if_re.c revision 150789
11541Srgrimes/*-
21541Srgrimes * Copyright (c) 1997, 1998-2003
31541Srgrimes *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
41541Srgrimes *
51541Srgrimes * Redistribution and use in source and binary forms, with or without
61541Srgrimes * modification, are permitted provided that the following conditions
71541Srgrimes * are met:
81541Srgrimes * 1. Redistributions of source code must retain the above copyright
91541Srgrimes *    notice, this list of conditions and the following disclaimer.
101541Srgrimes * 2. Redistributions in binary form must reproduce the above copyright
111541Srgrimes *    notice, this list of conditions and the following disclaimer in the
121541Srgrimes *    documentation and/or other materials provided with the distribution.
131541Srgrimes * 3. All advertising materials mentioning features or use of this software
141541Srgrimes *    must display the following acknowledgement:
151541Srgrimes *	This product includes software developed by Bill Paul.
161541Srgrimes * 4. Neither the name of the author nor the names of any co-contributors
171541Srgrimes *    may be used to endorse or promote products derived from this software
181541Srgrimes *    without specific prior written permission.
191541Srgrimes *
201541Srgrimes * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
211541Srgrimes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
221541Srgrimes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
231541Srgrimes * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
241541Srgrimes * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
251541Srgrimes * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
261541Srgrimes * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
271541Srgrimes * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
281541Srgrimes * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
291541Srgrimes * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
301541Srgrimes * THE POSSIBILITY OF SUCH DAMAGE.
311541Srgrimes */
321541Srgrimes
331541Srgrimes#include <sys/cdefs.h>
341541Srgrimes__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 150789 2005-10-01 18:56:19Z glebius $");
351541Srgrimes
361541Srgrimes/*
371541Srgrimes * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
381541Srgrimes *
391541Srgrimes * Written by Bill Paul <wpaul@windriver.com>
401541Srgrimes * Senior Networking Software Engineer
411541Srgrimes * Wind River Systems
421541Srgrimes */
431541Srgrimes
441541Srgrimes/*
451541Srgrimes * This driver is designed to support RealTek's next generation of
461541Srgrimes * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
471541Srgrimes * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
481541Srgrimes * and the RTL8110S.
491541Srgrimes *
501541Srgrimes * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/module.h>
118#include <sys/kernel.h>
119#include <sys/socket.h>
120
121#include <net/if.h>
122#include <net/if_arp.h>
123#include <net/ethernet.h>
124#include <net/if_dl.h>
125#include <net/if_media.h>
126#include <net/if_types.h>
127#include <net/if_vlan_var.h>
128
129#include <net/bpf.h>
130
131#include <machine/bus.h>
132#include <machine/resource.h>
133#include <sys/bus.h>
134#include <sys/rman.h>
135
136#include <dev/mii/mii.h>
137#include <dev/mii/miivar.h>
138
139#include <dev/pci/pcireg.h>
140#include <dev/pci/pcivar.h>
141
142MODULE_DEPEND(re, pci, 1, 1, 1);
143MODULE_DEPEND(re, ether, 1, 1, 1);
144MODULE_DEPEND(re, miibus, 1, 1, 1);
145
146/* "controller miibus0" required.  See GENERIC if you get errors here. */
147#include "miibus_if.h"
148
149/*
150 * Default to using PIO access for this driver.
151 */
152#define RE_USEIOSPACE
153
154#include <pci/if_rlreg.h>
155
156#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157
158/*
159 * Various supported device vendors/types and their names.
160 */
161static struct rl_type re_devs[] = {
162	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
163		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
164	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
165		"RealTek 8139C+ 10/100BaseTX" },
166	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
167		"RealTek 8169 Gigabit Ethernet" },
168	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
169		"RealTek 8169S Single-chip Gigabit Ethernet" },
170	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
171		"RealTek 8169SB Single-chip Gigabit Ethernet" },
172	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
173		"RealTek 8110S Single-chip Gigabit Ethernet" },
174	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
175		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
176	{ 0, 0, 0, NULL }
177};
178
179static struct rl_hwrev re_hwrevs[] = {
180	{ RL_HWREV_8139, RL_8139,  "" },
181	{ RL_HWREV_8139A, RL_8139, "A" },
182	{ RL_HWREV_8139AG, RL_8139, "A-G" },
183	{ RL_HWREV_8139B, RL_8139, "B" },
184	{ RL_HWREV_8130, RL_8139, "8130" },
185	{ RL_HWREV_8139C, RL_8139, "C" },
186	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
187	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
188	{ RL_HWREV_8169, RL_8169, "8169"},
189	{ RL_HWREV_8169S, RL_8169, "8169S"},
190	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
191	{ RL_HWREV_8110S, RL_8169, "8110S"},
192	{ RL_HWREV_8100, RL_8139, "8100"},
193	{ RL_HWREV_8101, RL_8139, "8101"},
194	{ 0, 0, NULL }
195};
196
197static int re_probe		(device_t);
198static int re_attach		(device_t);
199static int re_detach		(device_t);
200
201static int re_encap		(struct rl_softc *, struct mbuf **, int *);
202
203static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
204static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
205				    bus_size_t, int);
206static int re_allocmem		(device_t, struct rl_softc *);
207static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
208static int re_rx_list_init	(struct rl_softc *);
209static int re_tx_list_init	(struct rl_softc *);
210#ifdef RE_FIXUP_RX
211static __inline void re_fixup_rx
212				(struct mbuf *);
213#endif
214static void re_rxeof		(struct rl_softc *);
215static void re_txeof		(struct rl_softc *);
216#ifdef DEVICE_POLLING
217static void re_poll		(struct ifnet *, enum poll_cmd, int);
218static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
219#endif
220static void re_intr		(void *);
221static void re_tick		(void *);
222static void re_start		(struct ifnet *);
223static void re_start_locked	(struct ifnet *);
224static int re_ioctl		(struct ifnet *, u_long, caddr_t);
225static void re_init		(void *);
226static void re_init_locked	(struct rl_softc *);
227static void re_stop		(struct rl_softc *);
228static void re_watchdog		(struct ifnet *);
229static int re_suspend		(device_t);
230static int re_resume		(device_t);
231static void re_shutdown		(device_t);
232static int re_ifmedia_upd	(struct ifnet *);
233static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
234
235static void re_eeprom_putbyte	(struct rl_softc *, int);
236static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
237static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
238static int re_gmii_readreg	(device_t, int, int);
239static int re_gmii_writereg	(device_t, int, int, int);
240
241static int re_miibus_readreg	(device_t, int, int);
242static int re_miibus_writereg	(device_t, int, int, int);
243static void re_miibus_statchg	(device_t);
244
245static void re_setmulti		(struct rl_softc *);
246static void re_reset		(struct rl_softc *);
247
248static int re_diag		(struct rl_softc *);
249
250#ifdef RE_USEIOSPACE
251#define RL_RES			SYS_RES_IOPORT
252#define RL_RID			RL_PCI_LOIO
253#else
254#define RL_RES			SYS_RES_MEMORY
255#define RL_RID			RL_PCI_LOMEM
256#endif
257
258static device_method_t re_methods[] = {
259	/* Device interface */
260	DEVMETHOD(device_probe,		re_probe),
261	DEVMETHOD(device_attach,	re_attach),
262	DEVMETHOD(device_detach,	re_detach),
263	DEVMETHOD(device_suspend,	re_suspend),
264	DEVMETHOD(device_resume,	re_resume),
265	DEVMETHOD(device_shutdown,	re_shutdown),
266
267	/* bus interface */
268	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270
271	/* MII interface */
272	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
273	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
274	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
275
276	{ 0, 0 }
277};
278
279static driver_t re_driver = {
280	"re",
281	re_methods,
282	sizeof(struct rl_softc)
283};
284
285static devclass_t re_devclass;
286
287DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
288DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
289DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
290
291#define EE_SET(x)					\
292	CSR_WRITE_1(sc, RL_EECMD,			\
293		CSR_READ_1(sc, RL_EECMD) | x)
294
295#define EE_CLR(x)					\
296	CSR_WRITE_1(sc, RL_EECMD,			\
297		CSR_READ_1(sc, RL_EECMD) & ~x)
298
299/*
300 * Send a read command and address to the EEPROM, check for ACK.
301 */
302static void
303re_eeprom_putbyte(sc, addr)
304	struct rl_softc		*sc;
305	int			addr;
306{
307	register int		d, i;
308
309	d = addr | sc->rl_eecmd_read;
310
311	/*
312	 * Feed in each bit and strobe the clock.
313	 */
314	for (i = 0x400; i; i >>= 1) {
315		if (d & i) {
316			EE_SET(RL_EE_DATAIN);
317		} else {
318			EE_CLR(RL_EE_DATAIN);
319		}
320		DELAY(100);
321		EE_SET(RL_EE_CLK);
322		DELAY(150);
323		EE_CLR(RL_EE_CLK);
324		DELAY(100);
325	}
326}
327
328/*
329 * Read a word of data stored in the EEPROM at address 'addr.'
