if_re.c revision 139693
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 139693 2005-01-05 00:06:15Z cognet $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48 * and the RTL8110S.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 *	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *	o RX and TX DMA rings can have up to 1024 descriptors
86 *	  (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7440, so the max MTU possible with this
108 * driver is 7422 bytes.
109 */
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/module.h>
118#include <sys/kernel.h>
119#include <sys/socket.h>
120
121#include <net/if.h>
122#include <net/if_arp.h>
123#include <net/ethernet.h>
124#include <net/if_dl.h>
125#include <net/if_media.h>
126#include <net/if_vlan_var.h>
127
128#include <net/bpf.h>
129
130#include <machine/bus_pio.h>
131#include <machine/bus_memio.h>
132#include <machine/bus.h>
133#include <machine/resource.h>
134#include <sys/bus.h>
135#include <sys/rman.h>
136
137#include <dev/mii/mii.h>
138#include <dev/mii/miivar.h>
139
140#include <dev/pci/pcireg.h>
141#include <dev/pci/pcivar.h>
142
143MODULE_DEPEND(re, pci, 1, 1, 1);
144MODULE_DEPEND(re, ether, 1, 1, 1);
145MODULE_DEPEND(re, miibus, 1, 1, 1);
146
147/* "controller miibus0" required.  See GENERIC if you get errors here. */
148#include "miibus_if.h"
149
150/*
151 * Default to using PIO access for this driver.
152 */
153#define RE_USEIOSPACE
154
155#include <pci/if_rlreg.h>
156
157#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158
159/*
160 * Various supported device vendors/types and their names.
161 */
162static struct rl_type re_devs[] = {
163	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164		"RealTek 8139C+ 10/100BaseTX" },
165	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166		"RealTek 8169 Gigabit Ethernet" },
167	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168		"RealTek 8169S Single-chip Gigabit Ethernet" },
169	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
170		"RealTek 8110S Single-chip Gigabit Ethernet" },
171	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
172		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
173	{ 0, 0, 0, NULL }
174};
175
176static struct rl_hwrev re_hwrevs[] = {
177	{ RL_HWREV_8139, RL_8139,  "" },
178	{ RL_HWREV_8139A, RL_8139, "A" },
179	{ RL_HWREV_8139AG, RL_8139, "A-G" },
180	{ RL_HWREV_8139B, RL_8139, "B" },
181	{ RL_HWREV_8130, RL_8139, "8130" },
182	{ RL_HWREV_8139C, RL_8139, "C" },
183	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
184	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
185	{ RL_HWREV_8169, RL_8169, "8169"},
186	{ RL_HWREV_8169S, RL_8169, "8169S"},
187	{ RL_HWREV_8110S, RL_8169, "8110S"},
188	{ RL_HWREV_8100, RL_8139, "8100"},
189	{ RL_HWREV_8101, RL_8139, "8101"},
190	{ 0, 0, NULL }
191};
192
193static int re_probe		(device_t);
194static int re_attach		(device_t);
195static int re_detach		(device_t);
196
197static int re_encap		(struct rl_softc *, struct mbuf **, int *);
198
199static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
200static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
201				    bus_size_t, int);
202static int re_allocmem		(device_t, struct rl_softc *);
203static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
204static int re_rx_list_init	(struct rl_softc *);
205static int re_tx_list_init	(struct rl_softc *);
206#ifdef RE_FIXUP_RX
207static __inline void re_fixup_rx
208				(struct mbuf *);
209#endif
210static void re_rxeof		(struct rl_softc *);
211static void re_txeof		(struct rl_softc *);
212#ifdef DEVICE_POLLING
213static void re_poll		(struct ifnet *, enum poll_cmd, int);
214static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
215#endif
216static void re_intr		(void *);
217static void re_tick		(void *);
218static void re_tick_locked	(struct rl_softc *);
219static void re_start		(struct ifnet *);
220static void re_start_locked	(struct ifnet *);
221static int re_ioctl		(struct ifnet *, u_long, caddr_t);
222static void re_init		(void *);
223static void re_init_locked	(struct rl_softc *);
224static void re_stop		(struct rl_softc *);
225static void re_watchdog		(struct ifnet *);
226static int re_suspend		(device_t);
227static int re_resume		(device_t);
228static void re_shutdown		(device_t);
229static int re_ifmedia_upd	(struct ifnet *);
230static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
231
232static void re_eeprom_putbyte	(struct rl_softc *, int);
233static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
234static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
235static int re_gmii_readreg	(device_t, int, int);
236static int re_gmii_writereg	(device_t, int, int, int);
237
238static int re_miibus_readreg	(device_t, int, int);
239static int re_miibus_writereg	(device_t, int, int, int);
