	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1663
1664	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1665	    sc->rl_ldata.rl_tx_list_map,
1666	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1667
1668	sc->rl_ldata.rl_tx_prodidx = 0;
1669	sc->rl_ldata.rl_tx_considx = 0;
1670	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1671
1672	return (0);
1673}
1674
1675static int
1676re_rx_list_init(sc)
1677	struct rl_softc		*sc;
1678{
1679	int			error, i;
1680
1681	bzero(sc->rl_ldata.rl_rx_list,
1682	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1683	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1684		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1685		if ((error = re_newbuf(sc, i)) != 0)
1686			return (error);
1687	}
1688
1689	/* Flush the RX descriptors */
1690
1691	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1692	    sc->rl_ldata.rl_rx_list_map,
1693	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1694
1695	sc->rl_ldata.rl_rx_prodidx = 0;
1696	sc->rl_head = sc->rl_tail = NULL;
1697
1698	return (0);
1699}
1700
1701/*
1702 * RX handler for C+ and 8169. For the gigE chips, we support
1703 * the reception of jumbo frames that have been fragmented
1704 * across multiple 2K mbuf cluster buffers.
1705 */
1706static int
1707re_rxeof(sc)
1708	struct rl_softc		*sc;
1709{
1710	struct mbuf		*m;
1711	struct ifnet		*ifp;
1712	int			i, total_len;
1713	struct rl_desc		*cur_rx;
1714	u_int32_t		rxstat, rxvlan;
1715	int			maxpkt = 16;
1716
1717	RL_LOCK_ASSERT(sc);
1718
1719	ifp = sc->rl_ifp;
1720
1721	/* Invalidate the descriptor memory */
1722
1723	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1724	    sc->rl_ldata.rl_rx_list_map,
1725	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1726
1727	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1728	    i = RL_RX_DESC_NXT(sc, i)) {
1729		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1730		rxstat = le32toh(cur_rx->rl_cmdstat);
1731		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1732			break;
1733		total_len = rxstat & sc->rl_rxlenmask;
1734		rxvlan = le32toh(cur_rx->rl_vlanctl);
1735		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1736
1737		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1738			if (re_newbuf(sc, i) != 0) {
1739				/*
1740				 * If this is part of a multi-fragment packet,
1741				 * discard all the pieces.
1742				 */
1743				if (sc->rl_head != NULL) {
1744					m_freem(sc->rl_head);
1745					sc->rl_head = sc->rl_tail = NULL;
1746				}
1747				re_discard_rxbuf(sc, i);
1748				continue;
1749			}
1750			m->m_len = RE_RX_DESC_BUFLEN;
1751			if (sc->rl_head == NULL)
1752				sc->rl_head = sc->rl_tail = m;
1753			else {
1754				m->m_flags &= ~M_PKTHDR;
1755				sc->rl_tail->m_next = m;
1756				sc->rl_tail = m;
1757			}
1758			continue;
1759		}
1760
1761		/*
1762		 * NOTE: for the 8139C+, the frame length field
1763		 * is always 12 bits in size, but for the gigE chips,
1764		 * it is 13 bits (since the max RX frame length is 16K).
1765		 * Unfortunately, all 32 bits in the status word
1766		 * were already used, so to make room for the extra
1767		 * length bit, RealTek took out the 'frame alignment
1768		 * error' bit and shifted the other status bits
1769		 * over one slot. The OWN, EOR, FS and LS bits are
1770		 * still in the same places. We have already extracted
1771		 * the frame length and checked the OWN bit, so rather
1772		 * than using an alternate bit mapping, we shift the
1773		 * status bits one space to the right so we can evaluate
1774		 * them using the 8169 status as though it was in the
1775		 * same format as that of the 8139C+.
1776		 */
1777		if (sc->rl_type == RL_8169)
1778			rxstat >>= 1;
1779
1780		/*
1781		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1782		 * set, but if CRC is clear, it will still be a valid frame.
1783		 */
1784		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1785		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1786			ifp->if_ierrors++;
1787			/*
1788			 * If this is part of a multi-fragment packet,
1789			 * discard all the pieces.
1790			 */
1791			if (sc->rl_head != NULL) {
1792				m_freem(sc->rl_head);
1793				sc->rl_head = sc->rl_tail = NULL;
1794			}
1795			re_discard_rxbuf(sc, i);
1796			continue;
1797		}
1798
1799		/*
1800		 * If allocating a replacement mbuf fails,
1801		 * reload the current one.
1802		 */
1803
1804		if (re_newbuf(sc, i) != 0) {
1805			ifp->if_iqdrops++;
1806			if (sc->rl_head != NULL) {
1807				m_freem(sc->rl_head);
1808				sc->rl_head = sc->rl_tail = NULL;
1809			}
1810			re_discard_rxbuf(sc, i);
1811			continue;
1812		}
1813
1814		if (sc->rl_head != NULL) {
1815			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1816			if (m->m_len == 0)
1817				m->m_len = RE_RX_DESC_BUFLEN;
1818			/*
1819			 * Special case: if there's 4 bytes or less
1820			 * in this buffer, the mbuf can be discarded:
1821			 * the last 4 bytes is the CRC, which we don't
1822			 * care about anyway.