330 */
331static void
332re_eeprom_getword(sc, addr, dest)
333	struct rl_softc		*sc;
334	int			addr;
335	u_int16_t		*dest;
336{
337	register int		i;
338	u_int16_t		word = 0;
339
340	/* Enter EEPROM access mode. */
341	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
342
343	/*
344	 * Send address of word we want to read.
345	 */
346	re_eeprom_putbyte(sc, addr);
347
348	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
349
350	/*
351	 * Start reading bits from EEPROM.
352	 */
353	for (i = 0x8000; i; i >>= 1) {
354		EE_SET(RL_EE_CLK);
355		DELAY(100);
356		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
357			word |= i;
358		EE_CLR(RL_EE_CLK);
359		DELAY(100);
360	}
361
362	/* Turn off EEPROM access mode. */
363	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
364
365	*dest = word;
366}
367
368/*
369 * Read a sequence of words from the EEPROM.
370 */
371static void
372re_read_eeprom(sc, dest, off, cnt, swap)
373	struct rl_softc		*sc;
374	caddr_t			dest;
375	int			off;
376	int			cnt;
377	int			swap;
378{
379	int			i;
380	u_int16_t		word = 0, *ptr;
381
382	for (i = 0; i < cnt; i++) {
383		re_eeprom_getword(sc, off + i, &word);
384		ptr = (u_int16_t *)(dest + (i * 2));
385		if (swap)
386			*ptr = ntohs(word);
387		else
388			*ptr = word;
389	}
390}
391
392static int
393re_gmii_readreg(dev, phy, reg)
394	device_t		dev;
395	int			phy, reg;
396{
397	struct rl_softc		*sc;
398	u_int32_t		rval;
399	int			i;
400
401	if (phy != 1)
402		return (0);
403
404	sc = device_get_softc(dev);
405
406	/* Let the rgephy driver read the GMEDIASTAT register */
407
408	if (reg == RL_GMEDIASTAT) {
409		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
410		return (rval);
411	}
412
413	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
414	DELAY(1000);
415
416	for (i = 0; i < RL_TIMEOUT; i++) {
417		rval = CSR_READ_4(sc, RL_PHYAR);
418		if (rval & RL_PHYAR_BUSY)
419			break;
420		DELAY(100);
421	}
422
423	if (i == RL_TIMEOUT) {
424		if_printf(sc->rl_ifp, "PHY read failed\n");
425		return (0);
426	}
427
428	return (rval & RL_PHYAR_PHYDATA);
429}
430
431static int
432re_gmii_writereg(dev, phy, reg, data)
433	device_t		dev;
434	int			phy, reg, data;
435{
436	struct rl_softc		*sc;
437	u_int32_t		rval;
438	int			i;
439
440	sc = device_get_softc(dev);
441
442	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
443	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
444	DELAY(1000);
445
446	for (i = 0; i < RL_TIMEOUT; i++) {
447		rval = CSR_READ_4(sc, RL_PHYAR);
448		if (!(rval & RL_PHYAR_BUSY))
449			break;
450		DELAY(100);
451	}
452
453	if (i == RL_TIMEOUT) {
454		if_printf(sc->rl_ifp, "PHY write failed\n");
455		return (0);
456	}
457
458	return (0);
459}
460
461static int
462re_miibus_readreg(dev, phy, reg)
463	device_t		dev;
464	int			phy, reg;
465{
466	struct rl_softc		*sc;
467	u_int16_t		rval = 0;
468	u_int16_t		re8139_reg = 0;
469
470	sc = device_get_softc(dev);
471
472	if (sc->rl_type == RL_8169) {
473		rval = re_gmii_readreg(dev, phy, reg);
474		return (rval);
475	}
476
477	/* Pretend the internal PHY is only at address 0 */
478	if (phy) {
479		return (0);
480	}
481	switch (reg) {
482	case MII_BMCR:
483		re8139_reg = RL_BMCR;
484		break;
485	case MII_BMSR:
486		re8139_reg = RL_BMSR;
487		break;
488	case MII_ANAR:
489		re8139_reg = RL_ANAR;
490		break;
491	case MII_ANER:
492		re8139_reg = RL_ANER;
493		break;
494	case MII_ANLPAR:
495		re8139_reg = RL_LPAR;
496		break;
497	case MII_PHYIDR1:
498	case MII_PHYIDR2:
499		return (0);
500	/*
501	 * Allow the rlphy driver to read the media status
502	 * register. If we have a link partner which does not
503	 * support NWAY, this is the register which will tell
504	 * us the results of parallel detection.
505	 */
506	case RL_MEDIASTAT:
507		rval = CSR_READ_1(sc, RL_MEDIASTAT);
508		return (rval);
509	default:
510		if_printf(sc->rl_ifp, "bad phy register\n");
511		return (0);
512	}
513	rval = CSR_READ_2(sc, re8139_reg);
514	return (rval);
515}
516
517static int
518re_miibus_writereg(dev, phy, reg, data)
519	device_t		dev;
520	int			phy, reg, data;
521{
522	struct rl_softc		*sc;
523	u_int16_t		re8139_reg = 0;
524	int			rval = 0;
525
526	sc = device_get_softc(dev);
527
528	if (sc->rl_type == RL_8169) {
529		rval = re_gmii_writereg(dev, phy, reg, data);
530		return (rval);
531	}
532
533	/* Pretend the internal PHY is only at address 0 */
534	if (phy)
535		return (0);
536
537	switch (reg) {
538	case MII_BMCR:
539		re8139_reg = RL_BMCR;
540		break;
541	case MII_BMSR:
542		re8139_reg = RL_BMSR;
543		break;
544	case MII_ANAR:
545		re8139_reg = RL_ANAR;
546		break;
547	case MII_ANER:
548		re8139_reg = RL_ANER;
549		break;
550	case MII_ANLPAR:
551		re8139_reg = RL_LPAR;
552		break;
553	case MII_PHYIDR1:
554	case MII_PHYIDR2:
555		return (0);
556		break;
557	default:
558		if_printf(sc->rl_ifp, "bad phy register\n");
559		return (0);
560	}
561	CSR_WRITE_2(sc, re8139_reg, data);
562	return (0);
563}
564
565static void
566re_miibus_statchg(dev)
567	device_t		dev;
568{
569
570}
571
572/*
573 * Program the 64-bit multicast hash filter.
574 */
575static void
576re_setmulti(sc)
577	struct rl_softc		*sc;
578{
579	struct ifnet		*ifp;
580	int			h = 0;
581	u_int32_t		hashes[2] = { 0, 0 };
582	struct ifmultiaddr	*ifma;
583	u_int32_t		rxfilt;
584	int			mcnt = 0;
585
586	RL_LOCK_ASSERT(sc);
587
588	ifp = sc->rl_ifp;
589
590	rxfilt = CSR_READ_4(sc, RL_RXCFG);
591
592	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593		rxfilt |= RL_RXCFG_RX_MULTI;
594		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
595		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
596		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
597		return;
598	}
599
600	/* first, zot all the existing hash bits */
601	CSR_WRITE_4(sc, RL_MAR0, 0);
602	CSR_WRITE_4(sc, RL_MAR4, 0);
603
604	/* now program new ones */
605	IF_ADDR_LOCK(ifp);
606	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
607		if (ifma->ifma_addr->sa_family != AF_LINK)
608			continue;
609		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
610		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
611		if (h < 32)
612			hashes[0] |= (1 << h);
613		else
614			hashes[1] |= (1 << (h - 32));
615		mcnt++;
616	}
617	IF_ADDR_UNLOCK(ifp);
618
619	if (mcnt)
620		rxfilt |= RL_RXCFG_RX_MULTI;
621	else
622		rxfilt &= ~RL_RXCFG_RX_MULTI;
623
624	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
625	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
626	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
627}
628
629static void
630re_reset(sc)
631	struct rl_softc		*sc;
632{
633	register int		i;
634
635	RL_LOCK_ASSERT(sc);
636
637	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
638
639	for (i = 0; i < RL_TIMEOUT; i++) {
640		DELAY(10);
641		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
642			break;
643	}
644	if (i == RL_TIMEOUT)
645		if_printf(sc->rl_ifp, "reset never completed!\n");
646
647	CSR_WRITE_1(sc, 0x82, 1);
648}
649
650/*
651 * The following routine is designed to test for a defect on some
652 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
653 * lines connected to the bus, however for a 32-bit only card, they
654 * should be pulled high. The result of this defect is that the
655 * NIC will not work right if you plug it into a 64-bit slot: DMA
656 * operations will be done with 64-bit transfers, which will fail
657 * because the 64-bit data lines aren't connected.
