if_re.c revision 165957
1/*-
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 165957 2007-01-11 20:31:35Z wpaul $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#ifdef HAVE_KERNEL_OPTION_HEADERS
112#include "opt_device_polling.h"
113#endif
114
115#include <sys/param.h>
116#include <sys/endian.h>
117#include <sys/systm.h>
118#include <sys/sockio.h>
119#include <sys/mbuf.h>
120#include <sys/malloc.h>
121#include <sys/module.h>
122#include <sys/kernel.h>
123#include <sys/socket.h>
124#include <sys/lock.h>
125#include <sys/mutex.h>
126#include <sys/taskqueue.h>
127
128#include <net/if.h>
129#include <net/if_arp.h>
130#include <net/ethernet.h>
131#include <net/if_dl.h>
132#include <net/if_media.h>
133#include <net/if_types.h>
134#include <net/if_vlan_var.h>
135
136#include <net/bpf.h>
137
138#include <machine/bus.h>
139#include <machine/resource.h>
140#include <sys/bus.h>
141#include <sys/rman.h>
142
143#include <dev/mii/mii.h>
144#include <dev/mii/miivar.h>
145
146#include <dev/pci/pcireg.h>
147#include <dev/pci/pcivar.h>
148
149MODULE_DEPEND(re, pci, 1, 1, 1);
150MODULE_DEPEND(re, ether, 1, 1, 1);
151MODULE_DEPEND(re, miibus, 1, 1, 1);
152
153/* "device miibus" required.  See GENERIC if you get errors here. */
154#include "miibus_if.h"
155
156/*
157 * Default to using PIO access for this driver.
158 */
159#define RE_USEIOSPACE
160
161#include <pci/if_rlreg.h>
162
163#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
164
165/*
166 * Various supported device vendors/types and their names.
167 */
168static struct rl_type re_devs[] = {
169	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
170		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
171	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
172		"RealTek 8139C+ 10/100BaseTX" },
173	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
174		"RealTek 8101E PCIe 10/100baseTX" },
175	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
176		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
177	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
178		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
179	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
180		"RealTek 8169 Gigabit Ethernet" },
181	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
182		"RealTek 8169S Single-chip Gigabit Ethernet" },
183	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
184		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
185	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
186		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
187	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
188		"RealTek 8110S Single-chip Gigabit Ethernet" },
189	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
190		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
192		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
194		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
195	{ 0, 0, 0, NULL }
196};
197
198static struct rl_hwrev re_hwrevs[] = {
199	{ RL_HWREV_8139, RL_8139,  "" },
200	{ RL_HWREV_8139A, RL_8139, "A" },
201	{ RL_HWREV_8139AG, RL_8139, "A-G" },
202	{ RL_HWREV_8139B, RL_8139, "B" },
203	{ RL_HWREV_8130, RL_8139, "8130" },
204	{ RL_HWREV_8139C, RL_8139, "C" },
205	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
206	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
207	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
208	{ RL_HWREV_8169, RL_8169, "8169"},
209	{ RL_HWREV_8169S, RL_8169, "8169S"},
210	{ RL_HWREV_8110S, RL_8169, "8110S"},
211	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
212	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
213	{ RL_HWREV_8100, RL_8139, "8100"},
214	{ RL_HWREV_8101, RL_8139, "8101"},
215	{ RL_HWREV_8100E, RL_8169, "8100E"},
216	{ RL_HWREV_8101E, RL_8169, "8101E"},
217	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
218	{ 0, 0, NULL }
219};
220
221static int re_probe		(device_t);
222static int re_attach		(device_t);
223static int re_detach		(device_t);
224
225static int re_encap		(struct rl_softc *, struct mbuf **, int *);
226
227static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
228static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
229				    bus_size_t, int);
230static int re_allocmem		(device_t, struct rl_softc *);
231static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
232static int re_rx_list_init	(struct rl_softc *);
233static int re_tx_list_init	(struct rl_softc *);
234#ifdef RE_FIXUP_RX
235static __inline void re_fixup_rx
236				(struct mbuf *);
237#endif
238static int re_rxeof		(struct rl_softc *);
239static void re_txeof		(struct rl_softc *);
240#ifdef DEVICE_POLLING
241static void re_poll		(struct ifnet *, enum poll_cmd, int);
242static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
243#endif
244static void re_intr		(void *);
245static void re_tick		(void *);
246static void re_tx_task		(void *, int);
247static void re_int_task		(void *, int);
248static void re_start		(struct ifnet *);
249static int re_ioctl		(struct ifnet *, u_long, caddr_t);
250static void re_init		(void *);
251static void re_init_locked	(struct rl_softc *);
252static void re_stop		(struct rl_softc *);
253static void re_watchdog		(struct rl_softc *);
254static int re_suspend		(device_t);
255static int re_resume		(device_t);
256static void re_shutdown		(device_t);
257static int re_ifmedia_upd	(struct ifnet *);
258static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
259
260static void re_eeprom_putbyte	(struct rl_softc *, int);
261static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
262static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
263static int re_gmii_readreg	(device_t, int, int);
264static int re_gmii_writereg	(device_t, int, int, int);
265
266static int re_miibus_readreg	(device_t, int, int);
267static int re_miibus_writereg	(device_t, int, int, int);
268static void re_miibus_statchg	(device_t);
269
270static void re_setmulti		(struct rl_softc *);
271static void re_reset		(struct rl_softc *);
272
273#ifdef RE_DIAG
274static int re_diag		(struct rl_softc *);
275#endif
276
277#ifdef RE_USEIOSPACE
278#define RL_RES			SYS_RES_IOPORT
279#define RL_RID			RL_PCI_LOIO
280#else
281#define RL_RES			SYS_RES_MEMORY
282#define RL_RID			RL_PCI_LOMEM
283#endif
284
285static device_method_t re_methods[] = {
286	/* Device interface */
287	DEVMETHOD(device_probe,		re_probe),
288	DEVMETHOD(device_attach,	re_attach),
289	DEVMETHOD(device_detach,	re_detach),
290	DEVMETHOD(device_suspend,	re_suspend),
291	DEVMETHOD(device_resume,	re_resume),
292	DEVMETHOD(device_shutdown,	re_shutdown),
293
294	/* bus interface */
295	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297
298	/* MII interface */
299	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
300	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
301	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
302
303	{ 0, 0 }
304};
305
306static driver_t re_driver = {
307	"re",
308	re_methods,
309	sizeof(struct rl_softc)
310};
311
312static devclass_t re_devclass;
313
314DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
315DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
316DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
317
318#define EE_SET(x)					\
319	CSR_WRITE_1(sc, RL_EECMD,			\
320		CSR_READ_1(sc, RL_EECMD) | x)
321
322#define EE_CLR(x)					\
323	CSR_WRITE_1(sc, RL_EECMD,			\
324		CSR_READ_1(sc, RL_EECMD) & ~x)
325
326/*
327 * Send a read command and address to the EEPROM, check for ACK.
328 */
329static void
330re_eeprom_putbyte(sc, addr)
331	struct rl_softc		*sc;
332	int			addr;
333{
334	register int		d, i;
335
336	d = addr | (RL_9346_READ << sc->rl_eewidth);
337
338	/*
339	 * Feed in each bit and strobe the clock.
340	 */
341
342	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343		if (d & i) {
344			EE_SET(RL_EE_DATAIN);
345		} else {
346			EE_CLR(RL_EE_DATAIN);
347		}
348		DELAY(100);
349		EE_SET(RL_EE_CLK);
350		DELAY(150);
351		EE_CLR(RL_EE_CLK);
352		DELAY(100);
353	}
354
355	return;
356}
357
358/*
359 * Read a word of data stored in the EEPROM at address 'addr.'
360 */
361static void
362re_eeprom_getword(sc, addr, dest)
363	struct rl_softc		*sc;
364	int			addr;
365	u_int16_t		*dest;
366{
367	register int		i;
368	u_int16_t		word = 0;
369
370	/*
371	 * Send address of word we want to read.
372	 */
373	re_eeprom_putbyte(sc, addr);
374
375	/*
376	 * Start reading bits from EEPROM.
377	 */
378	for (i = 0x8000; i; i >>= 1) {
379		EE_SET(RL_EE_CLK);
380		DELAY(100);
381		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
382			word |= i;
383		EE_CLR(RL_EE_CLK);
384		DELAY(100);
385	}
386
387	*dest = word;
388
389	return;
390}
391
392/*
393 * Read a sequence of words from the EEPROM.