1823			 */
1824			if (m->m_len <= ETHER_CRC_LEN) {
1825				sc->rl_tail->m_len -=
1826				    (ETHER_CRC_LEN - m->m_len);
1827				m_freem(m);
1828			} else {
1829				m->m_len -= ETHER_CRC_LEN;
1830				m->m_flags &= ~M_PKTHDR;
1831				sc->rl_tail->m_next = m;
1832			}
1833			m = sc->rl_head;
1834			sc->rl_head = sc->rl_tail = NULL;
1835			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1836		} else
1837			m->m_pkthdr.len = m->m_len =
1838			    (total_len - ETHER_CRC_LEN);
1839
1840#ifdef RE_FIXUP_RX
1841		re_fixup_rx(m);
1842#endif
1843		ifp->if_ipackets++;
1844		m->m_pkthdr.rcvif = ifp;
1845
1846		/* Do RX checksumming if enabled */
1847
1848		if (ifp->if_capenable & IFCAP_RXCSUM) {
1849
1850			/* Check IP header checksum */
1851			if (rxstat & RL_RDESC_STAT_PROTOID)
1852				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1853			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1854				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1855
1856			/* Check TCP/UDP checksum */
1857			if ((RL_TCPPKT(rxstat) &&
1858			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1859			    (RL_UDPPKT(rxstat) &&
1860			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1861				m->m_pkthdr.csum_flags |=
1862				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1863				m->m_pkthdr.csum_data = 0xffff;
1864			}
1865		}
1866		maxpkt--;
1867		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1868			m->m_pkthdr.ether_vtag =
1869			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1870			m->m_flags |= M_VLANTAG;
1871		}
1872		RL_UNLOCK(sc);
1873		(*ifp->if_input)(ifp, m);
1874		RL_LOCK(sc);
1875	}
1876
1877	/* Flush the RX DMA ring */
1878
1879	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1880	    sc->rl_ldata.rl_rx_list_map,
1881	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1882
1883	sc->rl_ldata.rl_rx_prodidx = i;
1884
1885	if (maxpkt)
1886		return(EAGAIN);
1887
1888	return(0);
1889}
1890
1891static void
1892re_txeof(sc)
1893	struct rl_softc		*sc;
1894{
1895	struct ifnet		*ifp;
1896	struct rl_txdesc	*txd;
1897	u_int32_t		txstat;
1898	int			cons;
1899
1900	cons = sc->rl_ldata.rl_tx_considx;
1901	if (cons == sc->rl_ldata.rl_tx_prodidx)
1902		return;
1903
1904	ifp = sc->rl_ifp;
1905	/* Invalidate the TX descriptor list */
1906	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1907	    sc->rl_ldata.rl_tx_list_map,
1908	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1909
1910	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1911	    cons = RL_TX_DESC_NXT(sc, cons)) {
1912		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1913		if (txstat & RL_TDESC_STAT_OWN)
1914			break;
1915		/*
1916		 * We only stash mbufs in the last descriptor
1917		 * in a fragment chain, which also happens to
1918		 * be the only place where the TX status bits
1919		 * are valid.
1920		 */
1921		if (txstat & RL_TDESC_CMD_EOF) {
1922			txd = &sc->rl_ldata.rl_tx_desc[cons];
1923			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1924			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1925			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1926			    txd->tx_dmamap);
1927			KASSERT(txd->tx_m != NULL,
1928			    ("%s: freeing NULL mbufs!", __func__));
1929			m_freem(txd->tx_m);
1930			txd->tx_m = NULL;
1931			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1932			    RL_TDESC_STAT_COLCNT))
1933				ifp->if_collisions++;
1934			if (txstat & RL_TDESC_STAT_TXERRSUM)
1935				ifp->if_oerrors++;
1936			else
1937				ifp->if_opackets++;
1938		}
1939		sc->rl_ldata.rl_tx_free++;
1940		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1941	}
1942	sc->rl_ldata.rl_tx_considx = cons;
1943
1944	/* No changes made to the TX ring, so no flush needed */
1945
1946	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1947		/*
1948		 * Some chips will ignore a second TX request issued
1949		 * while an existing transmission is in progress. If
1950		 * the transmitter goes idle but there are still
1951		 * packets waiting to be sent, we need to restart the
1952		 * channel here to flush them out. This only seems to
1953		 * be required with the PCIe devices.
1954		 */
1955		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1956
1957#ifdef RE_TX_MODERATION
1958		/*
1959		 * If not all descriptors have been reaped yet, reload
1960		 * the timer so that we will eventually get another
1961		 * interrupt that will cause us to re-enter this routine.
1962		 * This is done in case the transmitter has gone idle.
