if_re.c revision 171263
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 171263 2007-07-06 00:05:12Z yongari $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149MODULE_DEPEND(re, pci, 1, 1, 1);
150MODULE_DEPEND(re, ether, 1, 1, 1);
151MODULE_DEPEND(re, miibus, 1, 1, 1);
152
153/* "device miibus" required.  See GENERIC if you get errors here. */
154#include "miibus_if.h"
155
156/*
157 * Default to using PIO access for this driver.
158 */
159#define RE_USEIOSPACE
160
161#include <pci/if_rlreg.h>
162
163#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
164
165/*
166 * Various supported device vendors/types and their names.
167 */
168static struct rl_type re_devs[] = {
169	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
170		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
171	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
172		"RealTek 8139C+ 10/100BaseTX" },
173	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
174		"RealTek 8101E PCIe 10/100baseTX" },
175	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
176		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
177	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
178		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
180		"RealTek 8169 Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
182		"RealTek 8169S Single-chip Gigabit Ethernet" },
183	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
184		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC,
186		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
188		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
190		"RealTek 8110S Single-chip Gigabit Ethernet" },
191	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
192		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
193	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
194		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
195	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
196		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
197	{ 0, 0, 0, NULL }
198};
199
200static struct rl_hwrev re_hwrevs[] = {
201	{ RL_HWREV_8139, RL_8139,  "" },
202	{ RL_HWREV_8139A, RL_8139, "A" },
203	{ RL_HWREV_8139AG, RL_8139, "A-G" },
204	{ RL_HWREV_8139B, RL_8139, "B" },
205	{ RL_HWREV_8130, RL_8139, "8130" },
206	{ RL_HWREV_8139C, RL_8139, "C" },
207	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
208	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
209	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
210	{ RL_HWREV_8169, RL_8169, "8169"},
211	{ RL_HWREV_8169S, RL_8169, "8169S"},
212	{ RL_HWREV_8110S, RL_8169, "8110S"},
213	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
214	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
215	{ RL_HWREV_8100, RL_8139, "8100"},
216	{ RL_HWREV_8101, RL_8139, "8101"},
217	{ RL_HWREV_8100E, RL_8169, "8100E"},
218	{ RL_HWREV_8101E, RL_8169, "8101E"},
219	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
220	{ 0, 0, NULL }
221};
222
223static int re_probe		(device_t);
224static int re_attach		(device_t);
225static int re_detach		(device_t);
226
227static int re_encap		(struct rl_softc *, struct mbuf **, int *);
228
229static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
230static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
231				    bus_size_t, int);
232static int re_allocmem		(device_t, struct rl_softc *);
233static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
234static int re_rx_list_init	(struct rl_softc *);
235static int re_tx_list_init	(struct rl_softc *);
236#ifdef RE_FIXUP_RX
237static __inline void re_fixup_rx
238				(struct mbuf *);
239#endif
240static int re_rxeof		(struct rl_softc *);
241static void re_txeof		(struct rl_softc *);
242#ifdef DEVICE_POLLING
243static void re_poll		(struct ifnet *, enum poll_cmd, int);
244static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
245#endif
246static int re_intr		(void *);
247static void re_tick		(void *);
248static void re_tx_task		(void *, int);
249static void re_int_task		(void *, int);
250static void re_start		(struct ifnet *);
251static int re_ioctl		(struct ifnet *, u_long, caddr_t);
252static void re_init		(void *);
253static void re_init_locked	(struct rl_softc *);
254static void re_stop		(struct rl_softc *);
255static void re_watchdog		(struct rl_softc *);
256static int re_suspend		(device_t);
257static int re_resume		(device_t);
258static void re_shutdown		(device_t);
259static int re_ifmedia_upd	(struct ifnet *);
260static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
261
262static void re_eeprom_putbyte	(struct rl_softc *, int);
263static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
264static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
265static int re_gmii_readreg	(device_t, int, int);
266static int re_gmii_writereg	(device_t, int, int, int);
267
268static int re_miibus_readreg	(device_t, int, int);
269static int re_miibus_writereg	(device_t, int, int, int);
270static void re_miibus_statchg	(device_t);
271
272static void re_setmulti		(struct rl_softc *);
273static void re_reset		(struct rl_softc *);
274
275#ifdef RE_DIAG
276static int re_diag		(struct rl_softc *);
277#endif
278
279#ifdef RE_USEIOSPACE
280#define RL_RES			SYS_RES_IOPORT
281#define RL_RID			RL_PCI_LOIO
282#else
283#define RL_RES			SYS_RES_MEMORY
284#define RL_RID			RL_PCI_LOMEM
285#endif
286
287static device_method_t re_methods[] = {
288	/* Device interface */
289	DEVMETHOD(device_probe,		re_probe),
290	DEVMETHOD(device_attach,	re_attach),
291	DEVMETHOD(device_detach,	re_detach),
292	DEVMETHOD(device_suspend,	re_suspend),
293	DEVMETHOD(device_resume,	re_resume),
294	DEVMETHOD(device_shutdown,	re_shutdown),
295
296	/* bus interface */
297	DEVMETHOD(bus_print_child,	bus_generic_print_child),
298	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
299
300	/* MII interface */
301	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
302	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
303	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
304
305	{ 0, 0 }
306};
307
308static driver_t re_driver = {
309	"re",
310	re_methods,
311	sizeof(struct rl_softc)
312};
313
314static devclass_t re_devclass;
315
316DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
317DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
318DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
319
320#define EE_SET(x)					\
321	CSR_WRITE_1(sc, RL_EECMD,			\
322		CSR_READ_1(sc, RL_EECMD) | x)
323
324#define EE_CLR(x)					\
325	CSR_WRITE_1(sc, RL_EECMD,			\
326		CSR_READ_1(sc, RL_EECMD) & ~x)
327
328/*
329 * Send a read command and address to the EEPROM, check for ACK.
330 */
331static void
332re_eeprom_putbyte(sc, addr)
333	struct rl_softc		*sc;
334	int			addr;
335{
336	register int		d, i;
337
338	d = addr | (RL_9346_READ << sc->rl_eewidth);
339
340	/*
341	 * Feed in each bit and strobe the clock.
342	 */
343
344	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
345		if (d & i) {
346			EE_SET(RL_EE_DATAIN);
347		} else {
348			EE_CLR(RL_EE_DATAIN);
349		}
350		DELAY(100);
351		EE_SET(RL_EE_CLK);
352		DELAY(150);
353		EE_CLR(RL_EE_CLK);
354		DELAY(100);
355	}
356
357	return;
358}
359
360/*
361 * Read a word of data stored in the EEPROM at address 'addr.'
362 */
363static void
364re_eeprom_getword(sc, addr, dest)
365	struct rl_softc		*sc;
366	int			addr;
367	u_int16_t		*dest;
368{
369	register int		i;
370	u_int16_t		word = 0;
371
372	/*
373	 * Send address of word we want to read.
374	 */
375	re_eeprom_putbyte(sc, addr);
376
377	/*
378	 * Start reading bits from EEPROM.
379	 */
380	for (i = 0x8000; i; i >>= 1) {
381		EE_SET(RL_EE_CLK);
382		DELAY(100);
383		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
384			word |= i;
385		EE_CLR(RL_EE_CLK);
386		DELAY(100);
387	}
388
389	*dest = word;
390
391	return;
392}
393
394/*
395 * Read a sequence of words from the EEPROM.
396 */
397static void
398re_read_eeprom(sc, dest, off, cnt)
399	struct rl_softc		*sc;
400	caddr_t			dest;
401	int			off;
402	int			cnt;
403{
404	int			i;
405	u_int16_t		word = 0, *ptr;
406
407	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
408
409        DELAY(100);
410
411	for (i = 0; i < cnt; i++) {
412		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
413		re_eeprom_getword(sc, off + i, &word);
414		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
415		ptr = (u_int16_t *)(dest + (i * 2));
416                *ptr = word;
417	}
418
419	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
420
421	return;
422}
423
424static int
425re_gmii_readreg(dev, phy, reg)
426	device_t		dev;
427	int			phy, reg;
428{
429	struct rl_softc		*sc;
430	u_int32_t		rval;
431	int			i;
432
433	if (phy != 1)
434		return (0);
435
436	sc = device_get_softc(dev);
437
438	/* Let the rgephy driver read the GMEDIASTAT register */
439
440	if (reg == RL_GMEDIASTAT) {
441		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
442		return (rval);
443	}
444
445	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
446	DELAY(1000);
447
448	for (i = 0; i < RL_TIMEOUT; i++) {
449		rval = CSR_READ_4(sc, RL_PHYAR);
450		if (rval & RL_PHYAR_BUSY)
451			break;
452		DELAY(100);
453	}
454
455	if (i == RL_TIMEOUT) {
456		device_printf(sc->rl_dev, "PHY read failed\n");
457		return (0);
458	}
459
460	return (rval & RL_PHYAR_PHYDATA);
461}
462
463static int
464re_gmii_writereg(dev, phy, reg, data)
465	device_t		dev;
466	int			phy, reg, data;
467{
468	struct rl_softc		*sc;
469	u_int32_t		rval;
470	int			i;
471
472	sc = device_get_softc(dev);
473
474	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
475	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
476	DELAY(1000);
477
478	for (i = 0; i < RL_TIMEOUT; i++) {
479		rval = CSR_READ_4(sc, RL_PHYAR);
480		if (!(rval & RL_PHYAR_BUSY))
481			break;
482		DELAY(100);
483	}
484
485	if (i == RL_TIMEOUT) {
486		device_printf(sc->rl_dev, "PHY write failed\n");
487		return (0);
488	}
489
490	return (0);
491}
492
493static int
494re_miibus_readreg(dev, phy, reg)
495	device_t		dev;
496	int			phy, reg;
497{
498	struct rl_softc		*sc;
499	u_int16_t		rval = 0;
500	u_int16_t		re8139_reg = 0;
501
502	sc = device_get_softc(dev);
503
504	if (sc->rl_type == RL_8169) {
505		rval = re_gmii_readreg(dev, phy, reg);
506		return (rval);
507	}
508
509	/* Pretend the internal PHY is only at address 0 */
510	if (phy) {
511		return (0);
512	}
513	switch (reg) {
514	case MII_BMCR:
515		re8139_reg = RL_BMCR;
516		break;
517	case MII_BMSR:
518		re8139_reg = RL_BMSR;
519		break;
520	case MII_ANAR:
521		re8139_reg = RL_ANAR;
522		break;
523	case MII_ANER:
524		re8139_reg = RL_ANER;
525		break;
526	case MII_ANLPAR:
527		re8139_reg = RL_LPAR;
528		break;
529	case MII_PHYIDR1:
530	case MII_PHYIDR2:
531		return (0);
532	/*
533	 * Allow the rlphy driver to read the media status
534	 * register. If we have a link partner which does not
535	 * support NWAY, this is the register which will tell
536	 * us the results of parallel detection.