658 *
659 * There's no way to work around this (short of talking a soldering
660 * iron to the board), however we can detect it. The method we use
661 * here is to put the NIC into digital loopback mode, set the receiver
662 * to promiscuous mode, and then try to send a frame. We then compare
663 * the frame data we sent to what was received. If the data matches,
664 * then the NIC is working correctly, otherwise we know the user has
665 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
666 * slot. In the latter case, there's no way the NIC can work correctly,
667 * so we print out a message on the console and abort the device attach.
668 */
669
670static int
671re_diag(sc)
672	struct rl_softc		*sc;
673{
674	struct ifnet		*ifp = sc->rl_ifp;
675	struct mbuf		*m0;
676	struct ether_header	*eh;
677	struct rl_desc		*cur_rx;
678	u_int16_t		status;
679	u_int32_t		rxstat;
680	int			total_len, i, error = 0;
681	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
682	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
683
684	/* Allocate a single mbuf */
685	MGETHDR(m0, M_DONTWAIT, MT_DATA);
686	if (m0 == NULL)
687		return (ENOBUFS);
688
689	RL_LOCK(sc);
690
691	/*
692	 * Initialize the NIC in test mode. This sets the chip up
693	 * so that it can send and receive frames, but performs the
694	 * following special functions:
695	 * - Puts receiver in promiscuous mode
696	 * - Enables digital loopback mode
697	 * - Leaves interrupts turned off
698	 */
699
700	ifp->if_flags |= IFF_PROMISC;
701	sc->rl_testmode = 1;
702	re_init_locked(sc);
703	re_stop(sc);
704	DELAY(100000);
705	re_init_locked(sc);
706
707	/* Put some data in the mbuf */
708
709	eh = mtod(m0, struct ether_header *);
710	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
711	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
712	eh->ether_type = htons(ETHERTYPE_IP);
713	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
714
715	/*
716	 * Queue the packet, start transmission.
717	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
718	 */
719
720	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
721	RL_UNLOCK(sc);
722	/* XXX: re_diag must not be called when in ALTQ mode */
723	IF_HANDOFF(&ifp->if_snd, m0, ifp);
724	RL_LOCK(sc);
725	m0 = NULL;
726
727	/* Wait for it to propagate through the chip */
728
729	DELAY(100000);
730	for (i = 0; i < RL_TIMEOUT; i++) {
731		status = CSR_READ_2(sc, RL_ISR);
732		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
733		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
734			break;
735		DELAY(10);
736	}
737
738	if (i == RL_TIMEOUT) {
739		if_printf(ifp, "diagnostic failed, failed to receive packet "
740		    "in loopback mode\n");
741		error = EIO;
742		goto done;
743	}
744
745	/*
746	 * The packet should have been dumped into the first
747	 * entry in the RX DMA ring. Grab it from there.
748	 */
749
750	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
751	    sc->rl_ldata.rl_rx_list_map,
752	    BUS_DMASYNC_POSTREAD);
753	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
754	    sc->rl_ldata.rl_rx_dmamap[0],
755	    BUS_DMASYNC_POSTWRITE);
756	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
757	    sc->rl_ldata.rl_rx_dmamap[0]);
758
759	m0 = sc->rl_ldata.rl_rx_mbuf[0];
760	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
761	eh = mtod(m0, struct ether_header *);
762
763	cur_rx = &sc->rl_ldata.rl_rx_list[0];
764	total_len = RL_RXBYTES(cur_rx);
765	rxstat = le32toh(cur_rx->rl_cmdstat);
766
767	if (total_len != ETHER_MIN_LEN) {
768		if_printf(ifp, "diagnostic failed, received short packet\n");
769		error = EIO;
770		goto done;
771	}
772
773	/* Test that the received packet data matches what we sent. */
774
775	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
776	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
777	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
778		if_printf(ifp, "WARNING, DMA FAILURE!\n");
779		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
780		    dst, ":", src, ":", ETHERTYPE_IP);
781		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
782		    eh->ether_dhost, ":",  eh->ether_shost, ":",
783		    ntohs(eh->ether_type));
784		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
785		    "into a 64-bit PCI slot.\n");
786		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
787		    "for proper operation.\n");
788		if_printf(ifp, "Read the re(4) man page for more details.\n");
789		error = EIO;
790	}
791
792done:
793	/* Turn interface off, release resources */
794
795	sc->rl_testmode = 0;
796	ifp->if_flags &= ~IFF_PROMISC;
797	re_stop(sc);
798	if (m0 != NULL)
799		m_freem(m0);
800
801	RL_UNLOCK(sc);
802
803	return (error);
804}
805
806/*
807 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
808 * IDs against our list and return a device name if we find a match.
809 */
810static int
811re_probe(dev)
812	device_t		dev;
813{
814	struct rl_type		*t;
815	struct rl_softc		*sc;
816	int			rid;
817	u_int32_t		hwrev;
818
819	t = re_devs;
820	sc = device_get_softc(dev);
821
822	while (t->rl_name != NULL) {
823		if ((pci_get_vendor(dev) == t->rl_vid) &&
824		    (pci_get_device(dev) == t->rl_did)) {
825
826			/*
827			 * Temporarily map the I/O space
828			 * so we can read the chip ID register.
829			 */
830			rid = RL_RID;
831			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
832			    RF_ACTIVE);
833			if (sc->rl_res == NULL) {
834				device_printf(dev,
835				    "couldn't map ports/memory\n");
836				return (ENXIO);
837			}
838			sc->rl_btag = rman_get_bustag(sc->rl_res);
839			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
840			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
841			bus_release_resource(dev, RL_RES,
842			    RL_RID, sc->rl_res);
843			if (t->rl_basetype == hwrev) {
844				device_set_desc(dev, t->rl_name);
845				return (BUS_PROBE_DEFAULT);
846			}
847		}
848		t++;
849	}
850
851	return (ENXIO);
852}
853
854/*
855 * This routine takes the segment list provided as the result of
856 * a bus_dma_map_load() operation and assigns the addresses/lengths
857 * to RealTek DMA descriptors. This can be called either by the RX
858 * code or the TX code. In the RX case, we'll probably wind up mapping
859 * at most one segment. For the TX case, there could be any number of
860 * segments since TX packets may span multiple mbufs. In either case,
861 * if the number of segments is larger than the rl_maxsegs limit
862 * specified by the caller, we abort the mapping operation. Sadly,
863 * whoever designed the buffer mapping API did not provide a way to
864 * return an error from here, so we have to fake it a bit.
865 */
866
867static void
868re_dma_map_desc(arg, segs, nseg, mapsize, error)
869	void			*arg;
870	bus_dma_segment_t	*segs;
871	int			nseg;
872	bus_size_t		mapsize;
873	int			error;
874{
875	struct rl_dmaload_arg	*ctx;
876	struct rl_desc		*d = NULL;
877	int			i = 0, idx;
878
879	if (error)
880		return;
881
882	ctx = arg;
883
884	/* Signal error to caller if there's too many segments */
885	if (nseg > ctx->rl_maxsegs) {
886		ctx->rl_maxsegs = 0;
887		return;
888	}
889
890	/*
891	 * Map the segment array into descriptors. Note that we set the
892	 * start-of-frame and end-of-frame markers for either TX or RX, but
893	 * they really only have meaning in the TX case. (In the RX case,
894	 * it's the chip that tells us where packets begin and end.)
895	 * We also keep track of the end of the ring and set the
896	 * end-of-ring bits as needed, and we set the ownership bits
897	 * in all except the very first descriptor. (The caller will
898	 * set this descriptor later when it start transmission or
899	 * reception.)
900	 */
901	idx = ctx->rl_idx;
902	for (;;) {
903		u_int32_t		cmdstat;
904		d = &ctx->rl_ring[idx];
905		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
906			ctx->rl_maxsegs = 0;
907			return;
908		}
909		cmdstat = segs[i].ds_len;
910		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
911		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
912		if (i == 0)
913			cmdstat |= RL_TDESC_CMD_SOF;
914		else
915			cmdstat |= RL_TDESC_CMD_OWN;
916		if (idx == (RL_RX_DESC_CNT - 1))
917			cmdstat |= RL_TDESC_CMD_EOR;
918		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
919		i++;
920		if (i == nseg)
921			break;
922		RL_DESC_INC(idx);
923	}
924
925	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
926	ctx->rl_maxsegs = nseg;
927	ctx->rl_idx = idx;
928}
929
930/*
931 * Map a single buffer address.
932 */
933
934static void
935re_dma_map_addr(arg, segs, nseg, error)
936	void			*arg;
937	bus_dma_segment_t	*segs;
938	int			nseg;
939	int			error;
940{
941	bus_addr_t		*addr;
942
943	if (error)
944		return;
945
946	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
947	addr = arg;
948	*addr = segs->ds_addr;
949}
950
951static int
952re_allocmem(dev, sc)
953	device_t		dev;
954	struct rl_softc		*sc;
955{
956	int			error;
957	int			nseg;
958	int			i;
959
960	/*
961	 * Allocate map for RX mbufs.