1963		 */
1964		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1965#endif
1966	} else
1967		sc->rl_watchdog_timer = 0;
1968}
1969
1970static void
1971re_tick(xsc)
1972	void			*xsc;
1973{
1974	struct rl_softc		*sc;
1975	struct mii_data		*mii;
1976	struct ifnet		*ifp;
1977
1978	sc = xsc;
1979	ifp = sc->rl_ifp;
1980
1981	RL_LOCK_ASSERT(sc);
1982
1983	re_watchdog(sc);
1984
1985	mii = device_get_softc(sc->rl_miibus);
1986	mii_tick(mii);
1987	if (sc->rl_link) {
1988		if (!(mii->mii_media_status & IFM_ACTIVE))
1989			sc->rl_link = 0;
1990	} else {
1991		if (mii->mii_media_status & IFM_ACTIVE &&
1992		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1993			sc->rl_link = 1;
1994			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1995				taskqueue_enqueue_fast(taskqueue_fast,
1996				    &sc->rl_txtask);
1997		}
1998	}
1999
2000	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2001}
2002
2003#ifdef DEVICE_POLLING
2004static void
2005re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2006{
2007	struct rl_softc *sc = ifp->if_softc;
2008
2009	RL_LOCK(sc);
2010	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2011		re_poll_locked(ifp, cmd, count);
2012	RL_UNLOCK(sc);
2013}
2014
2015static void
2016re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2017{
2018	struct rl_softc *sc = ifp->if_softc;
2019
2020	RL_LOCK_ASSERT(sc);
2021
2022	sc->rxcycles = count;
2023	re_rxeof(sc);
2024	re_txeof(sc);
2025
2026	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2027		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2028
2029	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2030		u_int16_t       status;
2031
2032		status = CSR_READ_2(sc, RL_ISR);
2033		if (status == 0xffff)
2034			return;
2035		if (status)
2036			CSR_WRITE_2(sc, RL_ISR, status);
2037
2038		/*
2039		 * XXX check behaviour on receiver stalls.
2040		 */
2041
2042		if (status & RL_ISR_SYSTEM_ERR) {
2043			re_reset(sc);
2044			re_init_locked(sc);
2045		}
2046	}
2047}
2048#endif /* DEVICE_POLLING */
2049
2050static int
2051re_intr(arg)
2052	void			*arg;
2053{
2054	struct rl_softc		*sc;
2055	uint16_t		status;
2056
2057	sc = arg;
2058
2059	status = CSR_READ_2(sc, RL_ISR);
2060	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2061                return (FILTER_STRAY);
2062	CSR_WRITE_2(sc, RL_IMR, 0);
2063
2064	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2065
2066	return (FILTER_HANDLED);
2067}
2068
2069static void
2070re_int_task(arg, npending)
2071	void			*arg;
2072	int			npending;
2073{
2074	struct rl_softc		*sc;
2075	struct ifnet		*ifp;
2076	u_int16_t		status;
2077	int			rval = 0;
2078
2079	sc = arg;
2080	ifp = sc->rl_ifp;
2081
2082	RL_LOCK(sc);
2083
2084	status = CSR_READ_2(sc, RL_ISR);
2085        CSR_WRITE_2(sc, RL_ISR, status);
2086
2087	if (sc->suspended ||
2088	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2089		RL_UNLOCK(sc);
2090		return;
2091	}
2092
2093#ifdef DEVICE_POLLING
2094	if  (ifp->if_capenable & IFCAP_POLLING) {
2095		RL_UNLOCK(sc);
2096		return;
2097	}
2098#endif
2099
2100	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2101		rval = re_rxeof(sc);
2102
2103#ifdef RE_TX_MODERATION
2104	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2105#else
2106	if (status & (RL_ISR_TX_OK|
2107#endif
2108	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2109		re_txeof(sc);
2110
2111	if (status & RL_ISR_SYSTEM_ERR) {
2112		re_reset(sc);
2113		re_init_locked(sc);
2114	}
2115
2116	if (status & RL_ISR_LINKCHG) {
2117		callout_stop(&sc->rl_stat_callout);
2118		re_tick(sc);
2119	}
2120
2121	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2122		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2123
2124	RL_UNLOCK(sc);
2125
2126        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2127		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2128		return;
2129	}
2130
2131	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2132
2133	return;
2134}
2135
2136static int
2137re_encap(sc, m_head)
2138	struct rl_softc		*sc;
2139	struct mbuf		**m_head;
2140{
2141	struct rl_txdesc	*txd, *txd_last;
2142	bus_dma_segment_t	segs[RL_NTXSEGS];
2143	bus_dmamap_t		map;
2144	struct mbuf		*m_new;
2145	struct rl_desc		*desc;
2146	int			nsegs, prod;
2147	int			i, error, ei, si;
2148	int			padlen;
2149	uint32_t		cmdstat, csum_flags;
2150
2151	RL_LOCK_ASSERT(sc);
2152	M_ASSERTPKTHDR((*m_head));
2153
2154	/*
2155	 * With some of the RealTek chips, using the checksum offload
2156	 * support in conjunction with the autopadding feature results
2157	 * in the transmission of corrupt frames. For example, if we
2158	 * need to send a really small IP fragment that's less than 60
2159	 * bytes in size, and IP header checksumming is enabled, the
2160	 * resulting ethernet frame that appears on the wire will
2161	 * have garbled payload. To work around this, if TX checksum
2162	 * offload is enabled, we always manually pad short frames out
2163	 * to the minimum ethernet frame size.