537	 */
538	case RL_MEDIASTAT:
539		rval = CSR_READ_1(sc, RL_MEDIASTAT);
540		return (rval);
541	default:
542		device_printf(sc->rl_dev, "bad phy register\n");
543		return (0);
544	}
545	rval = CSR_READ_2(sc, re8139_reg);
546	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
547		/* 8139C+ has different bit layout. */
548		rval &= ~(BMCR_LOOP | BMCR_ISO);
549	}
550	return (rval);
551}
552
553static int
554re_miibus_writereg(dev, phy, reg, data)
555	device_t		dev;
556	int			phy, reg, data;
557{
558	struct rl_softc		*sc;
559	u_int16_t		re8139_reg = 0;
560	int			rval = 0;
561
562	sc = device_get_softc(dev);
563
564	if (sc->rl_type == RL_8169) {
565		rval = re_gmii_writereg(dev, phy, reg, data);
566		return (rval);
567	}
568
569	/* Pretend the internal PHY is only at address 0 */
570	if (phy)
571		return (0);
572
573	switch (reg) {
574	case MII_BMCR:
575		re8139_reg = RL_BMCR;
576		if (sc->rl_type == RL_8139CPLUS) {
577			/* 8139C+ has different bit layout. */
578			data &= ~(BMCR_LOOP | BMCR_ISO);
579		}
580		break;
581	case MII_BMSR:
582		re8139_reg = RL_BMSR;
583		break;
584	case MII_ANAR:
585		re8139_reg = RL_ANAR;
586		break;
587	case MII_ANER:
588		re8139_reg = RL_ANER;
589		break;
590	case MII_ANLPAR:
591		re8139_reg = RL_LPAR;
592		break;
593	case MII_PHYIDR1:
594	case MII_PHYIDR2:
595		return (0);
596		break;
597	default:
598		device_printf(sc->rl_dev, "bad phy register\n");
599		return (0);
600	}
601	CSR_WRITE_2(sc, re8139_reg, data);
602	return (0);
603}
604
605static void
606re_miibus_statchg(dev)
607	device_t		dev;
608{
609
610}
611
612/*
613 * Program the 64-bit multicast hash filter.
614 */
615static void
616re_setmulti(sc)
617	struct rl_softc		*sc;
618{
619	struct ifnet		*ifp;
620	int			h = 0;
621	u_int32_t		hashes[2] = { 0, 0 };
622	struct ifmultiaddr	*ifma;
623	u_int32_t		rxfilt;
624	int			mcnt = 0;
625	u_int32_t		hwrev;
626
627	RL_LOCK_ASSERT(sc);
628
629	ifp = sc->rl_ifp;
630
631	rxfilt = CSR_READ_4(sc, RL_RXCFG);
632
633	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
634		rxfilt |= RL_RXCFG_RX_MULTI;
635		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
636		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
637		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
638		return;
639	}
640
641	/* first, zot all the existing hash bits */
642	CSR_WRITE_4(sc, RL_MAR0, 0);
643	CSR_WRITE_4(sc, RL_MAR4, 0);
644
645	/* now program new ones */
646	IF_ADDR_LOCK(ifp);
647	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
648		if (ifma->ifma_addr->sa_family != AF_LINK)
649			continue;
650		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
651		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
652		if (h < 32)
653			hashes[0] |= (1 << h);
654		else
655			hashes[1] |= (1 << (h - 32));
656		mcnt++;
657	}
658	IF_ADDR_UNLOCK(ifp);
659
660	if (mcnt)
661		rxfilt |= RL_RXCFG_RX_MULTI;
662	else
663		rxfilt &= ~RL_RXCFG_RX_MULTI;
664
665	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
666
667	/*
668	 * For some unfathomable reason, RealTek decided to reverse
669	 * the order of the multicast hash registers in the PCI Express
670	 * parts. This means we have to write the hash pattern in reverse
671	 * order for those devices.
672	 */
673
674	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
675
676	if (hwrev == RL_HWREV_8100E || hwrev == RL_HWREV_8101E ||
677	    hwrev == RL_HWREV_8168_SPIN1 || hwrev == RL_HWREV_8168_SPIN2) {
678		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
679		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
680	} else {
681		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
682		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
683	}
684}
685
686static void
687re_reset(sc)
688	struct rl_softc		*sc;
689{
690	register int		i;
691
692	RL_LOCK_ASSERT(sc);
693
694	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
695
696	for (i = 0; i < RL_TIMEOUT; i++) {
697		DELAY(10);
698		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
699			break;
700	}
701	if (i == RL_TIMEOUT)
702		device_printf(sc->rl_dev, "reset never completed!\n");
703
704	CSR_WRITE_1(sc, 0x82, 1);
705}
706
707#ifdef RE_DIAG
708
709/*
710 * The following routine is designed to test for a defect on some
711 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
712 * lines connected to the bus, however for a 32-bit only card, they
713 * should be pulled high. The result of this defect is that the
714 * NIC will not work right if you plug it into a 64-bit slot: DMA
715 * operations will be done with 64-bit transfers, which will fail
716 * because the 64-bit data lines aren't connected.
717 *
718 * There's no way to work around this (short of talking a soldering
719 * iron to the board), however we can detect it. The method we use
720 * here is to put the NIC into digital loopback mode, set the receiver
721 * to promiscuous mode, and then try to send a frame. We then compare
722 * the frame data we sent to what was received. If the data matches,
723 * then the NIC is working correctly, otherwise we know the user has
724 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
725 * slot. In the latter case, there's no way the NIC can work correctly,
726 * so we print out a message on the console and abort the device attach.
727 */
728
729static int
730re_diag(sc)
731	struct rl_softc		*sc;
732{
733	struct ifnet		*ifp = sc->rl_ifp;
734	struct mbuf		*m0;
735	struct ether_header	*eh;
736	struct rl_desc		*cur_rx;
737	u_int16_t		status;
738	u_int32_t		rxstat;
739	int			total_len, i, error = 0, phyaddr;
740	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
741	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
742
743	/* Allocate a single mbuf */
744	MGETHDR(m0, M_DONTWAIT, MT_DATA);
745	if (m0 == NULL)
746		return (ENOBUFS);
747
748	RL_LOCK(sc);
749
750	/*
751	 * Initialize the NIC in test mode. This sets the chip up
752	 * so that it can send and receive frames, but performs the
753	 * following special functions:
754	 * - Puts receiver in promiscuous mode
755	 * - Enables digital loopback mode
756	 * - Leaves interrupts turned off
757	 */
758
759	ifp->if_flags |= IFF_PROMISC;
760	sc->rl_testmode = 1;
761	re_reset(sc);
762	re_init_locked(sc);
763	sc->rl_link = 1;
764	if (sc->rl_type == RL_8169)
765		phyaddr = 1;
766	else
767		phyaddr = 0;
768
769	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
770	for (i = 0; i < RL_TIMEOUT; i++) {
771		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
772		if (!(status & BMCR_RESET))
773			break;
774	}
775
776	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
777	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
778
779	DELAY(100000);
780
781	/* Put some data in the mbuf */
782
783	eh = mtod(m0, struct ether_header *);
784	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
785	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
786	eh->ether_type = htons(ETHERTYPE_IP);
787	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
788
789	/*
790	 * Queue the packet, start transmission.
791	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
792	 */
793
794	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
795	RL_UNLOCK(sc);
796	/* XXX: re_diag must not be called when in ALTQ mode */
797	IF_HANDOFF(&ifp->if_snd, m0, ifp);
798	RL_LOCK(sc);
799	m0 = NULL;
800
801	/* Wait for it to propagate through the chip */
802
803	DELAY(100000);
804	for (i = 0; i < RL_TIMEOUT; i++) {
805		status = CSR_READ_2(sc, RL_ISR);
806		CSR_WRITE_2(sc, RL_ISR, status);
807		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
808		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
809			break;
810		DELAY(10);
811	}
812
813	if (i == RL_TIMEOUT) {
814		device_printf(sc->rl_dev,
815		    "diagnostic failed, failed to receive packet in"
816		    " loopback mode\n");
817		error = EIO;
818		goto done;
819	}
820
821	/*
822	 * The packet should have been dumped into the first
823	 * entry in the RX DMA ring. Grab it from there.