962	 */
963	nseg = 32;
964	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
965	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
966	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
967	    NULL, NULL, &sc->rl_ldata.rl_mtag);
968	if (error) {
969		device_printf(dev, "could not allocate dma tag\n");
970		return (ENOMEM);
971	}
972
973	/*
974	 * Allocate map for TX descriptor list.
975	 */
976	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
977	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
978	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
979	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
980	if (error) {
981		device_printf(dev, "could not allocate dma tag\n");
982		return (ENOMEM);
983	}
984
985	/* Allocate DMA'able memory for the TX ring */
986
987	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
988	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
989	    &sc->rl_ldata.rl_tx_list_map);
990	if (error)
991		return (ENOMEM);
992
993	/* Load the map for the TX ring. */
994
995	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
996	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
997	     RL_TX_LIST_SZ, re_dma_map_addr,
998	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
999
1000	/* Create DMA maps for TX buffers */
1001
1002	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1003		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1004			    &sc->rl_ldata.rl_tx_dmamap[i]);
1005		if (error) {
1006			device_printf(dev, "can't create DMA map for TX\n");
1007			return (ENOMEM);
1008		}
1009	}
1010
1011	/*
1012	 * Allocate map for RX descriptor list.
1013	 */
1014	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1015	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1016	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1017	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1018	if (error) {
1019		device_printf(dev, "could not allocate dma tag\n");
1020		return (ENOMEM);
1021	}
1022
1023	/* Allocate DMA'able memory for the RX ring */
1024
1025	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1026	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1027	    &sc->rl_ldata.rl_rx_list_map);
1028	if (error)
1029		return (ENOMEM);
1030
1031	/* Load the map for the RX ring. */
1032
1033	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1034	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1035	     RL_RX_LIST_SZ, re_dma_map_addr,
1036	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1037
1038	/* Create DMA maps for RX buffers */
1039
1040	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1041		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1042			    &sc->rl_ldata.rl_rx_dmamap[i]);
1043		if (error) {
1044			device_printf(dev, "can't create DMA map for RX\n");
1045			return (ENOMEM);
1046		}
1047	}
1048
1049	return (0);
1050}
1051
1052/*
1053 * Attach the interface. Allocate softc structures, do ifmedia
1054 * setup and ethernet/BPF attach.
1055 */
1056static int
1057re_attach(dev)
1058	device_t		dev;
1059{
1060	u_char			eaddr[ETHER_ADDR_LEN];
1061	u_int16_t		as[3];
1062	struct rl_softc		*sc;
1063	struct ifnet		*ifp;
1064	struct rl_hwrev		*hw_rev;
1065	int			hwrev;
1066	u_int16_t		re_did = 0;
1067	int			error = 0, rid, i;
1068
1069	sc = device_get_softc(dev);
1070
1071	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1072	    MTX_DEF);
1073	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1074
1075	/*
1076	 * Map control/status registers.
1077	 */
1078	pci_enable_busmaster(dev);
1079
1080	rid = RL_RID;
1081	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1082	    RF_ACTIVE);
1083
1084	if (sc->rl_res == NULL) {
1085		device_printf(dev, "couldn't map ports/memory\n");
1086		error = ENXIO;
1087		goto fail;
1088	}
1089
1090	sc->rl_btag = rman_get_bustag(sc->rl_res);
1091	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1092
1093	/* Allocate interrupt */
1094	rid = 0;
1095	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1096	    RF_SHAREABLE | RF_ACTIVE);
1097
1098	if (sc->rl_irq == NULL) {
1099		device_printf(dev, "couldn't map interrupt\n");
1100		error = ENXIO;
1101		goto fail;
1102	}
1103
1104	/* Reset the adapter. */
1105	RL_LOCK(sc);
1106	re_reset(sc);
1107	RL_UNLOCK(sc);
1108
1109	hw_rev = re_hwrevs;
1110	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1111	while (hw_rev->rl_desc != NULL) {
1112		if (hw_rev->rl_rev == hwrev) {
1113			sc->rl_type = hw_rev->rl_type;
1114			break;
1115		}
1116		hw_rev++;
1117	}
1118
1119	if (sc->rl_type == RL_8169) {
1120
1121		/* Set RX length mask */
1122
1123		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1124
1125		/* Force station address autoload from the EEPROM */
1126
1127		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1128		for (i = 0; i < RL_TIMEOUT; i++) {
1129			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1130				break;
1131			DELAY(100);
1132		}
1133		if (i == RL_TIMEOUT)
1134			device_printf(dev, "eeprom autoload timed out\n");
1135
1136			for (i = 0; i < ETHER_ADDR_LEN; i++)
1137				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1138	} else {
1139
1140		/* Set RX length mask */
1141
1142		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1143
1144		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1145		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1146		if (re_did != 0x8129)
1147			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1148
1149		/*
1150		 * Get station address from the EEPROM.
1151		 */
1152		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1153		for (i = 0; i < 3; i++) {
1154			eaddr[(i * 2) + 0] = as[i] & 0xff;
1155			eaddr[(i * 2) + 1] = as[i] >> 8;
1156		}
1157	}
1158
1159	/*
1160	 * Allocate the parent bus DMA tag appropriate for PCI.
1161	 */
1162#define RL_NSEG_NEW 32
1163	error = bus_dma_tag_create(NULL,	/* parent */
1164			1, 0,			/* alignment, boundary */
1165			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1166			BUS_SPACE_MAXADDR,	/* highaddr */
1167			NULL, NULL,		/* filter, filterarg */
1168			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1169			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1170			BUS_DMA_ALLOCNOW,	/* flags */
1171			NULL, NULL,		/* lockfunc, lockarg */
1172			&sc->rl_parent_tag);
1173	if (error)
1174		goto fail;
1175
1176	error = re_allocmem(dev, sc);
1177
1178	if (error)
1179		goto fail;
1180
1181	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1182	if (ifp == NULL) {
1183		device_printf(dev, "can not if_alloc()\n");
1184		error = ENOSPC;
1185		goto fail;
1186	}
1187
1188	/* Do MII setup */
1189	if (mii_phy_probe(dev, &sc->rl_miibus,
1190	    re_ifmedia_upd, re_ifmedia_sts)) {
1191		device_printf(dev, "MII without any phy!\n");
1192		error = ENXIO;
1193		goto fail;
1194	}
1195
1196	ifp->if_softc = sc;
1197	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1198	ifp->if_mtu = ETHERMTU;
1199	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1200	ifp->if_ioctl = re_ioctl;
1201	ifp->if_capabilities = IFCAP_VLAN_MTU;
1202	ifp->if_start = re_start;
1203	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1204	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1205	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1206#ifdef DEVICE_POLLING
1207	ifp->if_capabilities |= IFCAP_POLLING;
1208#endif
1209	ifp->if_watchdog = re_watchdog;
1210	ifp->if_init = re_init;
1211	if (sc->rl_type == RL_8169)
1212		ifp->if_baudrate = 1000000000;
1213	else
1214		ifp->if_baudrate = 100000000;
1215	IFQ_SET_MAXLEN(&ifp->if_snd,  RL_IFQ_MAXLEN);
1216	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1217	IFQ_SET_READY(&ifp->if_snd);
1218
1219	/*
1220	 * Call MI attach routine.
1221	 */
1222	ether_ifattach(ifp, eaddr);
1223
1224	/* Perform hardware diagnostic. */
1225	error = re_diag(sc);
1226
1227	if (error) {
1228		device_printf(dev, "attach aborted due to hardware diag failure\n");
1229		ether_ifdetach(ifp);
1230		goto fail;
1231	}
1232
1233	/* Hook interrupt last to avoid having to lock softc */
1234	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1235	    re_intr, sc, &sc->rl_intrhand);
1236	if (error) {
1237		device_printf(dev, "couldn't set up irq\n");
1238		ether_ifdetach(ifp);
1239	}
1240
1241fail:
1242	if (error)
1243		re_detach(dev);
1244
1245	return (error);
1246}
1247
1248/*
1249 * Shutdown hardware and free up resources. This can be called any
1250 * time after the mutex has been initialized. It is called in both
1251 * the error case in attach and the normal detach case so it needs
1252 * to be careful about only freeing resources that have actually been
1253 * allocated.