394 */
395static void
396re_read_eeprom(sc, dest, off, cnt)
397	struct rl_softc		*sc;
398	caddr_t			dest;
399	int			off;
400	int			cnt;
401{
402	int			i;
403	u_int16_t		word = 0, *ptr;
404
405	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
406
407        DELAY(100);
408
409	for (i = 0; i < cnt; i++) {
410		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
411		re_eeprom_getword(sc, off + i, &word);
412		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
413		ptr = (u_int16_t *)(dest + (i * 2));
414                *ptr = word;
415	}
416
417	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
418
419	return;
420}
421
422static int
423re_gmii_readreg(dev, phy, reg)
424	device_t		dev;
425	int			phy, reg;
426{
427	struct rl_softc		*sc;
428	u_int32_t		rval;
429	int			i;
430
431	if (phy != 1)
432		return (0);
433
434	sc = device_get_softc(dev);
435
436	/* Let the rgephy driver read the GMEDIASTAT register */
437
438	if (reg == RL_GMEDIASTAT) {
439		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
440		return (rval);
441	}
442
443	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
444	DELAY(1000);
445
446	for (i = 0; i < RL_TIMEOUT; i++) {
447		rval = CSR_READ_4(sc, RL_PHYAR);
448		if (rval & RL_PHYAR_BUSY)
449			break;
450		DELAY(100);
451	}
452
453	if (i == RL_TIMEOUT) {
454		device_printf(sc->rl_dev, "PHY read failed\n");
455		return (0);
456	}
457
458	return (rval & RL_PHYAR_PHYDATA);
459}
460
461static int
462re_gmii_writereg(dev, phy, reg, data)
463	device_t		dev;
464	int			phy, reg, data;
465{
466	struct rl_softc		*sc;
467	u_int32_t		rval;
468	int			i;
469
470	sc = device_get_softc(dev);
471
472	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
473	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
474	DELAY(1000);
475
476	for (i = 0; i < RL_TIMEOUT; i++) {
477		rval = CSR_READ_4(sc, RL_PHYAR);
478		if (!(rval & RL_PHYAR_BUSY))
479			break;
480		DELAY(100);
481	}
482
483	if (i == RL_TIMEOUT) {
484		device_printf(sc->rl_dev, "PHY write failed\n");
485		return (0);
486	}
487
488	return (0);
489}
490
491static int
492re_miibus_readreg(dev, phy, reg)
493	device_t		dev;
494	int			phy, reg;
495{
496	struct rl_softc		*sc;
497	u_int16_t		rval = 0;
498	u_int16_t		re8139_reg = 0;
499
500	sc = device_get_softc(dev);
501
502	if (sc->rl_type == RL_8169) {
503		rval = re_gmii_readreg(dev, phy, reg);
504		return (rval);
505	}
506
507	/* Pretend the internal PHY is only at address 0 */
508	if (phy) {
509		return (0);
510	}
511	switch (reg) {
512	case MII_BMCR:
513		re8139_reg = RL_BMCR;
514		break;
515	case MII_BMSR:
516		re8139_reg = RL_BMSR;
517		break;
518	case MII_ANAR:
519		re8139_reg = RL_ANAR;
520		break;
521	case MII_ANER:
522		re8139_reg = RL_ANER;
523		break;
524	case MII_ANLPAR:
525		re8139_reg = RL_LPAR;
526		break;
527	case MII_PHYIDR1:
528	case MII_PHYIDR2:
529		return (0);
530	/*
531	 * Allow the rlphy driver to read the media status
532	 * register. If we have a link partner which does not
533	 * support NWAY, this is the register which will tell
534	 * us the results of parallel detection.
535	 */
536	case RL_MEDIASTAT:
537		rval = CSR_READ_1(sc, RL_MEDIASTAT);
538		return (rval);
539	default:
540		device_printf(sc->rl_dev, "bad phy register\n");
541		return (0);
542	}
543	rval = CSR_READ_2(sc, re8139_reg);
544	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
545		/* 8139C+ has different bit layout. */
546		rval &= ~(BMCR_LOOP | BMCR_ISO);
547	}
548	return (rval);
549}
550
551static int
552re_miibus_writereg(dev, phy, reg, data)
553	device_t		dev;
554	int			phy, reg, data;
555{
556	struct rl_softc		*sc;
557	u_int16_t		re8139_reg = 0;
558	int			rval = 0;
559
560	sc = device_get_softc(dev);
561
562	if (sc->rl_type == RL_8169) {
563		rval = re_gmii_writereg(dev, phy, reg, data);
564		return (rval);
565	}
566
567	/* Pretend the internal PHY is only at address 0 */
568	if (phy)
569		return (0);
570
571	switch (reg) {
572	case MII_BMCR:
573		re8139_reg = RL_BMCR;
574		if (sc->rl_type == RL_8139CPLUS) {
575			/* 8139C+ has different bit layout. */
576			data &= ~(BMCR_LOOP | BMCR_ISO);
577		}
578		break;
579	case MII_BMSR:
580		re8139_reg = RL_BMSR;
581		break;
582	case MII_ANAR:
583		re8139_reg = RL_ANAR;
584		break;
585	case MII_ANER:
586		re8139_reg = RL_ANER;
587		break;
588	case MII_ANLPAR:
589		re8139_reg = RL_LPAR;
590		break;
591	case MII_PHYIDR1:
592	case MII_PHYIDR2:
593		return (0);
594		break;
595	default:
596		device_printf(sc->rl_dev, "bad phy register\n");
597		return (0);
598	}
599	CSR_WRITE_2(sc, re8139_reg, data);
600	return (0);
601}
602
603static void
604re_miibus_statchg(dev)
605	device_t		dev;
606{
607
608}
609
610/*
611 * Program the 64-bit multicast hash filter.
612 */
613static void
614re_setmulti(sc)
615	struct rl_softc		*sc;
616{
617	struct ifnet		*ifp;
618	int			h = 0;
619	u_int32_t		hashes[2] = { 0, 0 };
620	struct ifmultiaddr	*ifma;
621	u_int32_t		rxfilt;
622	int			mcnt = 0;
623	u_int32_t		hwrev;
624
625	RL_LOCK_ASSERT(sc);
626
627	ifp = sc->rl_ifp;
628
629	rxfilt = CSR_READ_4(sc, RL_RXCFG);
630
631	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
632		rxfilt |= RL_RXCFG_RX_MULTI;
633		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
634		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
635		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
636		return;
637	}
638
639	/* first, zot all the existing hash bits */
640	CSR_WRITE_4(sc, RL_MAR0, 0);
641	CSR_WRITE_4(sc, RL_MAR4, 0);
642
643	/* now program new ones */
644	IF_ADDR_LOCK(ifp);
645	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
646		if (ifma->ifma_addr->sa_family != AF_LINK)
647			continue;
648		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
649		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
650		if (h < 32)
651			hashes[0] |= (1 << h);
652		else
653			hashes[1] |= (1 << (h - 32));
654		mcnt++;
655	}
656	IF_ADDR_UNLOCK(ifp);
657
658	if (mcnt)
659		rxfilt |= RL_RXCFG_RX_MULTI;
660	else
661		rxfilt &= ~RL_RXCFG_RX_MULTI;
662
663	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
664
665	/*
666	 * For some unfathomable reason, RealTek decided to reverse
667	 * the order of the multicast hash registers in the PCI Express
668	 * parts. This means we have to write the hash pattern in reverse
669	 * order for those devices.
670	 */
671
672	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
673
674	if (hwrev == RL_HWREV_8100E || hwrev == RL_HWREV_8101E ||
675	    hwrev == RL_HWREV_8168_SPIN1 || hwrev == RL_HWREV_8168_SPIN2) {
676		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
677		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
678	} else {
679		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
680		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
681	}
682}
683
684static void
685re_reset(sc)
686	struct rl_softc		*sc;
687{
688	register int		i;
689
690	RL_LOCK_ASSERT(sc);
691
692	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
693
694	for (i = 0; i < RL_TIMEOUT; i++) {
695		DELAY(10);
696		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
697			break;
698	}
699	if (i == RL_TIMEOUT)
700		device_printf(sc->rl_dev, "reset never completed!\n");
701
702	CSR_WRITE_1(sc, 0x82, 1);
703}
704
705#ifdef RE_DIAG
706
707/*
708 * The following routine is designed to test for a defect on some
709 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
710 * lines connected to the bus, however for a 32-bit only card, they
711 * should be pulled high. The result of this defect is that the
712 * NIC will not work right if you plug it into a 64-bit slot: DMA
713 * operations will be done with 64-bit transfers, which will fail
714 * because the 64-bit data lines aren't connected.
715 *
716 * There's no way to work around this (short of talking a soldering
717 * iron to the board), however we can detect it. The method we use
718 * here is to put the NIC into digital loopback mode, set the receiver
719 * to promiscuous mode, and then try to send a frame. We then compare
720 * the frame data we sent to what was received. If the data matches,
721 * then the NIC is working correctly, otherwise we know the user has
722 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
723 * slot. In the latter case, there's no way the NIC can work correctly,
724 * so we print out a message on the console and abort the device attach.
725 */
726
727static int
728re_diag(sc)
729	struct rl_softc		*sc;
730{
731	struct ifnet		*ifp = sc->rl_ifp;
732	struct mbuf		*m0;
733	struct ether_header	*eh;
734	struct rl_desc		*cur_rx;
735	u_int16_t		status;
736	u_int32_t		rxstat;
737	int			total_len, i, error = 0, phyaddr;
738	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
739	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
740
741	/* Allocate a single mbuf */
742	MGETHDR(m0, M_DONTWAIT, MT_DATA);
743	if (m0 == NULL)
744		return (ENOBUFS);
745
746	RL_LOCK(sc);
747
748	/*
749	 * Initialize the NIC in test mode. This sets the chip up
750	 * so that it can send and receive frames, but performs the
751	 * following special functions:
752	 * - Puts receiver in promiscuous mode
753	 * - Enables digital loopback mode
754	 * - Leaves interrupts turned off
755	 */
756
757	ifp->if_flags |= IFF_PROMISC;
758	sc->rl_testmode = 1;
759	re_reset(sc);
760	re_init_locked(sc);
761	sc->rl_link = 1;
762	if (sc->rl_type == RL_8169)
763		phyaddr = 1;
764	else
765		phyaddr = 0;
766
767	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
768	for (i = 0; i < RL_TIMEOUT; i++) {
769		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
770		if (!(status & BMCR_RESET))
771			break;
772	}
773
774	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
775	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
776
777	DELAY(100000);
778
779	/* Put some data in the mbuf */
780
781	eh = mtod(m0, struct ether_header *);
782	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
783	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
784	eh->ether_type = htons(ETHERTYPE_IP);
785	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
786
787	/*
788	 * Queue the packet, start transmission.