824	 */
825
826	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
827	    sc->rl_ldata.rl_rx_list_map,
828	    BUS_DMASYNC_POSTREAD);
829	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
830	    sc->rl_ldata.rl_rx_dmamap[0],
831	    BUS_DMASYNC_POSTWRITE);
832	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
833	    sc->rl_ldata.rl_rx_dmamap[0]);
834
835	m0 = sc->rl_ldata.rl_rx_mbuf[0];
836	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
837	eh = mtod(m0, struct ether_header *);
838
839	cur_rx = &sc->rl_ldata.rl_rx_list[0];
840	total_len = RL_RXBYTES(cur_rx);
841	rxstat = le32toh(cur_rx->rl_cmdstat);
842
843	if (total_len != ETHER_MIN_LEN) {
844		device_printf(sc->rl_dev,
845		    "diagnostic failed, received short packet\n");
846		error = EIO;
847		goto done;
848	}
849
850	/* Test that the received packet data matches what we sent. */
851
852	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
853	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
854	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
855		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
856		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
857		    dst, ":", src, ":", ETHERTYPE_IP);
858		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
859		    eh->ether_dhost, ":",  eh->ether_shost, ":",
860		    ntohs(eh->ether_type));
861		device_printf(sc->rl_dev, "You may have a defective 32-bit "
862		    "NIC plugged into a 64-bit PCI slot.\n");
863		device_printf(sc->rl_dev, "Please re-install the NIC in a "
864		    "32-bit slot for proper operation.\n");
865		device_printf(sc->rl_dev, "Read the re(4) man page for more "
866		    "details.\n");
867		error = EIO;
868	}
869
870done:
871	/* Turn interface off, release resources */
872
873	sc->rl_testmode = 0;
874	sc->rl_link = 0;
875	ifp->if_flags &= ~IFF_PROMISC;
876	re_stop(sc);
877	if (m0 != NULL)
878		m_freem(m0);
879
880	RL_UNLOCK(sc);
881
882	return (error);
883}
884
885#endif
886
887/*
888 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
889 * IDs against our list and return a device name if we find a match.
890 */
891static int
892re_probe(dev)
893	device_t		dev;
894{
895	struct rl_type		*t;
896	struct rl_softc		*sc;
897	int			rid;
898	u_int32_t		hwrev;
899
900	t = re_devs;
901	sc = device_get_softc(dev);
902
903	while (t->rl_name != NULL) {
904		if ((pci_get_vendor(dev) == t->rl_vid) &&
905		    (pci_get_device(dev) == t->rl_did)) {
906			/*
907			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
908			 * Rev. 2 i supported by sk(4).
909			 */
910			if ((t->rl_vid == LINKSYS_VENDORID) &&
911				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
912				(pci_get_subdevice(dev) !=
913				LINKSYS_SUBDEVICE_EG1032_REV3)) {
914				t++;
915				continue;
916			}
917
918			/*
919			 * Temporarily map the I/O space
920			 * so we can read the chip ID register.
921			 */
922			rid = RL_RID;
923			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
924			    RF_ACTIVE);
925			if (sc->rl_res == NULL) {
926				device_printf(dev,
927				    "couldn't map ports/memory\n");
928				return (ENXIO);
929			}
930			sc->rl_btag = rman_get_bustag(sc->rl_res);
931			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
932			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
933			bus_release_resource(dev, RL_RES,
934			    RL_RID, sc->rl_res);
935			if (t->rl_basetype == hwrev) {
936				device_set_desc(dev, t->rl_name);
937				return (BUS_PROBE_DEFAULT);
938			}
939		}
940		t++;
941	}
942
943	return (ENXIO);
944}
945
946/*
947 * This routine takes the segment list provided as the result of
948 * a bus_dma_map_load() operation and assigns the addresses/lengths
949 * to RealTek DMA descriptors. This can be called either by the RX
950 * code or the TX code. In the RX case, we'll probably wind up mapping
951 * at most one segment. For the TX case, there could be any number of
952 * segments since TX packets may span multiple mbufs. In either case,
953 * if the number of segments is larger than the rl_maxsegs limit
954 * specified by the caller, we abort the mapping operation. Sadly,
955 * whoever designed the buffer mapping API did not provide a way to
956 * return an error from here, so we have to fake it a bit.
957 */
958
959static void
960re_dma_map_desc(arg, segs, nseg, mapsize, error)
961	void			*arg;
962	bus_dma_segment_t	*segs;
963	int			nseg;
964	bus_size_t		mapsize;
965	int			error;
966{
967	struct rl_dmaload_arg	*ctx;
968	struct rl_desc		*d = NULL;
969	int			i = 0, idx;
970	u_int32_t		cmdstat;
971	int			totlen = 0;
972
973	if (error)
974		return;
975
976	ctx = arg;
977
978	/* Signal error to caller if there's too many segments */
979	if (nseg > ctx->rl_maxsegs) {
980		ctx->rl_maxsegs = 0;
981		return;
982	}
983
984	/*
985	 * Map the segment array into descriptors. Note that we set the
986	 * start-of-frame and end-of-frame markers for either TX or RX, but
987	 * they really only have meaning in the TX case. (In the RX case,
988	 * it's the chip that tells us where packets begin and end.)
989	 * We also keep track of the end of the ring and set the
990	 * end-of-ring bits as needed, and we set the ownership bits
991	 * in all except the very first descriptor. (The caller will
992	 * set this descriptor later when it start transmission or
993	 * reception.)
994	 */
995	idx = ctx->rl_idx;
996	for (;;) {
997		d = &ctx->rl_ring[idx];
998		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
999			ctx->rl_maxsegs = 0;
1000			return;
1001		}
1002		cmdstat = segs[i].ds_len;
1003		totlen += segs[i].ds_len;
1004		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
1005		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
1006		if (i == 0)
1007			cmdstat |= RL_TDESC_CMD_SOF;
1008		else
1009			cmdstat |= RL_TDESC_CMD_OWN;
1010		if (idx == (RL_RX_DESC_CNT - 1))
1011			cmdstat |= RL_TDESC_CMD_EOR;
1012		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
1013		i++;
1014		if (i == nseg)
1015			break;
1016		RL_DESC_INC(idx);
1017	}
1018
1019	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
1020	ctx->rl_maxsegs = nseg;
1021	ctx->rl_idx = idx;
1022}
1023
1024/*
1025 * Map a single buffer address.
1026 */
1027
1028static void
1029re_dma_map_addr(arg, segs, nseg, error)
1030	void			*arg;
1031	bus_dma_segment_t	*segs;
1032	int			nseg;
1033	int			error;
1034{
1035	bus_addr_t		*addr;
1036
1037	if (error)
1038		return;
1039
1040	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1041	addr = arg;
1042	*addr = segs->ds_addr;
1043}
1044
1045static int
1046re_allocmem(dev, sc)
1047	device_t		dev;
1048	struct rl_softc		*sc;
1049{
1050	int			error;
1051	int			nseg;
1052	int			i;
1053
1054	/*
1055	 * Allocate map for RX mbufs.
1056	 */
1057	nseg = 32;
1058	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1059	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1060	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1061	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1062	if (error) {
1063		device_printf(dev, "could not allocate dma tag\n");
1064		return (ENOMEM);
1065	}
1066
1067	/*
1068	 * Allocate map for TX descriptor list.
1069	 */
1070	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1071	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1072	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0,
1073	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1074	if (error) {
1075		device_printf(dev, "could not allocate dma tag\n");
1076		return (ENOMEM);
1077	}
1078
1079	/* Allocate DMA'able memory for the TX ring */
1080
1081	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1082	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1083	    &sc->rl_ldata.rl_tx_list_map);
1084	if (error)
1085		return (ENOMEM);
1086
1087	/* Load the map for the TX ring. */
1088
1089	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1090	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1091	     RL_TX_LIST_SZ, re_dma_map_addr,
1092	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1093
1094	/* Create DMA maps for TX buffers */
1095
1096	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1097		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1098			    &sc->rl_ldata.rl_tx_dmamap[i]);
1099		if (error) {
1100			device_printf(dev, "can't create DMA map for TX\n");
1101			return (ENOMEM);
1102		}
1103	}
1104
1105	/*
1106	 * Allocate map for RX descriptor list.
1107	 */
1108	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1109	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1110	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, 0,
1111	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1112	if (error) {
1113		device_printf(dev, "could not allocate dma tag\n");
1114		return (ENOMEM);
1115	}
1116
1117	/* Allocate DMA'able memory for the RX ring */
1118
1119	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1120	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1121	    &sc->rl_ldata.rl_rx_list_map);
1122	if (error)
1123		return (ENOMEM);
1124
1125	/* Load the map for the RX ring. */
1126
1127	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1128	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1129	     RL_RX_LIST_SZ, re_dma_map_addr,
1130	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1131
1132	/* Create DMA maps for RX buffers */
1133
1134	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1135		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1136			    &sc->rl_ldata.rl_rx_dmamap[i]);
1137		if (error) {
1138			device_printf(dev, "can't create DMA map for RX\n");
1139			return (ENOMEM);
1140		}
1141	}
1142
1143	return (0);
1144}
1145
1146/*
1147 * Attach the interface. Allocate softc structures, do ifmedia
1148 * setup and ethernet/BPF attach.