1254 */
1255static int
1256re_detach(dev)
1257	device_t		dev;
1258{
1259	struct rl_softc		*sc;
1260	struct ifnet		*ifp;
1261	int			i;
1262
1263	sc = device_get_softc(dev);
1264	ifp = sc->rl_ifp;
1265	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1266
1267#ifdef DEVICE_POLLING
1268	if (ifp->if_capenable & IFCAP_POLLING)
1269		ether_poll_deregister(ifp);
1270#endif
1271
1272	/* These should only be active if attach succeeded */
1273	if (device_is_attached(dev)) {
1274		RL_LOCK(sc);
1275#if 0
1276		sc->suspended = 1;
1277#endif
1278		re_stop(sc);
1279		RL_UNLOCK(sc);
1280		callout_drain(&sc->rl_stat_callout);
1281		/*
1282		 * Force off the IFF_UP flag here, in case someone
1283		 * still had a BPF descriptor attached to this
1284		 * interface. If they do, ether_ifdetach() will cause
1285		 * the BPF code to try and clear the promisc mode
1286		 * flag, which will bubble down to re_ioctl(),
1287		 * which will try to call re_init() again. This will
1288		 * turn the NIC back on and restart the MII ticker,
1289		 * which will panic the system when the kernel tries
1290		 * to invoke the re_tick() function that isn't there
1291		 * anymore.
1292		 */
1293		ifp->if_flags &= ~IFF_UP;
1294		ether_ifdetach(ifp);
1295	}
1296	if (sc->rl_miibus)
1297		device_delete_child(dev, sc->rl_miibus);
1298	bus_generic_detach(dev);
1299
1300	/*
1301	 * The rest is resource deallocation, so we should already be
1302	 * stopped here.
1303	 */
1304
1305	if (sc->rl_intrhand)
1306		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1307	if (ifp != NULL)
1308		if_free(ifp);
1309	if (sc->rl_irq)
1310		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1311	if (sc->rl_res)
1312		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1313
1314
1315	/* Unload and free the RX DMA ring memory and map */
1316
1317	if (sc->rl_ldata.rl_rx_list_tag) {
1318		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1319		    sc->rl_ldata.rl_rx_list_map);
1320		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1321		    sc->rl_ldata.rl_rx_list,
1322		    sc->rl_ldata.rl_rx_list_map);
1323		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1324	}
1325
1326	/* Unload and free the TX DMA ring memory and map */
1327
1328	if (sc->rl_ldata.rl_tx_list_tag) {
1329		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1330		    sc->rl_ldata.rl_tx_list_map);
1331		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1332		    sc->rl_ldata.rl_tx_list,
1333		    sc->rl_ldata.rl_tx_list_map);
1334		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1335	}
1336
1337	/* Destroy all the RX and TX buffer maps */
1338
1339	if (sc->rl_ldata.rl_mtag) {
1340		for (i = 0; i < RL_TX_DESC_CNT; i++)
1341			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1342			    sc->rl_ldata.rl_tx_dmamap[i]);
1343		for (i = 0; i < RL_RX_DESC_CNT; i++)
1344			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1345			    sc->rl_ldata.rl_rx_dmamap[i]);
1346		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1347	}
1348
1349	/* Unload and free the stats buffer and map */
1350
1351	if (sc->rl_ldata.rl_stag) {
1352		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1353		    sc->rl_ldata.rl_rx_list_map);
1354		bus_dmamem_free(sc->rl_ldata.rl_stag,
1355		    sc->rl_ldata.rl_stats,
1356		    sc->rl_ldata.rl_smap);
1357		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1358	}
1359
1360	if (sc->rl_parent_tag)
1361		bus_dma_tag_destroy(sc->rl_parent_tag);
1362
1363	mtx_destroy(&sc->rl_mtx);
1364
1365	return (0);
1366}
1367
1368static int
1369re_newbuf(sc, idx, m)
1370	struct rl_softc		*sc;
1371	int			idx;
1372	struct mbuf		*m;
1373{
1374	struct rl_dmaload_arg	arg;
1375	struct mbuf		*n = NULL;
1376	int			error;
1377
1378	if (m == NULL) {
1379		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1380		if (n == NULL)
1381			return (ENOBUFS);
1382		m = n;
1383	} else
1384		m->m_data = m->m_ext.ext_buf;
1385
1386	m->m_len = m->m_pkthdr.len = MCLBYTES;
1387#ifdef RE_FIXUP_RX
1388	/*
1389	 * This is part of an evil trick to deal with non-x86 platforms.
1390	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1391	 * boundaries, but that will hose non-x86 machines. To get around
1392	 * this, we leave some empty space at the start of each buffer
1393	 * and for non-x86 hosts, we copy the buffer back six bytes
1394	 * to achieve word alignment. This is slightly more efficient
1395	 * than allocating a new buffer, copying the contents, and
1396	 * discarding the old buffer.
1397	 */
1398	m_adj(m, RE_ETHER_ALIGN);
1399#endif
1400	arg.sc = sc;
1401	arg.rl_idx = idx;
1402	arg.rl_maxsegs = 1;
1403	arg.rl_flags = 0;
1404	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1405
1406	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1407	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1408	    &arg, BUS_DMA_NOWAIT);
1409	if (error || arg.rl_maxsegs != 1) {
1410		if (n != NULL)
1411			m_freem(n);
1412		return (ENOMEM);
1413	}
1414
1415	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1416	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1417
1418	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1419	    sc->rl_ldata.rl_rx_dmamap[idx],
1420	    BUS_DMASYNC_PREREAD);
1421
1422	return (0);
1423}
1424
1425#ifdef RE_FIXUP_RX
1426static __inline void
1427re_fixup_rx(m)
1428	struct mbuf		*m;
1429{
1430	int                     i;
1431	uint16_t                *src, *dst;
1432
1433	src = mtod(m, uint16_t *);
1434	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1435
1436	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1437		*dst++ = *src++;
1438
1439	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1440
1441	return;
1442}
1443#endif
1444
1445static int
1446re_tx_list_init(sc)
1447	struct rl_softc		*sc;
1448{
1449
1450	RL_LOCK_ASSERT(sc);
1451
1452	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1453	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1454	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1455
1456	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1457	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1458	sc->rl_ldata.rl_tx_prodidx = 0;
1459	sc->rl_ldata.rl_tx_considx = 0;
1460	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1461
1462	return (0);
1463}
1464
1465static int
1466re_rx_list_init(sc)
1467	struct rl_softc		*sc;
1468{
1469	int			i;
1470
1471	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1472	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1473	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1474
1475	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1476		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1477			return (ENOBUFS);
1478	}
1479
1480	/* Flush the RX descriptors */
1481
1482	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1483	    sc->rl_ldata.rl_rx_list_map,
1484	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1485
1486	sc->rl_ldata.rl_rx_prodidx = 0;
1487	sc->rl_head = sc->rl_tail = NULL;
1488
1489	return (0);
1490}
1491
1492/*
1493 * RX handler for C+ and 8169. For the gigE chips, we support
1494 * the reception of jumbo frames that have been fragmented
1495 * across multiple 2K mbuf cluster buffers.
1496 */
1497static void
1498re_rxeof(sc)
1499	struct rl_softc		*sc;
1500{
1501	struct mbuf		*m;
1502	struct ifnet		*ifp;
1503	int			i, total_len;
1504	struct rl_desc		*cur_rx;
1505	u_int32_t		rxstat, rxvlan;
1506
1507	RL_LOCK_ASSERT(sc);
1508
1509	ifp = sc->rl_ifp;
1510	i = sc->rl_ldata.rl_rx_prodidx;
1511
1512	/* Invalidate the descriptor memory */
1513
1514	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1515	    sc->rl_ldata.rl_rx_list_map,
1516	    BUS_DMASYNC_POSTREAD);
1517
1518	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1519		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1520		m = sc->rl_ldata.rl_rx_mbuf[i];
1521		total_len = RL_RXBYTES(cur_rx);
1522		rxstat = le32toh(cur_rx->rl_cmdstat);
1523		rxvlan = le32toh(cur_rx->rl_vlanctl);
1524
1525		/* Invalidate the RX mbuf and unload its map */
1526
1527		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1528		    sc->rl_ldata.rl_rx_dmamap[i],
1529		    BUS_DMASYNC_POSTWRITE);
1530		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1531		    sc->rl_ldata.rl_rx_dmamap[i]);
1532
1533		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1534			m->m_len = RE_RX_DESC_BUFLEN;
1535			if (sc->rl_head == NULL)
1536				sc->rl_head = sc->rl_tail = m;
1537			else {
1538				m->m_flags &= ~M_PKTHDR;
1539				sc->rl_tail->m_next = m;
1540				sc->rl_tail = m;
1541			}
1542			re_newbuf(sc, i, NULL);
1543			RL_DESC_INC(i);
1544			continue;
1545		}
1546
1547		/*
1548		 * NOTE: for the 8139C+, the frame length field
1549		 * is always 12 bits in size, but for the gigE chips,
1550		 * it is 13 bits (since the max RX frame length is 16K).