240static void re_miibus_statchg	(device_t);
241
242static void re_setmulti		(struct rl_softc *);
243static void re_reset		(struct rl_softc *);
244
245static int re_diag		(struct rl_softc *);
246
247#ifdef RE_USEIOSPACE
248#define RL_RES			SYS_RES_IOPORT
249#define RL_RID			RL_PCI_LOIO
250#else
251#define RL_RES			SYS_RES_MEMORY
252#define RL_RID			RL_PCI_LOMEM
253#endif
254
255static device_method_t re_methods[] = {
256	/* Device interface */
257	DEVMETHOD(device_probe,		re_probe),
258	DEVMETHOD(device_attach,	re_attach),
259	DEVMETHOD(device_detach,	re_detach),
260	DEVMETHOD(device_suspend,	re_suspend),
261	DEVMETHOD(device_resume,	re_resume),
262	DEVMETHOD(device_shutdown,	re_shutdown),
263
264	/* bus interface */
265	DEVMETHOD(bus_print_child,	bus_generic_print_child),
266	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
267
268	/* MII interface */
269	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
270	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
271	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
272
273	{ 0, 0 }
274};
275
276static driver_t re_driver = {
277	"re",
278	re_methods,
279	sizeof(struct rl_softc)
280};
281
282static devclass_t re_devclass;
283
284DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
285DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
286DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
287
288#define EE_SET(x)					\
289	CSR_WRITE_1(sc, RL_EECMD,			\
290		CSR_READ_1(sc, RL_EECMD) | x)
291
292#define EE_CLR(x)					\
293	CSR_WRITE_1(sc, RL_EECMD,			\
294		CSR_READ_1(sc, RL_EECMD) & ~x)
295
296/*
297 * Send a read command and address to the EEPROM, check for ACK.
298 */
299static void
300re_eeprom_putbyte(sc, addr)
301	struct rl_softc		*sc;
302	int			addr;
303{
304	register int		d, i;
305
306	d = addr | sc->rl_eecmd_read;
307
308	/*
309	 * Feed in each bit and strobe the clock.
310	 */
311	for (i = 0x400; i; i >>= 1) {
312		if (d & i) {
313			EE_SET(RL_EE_DATAIN);
314		} else {
315			EE_CLR(RL_EE_DATAIN);
316		}
317		DELAY(100);
318		EE_SET(RL_EE_CLK);
319		DELAY(150);
320		EE_CLR(RL_EE_CLK);
321		DELAY(100);
322	}
323}
324
325/*
326 * Read a word of data stored in the EEPROM at address 'addr.'
327 */
328static void
329re_eeprom_getword(sc, addr, dest)
330	struct rl_softc		*sc;
331	int			addr;
332	u_int16_t		*dest;
333{
334	register int		i;
335	u_int16_t		word = 0;
336
337	/* Enter EEPROM access mode. */
338	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
339
340	/*
341	 * Send address of word we want to read.
342	 */
343	re_eeprom_putbyte(sc, addr);
344
345	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
346
347	/*
348	 * Start reading bits from EEPROM.
349	 */
350	for (i = 0x8000; i; i >>= 1) {
351		EE_SET(RL_EE_CLK);
352		DELAY(100);
353		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
354			word |= i;
355		EE_CLR(RL_EE_CLK);
356		DELAY(100);
357	}
358
359	/* Turn off EEPROM access mode. */
360	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
361
362	*dest = word;
363}
364
365/*
366 * Read a sequence of words from the EEPROM.
367 */
368static void
369re_read_eeprom(sc, dest, off, cnt, swap)
370	struct rl_softc		*sc;
371	caddr_t			dest;
372	int			off;
373	int			cnt;
374	int			swap;
375{
376	int			i;
377	u_int16_t		word = 0, *ptr;
378
379	for (i = 0; i < cnt; i++) {
380		re_eeprom_getword(sc, off + i, &word);
381		ptr = (u_int16_t *)(dest + (i * 2));
382		if (swap)
383			*ptr = ntohs(word);
384		else
385			*ptr = word;
386	}
387}
388
389static int
390re_gmii_readreg(dev, phy, reg)
391	device_t		dev;
392	int			phy, reg;
393{
394	struct rl_softc		*sc;
395	u_int32_t		rval;
396	int			i;
397
398	if (phy != 1)
399		return (0);
400
401	sc = device_get_softc(dev);
402
403	/* Let the rgephy driver read the GMEDIASTAT register */
404
405	if (reg == RL_GMEDIASTAT) {
406		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
407		return (rval);
408	}
409
410	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
411	DELAY(1000);
412
413	for (i = 0; i < RL_TIMEOUT; i++) {
414		rval = CSR_READ_4(sc, RL_PHYAR);
415		if (rval & RL_PHYAR_BUSY)
416			break;
417		DELAY(100);
418	}
419
420	if (i == RL_TIMEOUT) {
421		printf ("re%d: PHY read failed\n", sc->rl_unit);
422		return (0);
423	}
424
425	return (rval & RL_PHYAR_PHYDATA);
426}
427
428static int
429re_gmii_writereg(dev, phy, reg, data)
430	device_t		dev;
431	int			phy, reg, data;
432{
433	struct rl_softc		*sc;
434	u_int32_t		rval;
435	int			i;
436
437	sc = device_get_softc(dev);
438
439	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
440	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
441	DELAY(1000);
442
443	for (i = 0; i < RL_TIMEOUT; i++) {
444		rval = CSR_READ_4(sc, RL_PHYAR);
445		if (!(rval & RL_PHYAR_BUSY))
446			break;
447		DELAY(100);
448	}
449