789	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
790	 */
791
792	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
793	RL_UNLOCK(sc);
794	/* XXX: re_diag must not be called when in ALTQ mode */
795	IF_HANDOFF(&ifp->if_snd, m0, ifp);
796	RL_LOCK(sc);
797	m0 = NULL;
798
799	/* Wait for it to propagate through the chip */
800
801	DELAY(100000);
802	for (i = 0; i < RL_TIMEOUT; i++) {
803		status = CSR_READ_2(sc, RL_ISR);
804		CSR_WRITE_2(sc, RL_ISR, status);
805		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
806		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
807			break;
808		DELAY(10);
809	}
810
811	if (i == RL_TIMEOUT) {
812		device_printf(sc->rl_dev,
813		    "diagnostic failed, failed to receive packet in"
814		    " loopback mode\n");
815		error = EIO;
816		goto done;
817	}
818
819	/*
820	 * The packet should have been dumped into the first
821	 * entry in the RX DMA ring. Grab it from there.
822	 */
823
824	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
825	    sc->rl_ldata.rl_rx_list_map,
826	    BUS_DMASYNC_POSTREAD);
827	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
828	    sc->rl_ldata.rl_rx_dmamap[0],
829	    BUS_DMASYNC_POSTWRITE);
830	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
831	    sc->rl_ldata.rl_rx_dmamap[0]);
832
833	m0 = sc->rl_ldata.rl_rx_mbuf[0];
834	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
835	eh = mtod(m0, struct ether_header *);
836
837	cur_rx = &sc->rl_ldata.rl_rx_list[0];
838	total_len = RL_RXBYTES(cur_rx);
839	rxstat = le32toh(cur_rx->rl_cmdstat);
840
841	if (total_len != ETHER_MIN_LEN) {
842		device_printf(sc->rl_dev,
843		    "diagnostic failed, received short packet\n");
844		error = EIO;
845		goto done;
846	}
847
848	/* Test that the received packet data matches what we sent. */
849
850	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
851	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
852	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
853		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
854		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
855		    dst, ":", src, ":", ETHERTYPE_IP);
856		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
857		    eh->ether_dhost, ":",  eh->ether_shost, ":",
858		    ntohs(eh->ether_type));
859		device_printf(sc->rl_dev, "You may have a defective 32-bit "
860		    "NIC plugged into a 64-bit PCI slot.\n");
861		device_printf(sc->rl_dev, "Please re-install the NIC in a "
862		    "32-bit slot for proper operation.\n");
863		device_printf(sc->rl_dev, "Read the re(4) man page for more "
864		    "details.\n");
865		error = EIO;
866	}
867
868done:
869	/* Turn interface off, release resources */
870
871	sc->rl_testmode = 0;
872	sc->rl_link = 0;
873	ifp->if_flags &= ~IFF_PROMISC;
874	re_stop(sc);
875	if (m0 != NULL)
876		m_freem(m0);
877
878	RL_UNLOCK(sc);
879
880	return (error);
881}
882
883#endif
884
885/*
886 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
887 * IDs against our list and return a device name if we find a match.
888 */
889static int
890re_probe(dev)
891	device_t		dev;
892{
893	struct rl_type		*t;
894	struct rl_softc		*sc;
895	int			rid;
896	u_int32_t		hwrev;
897
898	t = re_devs;
899	sc = device_get_softc(dev);
900
901	while (t->rl_name != NULL) {
902		if ((pci_get_vendor(dev) == t->rl_vid) &&
903		    (pci_get_device(dev) == t->rl_did)) {
904			/*
905			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
906			 * Rev. 2 i supported by sk(4).
907			 */
908			if ((t->rl_vid == LINKSYS_VENDORID) &&
909				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
910				(pci_get_subdevice(dev) !=
911				LINKSYS_SUBDEVICE_EG1032_REV3)) {
912				t++;
913				continue;
914			}
915
916			/*
917			 * Temporarily map the I/O space
918			 * so we can read the chip ID register.
919			 */
920			rid = RL_RID;
921			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
922			    RF_ACTIVE);
923			if (sc->rl_res == NULL) {
924				device_printf(dev,
925				    "couldn't map ports/memory\n");
926				return (ENXIO);
927			}
928			sc->rl_btag = rman_get_bustag(sc->rl_res);
929			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
930			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
931			bus_release_resource(dev, RL_RES,
932			    RL_RID, sc->rl_res);
933			if (t->rl_basetype == hwrev) {
934				device_set_desc(dev, t->rl_name);
935				return (BUS_PROBE_DEFAULT);
936			}
937		}
938		t++;
939	}
940
941	return (ENXIO);
942}
943
944/*
945 * This routine takes the segment list provided as the result of
946 * a bus_dma_map_load() operation and assigns the addresses/lengths
947 * to RealTek DMA descriptors. This can be called either by the RX
948 * code or the TX code. In the RX case, we'll probably wind up mapping
949 * at most one segment. For the TX case, there could be any number of
950 * segments since TX packets may span multiple mbufs. In either case,
951 * if the number of segments is larger than the rl_maxsegs limit
952 * specified by the caller, we abort the mapping operation. Sadly,
953 * whoever designed the buffer mapping API did not provide a way to
954 * return an error from here, so we have to fake it a bit.
955 */
956
957static void
958re_dma_map_desc(arg, segs, nseg, mapsize, error)
959	void			*arg;
960	bus_dma_segment_t	*segs;
961	int			nseg;
962	bus_size_t		mapsize;
963	int			error;
964{
965	struct rl_dmaload_arg	*ctx;
966	struct rl_desc		*d = NULL;
967	int			i = 0, idx;
968	u_int32_t		cmdstat;
969	int			totlen = 0;
970
971	if (error)
972		return;
973
974	ctx = arg;
975
976	/* Signal error to caller if there's too many segments */
977	if (nseg > ctx->rl_maxsegs) {
978		ctx->rl_maxsegs = 0;
979		return;
980	}
981
982	/*
983	 * Map the segment array into descriptors. Note that we set the
984	 * start-of-frame and end-of-frame markers for either TX or RX, but
985	 * they really only have meaning in the TX case. (In the RX case,
986	 * it's the chip that tells us where packets begin and end.)
987	 * We also keep track of the end of the ring and set the
988	 * end-of-ring bits as needed, and we set the ownership bits
989	 * in all except the very first descriptor. (The caller will
990	 * set this descriptor later when it start transmission or
991	 * reception.)
992	 */
993	idx = ctx->rl_idx;
994	for (;;) {
995		d = &ctx->rl_ring[idx];
996		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
997			ctx->rl_maxsegs = 0;
998			return;
999		}
1000		cmdstat = segs[i].ds_len;
1001		totlen += segs[i].ds_len;
1002		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
1003		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
1004		if (i == 0)
1005			cmdstat |= RL_TDESC_CMD_SOF;
1006		else
1007			cmdstat |= RL_TDESC_CMD_OWN;
1008		if (idx == (RL_RX_DESC_CNT - 1))
1009			cmdstat |= RL_TDESC_CMD_EOR;
1010		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
1011		i++;
1012		if (i == nseg)
1013			break;
1014		RL_DESC_INC(idx);
1015	}
1016
1017	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
1018	ctx->rl_maxsegs = nseg;
1019	ctx->rl_idx = idx;
1020}
1021
1022/*
1023 * Map a single buffer address.
1024 */
1025
1026static void
1027re_dma_map_addr(arg, segs, nseg, error)
1028	void			*arg;
1029	bus_dma_segment_t	*segs;
1030	int			nseg;
1031	int			error;
1032{
1033	bus_addr_t		*addr;
1034
1035	if (error)
1036		return;
1037
1038	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1039	addr = arg;
1040	*addr = segs->ds_addr;
1041}
1042
1043static int
1044re_allocmem(dev, sc)
1045	device_t		dev;
1046	struct rl_softc		*sc;
1047{
1048	int			error;
1049	int			nseg;
1050	int			i;
1051
1052	/*
1053	 * Allocate map for RX mbufs.
1054	 */
1055	nseg = 32;
1056	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1057	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1058	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1059	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1060	if (error) {
1061		device_printf(dev, "could not allocate dma tag\n");
1062		return (ENOMEM);
1063	}
1064
1065	/*
1066	 * Allocate map for TX descriptor list.
1067	 */
1068	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1069	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1070	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, 0,
1071	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1072	if (error) {
1073		device_printf(dev, "could not allocate dma tag\n");
1074		return (ENOMEM);
1075	}
1076
1077	/* Allocate DMA'able memory for the TX ring */
1078
1079	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1080	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1081	    &sc->rl_ldata.rl_tx_list_map);
1082	if (error)
1083		return (ENOMEM);
1084
1085	/* Load the map for the TX ring. */
1086
1087	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1088	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1089	     RL_TX_LIST_SZ, re_dma_map_addr,
1090	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1091
1092	/* Create DMA maps for TX buffers */
1093
1094	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1095		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1096			    &sc->rl_ldata.rl_tx_dmamap[i]);
1097		if (error) {
1098			device_printf(dev, "can't create DMA map for TX\n");
1099			return (ENOMEM);
1100		}
1101	}
1102
1103	/*
1104	 * Allocate map for RX descriptor list.