2164	 *
2165	 * Note: this appears unnecessary for TCP, and doing it for TCP
2166	 * with PCIe adapters seems to result in bad checksums.
2167	 */
2168	if ((*m_head)->m_pkthdr.csum_flags & (CSUM_IP | CSUM_UDP) &&
2169	    ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2170            (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN) {
2171		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2172		if (M_WRITABLE(*m_head) == 0) {
2173			/* Get a writable copy. */
2174			m_new = m_dup(*m_head, M_DONTWAIT);
2175			m_freem(*m_head);
2176			if (m_new == NULL) {
2177				*m_head = NULL;
2178				return (ENOBUFS);
2179			}
2180			*m_head = m_new;
2181		}
2182		if ((*m_head)->m_next != NULL ||
2183		    M_TRAILINGSPACE(*m_head) < padlen) {
2184			m_new = m_defrag(*m_head, M_DONTWAIT);
2185			if (m_new == NULL) {
2186				m_freem(*m_head);
2187				*m_head = NULL;
2188				return (ENOBUFS);
2189			}
2190		} else
2191			m_new = *m_head;
2192
2193		/*
2194		 * Manually pad short frames, and zero the pad space
2195		 * to avoid leaking data.
2196		 */
2197		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2198		m_new->m_pkthdr.len += padlen;
2199		m_new->m_len = m_new->m_pkthdr.len;
2200		*m_head = m_new;
2201	}
2202
2203	prod = sc->rl_ldata.rl_tx_prodidx;
2204	txd = &sc->rl_ldata.rl_tx_desc[prod];
2205	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2206	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2207	if (error == EFBIG) {
2208		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2209		if (m_new == NULL) {
2210			m_freem(*m_head);
2211			*m_head = NULL;
2212			return (ENOBUFS);
2213		}
2214		*m_head = m_new;
2215		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2216		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2217		if (error != 0) {
2218			m_freem(*m_head);
2219			*m_head = NULL;
2220			return (error);
2221		}
2222	} else if (error != 0)
2223		return (error);
2224	if (nsegs == 0) {
2225		m_freem(*m_head);
2226		*m_head = NULL;
2227		return (EIO);
2228	}
2229
2230	/* Check for number of available descriptors. */
2231	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2232		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2233		return (ENOBUFS);
2234	}
2235
2236	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2237	    BUS_DMASYNC_PREWRITE);
2238
2239	/*
2240	 * Set up checksum offload. Note: checksum offload bits must
2241	 * appear in all descriptors of a multi-descriptor transmit
2242	 * attempt. This is according to testing done with an 8169
2243	 * chip. This is a requirement.
2244	 */
2245	csum_flags = 0;
2246	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2247		csum_flags = RL_TDESC_CMD_LGSEND |
2248		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2249		    RL_TDESC_CMD_MSSVAL_SHIFT);
2250	else {
2251		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2252			csum_flags |= RL_TDESC_CMD_IPCSUM;
2253		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2254			csum_flags |= RL_TDESC_CMD_TCPCSUM;
2255		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2256			csum_flags |= RL_TDESC_CMD_UDPCSUM;
2257	}
2258
2259	si = prod;
2260	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2261		desc = &sc->rl_ldata.rl_tx_list[prod];
2262		desc->rl_vlanctl = 0;
2263		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2264		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2265		cmdstat = segs[i].ds_len;
2266		if (i != 0)
2267			cmdstat |= RL_TDESC_CMD_OWN;
2268		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2269			cmdstat |= RL_TDESC_CMD_EOR;
2270		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2271		sc->rl_ldata.rl_tx_free--;
2272	}
2273	/* Update producer index. */
2274	sc->rl_ldata.rl_tx_prodidx = prod;
2275
2276	/* Set EOF on the last descriptor. */
2277	ei = RL_TX_DESC_PRV(sc, prod);
2278	desc = &sc->rl_ldata.rl_tx_list[ei];
2279	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2280
2281	desc = &sc->rl_ldata.rl_tx_list[si];
2282	/*
2283	 * Set up hardware VLAN tagging. Note: vlan tag info must
2284	 * appear in the first descriptor of a multi-descriptor
2285	 * transmission attempt.
2286	 */
2287	if ((*m_head)->m_flags & M_VLANTAG)
2288		desc->rl_vlanctl =
2289		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2290		    RL_TDESC_VLANCTL_TAG);
2291	/* Set SOF and transfer ownership of packet to the chip. */
2292	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2293
2294	/*
2295	 * Insure that the map for this transmission
2296	 * is placed at the array index of the last descriptor
2297	 * in this chain.  (Swap last and first dmamaps.)