450	if (i == RL_TIMEOUT) {
451		printf ("re%d: PHY write failed\n", sc->rl_unit);
452		return (0);
453	}
454
455	return (0);
456}
457
458static int
459re_miibus_readreg(dev, phy, reg)
460	device_t		dev;
461	int			phy, reg;
462{
463	struct rl_softc		*sc;
464	u_int16_t		rval = 0;
465	u_int16_t		re8139_reg = 0;
466
467	sc = device_get_softc(dev);
468
469	if (sc->rl_type == RL_8169) {
470		rval = re_gmii_readreg(dev, phy, reg);
471		return (rval);
472	}
473
474	/* Pretend the internal PHY is only at address 0 */
475	if (phy) {
476		return (0);
477	}
478	switch (reg) {
479	case MII_BMCR:
480		re8139_reg = RL_BMCR;
481		break;
482	case MII_BMSR:
483		re8139_reg = RL_BMSR;
484		break;
485	case MII_ANAR:
486		re8139_reg = RL_ANAR;
487		break;
488	case MII_ANER:
489		re8139_reg = RL_ANER;
490		break;
491	case MII_ANLPAR:
492		re8139_reg = RL_LPAR;
493		break;
494	case MII_PHYIDR1:
495	case MII_PHYIDR2:
496		return (0);
497	/*
498	 * Allow the rlphy driver to read the media status
499	 * register. If we have a link partner which does not
500	 * support NWAY, this is the register which will tell
501	 * us the results of parallel detection.
502	 */
503	case RL_MEDIASTAT:
504		rval = CSR_READ_1(sc, RL_MEDIASTAT);
505		return (rval);
506	default:
507		printf("re%d: bad phy register\n", sc->rl_unit);
508		return (0);
509	}
510	rval = CSR_READ_2(sc, re8139_reg);
511	return (rval);
512}
513
514static int
515re_miibus_writereg(dev, phy, reg, data)
516	device_t		dev;
517	int			phy, reg, data;
518{
519	struct rl_softc		*sc;
520	u_int16_t		re8139_reg = 0;
521	int			rval = 0;
522
523	sc = device_get_softc(dev);
524
525	if (sc->rl_type == RL_8169) {
526		rval = re_gmii_writereg(dev, phy, reg, data);
527		return (rval);
528	}
529
530	/* Pretend the internal PHY is only at address 0 */
531	if (phy)
532		return (0);
533
534	switch (reg) {
535	case MII_BMCR:
536		re8139_reg = RL_BMCR;
537		break;
538	case MII_BMSR:
539		re8139_reg = RL_BMSR;
540		break;
541	case MII_ANAR:
542		re8139_reg = RL_ANAR;
543		break;
544	case MII_ANER:
545		re8139_reg = RL_ANER;
546		break;
547	case MII_ANLPAR:
548		re8139_reg = RL_LPAR;
549		break;
550	case MII_PHYIDR1:
551	case MII_PHYIDR2:
552		return (0);
553		break;
554	default:
555		printf("re%d: bad phy register\n", sc->rl_unit);
556		return (0);
557	}
558	CSR_WRITE_2(sc, re8139_reg, data);
559	return (0);
560}
561
562static void
563re_miibus_statchg(dev)
564	device_t		dev;
565{
566
567}
568
569/*
570 * Program the 64-bit multicast hash filter.
571 */
572static void
573re_setmulti(sc)
574	struct rl_softc		*sc;
575{
576	struct ifnet		*ifp;
577	int			h = 0;
578	u_int32_t		hashes[2] = { 0, 0 };
579	struct ifmultiaddr	*ifma;
580	u_int32_t		rxfilt;
581	int			mcnt = 0;
582
583	RL_LOCK_ASSERT(sc);
584
585	ifp = &sc->arpcom.ac_if;
586
587	rxfilt = CSR_READ_4(sc, RL_RXCFG);
588
589	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
590		rxfilt |= RL_RXCFG_RX_MULTI;
591		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
592		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
593		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
594		return;
595	}
596
597	/* first, zot all the existing hash bits */
598	CSR_WRITE_4(sc, RL_MAR0, 0);
599	CSR_WRITE_4(sc, RL_MAR4, 0);
600
601	/* now program new ones */
602	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603		if (ifma->ifma_addr->sa_family != AF_LINK)
604			continue;
605		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
606		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
607		if (h < 32)
608			hashes[0] |= (1 << h);
609		else
610			hashes[1] |= (1 << (h - 32));
611		mcnt++;
612	}
613
614	if (mcnt)
615		rxfilt |= RL_RXCFG_RX_MULTI;
616	else
617		rxfilt &= ~RL_RXCFG_RX_MULTI;
618
619	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
620	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
621	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
622}
623
624static void
625re_reset(sc)
626	struct rl_softc		*sc;
627{
628	register int		i;
629
630	RL_LOCK_ASSERT(sc);
631
632	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
633
634	for (i = 0; i < RL_TIMEOUT; i++) {
635		DELAY(10);
636		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
637			break;
638	}
639	if (i == RL_TIMEOUT)
640		printf("re%d: reset never completed!\n", sc->rl_unit);
641
642	CSR_WRITE_1(sc, 0x82, 1);
643}
644
645/*
646 * The following routine is designed to test for a defect on some
647 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
648 * lines connected to the bus, however for a 32-bit only card, they
649 * should be pulled high. The result of this defect is that the
650 * NIC will not work right if you plug it into a 64-bit slot: DMA
651 * operations will be done with 64-bit transfers, which will fail
652 * because the 64-bit data lines aren't connected.