1149 */
1150static int
1151re_attach(dev)
1152	device_t		dev;
1153{
1154	u_char			eaddr[ETHER_ADDR_LEN];
1155	u_int16_t		as[ETHER_ADDR_LEN / 2];
1156	struct rl_softc		*sc;
1157	struct ifnet		*ifp;
1158	struct rl_hwrev		*hw_rev;
1159	int			hwrev;
1160	u_int16_t		re_did = 0;
1161	int			error = 0, rid, i;
1162
1163	sc = device_get_softc(dev);
1164	sc->rl_dev = dev;
1165
1166	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1167	    MTX_DEF);
1168	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1169
1170	/*
1171	 * Map control/status registers.
1172	 */
1173	pci_enable_busmaster(dev);
1174
1175	rid = RL_RID;
1176	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1177	    RF_ACTIVE);
1178
1179	if (sc->rl_res == NULL) {
1180		device_printf(dev, "couldn't map ports/memory\n");
1181		error = ENXIO;
1182		goto fail;
1183	}
1184
1185	sc->rl_btag = rman_get_bustag(sc->rl_res);
1186	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1187
1188	/* Allocate interrupt */
1189	rid = 0;
1190	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1191	    RF_SHAREABLE | RF_ACTIVE);
1192
1193	if (sc->rl_irq == NULL) {
1194		device_printf(dev, "couldn't map interrupt\n");
1195		error = ENXIO;
1196		goto fail;
1197	}
1198
1199	/* Reset the adapter. */
1200	RL_LOCK(sc);
1201	re_reset(sc);
1202	RL_UNLOCK(sc);
1203
1204	hw_rev = re_hwrevs;
1205	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1206	while (hw_rev->rl_desc != NULL) {
1207		if (hw_rev->rl_rev == hwrev) {
1208			sc->rl_type = hw_rev->rl_type;
1209			break;
1210		}
1211		hw_rev++;
1212	}
1213
1214	sc->rl_eewidth = RL_9356_ADDR_LEN;
1215	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1216	if (re_did != 0x8129)
1217	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1218
1219	/*
1220	 * Get station address from the EEPROM.
1221	 */
1222	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1223	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1224		as[i] = le16toh(as[i]);
1225	bcopy(as, eaddr, sizeof(eaddr));
1226
1227	if (sc->rl_type == RL_8169) {
1228		/* Set RX length mask */
1229		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1230		sc->rl_txstart = RL_GTXSTART;
1231	} else {
1232		/* Set RX length mask */
1233		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1234		sc->rl_txstart = RL_TXSTART;
1235	}
1236
1237	/*
1238	 * Allocate the parent bus DMA tag appropriate for PCI.
1239	 */
1240#define RL_NSEG_NEW 32
1241	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1242	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1243	    MAXBSIZE, RL_NSEG_NEW, BUS_SPACE_MAXSIZE_32BIT, 0,
1244	    NULL, NULL, &sc->rl_parent_tag);
1245	if (error)
1246		goto fail;
1247
1248	error = re_allocmem(dev, sc);
1249
1250	if (error)
1251		goto fail;
1252
1253	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1254	if (ifp == NULL) {
1255		device_printf(dev, "can not if_alloc()\n");
1256		error = ENOSPC;
1257		goto fail;
1258	}
1259
1260	/* Do MII setup */
1261	if (mii_phy_probe(dev, &sc->rl_miibus,
1262	    re_ifmedia_upd, re_ifmedia_sts)) {
1263		device_printf(dev, "MII without any phy!\n");
1264		error = ENXIO;
1265		goto fail;
1266	}
1267
1268	ifp->if_softc = sc;
1269	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1270	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1271	ifp->if_ioctl = re_ioctl;
1272	ifp->if_start = re_start;
1273	ifp->if_hwassist = RE_CSUM_FEATURES;
1274	ifp->if_capabilities = IFCAP_HWCSUM;
1275	ifp->if_capenable = ifp->if_capabilities;
1276	ifp->if_init = re_init;
1277	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1278	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1279	IFQ_SET_READY(&ifp->if_snd);
1280
1281	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1282	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1283
1284	/*
1285	 * Call MI attach routine.
1286	 */
1287	ether_ifattach(ifp, eaddr);
1288
1289	/* VLAN capability setup */
1290	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1291	if (ifp->if_capabilities & IFCAP_HWCSUM)
1292		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1293	ifp->if_capenable = ifp->if_capabilities;
1294#ifdef DEVICE_POLLING
1295	ifp->if_capabilities |= IFCAP_POLLING;
1296#endif
1297	/*
1298	 * Tell the upper layer(s) we support long frames.
1299	 * Must appear after the call to ether_ifattach() because
1300	 * ether_ifattach() sets ifi_hdrlen to the default value.
1301	 */
1302	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1303
1304#ifdef RE_DIAG
1305	/*
1306	 * Perform hardware diagnostic on the original RTL8169.
1307	 * Some 32-bit cards were incorrectly wired and would
1308	 * malfunction if plugged into a 64-bit slot.
1309	 */
1310
1311	if (hwrev == RL_HWREV_8169) {
1312		error = re_diag(sc);
1313		if (error) {
1314			device_printf(dev,
1315		    	"attach aborted due to hardware diag failure\n");
1316			ether_ifdetach(ifp);
1317			goto fail;
1318		}
1319	}
1320#endif
1321
1322	/* Hook interrupt last to avoid having to lock softc */
1323	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1324	    re_intr, NULL, sc, &sc->rl_intrhand);
1325	if (error) {
1326		device_printf(dev, "couldn't set up irq\n");
1327		ether_ifdetach(ifp);
1328	}
1329
1330fail:
1331
1332	if (error)
1333		re_detach(dev);
1334
1335	return (error);
1336}
1337
1338/*
1339 * Shutdown hardware and free up resources. This can be called any
1340 * time after the mutex has been initialized. It is called in both
1341 * the error case in attach and the normal detach case so it needs
1342 * to be careful about only freeing resources that have actually been
1343 * allocated.
1344 */
1345static int
1346re_detach(dev)
1347	device_t		dev;
1348{
1349	struct rl_softc		*sc;
1350	struct ifnet		*ifp;
1351	int			i;
1352
1353	sc = device_get_softc(dev);
1354	ifp = sc->rl_ifp;
1355	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1356
1357#ifdef DEVICE_POLLING
1358	if (ifp->if_capenable & IFCAP_POLLING)
1359		ether_poll_deregister(ifp);
1360#endif
1361	/* These should only be active if attach succeeded */
1362	if (device_is_attached(dev)) {
1363		RL_LOCK(sc);
1364#if 0
1365		sc->suspended = 1;
1366#endif
1367		re_stop(sc);
1368		RL_UNLOCK(sc);
1369		callout_drain(&sc->rl_stat_callout);
1370		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1371		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1372		/*
1373		 * Force off the IFF_UP flag here, in case someone
1374		 * still had a BPF descriptor attached to this
1375		 * interface. If they do, ether_ifdetach() will cause
1376		 * the BPF code to try and clear the promisc mode
1377		 * flag, which will bubble down to re_ioctl(),
1378		 * which will try to call re_init() again. This will
1379		 * turn the NIC back on and restart the MII ticker,
1380		 * which will panic the system when the kernel tries
1381		 * to invoke the re_tick() function that isn't there
1382		 * anymore.
1383		 */
1384		ifp->if_flags &= ~IFF_UP;
1385		ether_ifdetach(ifp);
1386	}
1387	if (sc->rl_miibus)
1388		device_delete_child(dev, sc->rl_miibus);
1389	bus_generic_detach(dev);
1390
1391	/*
1392	 * The rest is resource deallocation, so we should already be
1393	 * stopped here.
1394	 */
1395
1396	if (sc->rl_intrhand)
1397		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1398	if (ifp != NULL)
1399		if_free(ifp);
1400	if (sc->rl_irq)
1401		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1402	if (sc->rl_res)
1403		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1404
1405	/* Unload and free the RX DMA ring memory and map */
1406
1407	if (sc->rl_ldata.rl_rx_list_tag) {
1408		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1409		    sc->rl_ldata.rl_rx_list_map);
1410		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1411		    sc->rl_ldata.rl_rx_list,
1412		    sc->rl_ldata.rl_rx_list_map);
1413		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1414	}
1415
1416	/* Unload and free the TX DMA ring memory and map */
1417
1418	if (sc->rl_ldata.rl_tx_list_tag) {
1419		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1420		    sc->rl_ldata.rl_tx_list_map);
1421		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1422		    sc->rl_ldata.rl_tx_list,
1423		    sc->rl_ldata.rl_tx_list_map);
1424		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1425	}
1426
1427	/* Destroy all the RX and TX buffer maps */
1428
1429	if (sc->rl_ldata.rl_mtag) {
1430		for (i = 0; i < RL_TX_DESC_CNT; i++)
1431			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1432			    sc->rl_ldata.rl_tx_dmamap[i]);
1433		for (i = 0; i < RL_RX_DESC_CNT; i++)
1434			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1435			    sc->rl_ldata.rl_rx_dmamap[i]);
1436		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1437	}
1438
1439	/* Unload and free the stats buffer and map */
1440
1441	if (sc->rl_ldata.rl_stag) {
1442		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1443		    sc->rl_ldata.rl_rx_list_map);
1444		bus_dmamem_free(sc->rl_ldata.rl_stag,
1445		    sc->rl_ldata.rl_stats,
1446		    sc->rl_ldata.rl_smap);
1447		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1448	}
1449
1450	if (sc->rl_parent_tag)
1451		bus_dma_tag_destroy(sc->rl_parent_tag);
1452
1453	mtx_destroy(&sc->rl_mtx);
1454
1455	return (0);
1456}
1457
1458static int
1459re_newbuf(sc, idx, m)
1460	struct rl_softc		*sc;
1461	int			idx;
1462	struct mbuf		*m;
1463{
1464	struct rl_dmaload_arg	arg;
1465	struct mbuf		*n = NULL;
1466	int			error;
1467
1468	if (m == NULL) {
1469		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1470		if (n == NULL)
1471			return (ENOBUFS);
1472		m = n;
1473	} else
1474		m->m_data = m->m_ext.ext_buf;
1475
1476	m->m_len = m->m_pkthdr.len = MCLBYTES;
1477#ifdef RE_FIXUP_RX
1478	/*
1479	 * This is part of an evil trick to deal with non-x86 platforms.