1551		 * Unfortunately, all 32 bits in the status word
1552		 * were already used, so to make room for the extra
1553		 * length bit, RealTek took out the 'frame alignment
1554		 * error' bit and shifted the other status bits
1555		 * over one slot. The OWN, EOR, FS and LS bits are
1556		 * still in the same places. We have already extracted
1557		 * the frame length and checked the OWN bit, so rather
1558		 * than using an alternate bit mapping, we shift the
1559		 * status bits one space to the right so we can evaluate
1560		 * them using the 8169 status as though it was in the
1561		 * same format as that of the 8139C+.
1562		 */
1563		if (sc->rl_type == RL_8169)
1564			rxstat >>= 1;
1565
1566		/*
1567		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1568		 * set, but if CRC is clear, it will still be a valid frame.
1569		 */
1570		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1571		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1572			ifp->if_ierrors++;
1573			/*
1574			 * If this is part of a multi-fragment packet,
1575			 * discard all the pieces.
1576			 */
1577			if (sc->rl_head != NULL) {
1578				m_freem(sc->rl_head);
1579				sc->rl_head = sc->rl_tail = NULL;
1580			}
1581			re_newbuf(sc, i, m);
1582			RL_DESC_INC(i);
1583			continue;
1584		}
1585
1586		/*
1587		 * If allocating a replacement mbuf fails,
1588		 * reload the current one.
1589		 */
1590
1591		if (re_newbuf(sc, i, NULL)) {
1592			ifp->if_ierrors++;
1593			if (sc->rl_head != NULL) {
1594				m_freem(sc->rl_head);
1595				sc->rl_head = sc->rl_tail = NULL;
1596			}
1597			re_newbuf(sc, i, m);
1598			RL_DESC_INC(i);
1599			continue;
1600		}
1601
1602		RL_DESC_INC(i);
1603
1604		if (sc->rl_head != NULL) {
1605			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1606			if (m->m_len == 0)
1607				m->m_len = RE_RX_DESC_BUFLEN;
1608			/*
1609			 * Special case: if there's 4 bytes or less
1610			 * in this buffer, the mbuf can be discarded:
1611			 * the last 4 bytes is the CRC, which we don't
1612			 * care about anyway.
1613			 */
1614			if (m->m_len <= ETHER_CRC_LEN) {
1615				sc->rl_tail->m_len -=
1616				    (ETHER_CRC_LEN - m->m_len);
1617				m_freem(m);
1618			} else {
1619				m->m_len -= ETHER_CRC_LEN;
1620				m->m_flags &= ~M_PKTHDR;
1621				sc->rl_tail->m_next = m;
1622			}
1623			m = sc->rl_head;
1624			sc->rl_head = sc->rl_tail = NULL;
1625			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1626		} else
1627			m->m_pkthdr.len = m->m_len =
1628			    (total_len - ETHER_CRC_LEN);
1629
1630#ifdef RE_FIXUP_RX
1631		re_fixup_rx(m);
1632#endif
1633		ifp->if_ipackets++;
1634		m->m_pkthdr.rcvif = ifp;
1635
1636		/* Do RX checksumming if enabled */
1637
1638		if (ifp->if_capenable & IFCAP_RXCSUM) {
1639
1640			/* Check IP header checksum */
1641			if (rxstat & RL_RDESC_STAT_PROTOID)
1642				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1643			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1644				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1645
1646			/* Check TCP/UDP checksum */
1647			if ((RL_TCPPKT(rxstat) &&
1648			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1649			    (RL_UDPPKT(rxstat) &&
1650			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1651				m->m_pkthdr.csum_flags |=
1652				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1653				m->m_pkthdr.csum_data = 0xffff;
1654			}
1655		}
1656
1657		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1658			VLAN_INPUT_TAG(ifp, m,
1659			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1660		RL_UNLOCK(sc);
1661		(*ifp->if_input)(ifp, m);
1662		RL_LOCK(sc);
1663	}
1664
1665	/* Flush the RX DMA ring */
1666
1667	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1668	    sc->rl_ldata.rl_rx_list_map,
1669	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1670
1671	sc->rl_ldata.rl_rx_prodidx = i;
1672}
1673
1674static void
1675re_txeof(sc)
1676	struct rl_softc		*sc;
1677{
1678	struct ifnet		*ifp;
1679	u_int32_t		txstat;
1680	int			idx;
1681
1682	ifp = sc->rl_ifp;
1683	idx = sc->rl_ldata.rl_tx_considx;
1684
1685	/* Invalidate the TX descriptor list */
1686
1687	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1688	    sc->rl_ldata.rl_tx_list_map,
1689	    BUS_DMASYNC_POSTREAD);
1690
1691	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1692
1693		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1694		if (txstat & RL_TDESC_CMD_OWN)
1695			break;
1696
1697		/*
1698		 * We only stash mbufs in the last descriptor
1699		 * in a fragment chain, which also happens to
1700		 * be the only place where the TX status bits
1701		 * are valid.
1702		 */
1703
1704		if (txstat & RL_TDESC_CMD_EOF) {
1705			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1706			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1707			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1708			    sc->rl_ldata.rl_tx_dmamap[idx]);
1709			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1710			    RL_TDESC_STAT_COLCNT))
1711				ifp->if_collisions++;
1712			if (txstat & RL_TDESC_STAT_TXERRSUM)
1713				ifp->if_oerrors++;
1714			else
1715				ifp->if_opackets++;
1716		}
1717		sc->rl_ldata.rl_tx_free++;
1718		RL_DESC_INC(idx);
1719	}
1720
1721	/* No changes made to the TX ring, so no flush needed */
1722
1723	if (idx != sc->rl_ldata.rl_tx_considx) {
1724		sc->rl_ldata.rl_tx_considx = idx;
1725		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1726		ifp->if_timer = 0;
1727	}
1728
1729	/*
1730	 * If not all descriptors have been released reaped yet,
1731	 * reload the timer so that we will eventually get another
1732	 * interrupt that will cause us to re-enter this routine.
1733	 * This is done in case the transmitter has gone idle.
1734	 */
1735	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1736		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1737}
1738
1739static void
1740re_tick(xsc)
1741	void			*xsc;
1742{
1743	struct rl_softc		*sc;
1744	struct mii_data		*mii;
1745
1746	sc = xsc;
1747
1748	RL_LOCK_ASSERT(sc);
1749
1750	mii = device_get_softc(sc->rl_miibus);
1751
1752	mii_tick(mii);
1753
1754	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1755}
1756
1757#ifdef DEVICE_POLLING
1758static void
1759re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1760{
1761	struct rl_softc *sc = ifp->if_softc;
1762
1763	RL_LOCK(sc);
1764	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1765		re_poll_locked(ifp, cmd, count);
1766	RL_UNLOCK(sc);
1767}
1768
1769static void
1770re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1771{
1772	struct rl_softc *sc = ifp->if_softc;
1773
1774	RL_LOCK_ASSERT(sc);
1775
1776	sc->rxcycles = count;
1777	re_rxeof(sc);
1778	re_txeof(sc);
1779
1780	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1781		re_start_locked(ifp);
1782
1783	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1784		u_int16_t       status;
1785
1786		status = CSR_READ_2(sc, RL_ISR);
1787		if (status == 0xffff)
1788			return;
1789		if (status)
1790			CSR_WRITE_2(sc, RL_ISR, status);
1791
1792		/*
1793		 * XXX check behaviour on receiver stalls.
1794		 */
1795
1796		if (status & RL_ISR_SYSTEM_ERR) {
1797			re_reset(sc);
1798			re_init_locked(sc);
1799		}
1800	}
1801}
1802#endif /* DEVICE_POLLING */
1803
1804static void
1805re_intr(arg)
1806	void			*arg;
1807{
1808	struct rl_softc		*sc;
1809	struct ifnet		*ifp;
1810	u_int16_t		status;
1811
1812	sc = arg;
1813
1814	RL_LOCK(sc);
1815
1816	ifp = sc->rl_ifp;
1817
1818	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1819		goto done_locked;
1820
1821#ifdef DEVICE_POLLING
1822	if  (ifp->if_capenable & IFCAP_POLLING)
1823		goto done_locked;
1824#endif
1825
1826	for (;;) {
1827
1828		status = CSR_READ_2(sc, RL_ISR);
1829		/* If the card has gone away the read returns 0xffff. */
1830		if (status == 0xffff)
1831			break;
1832		if (status)
1833			CSR_WRITE_2(sc, RL_ISR, status);
1834
1835		if ((status & RL_INTRS_CPLUS) == 0)
1836			break;
1837
1838		if ((status & RL_ISR_RX_OK) ||
1839		    (status & RL_ISR_RX_ERR))
1840			re_rxeof(sc);
1841
1842		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1843		    (status & RL_ISR_TX_ERR) ||
1844		    (status & RL_ISR_TX_DESC_UNAVAIL))
1845			re_txeof(sc);
1846
1847		if (status & RL_ISR_SYSTEM_ERR) {
1848			re_reset(sc);
1849			re_init_locked(sc);
1850		}
1851
1852		if (status & RL_ISR_LINKCHG) {
1853			callout_stop(&sc->rl_stat_callout);
1854			re_tick(sc);
1855		}
1856	}
1857
1858	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1859		re_start_locked(ifp);
1860
1861done_locked:
1862	RL_UNLOCK(sc);
1863}
1864
1865static int
1866re_encap(sc, m_head, idx)
1867	struct rl_softc		*sc;
1868	struct mbuf		**m_head;
1869	int			*idx;
1870{
1871	struct mbuf		*m_new = NULL;
1872	struct rl_dmaload_arg	arg;
1873	bus_dmamap_t		map;
1874	int			error;
1875	struct m_tag		*mtag;
1876
1877	RL_LOCK_ASSERT(sc);
1878
1879	if (sc->rl_ldata.rl_tx_free <= 4)
1880		return (EFBIG);
1881
1882	/*
1883	 * Set up checksum offload. Note: checksum offload bits must
1884	 * appear in all descriptors of a multi-descriptor transmit
1885	 * attempt. This is according to testing done with an 8169
1886	 * chip. This is a requirement.