653 *
654 * There's no way to work around this (short of talking a soldering
655 * iron to the board), however we can detect it. The method we use
656 * here is to put the NIC into digital loopback mode, set the receiver
657 * to promiscuous mode, and then try to send a frame. We then compare
658 * the frame data we sent to what was received. If the data matches,
659 * then the NIC is working correctly, otherwise we know the user has
660 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
661 * slot. In the latter case, there's no way the NIC can work correctly,
662 * so we print out a message on the console and abort the device attach.
663 */
664
665static int
666re_diag(sc)
667	struct rl_softc		*sc;
668{
669	struct ifnet		*ifp = &sc->arpcom.ac_if;
670	struct mbuf		*m0;
671	struct ether_header	*eh;
672	struct rl_desc		*cur_rx;
673	u_int16_t		status;
674	u_int32_t		rxstat;
675	int			total_len, i, error = 0;
676	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
677	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
678
679	/* Allocate a single mbuf */
680	MGETHDR(m0, M_DONTWAIT, MT_DATA);
681	if (m0 == NULL)
682		return (ENOBUFS);
683
684	RL_LOCK(sc);
685
686	/*
687	 * Initialize the NIC in test mode. This sets the chip up
688	 * so that it can send and receive frames, but performs the
689	 * following special functions:
690	 * - Puts receiver in promiscuous mode
691	 * - Enables digital loopback mode
692	 * - Leaves interrupts turned off
693	 */
694
695	ifp->if_flags |= IFF_PROMISC;
696	sc->rl_testmode = 1;
697	re_init_locked(sc);
698	re_stop(sc);
699	DELAY(100000);
700	re_init_locked(sc);
701
702	/* Put some data in the mbuf */
703
704	eh = mtod(m0, struct ether_header *);
705	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
706	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
707	eh->ether_type = htons(ETHERTYPE_IP);
708	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
709
710	/*
711	 * Queue the packet, start transmission.
712	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
713	 */
714
715	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
716	RL_UNLOCK(sc);
717	IF_HANDOFF(&ifp->if_snd, m0, ifp);
718	RL_LOCK(sc);
719	m0 = NULL;
720
721	/* Wait for it to propagate through the chip */
722
723	DELAY(100000);
724	for (i = 0; i < RL_TIMEOUT; i++) {
725		status = CSR_READ_2(sc, RL_ISR);
726		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
727		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
728			break;
729		DELAY(10);
730	}
731
732	if (i == RL_TIMEOUT) {
733		printf("re%d: diagnostic failed, failed to receive packet "
734		    "in loopback mode\n", sc->rl_unit);
735		error = EIO;
736		goto done;
737	}
738
739	/*
740	 * The packet should have been dumped into the first
741	 * entry in the RX DMA ring. Grab it from there.
742	 */
743
744	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
745	    sc->rl_ldata.rl_rx_list_map,
746	    BUS_DMASYNC_POSTREAD);
747	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
748	    sc->rl_ldata.rl_rx_dmamap[0],
749	    BUS_DMASYNC_POSTWRITE);
750	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
751	    sc->rl_ldata.rl_rx_dmamap[0]);
752
753	m0 = sc->rl_ldata.rl_rx_mbuf[0];
754	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
755	eh = mtod(m0, struct ether_header *);
756
757	cur_rx = &sc->rl_ldata.rl_rx_list[0];
758	total_len = RL_RXBYTES(cur_rx);
759	rxstat = le32toh(cur_rx->rl_cmdstat);
760
761	if (total_len != ETHER_MIN_LEN) {
762		printf("re%d: diagnostic failed, received short packet\n",
763		    sc->rl_unit);
764		error = EIO;
765		goto done;
766	}
767
768	/* Test that the received packet data matches what we sent. */
769
770	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
771	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
772	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
773		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
774		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
775		    dst, ":", src, ":", ETHERTYPE_IP);
776		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
777		    eh->ether_dhost, ":",  eh->ether_shost, ":",
778		    ntohs(eh->ether_type));
779		printf("re%d: You may have a defective 32-bit NIC plugged "
780		    "into a 64-bit PCI slot.\n", sc->rl_unit);
781		printf("re%d: Please re-install the NIC in a 32-bit slot "
782		    "for proper operation.\n", sc->rl_unit);
783		printf("re%d: Read the re(4) man page for more details.\n",
784		    sc->rl_unit);
785		error = EIO;
786	}
787
788done:
789	/* Turn interface off, release resources */
790
791	sc->rl_testmode = 0;
792	ifp->if_flags &= ~IFF_PROMISC;
793	re_stop(sc);
794	if (m0 != NULL)
795		m_freem(m0);
796
797	RL_UNLOCK(sc);
798
799	return (error);
800}
801
802/*
803 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
804 * IDs against our list and return a device name if we find a match.