2298	 */
2299	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2300	map = txd->tx_dmamap;
2301	txd->tx_dmamap = txd_last->tx_dmamap;
2302	txd_last->tx_dmamap = map;
2303	txd_last->tx_m = *m_head;
2304
2305	return (0);
2306}
2307
2308static void
2309re_tx_task(arg, npending)
2310	void			*arg;
2311	int			npending;
2312{
2313	struct ifnet		*ifp;
2314
2315	ifp = arg;
2316	re_start(ifp);
2317
2318	return;
2319}
2320
2321/*
2322 * Main transmit routine for C+ and gigE NICs.
2323 */
2324static void
2325re_start(ifp)
2326	struct ifnet		*ifp;
2327{
2328	struct rl_softc		*sc;
2329	struct mbuf		*m_head;
2330	int			queued;
2331
2332	sc = ifp->if_softc;
2333
2334	RL_LOCK(sc);
2335
2336	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2337	    IFF_DRV_RUNNING || sc->rl_link == 0) {
2338		RL_UNLOCK(sc);
2339		return;
2340	}
2341
2342	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2343	    sc->rl_ldata.rl_tx_free > 1;) {
2344		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2345		if (m_head == NULL)
2346			break;
2347
2348		if (re_encap(sc, &m_head) != 0) {
2349			if (m_head == NULL)
2350				break;
2351			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2352			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2353			break;
2354		}
2355
2356		/*
2357		 * If there's a BPF listener, bounce a copy of this frame
2358		 * to him.
2359		 */
2360		ETHER_BPF_MTAP(ifp, m_head);
2361
2362		queued++;
2363	}
2364
2365	if (queued == 0) {
2366#ifdef RE_TX_MODERATION
2367		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2368			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2369#endif
2370		RL_UNLOCK(sc);
2371		return;
2372	}
2373
2374	/* Flush the TX descriptors */
2375
2376	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2377	    sc->rl_ldata.rl_tx_list_map,
2378	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2379
2380	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2381
2382#ifdef RE_TX_MODERATION
2383	/*
2384	 * Use the countdown timer for interrupt moderation.
2385	 * 'TX done' interrupts are disabled. Instead, we reset the
2386	 * countdown timer, which will begin counting until it hits
2387	 * the value in the TIMERINT register, and then trigger an
2388	 * interrupt. Each time we write to the TIMERCNT register,
2389	 * the timer count is reset to 0.
2390	 */
2391	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2392#endif
2393
2394	/*
2395	 * Set a timeout in case the chip goes out to lunch.
2396	 */
2397	sc->rl_watchdog_timer = 5;
2398
2399	RL_UNLOCK(sc);
2400
2401	return;
2402}
2403
2404static void
2405re_init(xsc)
2406	void			*xsc;
2407{
2408	struct rl_softc		*sc = xsc;
2409
2410	RL_LOCK(sc);
2411	re_init_locked(sc);
2412	RL_UNLOCK(sc);
2413}
2414
2415static void
2416re_init_locked(sc)
2417	struct rl_softc		*sc;
2418{
2419	struct ifnet		*ifp = sc->rl_ifp;
2420	struct mii_data		*mii;
2421	u_int32_t		rxcfg = 0;
2422	union {
2423		uint32_t align_dummy;
2424		u_char eaddr[ETHER_ADDR_LEN];
2425        } eaddr;
2426
2427	RL_LOCK_ASSERT(sc);
2428
2429	mii = device_get_softc(sc->rl_miibus);
2430
2431	/*
2432	 * Cancel pending I/O and free all RX/TX buffers.
2433	 */
2434	re_stop(sc);
2435
2436	/*
2437	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2438	 * RX checksum offload. We must configure the C+ register
2439	 * before all others.
2440	 */
2441	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2442	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2443	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2444
2445	/*
2446	 * Init our MAC address.  Even though the chipset
2447	 * documentation doesn't mention it, we need to enter "Config
2448	 * register write enable" mode to modify the ID registers.
2449	 */
2450	/* Copy MAC address on stack to align. */
2451	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2452	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2453	CSR_WRITE_4(sc, RL_IDR0,
2454	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2455	CSR_WRITE_4(sc, RL_IDR4,
2456	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2457	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2458
2459	/*
2460	 * For C+ mode, initialize the RX descriptors and mbufs.
2461	 */
2462	re_rx_list_init(sc);
2463	re_tx_list_init(sc);
2464
2465	/*
2466	 * Load the addresses of the RX and TX lists into the chip.
2467	 */
2468
2469	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2470	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2471	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2472	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2473
2474	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2475	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2476	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2477	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2478
2479	/*
2480	 * Enable transmit and receive.
2481	 */
2482	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2483
2484	/*
2485	 * Set the initial TX and RX configuration.