1105	 */
1106	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1107	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1108	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, 0,
1109	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1110	if (error) {
1111		device_printf(dev, "could not allocate dma tag\n");
1112		return (ENOMEM);
1113	}
1114
1115	/* Allocate DMA'able memory for the RX ring */
1116
1117	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1118	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1119	    &sc->rl_ldata.rl_rx_list_map);
1120	if (error)
1121		return (ENOMEM);
1122
1123	/* Load the map for the RX ring. */
1124
1125	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1126	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1127	     RL_RX_LIST_SZ, re_dma_map_addr,
1128	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1129
1130	/* Create DMA maps for RX buffers */
1131
1132	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1133		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1134			    &sc->rl_ldata.rl_rx_dmamap[i]);
1135		if (error) {
1136			device_printf(dev, "can't create DMA map for RX\n");
1137			return (ENOMEM);
1138		}
1139	}
1140
1141	return (0);
1142}
1143
1144/*
1145 * Attach the interface. Allocate softc structures, do ifmedia
1146 * setup and ethernet/BPF attach.
1147 */
1148static int
1149re_attach(dev)
1150	device_t		dev;
1151{
1152	u_char			eaddr[ETHER_ADDR_LEN];
1153	u_int16_t		as[ETHER_ADDR_LEN / 2];
1154	struct rl_softc		*sc;
1155	struct ifnet		*ifp;
1156	struct rl_hwrev		*hw_rev;
1157	int			hwrev;
1158	u_int16_t		re_did = 0;
1159	int			error = 0, rid, i;
1160
1161	sc = device_get_softc(dev);
1162	sc->rl_dev = dev;
1163
1164	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1165	    MTX_DEF);
1166	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1167
1168	/*
1169	 * Map control/status registers.
1170	 */
1171	pci_enable_busmaster(dev);
1172
1173	rid = RL_RID;
1174	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1175	    RF_ACTIVE);
1176
1177	if (sc->rl_res == NULL) {
1178		device_printf(dev, "couldn't map ports/memory\n");
1179		error = ENXIO;
1180		goto fail;
1181	}
1182
1183	sc->rl_btag = rman_get_bustag(sc->rl_res);
1184	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1185
1186	/* Allocate interrupt */
1187	rid = 0;
1188	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1189	    RF_SHAREABLE | RF_ACTIVE);
1190
1191	if (sc->rl_irq == NULL) {
1192		device_printf(dev, "couldn't map interrupt\n");
1193		error = ENXIO;
1194		goto fail;
1195	}
1196
1197	/* Reset the adapter. */
1198	RL_LOCK(sc);
1199	re_reset(sc);
1200	RL_UNLOCK(sc);
1201
1202	hw_rev = re_hwrevs;
1203	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1204	while (hw_rev->rl_desc != NULL) {
1205		if (hw_rev->rl_rev == hwrev) {
1206			sc->rl_type = hw_rev->rl_type;
1207			break;
1208		}
1209		hw_rev++;
1210	}
1211
1212	sc->rl_eewidth = 6;
1213	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1214	if (re_did != 0x8129)
1215	        sc->rl_eewidth = 8;
1216
1217	/*
1218	 * Get station address from the EEPROM.
1219	 */
1220	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1221	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1222		as[i] = le16toh(as[i]);
1223	bcopy(as, eaddr, sizeof(eaddr));
1224
1225	if (sc->rl_type == RL_8169) {
1226		/* Set RX length mask */
1227		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1228		sc->rl_txstart = RL_GTXSTART;
1229	} else {
1230		/* Set RX length mask */
1231		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1232		sc->rl_txstart = RL_TXSTART;
1233	}
1234
1235	/*
1236	 * Allocate the parent bus DMA tag appropriate for PCI.
1237	 */
1238#define RL_NSEG_NEW 32
1239	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1240	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
1241	    MAXBSIZE, RL_NSEG_NEW, BUS_SPACE_MAXSIZE_32BIT, 0,
1242	    NULL, NULL, &sc->rl_parent_tag);
1243	if (error)
1244		goto fail;
1245
1246	error = re_allocmem(dev, sc);
1247
1248	if (error)
1249		goto fail;
1250
1251	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1252	if (ifp == NULL) {
1253		device_printf(dev, "can not if_alloc()\n");
1254		error = ENOSPC;
1255		goto fail;
1256	}
1257
1258	/* Do MII setup */
1259	if (mii_phy_probe(dev, &sc->rl_miibus,
1260	    re_ifmedia_upd, re_ifmedia_sts)) {
1261		device_printf(dev, "MII without any phy!\n");
1262		error = ENXIO;
1263		goto fail;
1264	}
1265
1266	ifp->if_softc = sc;
1267	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1268	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1269	ifp->if_ioctl = re_ioctl;
1270	ifp->if_start = re_start;
1271	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1272	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1273	ifp->if_capenable = ifp->if_capabilities;
1274	ifp->if_init = re_init;
1275	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1276	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1277	IFQ_SET_READY(&ifp->if_snd);
1278
1279	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1280	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1281
1282	/*
1283	 * Call MI attach routine.
1284	 */
1285	ether_ifattach(ifp, eaddr);
1286
1287	/* VLAN capability setup */
1288	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1289	if (ifp->if_capabilities & IFCAP_HWCSUM)
1290		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1291	ifp->if_capenable = ifp->if_capabilities;
1292#ifdef DEVICE_POLLING
1293	ifp->if_capabilities |= IFCAP_POLLING;
1294#endif
1295	/*
1296	 * Tell the upper layer(s) we support long frames.
1297	 * Must appear after the call to ether_ifattach() because
1298	 * ether_ifattach() sets ifi_hdrlen to the default value.
1299	 */
1300	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1301
1302#ifdef RE_DIAG
1303	/*
1304	 * Perform hardware diagnostic on the original RTL8169.
1305	 * Some 32-bit cards were incorrectly wired and would
1306	 * malfunction if plugged into a 64-bit slot.
1307	 */
1308
1309	if (hwrev == RL_HWREV_8169) {
1310		error = re_diag(sc);
1311		if (error) {
1312			device_printf(dev,
1313		    	"attach aborted due to hardware diag failure\n");
1314			ether_ifdetach(ifp);
1315			goto fail;
1316		}
1317	}
1318#endif
1319
1320	/* Hook interrupt last to avoid having to lock softc */
1321	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE |
1322	    INTR_FAST, re_intr, sc, &sc->rl_intrhand);
1323	if (error) {
1324		device_printf(dev, "couldn't set up irq\n");
1325		ether_ifdetach(ifp);
1326	}
1327
1328fail:
1329
1330	if (error)
1331		re_detach(dev);
1332
1333	return (error);
1334}
1335
1336/*
1337 * Shutdown hardware and free up resources. This can be called any
1338 * time after the mutex has been initialized. It is called in both
1339 * the error case in attach and the normal detach case so it needs
1340 * to be careful about only freeing resources that have actually been
1341 * allocated.
1342 */
1343static int
1344re_detach(dev)
1345	device_t		dev;
1346{
1347	struct rl_softc		*sc;
1348	struct ifnet		*ifp;
1349	int			i;
1350
1351	sc = device_get_softc(dev);
1352	ifp = sc->rl_ifp;
1353	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1354
1355#ifdef DEVICE_POLLING
1356	if (ifp->if_capenable & IFCAP_POLLING)
1357		ether_poll_deregister(ifp);
1358#endif
1359	/* These should only be active if attach succeeded */
1360	if (device_is_attached(dev)) {
1361		RL_LOCK(sc);
1362#if 0
1363		sc->suspended = 1;
1364#endif
1365		re_stop(sc);
1366		RL_UNLOCK(sc);
1367		callout_drain(&sc->rl_stat_callout);
1368		/*
1369		 * Force off the IFF_UP flag here, in case someone
1370		 * still had a BPF descriptor attached to this
1371		 * interface. If they do, ether_ifdetach() will cause
1372		 * the BPF code to try and clear the promisc mode
1373		 * flag, which will bubble down to re_ioctl(),
1374		 * which will try to call re_init() again. This will
1375		 * turn the NIC back on and restart the MII ticker,
1376		 * which will panic the system when the kernel tries
1377		 * to invoke the re_tick() function that isn't there
1378		 * anymore.
1379		 */
1380		ifp->if_flags &= ~IFF_UP;
1381		ether_ifdetach(ifp);
1382	}
1383	if (sc->rl_miibus)
1384		device_delete_child(dev, sc->rl_miibus);
1385	bus_generic_detach(dev);
1386
1387	/*
1388	 * The rest is resource deallocation, so we should already be
1389	 * stopped here.