1480	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1481	 * boundaries, but that will hose non-x86 machines. To get around
1482	 * this, we leave some empty space at the start of each buffer
1483	 * and for non-x86 hosts, we copy the buffer back six bytes
1484	 * to achieve word alignment. This is slightly more efficient
1485	 * than allocating a new buffer, copying the contents, and
1486	 * discarding the old buffer.
1487	 */
1488	m_adj(m, RE_ETHER_ALIGN);
1489#endif
1490	arg.rl_idx = idx;
1491	arg.rl_maxsegs = 1;
1492	arg.rl_flags = 0;
1493	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1494
1495	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1496	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1497	    &arg, BUS_DMA_NOWAIT);
1498	if (error || arg.rl_maxsegs != 1) {
1499		if (n != NULL)
1500			m_freem(n);
1501		if (arg.rl_maxsegs == 0)
1502			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1503			    sc->rl_ldata.rl_rx_dmamap[idx]);
1504		return (ENOMEM);
1505	}
1506
1507	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1508	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1509
1510	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1511	    sc->rl_ldata.rl_rx_dmamap[idx],
1512	    BUS_DMASYNC_PREREAD);
1513
1514	return (0);
1515}
1516
1517#ifdef RE_FIXUP_RX
1518static __inline void
1519re_fixup_rx(m)
1520	struct mbuf		*m;
1521{
1522	int                     i;
1523	uint16_t                *src, *dst;
1524
1525	src = mtod(m, uint16_t *);
1526	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1527
1528	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1529		*dst++ = *src++;
1530
1531	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1532
1533	return;
1534}
1535#endif
1536
1537static int
1538re_tx_list_init(sc)
1539	struct rl_softc		*sc;
1540{
1541
1542	RL_LOCK_ASSERT(sc);
1543
1544	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1545	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1546	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1547
1548	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1549	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1550	sc->rl_ldata.rl_tx_prodidx = 0;
1551	sc->rl_ldata.rl_tx_considx = 0;
1552	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1553
1554	return (0);
1555}
1556
1557static int
1558re_rx_list_init(sc)
1559	struct rl_softc		*sc;
1560{
1561	int			i;
1562
1563	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1564	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1565	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1566
1567	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1568		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1569			return (ENOBUFS);
1570	}
1571
1572	/* Flush the RX descriptors */
1573
1574	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1575	    sc->rl_ldata.rl_rx_list_map,
1576	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1577
1578	sc->rl_ldata.rl_rx_prodidx = 0;
1579	sc->rl_head = sc->rl_tail = NULL;
1580
1581	return (0);
1582}
1583
1584/*
1585 * RX handler for C+ and 8169. For the gigE chips, we support
1586 * the reception of jumbo frames that have been fragmented
1587 * across multiple 2K mbuf cluster buffers.
1588 */
1589static int
1590re_rxeof(sc)
1591	struct rl_softc		*sc;
1592{
1593	struct mbuf		*m;
1594	struct ifnet		*ifp;
1595	int			i, total_len;
1596	struct rl_desc		*cur_rx;
1597	u_int32_t		rxstat, rxvlan;
1598	int			maxpkt = 16;
1599
1600	RL_LOCK_ASSERT(sc);
1601
1602	ifp = sc->rl_ifp;
1603	i = sc->rl_ldata.rl_rx_prodidx;
1604
1605	/* Invalidate the descriptor memory */
1606
1607	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1608	    sc->rl_ldata.rl_rx_list_map,
1609	    BUS_DMASYNC_POSTREAD);
1610
1611	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) {
1612		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1613		m = sc->rl_ldata.rl_rx_mbuf[i];
1614		total_len = RL_RXBYTES(cur_rx);
1615		rxstat = le32toh(cur_rx->rl_cmdstat);
1616		rxvlan = le32toh(cur_rx->rl_vlanctl);
1617
1618		/* Invalidate the RX mbuf and unload its map */
1619
1620		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1621		    sc->rl_ldata.rl_rx_dmamap[i],
1622		    BUS_DMASYNC_POSTWRITE);
1623		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1624		    sc->rl_ldata.rl_rx_dmamap[i]);
1625
1626		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1627			m->m_len = RE_RX_DESC_BUFLEN;
1628			if (sc->rl_head == NULL)
1629				sc->rl_head = sc->rl_tail = m;
1630			else {
1631				m->m_flags &= ~M_PKTHDR;
1632				sc->rl_tail->m_next = m;
1633				sc->rl_tail = m;
1634			}
1635			re_newbuf(sc, i, NULL);
1636			RL_DESC_INC(i);
1637			continue;
1638		}
1639
1640		/*
1641		 * NOTE: for the 8139C+, the frame length field
1642		 * is always 12 bits in size, but for the gigE chips,
1643		 * it is 13 bits (since the max RX frame length is 16K).
1644		 * Unfortunately, all 32 bits in the status word
1645		 * were already used, so to make room for the extra
1646		 * length bit, RealTek took out the 'frame alignment
1647		 * error' bit and shifted the other status bits
1648		 * over one slot. The OWN, EOR, FS and LS bits are
1649		 * still in the same places. We have already extracted
1650		 * the frame length and checked the OWN bit, so rather
1651		 * than using an alternate bit mapping, we shift the
1652		 * status bits one space to the right so we can evaluate
1653		 * them using the 8169 status as though it was in the
1654		 * same format as that of the 8139C+.
1655		 */
1656		if (sc->rl_type == RL_8169)
1657			rxstat >>= 1;
1658
1659		/*
1660		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1661		 * set, but if CRC is clear, it will still be a valid frame.
1662		 */
1663		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1664		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1665			ifp->if_ierrors++;
1666			/*
1667			 * If this is part of a multi-fragment packet,
1668			 * discard all the pieces.
1669			 */
1670			if (sc->rl_head != NULL) {
1671				m_freem(sc->rl_head);
1672				sc->rl_head = sc->rl_tail = NULL;
1673			}
1674			re_newbuf(sc, i, m);
1675			RL_DESC_INC(i);
1676			continue;
1677		}
1678
1679		/*
1680		 * If allocating a replacement mbuf fails,
1681		 * reload the current one.
1682		 */
1683
1684		if (re_newbuf(sc, i, NULL)) {
1685			ifp->if_ierrors++;
1686			if (sc->rl_head != NULL) {
1687				m_freem(sc->rl_head);
1688				sc->rl_head = sc->rl_tail = NULL;
1689			}
1690			re_newbuf(sc, i, m);
1691			RL_DESC_INC(i);
1692			continue;
1693		}
1694
1695		RL_DESC_INC(i);
1696
1697		if (sc->rl_head != NULL) {
1698			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1699			if (m->m_len == 0)
1700				m->m_len = RE_RX_DESC_BUFLEN;
1701			/*
1702			 * Special case: if there's 4 bytes or less
1703			 * in this buffer, the mbuf can be discarded:
1704			 * the last 4 bytes is the CRC, which we don't
1705			 * care about anyway.