2486	 */
2487	if (sc->rl_testmode) {
2488		if (sc->rl_type == RL_8169)
2489			CSR_WRITE_4(sc, RL_TXCFG,
2490			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2491		else
2492			CSR_WRITE_4(sc, RL_TXCFG,
2493			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2494	} else
2495		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2496
2497	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2498
2499	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2500
2501	/* Set the individual bit to receive frames for this host only. */
2502	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2503	rxcfg |= RL_RXCFG_RX_INDIV;
2504
2505	/* If we want promiscuous mode, set the allframes bit. */
2506	if (ifp->if_flags & IFF_PROMISC)
2507		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2508	else
2509		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2510	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2511
2512	/*
2513	 * Set capture broadcast bit to capture broadcast frames.
2514	 */
2515	if (ifp->if_flags & IFF_BROADCAST)
2516		rxcfg |= RL_RXCFG_RX_BROAD;
2517	else
2518		rxcfg &= ~RL_RXCFG_RX_BROAD;
2519	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2520
2521	/*
2522	 * Program the multicast filter, if necessary.
2523	 */
2524	re_setmulti(sc);
2525
2526#ifdef DEVICE_POLLING
2527	/*
2528	 * Disable interrupts if we are polling.
2529	 */
2530	if (ifp->if_capenable & IFCAP_POLLING)
2531		CSR_WRITE_2(sc, RL_IMR, 0);
2532	else	/* otherwise ... */
2533#endif
2534
2535	/*
2536	 * Enable interrupts.
2537	 */
2538	if (sc->rl_testmode)
2539		CSR_WRITE_2(sc, RL_IMR, 0);
2540	else
2541		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2542	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2543
2544	/* Set initial TX threshold */
2545	sc->rl_txthresh = RL_TX_THRESH_INIT;
2546
2547	/* Start RX/TX process. */
2548	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2549#ifdef notdef
2550	/* Enable receiver and transmitter. */
2551	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2552#endif
2553
2554#ifdef RE_TX_MODERATION
2555	/*
2556	 * Initialize the timer interrupt register so that
2557	 * a timer interrupt will be generated once the timer
2558	 * reaches a certain number of ticks. The timer is
2559	 * reloaded on each transmit. This gives us TX interrupt
2560	 * moderation, which dramatically improves TX frame rate.
2561	 */
2562	if (sc->rl_type == RL_8169)
2563		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2564	else
2565		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2566#endif
2567
2568	/*
2569	 * For 8169 gigE NICs, set the max allowed RX packet
2570	 * size so we can receive jumbo frames.
2571	 */
2572	if (sc->rl_type == RL_8169)
2573		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2574
2575	if (sc->rl_testmode)
2576		return;
2577
2578	mii_mediachg(mii);
2579
2580	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2581
2582	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2583	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2584
2585	sc->rl_link = 0;
2586	sc->rl_watchdog_timer = 0;
2587	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2588}
2589
2590/*
2591 * Set media options.
2592 */
2593static int
2594re_ifmedia_upd(ifp)
2595	struct ifnet		*ifp;
2596{
2597	struct rl_softc		*sc;
2598	struct mii_data		*mii;
2599
2600	sc = ifp->if_softc;
2601	mii = device_get_softc(sc->rl_miibus);
2602	RL_LOCK(sc);
2603	mii_mediachg(mii);
2604	RL_UNLOCK(sc);
2605
2606	return (0);
2607}
2608
2609/*
2610 * Report current media status.