1390	 */
1391
1392	if (sc->rl_intrhand)
1393		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1394	if (ifp != NULL)
1395		if_free(ifp);
1396	if (sc->rl_irq)
1397		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1398	if (sc->rl_res)
1399		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1400
1401	/* Yield the CPU long enough for any tasks to drain */
1402
1403        tsleep(sc, PPAUSE, "rewait", hz);
1404
1405	/* Unload and free the RX DMA ring memory and map */
1406
1407	if (sc->rl_ldata.rl_rx_list_tag) {
1408		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1409		    sc->rl_ldata.rl_rx_list_map);
1410		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1411		    sc->rl_ldata.rl_rx_list,
1412		    sc->rl_ldata.rl_rx_list_map);
1413		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1414	}
1415
1416	/* Unload and free the TX DMA ring memory and map */
1417
1418	if (sc->rl_ldata.rl_tx_list_tag) {
1419		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1420		    sc->rl_ldata.rl_tx_list_map);
1421		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1422		    sc->rl_ldata.rl_tx_list,
1423		    sc->rl_ldata.rl_tx_list_map);
1424		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1425	}
1426
1427	/* Destroy all the RX and TX buffer maps */
1428
1429	if (sc->rl_ldata.rl_mtag) {
1430		for (i = 0; i < RL_TX_DESC_CNT; i++)
1431			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1432			    sc->rl_ldata.rl_tx_dmamap[i]);
1433		for (i = 0; i < RL_RX_DESC_CNT; i++)
1434			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1435			    sc->rl_ldata.rl_rx_dmamap[i]);
1436		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1437	}
1438
1439	/* Unload and free the stats buffer and map */
1440
1441	if (sc->rl_ldata.rl_stag) {
1442		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1443		    sc->rl_ldata.rl_rx_list_map);
1444		bus_dmamem_free(sc->rl_ldata.rl_stag,
1445		    sc->rl_ldata.rl_stats,
1446		    sc->rl_ldata.rl_smap);
1447		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1448	}
1449
1450	if (sc->rl_parent_tag)
1451		bus_dma_tag_destroy(sc->rl_parent_tag);
1452
1453	mtx_destroy(&sc->rl_mtx);
1454
1455	return (0);
1456}
1457
1458static int
1459re_newbuf(sc, idx, m)
1460	struct rl_softc		*sc;
1461	int			idx;
1462	struct mbuf		*m;
1463{
1464	struct rl_dmaload_arg	arg;
1465	struct mbuf		*n = NULL;
1466	int			error;
1467
1468	if (m == NULL) {
1469		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1470		if (n == NULL)
1471			return (ENOBUFS);
1472		m = n;
1473	} else
1474		m->m_data = m->m_ext.ext_buf;
1475
1476	m->m_len = m->m_pkthdr.len = MCLBYTES;
1477#ifdef RE_FIXUP_RX
1478	/*
1479	 * This is part of an evil trick to deal with non-x86 platforms.
1480	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1481	 * boundaries, but that will hose non-x86 machines. To get around
1482	 * this, we leave some empty space at the start of each buffer
1483	 * and for non-x86 hosts, we copy the buffer back six bytes
1484	 * to achieve word alignment. This is slightly more efficient
1485	 * than allocating a new buffer, copying the contents, and
1486	 * discarding the old buffer.
1487	 */
1488	m_adj(m, RE_ETHER_ALIGN);
1489#endif
1490	arg.sc = sc;
1491	arg.rl_idx = idx;
1492	arg.rl_maxsegs = 1;
1493	arg.rl_flags = 0;
1494	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1495
1496	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1497	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1498	    &arg, BUS_DMA_NOWAIT);
1499	if (error || arg.rl_maxsegs != 1) {
1500		if (n != NULL)
1501			m_freem(n);
1502		return (ENOMEM);
1503	}
1504
1505	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1506	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1507
1508	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1509	    sc->rl_ldata.rl_rx_dmamap[idx],
1510	    BUS_DMASYNC_PREREAD);
1511
1512	return (0);
1513}
1514
1515#ifdef RE_FIXUP_RX
1516static __inline void
1517re_fixup_rx(m)
1518	struct mbuf		*m;
1519{
1520	int                     i;
1521	uint16_t                *src, *dst;
1522
1523	src = mtod(m, uint16_t *);
1524	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1525
1526	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1527		*dst++ = *src++;
1528
1529	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1530
1531	return;
1532}
1533#endif
1534
1535static int
1536re_tx_list_init(sc)
1537	struct rl_softc		*sc;
1538{
1539
1540	RL_LOCK_ASSERT(sc);
1541
1542	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1543	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1544	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1545
1546	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1547	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1548	sc->rl_ldata.rl_tx_prodidx = 0;
1549	sc->rl_ldata.rl_tx_considx = 0;
1550	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1551
1552	return (0);
1553}
1554
1555static int
1556re_rx_list_init(sc)
1557	struct rl_softc		*sc;
1558{
1559	int			i;
1560
1561	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1562	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1563	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1564
1565	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1566		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1567			return (ENOBUFS);
1568	}
1569
1570	/* Flush the RX descriptors */
1571
1572	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1573	    sc->rl_ldata.rl_rx_list_map,
1574	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1575
1576	sc->rl_ldata.rl_rx_prodidx = 0;
1577	sc->rl_head = sc->rl_tail = NULL;
1578
1579	return (0);
1580}
1581
1582/*
1583 * RX handler for C+ and 8169. For the gigE chips, we support
1584 * the reception of jumbo frames that have been fragmented
1585 * across multiple 2K mbuf cluster buffers.
1586 */
1587static int
1588re_rxeof(sc)
1589	struct rl_softc		*sc;
1590{
1591	struct mbuf		*m;
1592	struct ifnet		*ifp;
1593	int			i, total_len;
1594	struct rl_desc		*cur_rx;
1595	u_int32_t		rxstat, rxvlan;
1596	int			maxpkt = 16;
1597
1598	RL_LOCK_ASSERT(sc);
1599
1600	ifp = sc->rl_ifp;
1601	i = sc->rl_ldata.rl_rx_prodidx;
1602
1603	/* Invalidate the descriptor memory */
1604
1605	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1606	    sc->rl_ldata.rl_rx_list_map,
1607	    BUS_DMASYNC_POSTREAD);
1608
1609	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) {
1610		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1611		m = sc->rl_ldata.rl_rx_mbuf[i];
1612		total_len = RL_RXBYTES(cur_rx);
1613		rxstat = le32toh(cur_rx->rl_cmdstat);
1614		rxvlan = le32toh(cur_rx->rl_vlanctl);
1615
1616		/* Invalidate the RX mbuf and unload its map */
1617
1618		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1619		    sc->rl_ldata.rl_rx_dmamap[i],
1620		    BUS_DMASYNC_POSTWRITE);
1621		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1622		    sc->rl_ldata.rl_rx_dmamap[i]);
1623
1624		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1625			m->m_len = RE_RX_DESC_BUFLEN;
1626			if (sc->rl_head == NULL)
1627				sc->rl_head = sc->rl_tail = m;
1628			else {
1629				m->m_flags &= ~M_PKTHDR;
1630				sc->rl_tail->m_next = m;
1631				sc->rl_tail = m;
1632			}
1633			re_newbuf(sc, i, NULL);
1634			RL_DESC_INC(i);
1635			continue;
1636		}
1637
1638		/*
1639		 * NOTE: for the 8139C+, the frame length field
1640		 * is always 12 bits in size, but for the gigE chips,
1641		 * it is 13 bits (since the max RX frame length is 16K).
1642		 * Unfortunately, all 32 bits in the status word
1643		 * were already used, so to make room for the extra
1644		 * length bit, RealTek took out the 'frame alignment
1645		 * error' bit and shifted the other status bits
1646		 * over one slot. The OWN, EOR, FS and LS bits are
1647		 * still in the same places. We have already extracted
1648		 * the frame length and checked the OWN bit, so rather
1649		 * than using an alternate bit mapping, we shift the
1650		 * status bits one space to the right so we can evaluate
1651		 * them using the 8169 status as though it was in the
1652		 * same format as that of the 8139C+.
1653		 */
1654		if (sc->rl_type == RL_8169)
1655			rxstat >>= 1;
1656
1657		/*
1658		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1659		 * set, but if CRC is clear, it will still be a valid frame.
1660		 */
1661		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1662		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1663			ifp->if_ierrors++;
1664			/*
1665			 * If this is part of a multi-fragment packet,
1666			 * discard all the pieces.
1667			 */
1668			if (sc->rl_head != NULL) {
1669				m_freem(sc->rl_head);
1670				sc->rl_head = sc->rl_tail = NULL;
1671			}
1672			re_newbuf(sc, i, m);
1673			RL_DESC_INC(i);
1674			continue;
1675		}
1676
1677		/*
1678		 * If allocating a replacement mbuf fails,
1679		 * reload the current one.
1680		 */
1681
1682		if (re_newbuf(sc, i, NULL)) {
1683			ifp->if_ierrors++;
1684			if (sc->rl_head != NULL) {
1685				m_freem(sc->rl_head);
1686				sc->rl_head = sc->rl_tail = NULL;
1687			}
1688			re_newbuf(sc, i, m);
1689			RL_DESC_INC(i);
1690			continue;
1691		}
1692
1693		RL_DESC_INC(i);
1694
1695		if (sc->rl_head != NULL) {
1696			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1697			if (m->m_len == 0)
1698				m->m_len = RE_RX_DESC_BUFLEN;
1699			/*
1700			 * Special case: if there's 4 bytes or less
1701			 * in this buffer, the mbuf can be discarded:
1702			 * the last 4 bytes is the CRC, which we don't
1703			 * care about anyway.