805 */
806static int
807re_probe(dev)
808	device_t		dev;
809{
810	struct rl_type		*t;
811	struct rl_softc		*sc;
812	int			rid;
813	u_int32_t		hwrev;
814
815	t = re_devs;
816	sc = device_get_softc(dev);
817
818	while (t->rl_name != NULL) {
819		if ((pci_get_vendor(dev) == t->rl_vid) &&
820		    (pci_get_device(dev) == t->rl_did)) {
821
822			/*
823			 * Temporarily map the I/O space
824			 * so we can read the chip ID register.
825			 */
826			rid = RL_RID;
827			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
828			    RF_ACTIVE);
829			if (sc->rl_res == NULL) {
830				device_printf(dev,
831				    "couldn't map ports/memory\n");
832				return (ENXIO);
833			}
834			sc->rl_btag = rman_get_bustag(sc->rl_res);
835			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
836			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
837			bus_release_resource(dev, RL_RES,
838			    RL_RID, sc->rl_res);
839			if (t->rl_basetype == hwrev) {
840				device_set_desc(dev, t->rl_name);
841				return (0);
842			}
843		}
844		t++;
845	}
846
847	return (ENXIO);
848}
849
850/*
851 * This routine takes the segment list provided as the result of
852 * a bus_dma_map_load() operation and assigns the addresses/lengths
853 * to RealTek DMA descriptors. This can be called either by the RX
854 * code or the TX code. In the RX case, we'll probably wind up mapping
855 * at most one segment. For the TX case, there could be any number of
856 * segments since TX packets may span multiple mbufs. In either case,
857 * if the number of segments is larger than the rl_maxsegs limit
858 * specified by the caller, we abort the mapping operation. Sadly,
859 * whoever designed the buffer mapping API did not provide a way to
860 * return an error from here, so we have to fake it a bit.
861 */
862
863static void
864re_dma_map_desc(arg, segs, nseg, mapsize, error)
865	void			*arg;
866	bus_dma_segment_t	*segs;
867	int			nseg;
868	bus_size_t		mapsize;
869	int			error;
870{
871	struct rl_dmaload_arg	*ctx;
872	struct rl_desc		*d = NULL;
873	int			i = 0, idx;
874
875	if (error)
876		return;
877
878	ctx = arg;
879
880	/* Signal error to caller if there's too many segments */
881	if (nseg > ctx->rl_maxsegs) {
882		ctx->rl_maxsegs = 0;
883		return;
884	}
885
886	/*
887	 * Map the segment array into descriptors. Note that we set the
888	 * start-of-frame and end-of-frame markers for either TX or RX, but
889	 * they really only have meaning in the TX case. (In the RX case,
890	 * it's the chip that tells us where packets begin and end.)
891	 * We also keep track of the end of the ring and set the
892	 * end-of-ring bits as needed, and we set the ownership bits
893	 * in all except the very first descriptor. (The caller will
894	 * set this descriptor later when it start transmission or
895	 * reception.)
896	 */
897	idx = ctx->rl_idx;
898	for (;;) {
899		u_int32_t		cmdstat;
900		d = &ctx->rl_ring[idx];
901		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
902			ctx->rl_maxsegs = 0;
903			return;
904		}
905		cmdstat = segs[i].ds_len;
906		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
907		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
908		if (i == 0)
909			cmdstat |= RL_TDESC_CMD_SOF;
910		else
911			cmdstat |= RL_TDESC_CMD_OWN;
912		if (idx == (RL_RX_DESC_CNT - 1))
913			cmdstat |= RL_TDESC_CMD_EOR;
914		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
915		i++;
916		if (i == nseg)
917			break;
918		RL_DESC_INC(idx);
919	}
920
921	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
922	ctx->rl_maxsegs = nseg;
923	ctx->rl_idx = idx;
924}
925
926/*
927 * Map a single buffer address.
928 */
929
930static void
931re_dma_map_addr(arg, segs, nseg, error)
932	void			*arg;
933	bus_dma_segment_t	*segs;
934	int			nseg;
935	int			error;
936{
937	u_int32_t		*addr;
938
939	if (error)
940		return;
941
942	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
943	addr = arg;
944	*addr = segs->ds_addr;
945}
946
947static int
948re_allocmem(dev, sc)
949	device_t		dev;
950	struct rl_softc		*sc;
951{
952	int			error;
953	int			nseg;
954	int			i;
955
956	/*
957	 * Allocate map for RX mbufs.