1706			 */
1707			if (m->m_len <= ETHER_CRC_LEN) {
1708				sc->rl_tail->m_len -=
1709				    (ETHER_CRC_LEN - m->m_len);
1710				m_freem(m);
1711			} else {
1712				m->m_len -= ETHER_CRC_LEN;
1713				m->m_flags &= ~M_PKTHDR;
1714				sc->rl_tail->m_next = m;
1715			}
1716			m = sc->rl_head;
1717			sc->rl_head = sc->rl_tail = NULL;
1718			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1719		} else
1720			m->m_pkthdr.len = m->m_len =
1721			    (total_len - ETHER_CRC_LEN);
1722
1723#ifdef RE_FIXUP_RX
1724		re_fixup_rx(m);
1725#endif
1726		ifp->if_ipackets++;
1727		m->m_pkthdr.rcvif = ifp;
1728
1729		/* Do RX checksumming if enabled */
1730
1731		if (ifp->if_capenable & IFCAP_RXCSUM) {
1732
1733			/* Check IP header checksum */
1734			if (rxstat & RL_RDESC_STAT_PROTOID)
1735				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1736			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1737				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1738
1739			/* Check TCP/UDP checksum */
1740			if ((RL_TCPPKT(rxstat) &&
1741			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1742			    (RL_UDPPKT(rxstat) &&
1743			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1744				m->m_pkthdr.csum_flags |=
1745				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1746				m->m_pkthdr.csum_data = 0xffff;
1747			}
1748		}
1749		maxpkt--;
1750		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1751			m->m_pkthdr.ether_vtag =
1752			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1753			m->m_flags |= M_VLANTAG;
1754		}
1755		RL_UNLOCK(sc);
1756		(*ifp->if_input)(ifp, m);
1757		RL_LOCK(sc);
1758	}
1759
1760	/* Flush the RX DMA ring */
1761
1762	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1763	    sc->rl_ldata.rl_rx_list_map,
1764	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1765
1766	sc->rl_ldata.rl_rx_prodidx = i;
1767
1768	if (maxpkt)
1769		return(EAGAIN);
1770
1771	return(0);
1772}
1773
1774static void
1775re_txeof(sc)
1776	struct rl_softc		*sc;
1777{
1778	struct ifnet		*ifp;
1779	u_int32_t		txstat;
1780	int			idx;
1781
1782	ifp = sc->rl_ifp;
1783	idx = sc->rl_ldata.rl_tx_considx;
1784
1785	/* Invalidate the TX descriptor list */
1786	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1787	    sc->rl_ldata.rl_tx_list_map,
1788	    BUS_DMASYNC_POSTREAD);
1789
1790	while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1791		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1792		if (txstat & RL_TDESC_CMD_OWN)
1793			break;
1794
1795		sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0;
1796
1797		/*
1798		 * We only stash mbufs in the last descriptor
1799		 * in a fragment chain, which also happens to
1800		 * be the only place where the TX status bits
1801		 * are valid.
1802		 */
1803		if (txstat & RL_TDESC_CMD_EOF) {
1804			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1805			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1806			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1807			    sc->rl_ldata.rl_tx_dmamap[idx]);
1808			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1809			    RL_TDESC_STAT_COLCNT))
1810				ifp->if_collisions++;
1811			if (txstat & RL_TDESC_STAT_TXERRSUM)
1812				ifp->if_oerrors++;
1813			else
1814				ifp->if_opackets++;
1815		}
1816		sc->rl_ldata.rl_tx_free++;
1817		RL_DESC_INC(idx);
1818	}
1819	sc->rl_ldata.rl_tx_considx = idx;
1820
1821	/* No changes made to the TX ring, so no flush needed */
1822
1823	if (sc->rl_ldata.rl_tx_free > RL_TX_DESC_THLD)
1824		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1825
1826	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1827		/*
1828		 * Some chips will ignore a second TX request issued
1829		 * while an existing transmission is in progress. If
1830		 * the transmitter goes idle but there are still
1831		 * packets waiting to be sent, we need to restart the
1832		 * channel here to flush them out. This only seems to
1833		 * be required with the PCIe devices.
1834		 */
1835		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1836
1837#ifdef RE_TX_MODERATION
1838		/*
1839		 * If not all descriptors have been reaped yet, reload
1840		 * the timer so that we will eventually get another
1841		 * interrupt that will cause us to re-enter this routine.
1842		 * This is done in case the transmitter has gone idle.
1843		 */
1844		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1845#endif
1846	} else
1847		sc->rl_watchdog_timer = 0;
1848}
1849
1850static void
1851re_tick(xsc)
1852	void			*xsc;
1853{
1854	struct rl_softc		*sc;
1855	struct mii_data		*mii;
1856	struct ifnet		*ifp;
1857
1858	sc = xsc;
1859	ifp = sc->rl_ifp;
1860
1861	RL_LOCK_ASSERT(sc);
1862
1863	re_watchdog(sc);
1864
1865	mii = device_get_softc(sc->rl_miibus);
1866	mii_tick(mii);
1867	if (sc->rl_link) {
1868		if (!(mii->mii_media_status & IFM_ACTIVE))
1869			sc->rl_link = 0;
1870	} else {
1871		if (mii->mii_media_status & IFM_ACTIVE &&
1872		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1873			sc->rl_link = 1;
1874			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1875				taskqueue_enqueue_fast(taskqueue_fast,
1876				    &sc->rl_txtask);
1877		}
1878	}
1879
1880	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1881}
1882
1883#ifdef DEVICE_POLLING
1884static void
1885re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1886{
1887	struct rl_softc *sc = ifp->if_softc;
1888
1889	RL_LOCK(sc);
1890	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1891		re_poll_locked(ifp, cmd, count);
1892	RL_UNLOCK(sc);
1893}
1894
1895static void
1896re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1897{
1898	struct rl_softc *sc = ifp->if_softc;
1899
1900	RL_LOCK_ASSERT(sc);
1901
1902	sc->rxcycles = count;
1903	re_rxeof(sc);
1904	re_txeof(sc);
1905
1906	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1907		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1908
1909	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1910		u_int16_t       status;
1911
1912		status = CSR_READ_2(sc, RL_ISR);
1913		if (status == 0xffff)
1914			return;
1915		if (status)
1916			CSR_WRITE_2(sc, RL_ISR, status);
1917
1918		/*
1919		 * XXX check behaviour on receiver stalls.
1920		 */
1921
1922		if (status & RL_ISR_SYSTEM_ERR) {
1923			re_reset(sc);
1924			re_init_locked(sc);
1925		}
1926	}
1927}
1928#endif /* DEVICE_POLLING */
1929
1930static int
1931re_intr(arg)
1932	void			*arg;
1933{
1934	struct rl_softc		*sc;
1935	uint16_t		status;
1936
1937	sc = arg;
1938
1939	status = CSR_READ_2(sc, RL_ISR);
1940	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
1941                return (FILTER_STRAY);
1942	CSR_WRITE_2(sc, RL_IMR, 0);
1943
1944	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1945
1946	return (FILTER_HANDLED);
1947}
1948
1949static void
1950re_int_task(arg, npending)
1951	void			*arg;
1952	int			npending;
1953{
1954	struct rl_softc		*sc;
1955	struct ifnet		*ifp;
1956	u_int16_t		status;
1957	int			rval = 0;
1958
1959	sc = arg;
1960	ifp = sc->rl_ifp;
1961
1962	RL_LOCK(sc);
1963
1964	status = CSR_READ_2(sc, RL_ISR);
1965        CSR_WRITE_2(sc, RL_ISR, status);
1966
1967	if (sc->suspended || !(ifp->if_flags & IFF_UP)) {
1968		RL_UNLOCK(sc);
1969		return;
1970	}
1971
1972#ifdef DEVICE_POLLING
1973	if  (ifp->if_capenable & IFCAP_POLLING) {
1974		RL_UNLOCK(sc);
1975		return;
1976	}
1977#endif
1978
1979	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
1980		rval = re_rxeof(sc);
1981
1982#ifdef RE_TX_MODERATION
1983	if (status & (RL_ISR_TIMEOUT_EXPIRED|
1984#else
1985	if (status & (RL_ISR_TX_OK|
1986#endif
1987	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
1988		re_txeof(sc);
1989
1990	if (status & RL_ISR_SYSTEM_ERR) {
1991		re_reset(sc);
1992		re_init_locked(sc);
1993	}
1994
1995	if (status & RL_ISR_LINKCHG) {
1996		callout_stop(&sc->rl_stat_callout);
1997		re_tick(sc);
1998	}
1999
2000	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2001		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2002
2003	RL_UNLOCK(sc);
2004
2005        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2006		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2007		return;
2008	}
2009
2010	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2011
2012	return;
2013}
2014
2015static int
2016re_encap(sc, m_head, idx)
2017	struct rl_softc		*sc;
2018	struct mbuf		**m_head;
2019	int			*idx;
2020{
2021	struct mbuf		*m_new = NULL;
2022	struct rl_dmaload_arg	arg;
2023	bus_dmamap_t		map;
2024	int			error;
2025
2026	RL_LOCK_ASSERT(sc);
2027
2028	if (sc->rl_ldata.rl_tx_free <= RL_TX_DESC_THLD)
2029		return (EFBIG);
2030
2031	/*
2032	 * Set up checksum offload. Note: checksum offload bits must
2033	 * appear in all descriptors of a multi-descriptor transmit
2034	 * attempt. This is according to testing done with an 8169
2035	 * chip. This is a requirement.
2036	 */
2037
2038	arg.rl_flags = 0;
2039
2040	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2041		arg.rl_flags = RL_TDESC_CMD_LGSEND |
2042		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2043		    RL_TDESC_CMD_MSSVAL_SHIFT);
2044	else {
2045		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2046			arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
2047		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2048			arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
2049		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2050			arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
2051	}
2052
2053	arg.rl_idx = *idx;
2054	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2055	if (arg.rl_maxsegs > RL_TX_DESC_THLD)
2056		arg.rl_maxsegs -= RL_TX_DESC_THLD;
2057	arg.rl_ring = sc->rl_ldata.rl_tx_list;
2058
2059	map = sc->rl_ldata.rl_tx_dmamap[*idx];
2060
2061	/*
2062	 * With some of the RealTek chips, using the checksum offload
2063	 * support in conjunction with the autopadding feature results
2064	 * in the transmission of corrupt frames. For example, if we
2065	 * need to send a really small IP fragment that's less than 60
2066	 * bytes in size, and IP header checksumming is enabled, the
2067	 * resulting ethernet frame that appears on the wire will
2068	 * have garbled payload. To work around this, if TX checksum
2069	 * offload is enabled, we always manually pad short frames out
2070	 * to the minimum ethernet frame size. We do this by pretending
2071	 * the mbuf chain has too many fragments so the coalescing code
2072	 * below can assemble the packet into a single buffer that's
2073	 * padded out to the mininum frame size.