1704			 */
1705			if (m->m_len <= ETHER_CRC_LEN) {
1706				sc->rl_tail->m_len -=
1707				    (ETHER_CRC_LEN - m->m_len);
1708				m_freem(m);
1709			} else {
1710				m->m_len -= ETHER_CRC_LEN;
1711				m->m_flags &= ~M_PKTHDR;
1712				sc->rl_tail->m_next = m;
1713			}
1714			m = sc->rl_head;
1715			sc->rl_head = sc->rl_tail = NULL;
1716			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1717		} else
1718			m->m_pkthdr.len = m->m_len =
1719			    (total_len - ETHER_CRC_LEN);
1720
1721#ifdef RE_FIXUP_RX
1722		re_fixup_rx(m);
1723#endif
1724		ifp->if_ipackets++;
1725		m->m_pkthdr.rcvif = ifp;
1726
1727		/* Do RX checksumming if enabled */
1728
1729		if (ifp->if_capenable & IFCAP_RXCSUM) {
1730
1731			/* Check IP header checksum */
1732			if (rxstat & RL_RDESC_STAT_PROTOID)
1733				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1734			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1735				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1736
1737			/* Check TCP/UDP checksum */
1738			if ((RL_TCPPKT(rxstat) &&
1739			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1740			    (RL_UDPPKT(rxstat) &&
1741			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1742				m->m_pkthdr.csum_flags |=
1743				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1744				m->m_pkthdr.csum_data = 0xffff;
1745			}
1746		}
1747		maxpkt--;
1748		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1749			m->m_pkthdr.ether_vtag =
1750			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1751			m->m_flags |= M_VLANTAG;
1752		}
1753		RL_UNLOCK(sc);
1754		(*ifp->if_input)(ifp, m);
1755		RL_LOCK(sc);
1756	}
1757
1758	/* Flush the RX DMA ring */
1759
1760	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1761	    sc->rl_ldata.rl_rx_list_map,
1762	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1763
1764	sc->rl_ldata.rl_rx_prodidx = i;
1765
1766	if (maxpkt)
1767		return(EAGAIN);
1768
1769	return(0);
1770}
1771
1772static void
1773re_txeof(sc)
1774	struct rl_softc		*sc;
1775{
1776	struct ifnet		*ifp;
1777	u_int32_t		txstat;
1778	int			idx;
1779
1780	ifp = sc->rl_ifp;
1781	idx = sc->rl_ldata.rl_tx_considx;
1782
1783	/* Invalidate the TX descriptor list */
1784
1785	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1786	    sc->rl_ldata.rl_tx_list_map,
1787	    BUS_DMASYNC_POSTREAD);
1788
1789	while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1790
1791		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1792		if (txstat & RL_TDESC_CMD_OWN)
1793			break;
1794
1795		sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0;
1796
1797		/*
1798		 * We only stash mbufs in the last descriptor
1799		 * in a fragment chain, which also happens to
1800		 * be the only place where the TX status bits
1801		 * are valid.
1802		 */
1803
1804		if (txstat & RL_TDESC_CMD_EOF) {
1805			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1806			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1807			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1808			    sc->rl_ldata.rl_tx_dmamap[idx]);
1809			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1810			    RL_TDESC_STAT_COLCNT))
1811				ifp->if_collisions++;
1812			if (txstat & RL_TDESC_STAT_TXERRSUM)
1813				ifp->if_oerrors++;
1814			else
1815				ifp->if_opackets++;
1816		}
1817		sc->rl_ldata.rl_tx_free++;
1818		RL_DESC_INC(idx);
1819	}
1820
1821	/* No changes made to the TX ring, so no flush needed */
1822
1823	if (sc->rl_ldata.rl_tx_free) {
1824		sc->rl_ldata.rl_tx_considx = idx;
1825		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1826		sc->rl_watchdog_timer = 0;
1827	}
1828
1829	/*
1830	 * Some chips will ignore a second TX request issued while an
1831	 * existing transmission is in progress. If the transmitter goes
1832	 * idle but there are still packets waiting to be sent, we need
1833	 * to restart the channel here to flush them out. This only seems
1834	 * to be required with the PCIe devices.
1835	 */
1836
1837	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT)
1838	    CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1839
1840#ifdef RE_TX_MODERATION
1841	/*
1842	 * If not all descriptors have been released reaped yet,
1843	 * reload the timer so that we will eventually get another
1844	 * interrupt that will cause us to re-enter this routine.
1845	 * This is done in case the transmitter has gone idle.
1846	 */
1847	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1848		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1849#endif
1850
1851}
1852
1853static void
1854re_tick(xsc)
1855	void			*xsc;
1856{
1857	struct rl_softc		*sc;
1858	struct mii_data		*mii;
1859	struct ifnet		*ifp;
1860
1861	sc = xsc;
1862	ifp = sc->rl_ifp;
1863
1864	RL_LOCK_ASSERT(sc);
1865
1866	re_watchdog(sc);
1867
1868	mii = device_get_softc(sc->rl_miibus);
1869	mii_tick(mii);
1870	if (sc->rl_link) {
1871		if (!(mii->mii_media_status & IFM_ACTIVE))
1872			sc->rl_link = 0;
1873	} else {
1874		if (mii->mii_media_status & IFM_ACTIVE &&
1875		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1876			sc->rl_link = 1;
1877			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1878				taskqueue_enqueue_fast(taskqueue_fast,
1879				    &sc->rl_txtask);
1880		}
1881	}
1882
1883	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1884}
1885
1886#ifdef DEVICE_POLLING
1887static void
1888re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1889{
1890	struct rl_softc *sc = ifp->if_softc;
1891
1892	RL_LOCK(sc);
1893	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1894		re_poll_locked(ifp, cmd, count);
1895	RL_UNLOCK(sc);
1896}
1897
1898static void
1899re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1900{
1901	struct rl_softc *sc = ifp->if_softc;
1902
1903	RL_LOCK_ASSERT(sc);
1904
1905	sc->rxcycles = count;
1906	re_rxeof(sc);
1907	re_txeof(sc);
1908
1909	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1910		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1911
1912	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1913		u_int16_t       status;
1914
1915		status = CSR_READ_2(sc, RL_ISR);
1916		if (status == 0xffff)
1917			return;
1918		if (status)
1919			CSR_WRITE_2(sc, RL_ISR, status);
1920
1921		/*
1922		 * XXX check behaviour on receiver stalls.
1923		 */
1924
1925		if (status & RL_ISR_SYSTEM_ERR) {
1926			re_reset(sc);
1927			re_init_locked(sc);
1928		}
1929	}
1930}
1931#endif /* DEVICE_POLLING */
1932
1933static void
1934re_intr(arg)
1935	void			*arg;
1936{
1937	struct rl_softc		*sc;
1938	uint16_t		status;
1939
1940	sc = arg;
1941
1942	status = CSR_READ_2(sc, RL_ISR);
1943	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
1944                return;
1945	CSR_WRITE_2(sc, RL_IMR, 0);
1946
1947	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1948
1949	return;
1950}
1951
1952static void
1953re_int_task(arg, npending)
1954	void			*arg;
1955	int			npending;
1956{
1957	struct rl_softc		*sc;
1958	struct ifnet		*ifp;
1959	u_int16_t		status;
1960	int			rval = 0;
1961
1962	sc = arg;
1963	ifp = sc->rl_ifp;
1964
1965	RL_LOCK(sc);
1966
1967	status = CSR_READ_2(sc, RL_ISR);
1968        CSR_WRITE_2(sc, RL_ISR, status);
1969
1970	if (sc->suspended || !(ifp->if_flags & IFF_UP)) {
1971		RL_UNLOCK(sc);
1972		return;
1973	}
1974
1975#ifdef DEVICE_POLLING
1976	if  (ifp->if_capenable & IFCAP_POLLING) {
1977		RL_UNLOCK(sc);
1978		return;
1979	}
1980#endif
1981
1982	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
1983		rval = re_rxeof(sc);
1984
1985#ifdef RE_TX_MODERATION
1986	if (status & (RL_ISR_TIMEOUT_EXPIRED|
1987#else
1988	if (status & (RL_ISR_TX_OK|
1989#endif
1990	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
1991		re_txeof(sc);
1992
1993	if (status & RL_ISR_SYSTEM_ERR) {
1994		re_reset(sc);
1995		re_init_locked(sc);
1996	}
1997
1998	if (status & RL_ISR_LINKCHG) {
1999		callout_stop(&sc->rl_stat_callout);
2000		re_tick(sc);
2001	}
2002
2003	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2004		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2005
2006	RL_UNLOCK(sc);
2007
2008        if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2009		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2010		return;
2011	}
2012
2013	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2014
2015	return;
2016}
2017
2018static int
2019re_encap(sc, m_head, idx)
2020	struct rl_softc		*sc;
2021	struct mbuf		**m_head;
2022	int			*idx;
2023{
2024	struct mbuf		*m_new = NULL;
2025	struct rl_dmaload_arg	arg;
2026	bus_dmamap_t		map;
2027	int			error;
2028
2029	RL_LOCK_ASSERT(sc);
2030
2031	if (sc->rl_ldata.rl_tx_free <= 4)
2032		return (EFBIG);
2033
2034	/*
2035	 * Set up checksum offload. Note: checksum offload bits must
2036	 * appear in all descriptors of a multi-descriptor transmit
2037	 * attempt. This is according to testing done with an 8169
2038	 * chip. This is a requirement.