1887	 */
1888
1889	arg.rl_flags = 0;
1890
1891	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1892		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1893	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1894		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1895	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1896		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1897
1898	arg.sc = sc;
1899	arg.rl_idx = *idx;
1900	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1901	if (arg.rl_maxsegs > 4)
1902		arg.rl_maxsegs -= 4;
1903	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1904
1905	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1906	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1907	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1908
1909	if (error && error != EFBIG) {
1910		if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", error);
1911		return (ENOBUFS);
1912	}
1913
1914	/* Too many segments to map, coalesce into a single mbuf */
1915
1916	if (error || arg.rl_maxsegs == 0) {
1917		m_new = m_defrag(*m_head, M_DONTWAIT);
1918		if (m_new == NULL)
1919			return (ENOBUFS);
1920		else
1921			*m_head = m_new;
1922
1923		arg.sc = sc;
1924		arg.rl_idx = *idx;
1925		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1926		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1927
1928		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1929		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1930		if (error) {
1931			if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n",
1932			    error);
1933			return (EFBIG);
1934		}
1935	}
1936
1937	/*
1938	 * Insure that the map for this transmission
1939	 * is placed at the array index of the last descriptor
1940	 * in this chain.  (Swap last and first dmamaps.)
1941	 */
1942	sc->rl_ldata.rl_tx_dmamap[*idx] =
1943	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1944	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1945
1946	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1947	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1948
1949	/*
1950	 * Set up hardware VLAN tagging. Note: vlan tag info must
1951	 * appear in the first descriptor of a multi-descriptor
1952	 * transmission attempt.
1953	 */
1954
1955	mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head);
1956	if (mtag != NULL)
1957		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1958		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1959
1960	/* Transfer ownership of packet to the chip. */
1961
1962	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1963	    htole32(RL_TDESC_CMD_OWN);
1964	if (*idx != arg.rl_idx)
1965		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1966		    htole32(RL_TDESC_CMD_OWN);
1967
1968	RL_DESC_INC(arg.rl_idx);
1969	*idx = arg.rl_idx;
1970
1971	return (0);
1972}
1973
1974static void
1975re_start(ifp)
1976	struct ifnet		*ifp;
1977{
1978	struct rl_softc		*sc;
1979
1980	sc = ifp->if_softc;
1981	RL_LOCK(sc);
1982	re_start_locked(ifp);
1983	RL_UNLOCK(sc);
1984}
1985
1986/*
1987 * Main transmit routine for C+ and gigE NICs.
1988 */
1989static void
1990re_start_locked(ifp)
1991	struct ifnet		*ifp;
1992{
1993	struct rl_softc		*sc;
1994	struct mbuf		*m_head = NULL;
1995	int			idx, queued = 0;
1996
1997	sc = ifp->if_softc;
1998
1999	RL_LOCK_ASSERT(sc);
2000
2001	idx = sc->rl_ldata.rl_tx_prodidx;
2002
2003	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2004		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2005		if (m_head == NULL)
2006			break;
2007
2008		if (re_encap(sc, &m_head, &idx)) {
2009			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2010			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2011			break;
2012		}
2013
2014		/*
2015		 * If there's a BPF listener, bounce a copy of this frame
2016		 * to him.
2017		 */
2018		BPF_MTAP(ifp, m_head);
2019
2020		queued++;
2021	}
2022
2023	if (queued == 0)
2024		return;
2025
2026	/* Flush the TX descriptors */
2027
2028	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2029	    sc->rl_ldata.rl_tx_list_map,
2030	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2031
2032	sc->rl_ldata.rl_tx_prodidx = idx;
2033
2034	/*
2035	 * RealTek put the TX poll request register in a different
2036	 * location on the 8169 gigE chip. I don't know why.
2037	 */
2038
2039	if (sc->rl_type == RL_8169)
2040		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2041	else
2042		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2043
2044	/*
2045	 * Use the countdown timer for interrupt moderation.
2046	 * 'TX done' interrupts are disabled. Instead, we reset the
2047	 * countdown timer, which will begin counting until it hits
2048	 * the value in the TIMERINT register, and then trigger an
2049	 * interrupt. Each time we write to the TIMERCNT register,
2050	 * the timer count is reset to 0.
2051	 */
2052	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2053
2054	/*
2055	 * Set a timeout in case the chip goes out to lunch.
2056	 */
2057	ifp->if_timer = 5;
2058}
2059
2060static void
2061re_init(xsc)
2062	void			*xsc;
2063{
2064	struct rl_softc		*sc = xsc;
2065
2066	RL_LOCK(sc);
2067	re_init_locked(sc);
2068	RL_UNLOCK(sc);
2069}
2070
2071static void
2072re_init_locked(sc)
2073	struct rl_softc		*sc;
2074{
2075	struct ifnet		*ifp = sc->rl_ifp;
2076	struct mii_data		*mii;
2077	u_int32_t		rxcfg = 0;
2078
2079	RL_LOCK_ASSERT(sc);
2080
2081	mii = device_get_softc(sc->rl_miibus);
2082
2083	/*
2084	 * Cancel pending I/O and free all RX/TX buffers.
2085	 */
2086	re_stop(sc);
2087
2088	/*
2089	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2090	 * RX checksum offload. We must configure the C+ register
2091	 * before all others.
2092	 */
2093	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2094	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2095	    RL_CPLUSCMD_VLANSTRIP|
2096	    (ifp->if_capenable & IFCAP_RXCSUM ?
2097	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2098
2099	/*
2100	 * Init our MAC address.  Even though the chipset
2101	 * documentation doesn't mention it, we need to enter "Config
2102	 * register write enable" mode to modify the ID registers.
2103	 */
2104	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2105	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2106	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
2107	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2108	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
2109	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2110
2111	/*
2112	 * For C+ mode, initialize the RX descriptors and mbufs.
2113	 */
2114	re_rx_list_init(sc);
2115	re_tx_list_init(sc);
2116
2117	/*
2118	 * Enable transmit and receive.
2119	 */
2120	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2121
2122	/*
2123	 * Set the initial TX and RX configuration.
2124	 */
2125	if (sc->rl_testmode) {
2126		if (sc->rl_type == RL_8169)
2127			CSR_WRITE_4(sc, RL_TXCFG,
2128			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2129		else
2130			CSR_WRITE_4(sc, RL_TXCFG,
2131			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2132	} else
2133		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2134	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2135
2136	/* Set the individual bit to receive frames for this host only. */
2137	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2138	rxcfg |= RL_RXCFG_RX_INDIV;
2139
2140	/* If we want promiscuous mode, set the allframes bit. */
2141	if (ifp->if_flags & IFF_PROMISC)
2142		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2143	else
2144		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2145	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2146
2147	/*
2148	 * Set capture broadcast bit to capture broadcast frames.
2149	 */
2150	if (ifp->if_flags & IFF_BROADCAST)
2151		rxcfg |= RL_RXCFG_RX_BROAD;
2152	else
2153		rxcfg &= ~RL_RXCFG_RX_BROAD;
2154	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2155
2156	/*
2157	 * Program the multicast filter, if necessary.
2158	 */
2159	re_setmulti(sc);
2160
2161#ifdef DEVICE_POLLING
2162	/*
2163	 * Disable interrupts if we are polling.
2164	 */
2165	if (ifp->if_capenable & IFCAP_POLLING)
2166		CSR_WRITE_2(sc, RL_IMR, 0);
2167	else	/* otherwise ... */
2168#endif
2169	/*
2170	 * Enable interrupts.