2074	 *
2075	 * Note: this appears unnecessary for TCP, and doing it for TCP
2076	 * with PCIe adapters seems to result in bad checksums.
2077	 */
2078
2079	if (arg.rl_flags && !(arg.rl_flags & RL_TDESC_CMD_TCPCSUM) &&
2080            (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN)
2081		error = EFBIG;
2082	else
2083		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2084		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2085
2086	if (error && error != EFBIG) {
2087		device_printf(sc->rl_dev, "can't map mbuf (error %d)\n", error);
2088		return (ENOBUFS);
2089	}
2090
2091	/* Too many segments to map, coalesce into a single mbuf */
2092
2093	if (error || arg.rl_maxsegs == 0) {
2094		if (arg.rl_maxsegs == 0)
2095			bus_dmamap_unload(sc->rl_ldata.rl_mtag, map);
2096		m_new = m_defrag(*m_head, M_DONTWAIT);
2097		if (m_new == NULL) {
2098			m_freem(*m_head);
2099			*m_head = NULL;
2100			return (ENOBUFS);
2101		}
2102		*m_head = m_new;
2103
2104		/*
2105		 * Manually pad short frames, and zero the pad space
2106		 * to avoid leaking data.
2107		 */
2108		if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
2109			bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
2110			    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
2111			m_new->m_pkthdr.len += RL_MIN_FRAMELEN -
2112			    m_new->m_pkthdr.len;
2113			m_new->m_len = m_new->m_pkthdr.len;
2114		}
2115
2116		/* Note that we'll run over RL_TX_DESC_THLD here. */
2117		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2118		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2119		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2120		if (error || arg.rl_maxsegs == 0) {
2121			device_printf(sc->rl_dev,
2122			    "can't map defragmented mbuf (error %d)\n", error);
2123			m_freem(m_new);
2124			*m_head = NULL;
2125			if (arg.rl_maxsegs == 0)
2126				bus_dmamap_unload(sc->rl_ldata.rl_mtag, map);
2127			return (EFBIG);
2128		}
2129	}
2130
2131	/*
2132	 * Insure that the map for this transmission
2133	 * is placed at the array index of the last descriptor
2134	 * in this chain.  (Swap last and first dmamaps.)
2135	 */
2136	sc->rl_ldata.rl_tx_dmamap[*idx] =
2137	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
2138	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
2139
2140	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
2141	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
2142
2143	/*
2144	 * Set up hardware VLAN tagging. Note: vlan tag info must
2145	 * appear in the first descriptor of a multi-descriptor
2146	 * transmission attempt.
2147	 */
2148	if ((*m_head)->m_flags & M_VLANTAG)
2149		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
2150		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2151		    RL_TDESC_VLANCTL_TAG);
2152
2153	/* Transfer ownership of packet to the chip. */
2154
2155	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
2156	    htole32(RL_TDESC_CMD_OWN);
2157	if (*idx != arg.rl_idx)
2158		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
2159		    htole32(RL_TDESC_CMD_OWN);
2160
2161        RL_DESC_INC(arg.rl_idx);
2162	*idx = arg.rl_idx;
2163
2164	return (0);
2165}
2166
2167static void
2168re_tx_task(arg, npending)
2169	void			*arg;
2170	int			npending;
2171{
2172	struct ifnet		*ifp;
2173
2174	ifp = arg;
2175	re_start(ifp);
2176
2177	return;
2178}
2179
2180/*
2181 * Main transmit routine for C+ and gigE NICs.
2182 */
2183static void
2184re_start(ifp)
2185	struct ifnet		*ifp;
2186{
2187	struct rl_softc		*sc;
2188	struct mbuf		*m_head = NULL;
2189	int			idx, queued = 0;
2190
2191	sc = ifp->if_softc;
2192
2193	RL_LOCK(sc);
2194
2195	if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
2196		RL_UNLOCK(sc);
2197		return;
2198	}
2199
2200	idx = sc->rl_ldata.rl_tx_prodidx;
2201
2202	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2203		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2204		if (m_head == NULL)
2205			break;
2206
2207		if (re_encap(sc, &m_head, &idx)) {
2208			if (m_head == NULL)
2209				break;
2210			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2211			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2212			break;
2213		}
2214
2215		/*
2216		 * If there's a BPF listener, bounce a copy of this frame
2217		 * to him.
2218		 */
2219		ETHER_BPF_MTAP(ifp, m_head);
2220
2221		queued++;
2222	}
2223
2224	if (queued == 0) {
2225#ifdef RE_TX_MODERATION
2226		if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
2227			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2228#endif
2229		RL_UNLOCK(sc);
2230		return;
2231	}
2232
2233	/* Flush the TX descriptors */
2234
2235	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2236	    sc->rl_ldata.rl_tx_list_map,
2237	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2238
2239	sc->rl_ldata.rl_tx_prodidx = idx;
2240
2241	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2242
2243#ifdef RE_TX_MODERATION
2244	/*
2245	 * Use the countdown timer for interrupt moderation.
2246	 * 'TX done' interrupts are disabled. Instead, we reset the
2247	 * countdown timer, which will begin counting until it hits
2248	 * the value in the TIMERINT register, and then trigger an
2249	 * interrupt. Each time we write to the TIMERCNT register,
2250	 * the timer count is reset to 0.
2251	 */
2252	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2253#endif
2254
2255	/*
2256	 * Set a timeout in case the chip goes out to lunch.
2257	 */
2258	sc->rl_watchdog_timer = 5;
2259
2260	RL_UNLOCK(sc);
2261
2262	return;
2263}
2264
2265static void
2266re_init(xsc)
2267	void			*xsc;
2268{
2269	struct rl_softc		*sc = xsc;
2270
2271	RL_LOCK(sc);
2272	re_init_locked(sc);
2273	RL_UNLOCK(sc);
2274}
2275
2276static void
2277re_init_locked(sc)
2278	struct rl_softc		*sc;
2279{
2280	struct ifnet		*ifp = sc->rl_ifp;
2281	struct mii_data		*mii;
2282	u_int32_t		rxcfg = 0;
2283	union {
2284		uint32_t align_dummy;
2285		u_char eaddr[ETHER_ADDR_LEN];
2286        } eaddr;
2287
2288	RL_LOCK_ASSERT(sc);
2289
2290	mii = device_get_softc(sc->rl_miibus);
2291
2292	/*
2293	 * Cancel pending I/O and free all RX/TX buffers.
2294	 */
2295	re_stop(sc);
2296
2297	/*
2298	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2299	 * RX checksum offload. We must configure the C+ register
2300	 * before all others.
2301	 */
2302	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2303	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2304	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2305
2306	/*
2307	 * Init our MAC address.  Even though the chipset
2308	 * documentation doesn't mention it, we need to enter "Config
2309	 * register write enable" mode to modify the ID registers.
2310	 */
2311	/* Copy MAC address on stack to align. */
2312	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2313	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2314	CSR_WRITE_4(sc, RL_IDR0,
2315	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2316	CSR_WRITE_4(sc, RL_IDR4,
2317	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2318	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2319
2320	/*
2321	 * For C+ mode, initialize the RX descriptors and mbufs.
2322	 */
2323	re_rx_list_init(sc);
2324	re_tx_list_init(sc);
2325
2326	/*
2327	 * Load the addresses of the RX and TX lists into the chip.
2328	 */
2329
2330	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2331	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2332	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2333	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2334
2335	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2336	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2337	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2338	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2339
2340	/*
2341	 * Enable transmit and receive.
2342	 */
2343	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2344
2345	/*
2346	 * Set the initial TX and RX configuration.
2347	 */
2348	if (sc->rl_testmode) {
2349		if (sc->rl_type == RL_8169)
2350			CSR_WRITE_4(sc, RL_TXCFG,
2351			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2352		else
2353			CSR_WRITE_4(sc, RL_TXCFG,
2354			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2355	} else
2356		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2357
2358	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2359
2360	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2361
2362	/* Set the individual bit to receive frames for this host only. */
2363	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2364	rxcfg |= RL_RXCFG_RX_INDIV;
2365
2366	/* If we want promiscuous mode, set the allframes bit. */
2367	if (ifp->if_flags & IFF_PROMISC)
2368		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2369	else
2370		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2371	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2372
2373	/*
2374	 * Set capture broadcast bit to capture broadcast frames.
2375	 */
2376	if (ifp->if_flags & IFF_BROADCAST)
2377		rxcfg |= RL_RXCFG_RX_BROAD;
2378	else
2379		rxcfg &= ~RL_RXCFG_RX_BROAD;
2380	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2381
2382	/*
2383	 * Program the multicast filter, if necessary.
2384	 */
2385	re_setmulti(sc);
2386
2387#ifdef DEVICE_POLLING
2388	/*
2389	 * Disable interrupts if we are polling.
2390	 */
2391	if (ifp->if_capenable & IFCAP_POLLING)
2392		CSR_WRITE_2(sc, RL_IMR, 0);
2393	else	/* otherwise ... */
2394#endif
2395
2396	/*
2397	 * Enable interrupts.