2611 */
2612static void
2613re_ifmedia_sts(ifp, ifmr)
2614	struct ifnet		*ifp;
2615	struct ifmediareq	*ifmr;
2616{
2617	struct rl_softc		*sc;
2618	struct mii_data		*mii;
2619
2620	sc = ifp->if_softc;
2621	mii = device_get_softc(sc->rl_miibus);
2622
2623	RL_LOCK(sc);
2624	mii_pollstat(mii);
2625	RL_UNLOCK(sc);
2626	ifmr->ifm_active = mii->mii_media_active;
2627	ifmr->ifm_status = mii->mii_media_status;
2628}
2629
2630static int
2631re_ioctl(ifp, command, data)
2632	struct ifnet		*ifp;
2633	u_long			command;
2634	caddr_t			data;
2635{
2636	struct rl_softc		*sc = ifp->if_softc;
2637	struct ifreq		*ifr = (struct ifreq *) data;
2638	struct mii_data		*mii;
2639	int			error = 0;
2640
2641	switch (command) {
2642	case SIOCSIFMTU:
2643		RL_LOCK(sc);
2644		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2645			error = EINVAL;
2646		ifp->if_mtu = ifr->ifr_mtu;
2647		RL_UNLOCK(sc);
2648		break;
2649	case SIOCSIFFLAGS:
2650		RL_LOCK(sc);
2651		if ((ifp->if_flags & IFF_UP) != 0) {
2652			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2653				if (((ifp->if_flags ^ sc->rl_if_flags)
2654				    & IFF_PROMISC) != 0)
2655					re_setmulti(sc);
2656			} else
2657				re_init_locked(sc);
2658		} else {
2659			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2660				re_stop(sc);
2661		}
2662		sc->rl_if_flags = ifp->if_flags;
2663		RL_UNLOCK(sc);
2664		break;
2665	case SIOCADDMULTI:
2666	case SIOCDELMULTI:
2667		RL_LOCK(sc);
2668		re_setmulti(sc);
2669		RL_UNLOCK(sc);
2670		break;
2671	case SIOCGIFMEDIA:
2672	case SIOCSIFMEDIA:
2673		mii = device_get_softc(sc->rl_miibus);
2674		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2675		break;
2676	case SIOCSIFCAP:
2677	    {
2678		int mask, reinit;
2679
2680		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2681		reinit = 0;
2682#ifdef DEVICE_POLLING
2683		if (mask & IFCAP_POLLING) {
2684			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2685				error = ether_poll_register(re_poll, ifp);
2686				if (error)
2687					return(error);
2688				RL_LOCK(sc);
2689				/* Disable interrupts */
2690				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2691				ifp->if_capenable |= IFCAP_POLLING;
2692				RL_UNLOCK(sc);
2693			} else {
2694				error = ether_poll_deregister(ifp);
2695				/* Enable interrupts. */
2696				RL_LOCK(sc);
2697				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2698				ifp->if_capenable &= ~IFCAP_POLLING;
2699				RL_UNLOCK(sc);
2700			}
2701		}
2702#endif /* DEVICE_POLLING */
2703		if (mask & IFCAP_HWCSUM) {
2704			ifp->if_capenable ^= IFCAP_HWCSUM;
2705			if (ifp->if_capenable & IFCAP_TXCSUM)
2706				ifp->if_hwassist |= RE_CSUM_FEATURES;
2707			else
2708				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2709			reinit = 1;
2710		}
2711		if (mask & IFCAP_VLAN_HWTAGGING) {
2712			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2713			reinit = 1;
2714		}
2715		if (mask & IFCAP_TSO4) {
2716			ifp->if_capenable ^= IFCAP_TSO4;
2717			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2718			    (IFCAP_TSO4 & ifp->if_capabilities))
2719				ifp->if_hwassist |= CSUM_TSO;
2720			else
2721				ifp->if_hwassist &= ~CSUM_TSO;
2722		}
2723		if ((mask & IFCAP_WOL) != 0 &&
2724		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2725			if ((mask & IFCAP_WOL_UCAST) != 0)
2726				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2727			if ((mask & IFCAP_WOL_MCAST) != 0)
2728				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2729			if ((mask & IFCAP_WOL_MAGIC) != 0)
2730				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2731		}
2732		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2733			re_init(sc);
2734		VLAN_CAPABILITIES(ifp);
2735	    }
2736		break;
2737	default:
2738		error = ether_ioctl(ifp, command, data);
2739		break;
2740	}
2741
2742	return (error);
2743}
2744
2745static void
2746re_watchdog(sc)
2747	struct rl_softc		*sc;
2748{
2749
2750	RL_LOCK_ASSERT(sc);
2751
2752	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2753		return;
2754
2755	device_printf(sc->rl_dev, "watchdog timeout\n");
2756	sc->rl_ifp->if_oerrors++;
2757
2758	re_txeof(sc);
2759	re_rxeof(sc);
2760	re_init_locked(sc);
2761}
2762
2763/*
2764 * Stop the adapter and free any mbufs allocated to the
2765 * RX and TX lists.
2766 */
2767static void
2768re_stop(sc)
2769	struct rl_softc		*sc;
2770{
2771	register int		i;
2772	struct ifnet		*ifp;
2773	struct rl_txdesc	*txd;
2774	struct rl_rxdesc	*rxd;
2775
2776	RL_LOCK_ASSERT(sc);
2777
2778	ifp = sc->rl_ifp;
2779
2780	sc->rl_watchdog_timer = 0;
2781	callout_stop(&sc->rl_stat_callout);
2782	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2783
2784	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2785	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2786	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2787
2788	if (sc->rl_head != NULL) {
2789		m_freem(sc->rl_head);
2790		sc->rl_head = sc->rl_tail = NULL;
2791	}
2792
2793	/* Free the TX list buffers. */
2794
2795	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2796		txd = &sc->rl_ldata.rl_tx_desc[i];
2797		if (txd->tx_m != NULL) {
2798			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2799			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2800			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2801			    txd->tx_dmamap);
2802			m_freem(txd->tx_m);
2803			txd->tx_m = NULL;
2804		}
2805	}
2806
2807	/* Free the RX list buffers. */
2808
2809	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2810		rxd = &sc->rl_ldata.rl_rx_desc[i];
2811		if (rxd->rx_m != NULL) {
2812			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2813			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2814			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2815			    rxd->rx_dmamap);
2816			m_freem(rxd->rx_m);
2817			rxd->rx_m = NULL;
2818		}
2819	}
2820}
2821
2822/*
2823 * Device suspend routine.  Stop the interface and save some PCI
2824 * settings in case the BIOS doesn't restore them properly on
2825 * resume.