2039	 */
2040
2041	arg.rl_flags = 0;
2042
2043	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2044		arg.rl_flags = RL_TDESC_CMD_LGSEND |
2045		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2046		    RL_TDESC_CMD_MSSVAL_SHIFT);
2047	else {
2048		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2049			arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
2050		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2051			arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
2052		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2053			arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
2054	}
2055
2056	arg.sc = sc;
2057	arg.rl_idx = *idx;
2058	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2059	if (arg.rl_maxsegs > 4)
2060		arg.rl_maxsegs -= 4;
2061	arg.rl_ring = sc->rl_ldata.rl_tx_list;
2062
2063	map = sc->rl_ldata.rl_tx_dmamap[*idx];
2064
2065	/*
2066	 * With some of the RealTek chips, using the checksum offload
2067	 * support in conjunction with the autopadding feature results
2068	 * in the transmission of corrupt frames. For example, if we
2069	 * need to send a really small IP fragment that's less than 60
2070	 * bytes in size, and IP header checksumming is enabled, the
2071	 * resulting ethernet frame that appears on the wire will
2072	 * have garbled payload. To work around this, if TX checksum
2073	 * offload is enabled, we always manually pad short frames out
2074	 * to the minimum ethernet frame size. We do this by pretending
2075	 * the mbuf chain has too many fragments so the coalescing code
2076	 * below can assemble the packet into a single buffer that's
2077	 * padded out to the mininum frame size.
2078	 */
2079
2080	if (arg.rl_flags && (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN)
2081		error = EFBIG;
2082	else
2083		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2084		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2085
2086	if (error && error != EFBIG) {
2087		device_printf(sc->rl_dev, "can't map mbuf (error %d)\n", error);
2088		return (ENOBUFS);
2089	}
2090
2091	/* Too many segments to map, coalesce into a single mbuf */
2092
2093	if (error || arg.rl_maxsegs == 0) {
2094		m_new = m_defrag(*m_head, M_DONTWAIT);
2095		if (m_new == NULL)
2096			return (ENOBUFS);
2097		else
2098			*m_head = m_new;
2099
2100		/*
2101		 * Manually pad short frames, and zero the pad space
2102		 * to avoid leaking data.
2103		 */
2104
2105		if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
2106			bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
2107			    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
2108			m_new->m_pkthdr.len += RL_MIN_FRAMELEN -
2109			    m_new->m_pkthdr.len;
2110			m_new->m_len = m_new->m_pkthdr.len;
2111		}
2112
2113		arg.sc = sc;
2114		arg.rl_idx = *idx;
2115		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2116		arg.rl_ring = sc->rl_ldata.rl_tx_list;
2117
2118		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2119		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2120		if (error) {
2121			device_printf(sc->rl_dev, "can't map mbuf (error %d)\n",
2122			    error);
2123			return (EFBIG);
2124		}
2125	}
2126
2127	/*
2128	 * Insure that the map for this transmission
2129	 * is placed at the array index of the last descriptor
2130	 * in this chain.  (Swap last and first dmamaps.)
2131	 */
2132	sc->rl_ldata.rl_tx_dmamap[*idx] =
2133	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
2134	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
2135
2136	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
2137	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
2138
2139	/*
2140	 * Set up hardware VLAN tagging. Note: vlan tag info must
2141	 * appear in the first descriptor of a multi-descriptor
2142	 * transmission attempt.
2143	 */
2144	if ((*m_head)->m_flags & M_VLANTAG)
2145		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
2146		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2147		    RL_TDESC_VLANCTL_TAG);
2148
2149	/* Transfer ownership of packet to the chip. */
2150
2151	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
2152	    htole32(RL_TDESC_CMD_OWN);
2153	if (*idx != arg.rl_idx)
2154		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
2155		    htole32(RL_TDESC_CMD_OWN);
2156
2157        RL_DESC_INC(arg.rl_idx);
2158	*idx = arg.rl_idx;
2159
2160	return (0);
2161}
2162
2163static void
2164re_tx_task(arg, npending)
2165	void			*arg;
2166	int			npending;
2167{
2168	struct ifnet		*ifp;
2169
2170	ifp = arg;
2171	re_start(ifp);
2172
2173	return;
2174}
2175
2176/*
2177 * Main transmit routine for C+ and gigE NICs.
2178 */
2179static void
2180re_start(ifp)
2181	struct ifnet		*ifp;
2182{
2183	struct rl_softc		*sc;
2184	struct mbuf		*m_head = NULL;
2185	int			idx, queued = 0;
2186
2187	sc = ifp->if_softc;
2188
2189	RL_LOCK(sc);
2190
2191	if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
2192		RL_UNLOCK(sc);
2193		return;
2194	}
2195
2196	idx = sc->rl_ldata.rl_tx_prodidx;
2197
2198	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2199		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2200		if (m_head == NULL)
2201			break;
2202
2203		if (re_encap(sc, &m_head, &idx)) {
2204			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2205			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2206			break;
2207		}
2208
2209		/*
2210		 * If there's a BPF listener, bounce a copy of this frame
2211		 * to him.
2212		 */
2213		BPF_MTAP(ifp, m_head);
2214
2215		queued++;
2216	}
2217
2218	if (queued == 0) {
2219#ifdef RE_TX_MODERATION
2220		if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
2221			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2222#endif
2223		RL_UNLOCK(sc);
2224		return;
2225	}
2226
2227	/* Flush the TX descriptors */
2228
2229	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2230	    sc->rl_ldata.rl_tx_list_map,
2231	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2232
2233	sc->rl_ldata.rl_tx_prodidx = idx;
2234
2235	/*
2236	 * RealTek put the TX poll request register in a different
2237	 * location on the 8169 gigE chip. I don't know why.
2238	 */
2239
2240	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2241
2242#ifdef RE_TX_MODERATION
2243	/*
2244	 * Use the countdown timer for interrupt moderation.
2245	 * 'TX done' interrupts are disabled. Instead, we reset the
2246	 * countdown timer, which will begin counting until it hits
2247	 * the value in the TIMERINT register, and then trigger an
2248	 * interrupt. Each time we write to the TIMERCNT register,
2249	 * the timer count is reset to 0.
2250	 */
2251	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2252#endif
2253
2254	/*
2255	 * Set a timeout in case the chip goes out to lunch.
2256	 */
2257	sc->rl_watchdog_timer = 5;
2258
2259	RL_UNLOCK(sc);
2260
2261	return;
2262}
2263
2264static void
2265re_init(xsc)
2266	void			*xsc;
2267{
2268	struct rl_softc		*sc = xsc;
2269
2270	RL_LOCK(sc);
2271	re_init_locked(sc);
2272	RL_UNLOCK(sc);
2273}
2274
2275static void
2276re_init_locked(sc)
2277	struct rl_softc		*sc;
2278{
2279	struct ifnet		*ifp = sc->rl_ifp;
2280	struct mii_data		*mii;
2281	u_int32_t		rxcfg = 0;
2282	union {
2283		uint32_t align_dummy;
2284		u_char eaddr[ETHER_ADDR_LEN];
2285        } eaddr;
2286
2287	RL_LOCK_ASSERT(sc);
2288
2289	mii = device_get_softc(sc->rl_miibus);
2290
2291	/*
2292	 * Cancel pending I/O and free all RX/TX buffers.
2293	 */
2294	re_stop(sc);
2295
2296	/*
2297	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2298	 * RX checksum offload. We must configure the C+ register
2299	 * before all others.
2300	 */
2301	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2302	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2303	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2304
2305	/*
2306	 * Init our MAC address.  Even though the chipset
2307	 * documentation doesn't mention it, we need to enter "Config
2308	 * register write enable" mode to modify the ID registers.
2309	 */
2310	/* Copy MAC address on stack to align. */
2311	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2312	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2313	CSR_WRITE_4(sc, RL_IDR0,
2314	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2315	CSR_WRITE_4(sc, RL_IDR4,
2316	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2317	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2318
2319	/*
2320	 * For C+ mode, initialize the RX descriptors and mbufs.
2321	 */
2322	re_rx_list_init(sc);
2323	re_tx_list_init(sc);
2324
2325	/*
2326	 * Enable transmit and receive.
2327	 */
2328	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2329
2330	/*
2331	 * Set the initial TX and RX configuration.
2332	 */
2333	if (sc->rl_testmode) {
2334		if (sc->rl_type == RL_8169)
2335			CSR_WRITE_4(sc, RL_TXCFG,
2336			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2337		else
2338			CSR_WRITE_4(sc, RL_TXCFG,
2339			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2340	} else
2341		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2342	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2343
2344	/* Set the individual bit to receive frames for this host only. */
2345	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2346	rxcfg |= RL_RXCFG_RX_INDIV;
2347
2348	/* If we want promiscuous mode, set the allframes bit. */
2349	if (ifp->if_flags & IFF_PROMISC)
2350		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2351	else
2352		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2353	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2354
2355	/*
2356	 * Set capture broadcast bit to capture broadcast frames.
2357	 */
2358	if (ifp->if_flags & IFF_BROADCAST)
2359		rxcfg |= RL_RXCFG_RX_BROAD;
2360	else
2361		rxcfg &= ~RL_RXCFG_RX_BROAD;
2362	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2363
2364	/*
2365	 * Program the multicast filter, if necessary.
2366	 */
2367	re_setmulti(sc);
2368
2369#ifdef DEVICE_POLLING
2370	/*
2371	 * Disable interrupts if we are polling.
2372	 */
2373	if (ifp->if_capenable & IFCAP_POLLING)
2374		CSR_WRITE_2(sc, RL_IMR, 0);
2375	else	/* otherwise ... */
2376#endif
2377
2378	/*
2379	 * Enable interrupts.