958	 */
959	nseg = 32;
960	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
961	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
962	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
963	    NULL, NULL, &sc->rl_ldata.rl_mtag);
964	if (error) {
965		device_printf(dev, "could not allocate dma tag\n");
966		return (ENOMEM);
967	}
968
969	/*
970	 * Allocate map for TX descriptor list.
971	 */
972	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
973	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
974	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
975	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
976	if (error) {
977		device_printf(dev, "could not allocate dma tag\n");
978		return (ENOMEM);
979	}
980
981	/* Allocate DMA'able memory for the TX ring */
982
983	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
984	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
985	    &sc->rl_ldata.rl_tx_list_map);
986	if (error)
987		return (ENOMEM);
988
989	/* Load the map for the TX ring. */
990
991	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
992	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
993	     RL_TX_LIST_SZ, re_dma_map_addr,
994	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
995
996	/* Create DMA maps for TX buffers */
997
998	for (i = 0; i < RL_TX_DESC_CNT; i++) {
999		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1000			    &sc->rl_ldata.rl_tx_dmamap[i]);
1001		if (error) {
1002			device_printf(dev, "can't create DMA map for TX\n");
1003			return (ENOMEM);
1004		}
1005	}
1006
1007	/*
1008	 * Allocate map for RX descriptor list.
1009	 */
1010	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1011	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1012	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1013	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1014	if (error) {
1015		device_printf(dev, "could not allocate dma tag\n");
1016		return (ENOMEM);
1017	}
1018
1019	/* Allocate DMA'able memory for the RX ring */
1020
1021	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1022	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1023	    &sc->rl_ldata.rl_rx_list_map);
1024	if (error)
1025		return (ENOMEM);
1026
1027	/* Load the map for the RX ring. */
1028
1029	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1030	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1031	     RL_RX_LIST_SZ, re_dma_map_addr,
1032	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1033
1034	/* Create DMA maps for RX buffers */
1035
1036	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1037		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1038			    &sc->rl_ldata.rl_rx_dmamap[i]);
1039		if (error) {
1040			device_printf(dev, "can't create DMA map for RX\n");
1041			return (ENOMEM);
1042		}
1043	}
1044
1045	return (0);
1046}
1047
1048/*
1049 * Attach the interface. Allocate softc structures, do ifmedia
1050 * setup and ethernet/BPF attach.
1051 */
1052static int
1053re_attach(dev)
1054	device_t		dev;
1055{
1056	u_char			eaddr[ETHER_ADDR_LEN];
1057	u_int16_t		as[3];
1058	struct rl_softc		*sc;
1059	struct ifnet		*ifp;
1060	struct rl_hwrev		*hw_rev;
1061	int			hwrev;
1062	u_int16_t		re_did = 0;
1063	int			unit, error = 0, rid, i;
1064
1065	sc = device_get_softc(dev);
1066	unit = device_get_unit(dev);
1067
1068	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1069	    MTX_DEF);
1070	/*
1071	 * Map control/status registers.
1072	 */
1073	pci_enable_busmaster(dev);
1074
1075	rid = RL_RID;
1076	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1077	    RF_ACTIVE);
1078
1079	if (sc->rl_res == NULL) {
1080		printf ("re%d: couldn't map ports/memory\n", unit);
1081		error = ENXIO;
1082		goto fail;
1083	}
1084
1085	sc->rl_btag = rman_get_bustag(sc->rl_res);
1086	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1087
1088	/* Allocate interrupt */
1089	rid = 0;
1090	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1091	    RF_SHAREABLE | RF_ACTIVE);
1092
1093	if (sc->rl_irq == NULL) {
1094		printf("re%d: couldn't map interrupt\n", unit);
1095		error = ENXIO;
1096		goto fail;
1097	}
1098
1099	/* Reset the adapter. */
1100	RL_LOCK(sc);
1101	re_reset(sc);
1102	RL_UNLOCK(sc);
1103
1104	hw_rev = re_hwrevs;
1105	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1106	while (hw_rev->rl_desc != NULL) {
1107		if (hw_rev->rl_rev == hwrev) {
1108			sc->rl_type = hw_rev->rl_type;
1109			break;
1110		}
1111		hw_rev++;
1112	}
1113
1114	if (sc->rl_type == RL_8169) {
1115
1116		/* Set RX length mask */
1117
1118		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1119
1120		/* Force station address autoload from the EEPROM */
1121
1122		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1123		for (i = 0; i < RL_TIMEOUT; i++) {
1124			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1125				break;
1126			DELAY(100);
1127		}
1128		if (i == RL_TIMEOUT)
1129			printf ("re%d: eeprom autoload timed out\n", unit);
1130
1131			for (i = 0; i < ETHER_ADDR_LEN; i++)
1132				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1133	} else {
1134
1135		/* Set RX length mask */
1136
1137		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1138
1139		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1140		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1141		if (re_did != 0x8129)
1142			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1143
1144		/*
1145		 * Get station address from the EEPROM.