2826 */
2827static int
2828re_suspend(dev)
2829	device_t		dev;
2830{
2831	struct rl_softc		*sc;
2832
2833	sc = device_get_softc(dev);
2834
2835	RL_LOCK(sc);
2836	re_stop(sc);
2837	re_setwol(sc);
2838	sc->suspended = 1;
2839	RL_UNLOCK(sc);
2840
2841	return (0);
2842}
2843
2844/*
2845 * Device resume routine.  Restore some PCI settings in case the BIOS
2846 * doesn't, re-enable busmastering, and restart the interface if
2847 * appropriate.
2848 */
2849static int
2850re_resume(dev)
2851	device_t		dev;
2852{
2853	struct rl_softc		*sc;
2854	struct ifnet		*ifp;
2855
2856	sc = device_get_softc(dev);
2857
2858	RL_LOCK(sc);
2859
2860	ifp = sc->rl_ifp;
2861
2862	/* reinitialize interface if necessary */
2863	if (ifp->if_flags & IFF_UP)
2864		re_init_locked(sc);
2865
2866	/*
2867	 * Clear WOL matching such that normal Rx filtering
2868	 * wouldn't interfere with WOL patterns.
2869	 */
2870	re_clrwol(sc);
2871	sc->suspended = 0;
2872	RL_UNLOCK(sc);
2873
2874	return (0);
2875}
2876
2877/*
2878 * Stop all chip I/O so that the kernel's probe routines don't
2879 * get confused by errant DMAs when rebooting.
2880 */
2881static int
2882re_shutdown(dev)
2883	device_t		dev;
2884{
2885	struct rl_softc		*sc;
2886
2887	sc = device_get_softc(dev);
2888
2889	RL_LOCK(sc);
2890	re_stop(sc);
2891	/*
2892	 * Mark interface as down since otherwise we will panic if
2893	 * interrupt comes in later on, which can happen in some
2894	 * cases.
2895	 */
2896	sc->rl_ifp->if_flags &= ~IFF_UP;
2897	re_setwol(sc);
2898	RL_UNLOCK(sc);
2899
2900	return (0);
2901}
2902
2903static void
2904re_setwol(sc)
2905	struct rl_softc		*sc;
2906{
2907	struct ifnet		*ifp;
2908	int			pmc;
2909	uint16_t		pmstat;
2910	uint8_t			v;
2911
2912	RL_LOCK_ASSERT(sc);
2913
2914	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2915		return;
2916
2917	ifp = sc->rl_ifp;
2918	/* Enable config register write. */
2919	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2920
2921	/* Enable PME. */
2922	v = CSR_READ_1(sc, RL_CFG1);
2923	v &= ~RL_CFG1_PME;
2924	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2925		v |= RL_CFG1_PME;
2926	CSR_WRITE_1(sc, RL_CFG1, v);
2927
2928	v = CSR_READ_1(sc, RL_CFG3);
2929	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2930	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2931		v |= RL_CFG3_WOL_MAGIC;
2932	CSR_WRITE_1(sc, RL_CFG3, v);
2933
2934	/* Config register write done. */
2935	CSR_WRITE_1(sc, RL_EECMD, 0);
2936
2937	v = CSR_READ_1(sc, RL_CFG5);
2938	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2939	v &= ~RL_CFG5_WOL_LANWAKE;
2940	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2941		v |= RL_CFG5_WOL_UCAST;
2942	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2943		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2944	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2945		v |= RL_CFG5_WOL_LANWAKE;
2946	CSR_WRITE_1(sc, RL_CFG5, v);
2947
2948	/*
2949	 * It seems that hardware resets its link speed to 100Mbps in
2950	 * power down mode so switching to 100Mbps in driver is not
2951	 * needed.
2952	 */
2953
2954	/* Request PME if WOL is requested. */
2955	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2956	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2957	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2958		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2959	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2960}
2961
2962static void
2963re_clrwol(sc)
2964	struct rl_softc		*sc;
2965{
2966	int			pmc;
2967	uint8_t			v;
2968
2969	RL_LOCK_ASSERT(sc);
2970
2971	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2972		return;
2973
2974	/* Enable config register write. */
2975	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2976
2977	v = CSR_READ_1(sc, RL_CFG3);
2978	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2979	CSR_WRITE_1(sc, RL_CFG3, v);
2980
2981	/* Config register write done. */
2982	CSR_WRITE_1(sc, RL_EECMD, 0);
2983
2984	v = CSR_READ_1(sc, RL_CFG5);
2985	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2986	v &= ~RL_CFG5_WOL_LANWAKE;
2987	CSR_WRITE_1(sc, RL_CFG5, v);
2988}
2989