2171	 */
2172	if (sc->rl_testmode)
2173		CSR_WRITE_2(sc, RL_IMR, 0);
2174	else
2175		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2176
2177	/* Set initial TX threshold */
2178	sc->rl_txthresh = RL_TX_THRESH_INIT;
2179
2180	/* Start RX/TX process. */
2181	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2182#ifdef notdef
2183	/* Enable receiver and transmitter. */
2184	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2185#endif
2186	/*
2187	 * Load the addresses of the RX and TX lists into the chip.
2188	 */
2189
2190	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2191	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2192	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2193	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2194
2195	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2196	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2197	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2198	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2199
2200	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2201
2202	/*
2203	 * Initialize the timer interrupt register so that
2204	 * a timer interrupt will be generated once the timer
2205	 * reaches a certain number of ticks. The timer is
2206	 * reloaded on each transmit. This gives us TX interrupt
2207	 * moderation, which dramatically improves TX frame rate.
2208	 */
2209	if (sc->rl_type == RL_8169)
2210		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2211	else
2212		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2213
2214	/*
2215	 * For 8169 gigE NICs, set the max allowed RX packet
2216	 * size so we can receive jumbo frames.
2217	 */
2218	if (sc->rl_type == RL_8169)
2219		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2220
2221	if (sc->rl_testmode)
2222		return;
2223
2224	mii_mediachg(mii);
2225
2226	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2227
2228	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2229	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2230
2231	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2232}
2233
2234/*
2235 * Set media options.
2236 */
2237static int
2238re_ifmedia_upd(ifp)
2239	struct ifnet		*ifp;
2240{
2241	struct rl_softc		*sc;
2242	struct mii_data		*mii;
2243
2244	sc = ifp->if_softc;
2245	mii = device_get_softc(sc->rl_miibus);
2246	RL_LOCK(sc);
2247	mii_mediachg(mii);
2248	RL_UNLOCK(sc);
2249
2250	return (0);
2251}
2252
2253/*
2254 * Report current media status.
2255 */
2256static void
2257re_ifmedia_sts(ifp, ifmr)
2258	struct ifnet		*ifp;
2259	struct ifmediareq	*ifmr;
2260{
2261	struct rl_softc		*sc;
2262	struct mii_data		*mii;
2263
2264	sc = ifp->if_softc;
2265	mii = device_get_softc(sc->rl_miibus);
2266
2267	RL_LOCK(sc);
2268	mii_pollstat(mii);
2269	RL_UNLOCK(sc);
2270	ifmr->ifm_active = mii->mii_media_active;
2271	ifmr->ifm_status = mii->mii_media_status;
2272}
2273
2274static int
2275re_ioctl(ifp, command, data)
2276	struct ifnet		*ifp;
2277	u_long			command;
2278	caddr_t			data;
2279{
2280	struct rl_softc		*sc = ifp->if_softc;
2281	struct ifreq		*ifr = (struct ifreq *) data;
2282	struct mii_data		*mii;
2283	int			error = 0;
2284
2285	switch (command) {
2286	case SIOCSIFMTU:
2287		RL_LOCK(sc);
2288		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2289			error = EINVAL;
2290		ifp->if_mtu = ifr->ifr_mtu;
2291		RL_UNLOCK(sc);
2292		break;
2293	case SIOCSIFFLAGS:
2294		RL_LOCK(sc);
2295		if (ifp->if_flags & IFF_UP)
2296			re_init_locked(sc);
2297		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2298			re_stop(sc);
2299		RL_UNLOCK(sc);
2300		break;
2301	case SIOCADDMULTI:
2302	case SIOCDELMULTI:
2303		RL_LOCK(sc);
2304		re_setmulti(sc);
2305		RL_UNLOCK(sc);
2306		break;
2307	case SIOCGIFMEDIA:
2308	case SIOCSIFMEDIA:
2309		mii = device_get_softc(sc->rl_miibus);
2310		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2311		break;
2312	case SIOCSIFCAP:
2313	    {
2314		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2315#ifdef DEVICE_POLLING
2316		if (mask & IFCAP_POLLING) {
2317			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2318				error = ether_poll_register(re_poll, ifp);
2319				if (error)
2320					return(error);
2321				RL_LOCK(sc);
2322				/* Disable interrupts */
2323				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2324				ifp->if_capenable |= IFCAP_POLLING;
2325				RL_UNLOCK(sc);
2326
2327			} else {
2328				error = ether_poll_deregister(ifp);
2329				/* Enable interrupts. */
2330				RL_LOCK(sc);
2331				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2332				ifp->if_capenable &= ~IFCAP_POLLING;
2333				RL_UNLOCK(sc);
2334			}
2335		}
2336#endif /* DEVICE_POLLING */
2337		if (mask & IFCAP_HWCSUM) {
2338			RL_LOCK(sc);
2339			ifp->if_capenable |= ifr->ifr_reqcap & IFCAP_HWCSUM;
2340			if (ifp->if_capenable & IFCAP_TXCSUM)
2341				ifp->if_hwassist = RE_CSUM_FEATURES;
2342			else
2343				ifp->if_hwassist = 0;
2344			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2345				re_init_locked(sc);
2346			RL_UNLOCK(sc);
2347		}
2348	    }
2349		break;
2350	default:
2351		error = ether_ioctl(ifp, command, data);
2352		break;
2353	}
2354
2355	return (error);
2356}
2357
2358static void
2359re_watchdog(ifp)
2360	struct ifnet		*ifp;
2361{
2362	struct rl_softc		*sc;
2363
2364	sc = ifp->if_softc;
2365	RL_LOCK(sc);
2366	if_printf(ifp, "watchdog timeout\n");
2367	ifp->if_oerrors++;
2368
2369	re_txeof(sc);
2370	re_rxeof(sc);
2371	re_init_locked(sc);
2372
2373	RL_UNLOCK(sc);
2374}
2375
2376/*
2377 * Stop the adapter and free any mbufs allocated to the
2378 * RX and TX lists.
2379 */
2380static void
2381re_stop(sc)
2382	struct rl_softc		*sc;
2383{
2384	register int		i;
2385	struct ifnet		*ifp;
2386
2387	RL_LOCK_ASSERT(sc);
2388
2389	ifp = sc->rl_ifp;
2390	ifp->if_timer = 0;
2391
2392	callout_stop(&sc->rl_stat_callout);
2393	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2394
2395	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2396	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2397
2398	if (sc->rl_head != NULL) {
2399		m_freem(sc->rl_head);
2400		sc->rl_head = sc->rl_tail = NULL;
2401	}
2402
2403	/* Free the TX list buffers. */
2404
2405	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2406		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2407			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2408			    sc->rl_ldata.rl_tx_dmamap[i]);
2409			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2410			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2411		}
2412	}
2413
2414	/* Free the RX list buffers. */
2415
2416	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2417		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2418			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2419			    sc->rl_ldata.rl_rx_dmamap[i]);
2420			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2421			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2422		}
2423	}
2424}
2425
2426/*
2427 * Device suspend routine.  Stop the interface and save some PCI
2428 * settings in case the BIOS doesn't restore them properly on
2429 * resume.
2430 */
2431static int
2432re_suspend(dev)
2433	device_t		dev;
2434{
2435	struct rl_softc		*sc;
2436
2437	sc = device_get_softc(dev);
2438
2439	RL_LOCK(sc);
2440	re_stop(sc);
2441	sc->suspended = 1;
2442	RL_UNLOCK(sc);
2443
2444	return (0);
2445}
2446
2447/*
2448 * Device resume routine.  Restore some PCI settings in case the BIOS
2449 * doesn't, re-enable busmastering, and restart the interface if
2450 * appropriate.
2451 */
2452static int
2453re_resume(dev)
2454	device_t		dev;
2455{
2456	struct rl_softc		*sc;
2457	struct ifnet		*ifp;
2458
2459	sc = device_get_softc(dev);
2460
2461	RL_LOCK(sc);
2462
2463	ifp = sc->rl_ifp;
2464
2465	/* reinitialize interface if necessary */
2466	if (ifp->if_flags & IFF_UP)
2467		re_init_locked(sc);
2468
2469	sc->suspended = 0;
2470	RL_UNLOCK(sc);
2471
2472	return (0);
2473}
2474
2475/*
2476 * Stop all chip I/O so that the kernel's probe routines don't
2477 * get confused by errant DMAs when rebooting.
2478 */
2479static void
2480re_shutdown(dev)
2481	device_t		dev;
2482{
2483	struct rl_softc		*sc;
2484
2485	sc = device_get_softc(dev);
2486
2487	RL_LOCK(sc);
2488	re_stop(sc);
2489	/*
2490	 * Mark interface as down since otherwise we will panic if
2491	 * interrupt comes in later on, which can happen in some
2492	 * cases.
2493	 */
2494	sc->rl_ifp->if_flags &= ~IFF_UP;
2495	RL_UNLOCK(sc);
2496}
2497