1146		 */
1147		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1148		for (i = 0; i < 3; i++) {
1149			eaddr[(i * 2) + 0] = as[i] & 0xff;
1150			eaddr[(i * 2) + 1] = as[i] >> 8;
1151		}
1152	}
1153
1154	sc->rl_unit = unit;
1155	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1156
1157	/*
1158	 * Allocate the parent bus DMA tag appropriate for PCI.
1159	 */
1160#define RL_NSEG_NEW 32
1161	error = bus_dma_tag_create(NULL,	/* parent */
1162			1, 0,			/* alignment, boundary */
1163			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1164			BUS_SPACE_MAXADDR,	/* highaddr */
1165			NULL, NULL,		/* filter, filterarg */
1166			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1167			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1168			BUS_DMA_ALLOCNOW,	/* flags */
1169			NULL, NULL,		/* lockfunc, lockarg */
1170			&sc->rl_parent_tag);
1171	if (error)
1172		goto fail;
1173
1174	error = re_allocmem(dev, sc);
1175
1176	if (error)
1177		goto fail;
1178
1179	/* Do MII setup */
1180	if (mii_phy_probe(dev, &sc->rl_miibus,
1181	    re_ifmedia_upd, re_ifmedia_sts)) {
1182		printf("re%d: MII without any phy!\n", sc->rl_unit);
1183		error = ENXIO;
1184		goto fail;
1185	}
1186
1187	ifp = &sc->arpcom.ac_if;
1188	ifp->if_softc = sc;
1189	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1190	ifp->if_mtu = ETHERMTU;
1191	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1192	ifp->if_ioctl = re_ioctl;
1193	ifp->if_capabilities = IFCAP_VLAN_MTU;
1194	ifp->if_start = re_start;
1195	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1196	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1197#ifdef DEVICE_POLLING
1198	ifp->if_capabilities |= IFCAP_POLLING;
1199#endif
1200	ifp->if_watchdog = re_watchdog;
1201	ifp->if_init = re_init;
1202	if (sc->rl_type == RL_8169)
1203		ifp->if_baudrate = 1000000000;
1204	else
1205		ifp->if_baudrate = 100000000;
1206	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1207	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1208
1209	callout_handle_init(&sc->rl_stat_ch);
1210
1211	/*
1212	 * Call MI attach routine.
1213	 */
1214	ether_ifattach(ifp, eaddr);
1215
1216	/* Perform hardware diagnostic. */
1217	error = re_diag(sc);
1218
1219	if (error) {
1220		printf("re%d: attach aborted due to hardware diag failure\n",
1221		    unit);
1222		ether_ifdetach(ifp);
1223		goto fail;
1224	}
1225
1226	/* Hook interrupt last to avoid having to lock softc */
1227	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1228	    re_intr, sc, &sc->rl_intrhand);
1229	if (error) {
1230		printf("re%d: couldn't set up irq\n", unit);
1231		ether_ifdetach(ifp);
1232	}
1233
1234fail:
1235	if (error)
1236		re_detach(dev);
1237
1238	return (error);
1239}
1240
1241/*
1242 * Shutdown hardware and free up resources. This can be called any
1243 * time after the mutex has been initialized. It is called in both
1244 * the error case in attach and the normal detach case so it needs
1245 * to be careful about only freeing resources that have actually been
1246 * allocated.
1247 */
1248static int
1249re_detach(dev)
1250	device_t		dev;
1251{
1252	struct rl_softc		*sc;
1253	struct ifnet		*ifp;
1254	int			i;
1255	int			attached;
1256
1257	sc = device_get_softc(dev);
1258	ifp = &sc->arpcom.ac_if;
1259	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1260
1261	attached = device_is_attached(dev);
1262	/* These should only be active if attach succeeded */
1263	if (attached)
1264		ether_ifdetach(ifp);
1265
1266	RL_LOCK(sc);
1267#if 0
1268	sc->suspended = 1;
1269#endif
1270
1271	/* These should only be active if attach succeeded */
1272	if (attached) {
1273		re_stop(sc);
1274		/*
1275		 * Force off the IFF_UP flag here, in case someone
1276		 * still had a BPF descriptor attached to this
1277		 * interface. If they do, ether_ifdetach() will cause
1278		 * the BPF code to try and clear the promisc mode
1279		 * flag, which will bubble down to re_ioctl(),
1280		 * which will try to call re_init() again. This will
1281		 * turn the NIC back on and restart the MII ticker,
1282		 * which will panic the system when the kernel tries
1283		 * to invoke the re_tick() function that isn't there
1284		 * anymore.