2380	 */
2381	if (sc->rl_testmode)
2382		CSR_WRITE_2(sc, RL_IMR, 0);
2383	else
2384		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2385	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2386
2387	/* Set initial TX threshold */
2388	sc->rl_txthresh = RL_TX_THRESH_INIT;
2389
2390	/* Start RX/TX process. */
2391	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2392#ifdef notdef
2393	/* Enable receiver and transmitter. */
2394	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2395#endif
2396	/*
2397	 * Load the addresses of the RX and TX lists into the chip.
2398	 */
2399
2400	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2401	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2402	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2403	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2404
2405	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2406	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2407	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2408	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2409
2410	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2411
2412#ifdef RE_TX_MODERATION
2413	/*
2414	 * Initialize the timer interrupt register so that
2415	 * a timer interrupt will be generated once the timer
2416	 * reaches a certain number of ticks. The timer is
2417	 * reloaded on each transmit. This gives us TX interrupt
2418	 * moderation, which dramatically improves TX frame rate.
2419	 */
2420	if (sc->rl_type == RL_8169)
2421		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2422	else
2423		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2424#endif
2425
2426	/*
2427	 * For 8169 gigE NICs, set the max allowed RX packet
2428	 * size so we can receive jumbo frames.
2429	 */
2430	if (sc->rl_type == RL_8169)
2431		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2432
2433	if (sc->rl_testmode)
2434		return;
2435
2436	mii_mediachg(mii);
2437
2438	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2439
2440	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2441	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2442
2443	sc->rl_link = 0;
2444	sc->rl_watchdog_timer = 0;
2445	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2446}
2447
2448/*
2449 * Set media options.
2450 */
2451static int
2452re_ifmedia_upd(ifp)
2453	struct ifnet		*ifp;
2454{
2455	struct rl_softc		*sc;
2456	struct mii_data		*mii;
2457
2458	sc = ifp->if_softc;
2459	mii = device_get_softc(sc->rl_miibus);
2460	RL_LOCK(sc);
2461	mii_mediachg(mii);
2462	RL_UNLOCK(sc);
2463
2464	return (0);
2465}
2466
2467/*
2468 * Report current media status.
2469 */
2470static void
2471re_ifmedia_sts(ifp, ifmr)
2472	struct ifnet		*ifp;
2473	struct ifmediareq	*ifmr;
2474{
2475	struct rl_softc		*sc;
2476	struct mii_data		*mii;
2477
2478	sc = ifp->if_softc;
2479	mii = device_get_softc(sc->rl_miibus);
2480
2481	RL_LOCK(sc);
2482	mii_pollstat(mii);
2483	RL_UNLOCK(sc);
2484	ifmr->ifm_active = mii->mii_media_active;
2485	ifmr->ifm_status = mii->mii_media_status;
2486}
2487
2488static int
2489re_ioctl(ifp, command, data)
2490	struct ifnet		*ifp;
2491	u_long			command;
2492	caddr_t			data;
2493{
2494	struct rl_softc		*sc = ifp->if_softc;
2495	struct ifreq		*ifr = (struct ifreq *) data;
2496	struct mii_data		*mii;
2497	int			error = 0;
2498
2499	switch (command) {
2500	case SIOCSIFMTU:
2501		RL_LOCK(sc);
2502		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2503			error = EINVAL;
2504		ifp->if_mtu = ifr->ifr_mtu;
2505		RL_UNLOCK(sc);
2506		break;
2507	case SIOCSIFFLAGS:
2508		RL_LOCK(sc);
2509		if (ifp->if_flags & IFF_UP)
2510			re_init_locked(sc);
2511		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2512			re_stop(sc);
2513		RL_UNLOCK(sc);
2514		break;
2515	case SIOCADDMULTI:
2516	case SIOCDELMULTI:
2517		RL_LOCK(sc);
2518		re_setmulti(sc);
2519		RL_UNLOCK(sc);
2520		break;
2521	case SIOCGIFMEDIA:
2522	case SIOCSIFMEDIA:
2523		mii = device_get_softc(sc->rl_miibus);
2524		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2525		break;
2526	case SIOCSIFCAP:
2527	    {
2528		int mask, reinit;
2529
2530		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2531		reinit = 0;
2532#ifdef DEVICE_POLLING
2533		if (mask & IFCAP_POLLING) {
2534			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2535				error = ether_poll_register(re_poll, ifp);
2536				if (error)
2537					return(error);
2538				RL_LOCK(sc);
2539				/* Disable interrupts */
2540				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2541				ifp->if_capenable |= IFCAP_POLLING;
2542				RL_UNLOCK(sc);
2543			} else {
2544				error = ether_poll_deregister(ifp);
2545				/* Enable interrupts. */
2546				RL_LOCK(sc);
2547				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2548				ifp->if_capenable &= ~IFCAP_POLLING;
2549				RL_UNLOCK(sc);
2550			}
2551		}
2552#endif /* DEVICE_POLLING */
2553		if (mask & IFCAP_HWCSUM) {
2554			ifp->if_capenable ^= IFCAP_HWCSUM;
2555			if (ifp->if_capenable & IFCAP_TXCSUM)
2556				ifp->if_hwassist |= RE_CSUM_FEATURES;
2557			else
2558				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2559			reinit = 1;
2560		}
2561		if (mask & IFCAP_VLAN_HWTAGGING) {
2562			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2563			reinit = 1;
2564		}
2565		if (mask & IFCAP_TSO4) {
2566			ifp->if_capenable ^= IFCAP_TSO4;
2567			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2568			    (IFCAP_TSO4 & ifp->if_capabilities))
2569				ifp->if_hwassist |= CSUM_TSO;
2570			else
2571				ifp->if_hwassist &= ~CSUM_TSO;
2572		}
2573		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2574			re_init(sc);
2575		VLAN_CAPABILITIES(ifp);
2576	    }
2577		break;
2578	default:
2579		error = ether_ioctl(ifp, command, data);
2580		break;
2581	}
2582
2583	return (error);
2584}
2585
2586static void
2587re_watchdog(sc)
2588	struct rl_softc		*sc;
2589{
2590
2591	RL_LOCK_ASSERT(sc);
2592
2593	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2594		return;
2595
2596	device_printf(sc->rl_dev, "watchdog timeout\n");
2597	sc->rl_ifp->if_oerrors++;
2598
2599	re_txeof(sc);
2600	re_rxeof(sc);
2601	re_init_locked(sc);
2602}
2603
2604/*
2605 * Stop the adapter and free any mbufs allocated to the
2606 * RX and TX lists.
2607 */
2608static void
2609re_stop(sc)
2610	struct rl_softc		*sc;
2611{
2612	register int		i;
2613	struct ifnet		*ifp;
2614
2615	RL_LOCK_ASSERT(sc);
2616
2617	ifp = sc->rl_ifp;
2618
2619	sc->rl_watchdog_timer = 0;
2620	callout_stop(&sc->rl_stat_callout);
2621	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2622
2623	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2624	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2625	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2626
2627	if (sc->rl_head != NULL) {
2628		m_freem(sc->rl_head);
2629		sc->rl_head = sc->rl_tail = NULL;
2630	}
2631
2632	/* Free the TX list buffers. */
2633
2634	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2635		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2636			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2637			    sc->rl_ldata.rl_tx_dmamap[i]);
2638			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2639			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2640		}
2641	}
2642
2643	/* Free the RX list buffers. */
2644
2645	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2646		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2647			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2648			    sc->rl_ldata.rl_rx_dmamap[i]);
2649			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2650			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2651		}
2652	}
2653}
2654
2655/*
2656 * Device suspend routine.  Stop the interface and save some PCI
2657 * settings in case the BIOS doesn't restore them properly on
2658 * resume.
2659 */
2660static int
2661re_suspend(dev)
2662	device_t		dev;
2663{
2664	struct rl_softc		*sc;
2665
2666	sc = device_get_softc(dev);
2667
2668	RL_LOCK(sc);
2669	re_stop(sc);
2670	sc->suspended = 1;
2671	RL_UNLOCK(sc);
2672
2673	return (0);
2674}
2675
2676/*
2677 * Device resume routine.  Restore some PCI settings in case the BIOS
2678 * doesn't, re-enable busmastering, and restart the interface if
2679 * appropriate.
2680 */
2681static int
2682re_resume(dev)
2683	device_t		dev;
2684{
2685	struct rl_softc		*sc;
2686	struct ifnet		*ifp;
2687
2688	sc = device_get_softc(dev);
2689
2690	RL_LOCK(sc);
2691
2692	ifp = sc->rl_ifp;
2693
2694	/* reinitialize interface if necessary */
2695	if (ifp->if_flags & IFF_UP)
2696		re_init_locked(sc);
2697
2698	sc->suspended = 0;
2699	RL_UNLOCK(sc);
2700
2701	return (0);
2702}
2703
2704/*
2705 * Stop all chip I/O so that the kernel's probe routines don't
2706 * get confused by errant DMAs when rebooting.
2707 */
2708static void
2709re_shutdown(dev)
2710	device_t		dev;
2711{
2712	struct rl_softc		*sc;
2713
2714	sc = device_get_softc(dev);
2715
2716	RL_LOCK(sc);
2717	re_stop(sc);
2718	/*
2719	 * Mark interface as down since otherwise we will panic if
2720	 * interrupt comes in later on, which can happen in some
2721	 * cases.
2722	 */
2723	sc->rl_ifp->if_flags &= ~IFF_UP;
2724	RL_UNLOCK(sc);
2725}
2726