2398	 */
2399	if (sc->rl_testmode)
2400		CSR_WRITE_2(sc, RL_IMR, 0);
2401	else
2402		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2403	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2404
2405	/* Set initial TX threshold */
2406	sc->rl_txthresh = RL_TX_THRESH_INIT;
2407
2408	/* Start RX/TX process. */
2409	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2410#ifdef notdef
2411	/* Enable receiver and transmitter. */
2412	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2413#endif
2414
2415#ifdef RE_TX_MODERATION
2416	/*
2417	 * Initialize the timer interrupt register so that
2418	 * a timer interrupt will be generated once the timer
2419	 * reaches a certain number of ticks. The timer is
2420	 * reloaded on each transmit. This gives us TX interrupt
2421	 * moderation, which dramatically improves TX frame rate.
2422	 */
2423	if (sc->rl_type == RL_8169)
2424		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2425	else
2426		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2427#endif
2428
2429	/*
2430	 * For 8169 gigE NICs, set the max allowed RX packet
2431	 * size so we can receive jumbo frames.
2432	 */
2433	if (sc->rl_type == RL_8169)
2434		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2435
2436	if (sc->rl_testmode)
2437		return;
2438
2439	mii_mediachg(mii);
2440
2441	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2442
2443	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2444	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2445
2446	sc->rl_link = 0;
2447	sc->rl_watchdog_timer = 0;
2448	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2449}
2450
2451/*
2452 * Set media options.
2453 */
2454static int
2455re_ifmedia_upd(ifp)
2456	struct ifnet		*ifp;
2457{
2458	struct rl_softc		*sc;
2459	struct mii_data		*mii;
2460
2461	sc = ifp->if_softc;
2462	mii = device_get_softc(sc->rl_miibus);
2463	RL_LOCK(sc);
2464	mii_mediachg(mii);
2465	RL_UNLOCK(sc);
2466
2467	return (0);
2468}
2469
2470/*
2471 * Report current media status.
2472 */
2473static void
2474re_ifmedia_sts(ifp, ifmr)
2475	struct ifnet		*ifp;
2476	struct ifmediareq	*ifmr;
2477{
2478	struct rl_softc		*sc;
2479	struct mii_data		*mii;
2480
2481	sc = ifp->if_softc;
2482	mii = device_get_softc(sc->rl_miibus);
2483
2484	RL_LOCK(sc);
2485	mii_pollstat(mii);
2486	RL_UNLOCK(sc);
2487	ifmr->ifm_active = mii->mii_media_active;
2488	ifmr->ifm_status = mii->mii_media_status;
2489}
2490
2491static int
2492re_ioctl(ifp, command, data)
2493	struct ifnet		*ifp;
2494	u_long			command;
2495	caddr_t			data;
2496{
2497	struct rl_softc		*sc = ifp->if_softc;
2498	struct ifreq		*ifr = (struct ifreq *) data;
2499	struct mii_data		*mii;
2500	int			error = 0;
2501
2502	switch (command) {
2503	case SIOCSIFMTU:
2504		RL_LOCK(sc);
2505		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2506			error = EINVAL;
2507		ifp->if_mtu = ifr->ifr_mtu;
2508		RL_UNLOCK(sc);
2509		break;
2510	case SIOCSIFFLAGS:
2511		RL_LOCK(sc);
2512		if ((ifp->if_flags & IFF_UP) != 0) {
2513			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2514				if (((ifp->if_flags ^ sc->rl_if_flags)
2515				    & IFF_PROMISC) != 0)
2516					re_setmulti(sc);
2517			} else
2518				re_init_locked(sc);
2519		} else {
2520			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2521				re_stop(sc);
2522		}
2523		sc->rl_if_flags = ifp->if_flags;
2524		RL_UNLOCK(sc);
2525		break;
2526	case SIOCADDMULTI:
2527	case SIOCDELMULTI:
2528		RL_LOCK(sc);
2529		re_setmulti(sc);
2530		RL_UNLOCK(sc);
2531		break;
2532	case SIOCGIFMEDIA:
2533	case SIOCSIFMEDIA:
2534		mii = device_get_softc(sc->rl_miibus);
2535		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2536		break;
2537	case SIOCSIFCAP:
2538	    {
2539		int mask, reinit;
2540
2541		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2542		reinit = 0;
2543#ifdef DEVICE_POLLING
2544		if (mask & IFCAP_POLLING) {
2545			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2546				error = ether_poll_register(re_poll, ifp);
2547				if (error)
2548					return(error);
2549				RL_LOCK(sc);
2550				/* Disable interrupts */
2551				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2552				ifp->if_capenable |= IFCAP_POLLING;
2553				RL_UNLOCK(sc);
2554			} else {
2555				error = ether_poll_deregister(ifp);
2556				/* Enable interrupts. */
2557				RL_LOCK(sc);
2558				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2559				ifp->if_capenable &= ~IFCAP_POLLING;
2560				RL_UNLOCK(sc);
2561			}
2562		}
2563#endif /* DEVICE_POLLING */
2564		if (mask & IFCAP_HWCSUM) {
2565			ifp->if_capenable ^= IFCAP_HWCSUM;
2566			if (ifp->if_capenable & IFCAP_TXCSUM)
2567				ifp->if_hwassist |= RE_CSUM_FEATURES;
2568			else
2569				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2570			reinit = 1;
2571		}
2572		if (mask & IFCAP_VLAN_HWTAGGING) {
2573			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2574			reinit = 1;
2575		}
2576		if (mask & IFCAP_TSO4) {
2577			ifp->if_capenable ^= IFCAP_TSO4;
2578			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2579			    (IFCAP_TSO4 & ifp->if_capabilities))
2580				ifp->if_hwassist |= CSUM_TSO;
2581			else
2582				ifp->if_hwassist &= ~CSUM_TSO;
2583		}
2584		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2585			re_init(sc);
2586		VLAN_CAPABILITIES(ifp);
2587	    }
2588		break;
2589	default:
2590		error = ether_ioctl(ifp, command, data);
2591		break;
2592	}
2593
2594	return (error);
2595}
2596
2597static void
2598re_watchdog(sc)
2599	struct rl_softc		*sc;
2600{
2601
2602	RL_LOCK_ASSERT(sc);
2603
2604	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2605		return;
2606
2607	device_printf(sc->rl_dev, "watchdog timeout\n");
2608	sc->rl_ifp->if_oerrors++;
2609
2610	re_txeof(sc);
2611	re_rxeof(sc);
2612	re_init_locked(sc);
2613}
2614
2615/*
2616 * Stop the adapter and free any mbufs allocated to the
2617 * RX and TX lists.
2618 */
2619static void
2620re_stop(sc)
2621	struct rl_softc		*sc;
2622{
2623	register int		i;
2624	struct ifnet		*ifp;
2625
2626	RL_LOCK_ASSERT(sc);
2627
2628	ifp = sc->rl_ifp;
2629
2630	sc->rl_watchdog_timer = 0;
2631	callout_stop(&sc->rl_stat_callout);
2632	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2633
2634	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2635	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2636	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2637
2638	if (sc->rl_head != NULL) {
2639		m_freem(sc->rl_head);
2640		sc->rl_head = sc->rl_tail = NULL;
2641	}
2642
2643	/* Free the TX list buffers. */
2644
2645	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2646		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2647			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2648			    sc->rl_ldata.rl_tx_dmamap[i]);
2649			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2650			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2651		}
2652	}
2653
2654	/* Free the RX list buffers. */
2655
2656	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2657		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2658			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2659			    sc->rl_ldata.rl_rx_dmamap[i]);
2660			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2661			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2662		}
2663	}
2664}
2665
2666/*
2667 * Device suspend routine.  Stop the interface and save some PCI
2668 * settings in case the BIOS doesn't restore them properly on
2669 * resume.
2670 */
2671static int
2672re_suspend(dev)
2673	device_t		dev;
2674{
2675	struct rl_softc		*sc;
2676
2677	sc = device_get_softc(dev);
2678
2679	RL_LOCK(sc);
2680	re_stop(sc);
2681	sc->suspended = 1;
2682	RL_UNLOCK(sc);
2683
2684	return (0);
2685}
2686
2687/*
2688 * Device resume routine.  Restore some PCI settings in case the BIOS
2689 * doesn't, re-enable busmastering, and restart the interface if
2690 * appropriate.
2691 */
2692static int
2693re_resume(dev)
2694	device_t		dev;
2695{
2696	struct rl_softc		*sc;
2697	struct ifnet		*ifp;
2698
2699	sc = device_get_softc(dev);
2700
2701	RL_LOCK(sc);
2702
2703	ifp = sc->rl_ifp;
2704
2705	/* reinitialize interface if necessary */
2706	if (ifp->if_flags & IFF_UP)
2707		re_init_locked(sc);
2708
2709	sc->suspended = 0;
2710	RL_UNLOCK(sc);
2711
2712	return (0);
2713}
2714
2715/*
2716 * Stop all chip I/O so that the kernel's probe routines don't
2717 * get confused by errant DMAs when rebooting.
2718 */
2719static void
2720re_shutdown(dev)
2721	device_t		dev;
2722{
2723	struct rl_softc		*sc;
2724
2725	sc = device_get_softc(dev);
2726
2727	RL_LOCK(sc);
2728	re_stop(sc);
2729	/*
2730	 * Mark interface as down since otherwise we will panic if
2731	 * interrupt comes in later on, which can happen in some
2732	 * cases.
2733	 */
2734	sc->rl_ifp->if_flags &= ~IFF_UP;
2735	RL_UNLOCK(sc);
2736}
2737