1285		 */
1286		ifp->if_flags &= ~IFF_UP;
1287	}
1288	if (sc->rl_miibus)
1289		device_delete_child(dev, sc->rl_miibus);
1290	bus_generic_detach(dev);
1291
1292	/*
1293	 * The rest is resource deallocation, so we should already be
1294	 * stopped here.
1295	 */
1296	RL_UNLOCK(sc);
1297
1298	if (sc->rl_intrhand)
1299		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1300	if (sc->rl_irq)
1301		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1302	if (sc->rl_res)
1303		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1304
1305
1306	/* Unload and free the RX DMA ring memory and map */
1307
1308	if (sc->rl_ldata.rl_rx_list_tag) {
1309		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1310		    sc->rl_ldata.rl_rx_list_map);
1311		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1312		    sc->rl_ldata.rl_rx_list,
1313		    sc->rl_ldata.rl_rx_list_map);
1314		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1315	}
1316
1317	/* Unload and free the TX DMA ring memory and map */
1318
1319	if (sc->rl_ldata.rl_tx_list_tag) {
1320		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1321		    sc->rl_ldata.rl_tx_list_map);
1322		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1323		    sc->rl_ldata.rl_tx_list,
1324		    sc->rl_ldata.rl_tx_list_map);
1325		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1326	}
1327
1328	/* Destroy all the RX and TX buffer maps */
1329
1330	if (sc->rl_ldata.rl_mtag) {
1331		for (i = 0; i < RL_TX_DESC_CNT; i++)
1332			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1333			    sc->rl_ldata.rl_tx_dmamap[i]);
1334		for (i = 0; i < RL_RX_DESC_CNT; i++)
1335			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1336			    sc->rl_ldata.rl_rx_dmamap[i]);
1337		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1338	}
1339
1340	/* Unload and free the stats buffer and map */
1341
1342	if (sc->rl_ldata.rl_stag) {
1343		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1344		    sc->rl_ldata.rl_rx_list_map);
1345		bus_dmamem_free(sc->rl_ldata.rl_stag,
1346		    sc->rl_ldata.rl_stats,
1347		    sc->rl_ldata.rl_smap);
1348		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1349	}
1350
1351	if (sc->rl_parent_tag)
1352		bus_dma_tag_destroy(sc->rl_parent_tag);
1353
1354	mtx_destroy(&sc->rl_mtx);
1355
1356	return (0);
1357}
1358
1359static int
1360re_newbuf(sc, idx, m)
1361	struct rl_softc		*sc;
1362	int			idx;
1363	struct mbuf		*m;
1364{
1365	struct rl_dmaload_arg	arg;
1366	struct mbuf		*n = NULL;
1367	int			error;
1368
1369	if (m == NULL) {
1370		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1371		if (n == NULL)
1372			return (ENOBUFS);
1373		m = n;
1374	} else
1375		m->m_data = m->m_ext.ext_buf;
1376
1377	m->m_len = m->m_pkthdr.len = MCLBYTES;
1378#ifdef RE_FIXUP_RX
1379	/*
1380	 * This is part of an evil trick to deal with non-x86 platforms.
1381	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1382	 * boundaries, but that will hose non-x86 machines. To get around
1383	 * this, we leave some empty space at the start of each buffer
1384	 * and for non-x86 hosts, we copy the buffer back six bytes
1385	 * to achieve word alignment. This is slightly more efficient
1386	 * than allocating a new buffer, copying the contents, and
1387	 * discarding the old buffer.
1388	 */
1389	m_adj(m, RE_ETHER_ALIGN);
1390#endif
1391	arg.sc = sc;
1392	arg.rl_idx = idx;
1393	arg.rl_maxsegs = 1;
1394	arg.rl_flags = 0;
1395	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1396
1397	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1398	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1399	    &arg, BUS_DMA_NOWAIT);
1400	if (error || arg.rl_maxsegs != 1) {
1401		if (n != NULL)
1402			m_freem(n);
1403		return (ENOMEM);
1404	}
1405
1406	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1407	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1408
1409	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1410	    sc->rl_ldata.rl_rx_dmamap[idx],
1411	    BUS_DMASYNC_PREREAD);
1412
1413	return (0);
1414}
1415
1416#ifdef RE_FIXUP_RX
1417static __inline void
1418re_fixup_rx(m)
1419	struct mbuf		*m;
1420{
1421	int                     i;
1422	uint16_t                *src, *dst;
1423
1424	src = mtod(m, uint16_t *);
1425	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1426
1427	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1428		*dst++ = *src++;
1429
1430	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1431
1432	return;
1433}
1434#endif
1435
1436static int
1437re_tx_list_init(sc)
1438	struct rl_softc		*sc;
1439{
1440
1441	RL_LOCK_ASSERT(sc);
1442
1443	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1444	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1445	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1446
1447	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1448	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1449	sc->rl_ldata.rl_tx_prodidx = 0;
1450	sc->rl_ldata.rl_tx_considx = 0;
1451	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1452
1453	return (0);
1454}
1455
1456static int
1457re_rx_list_init(sc)
1458	struct rl_softc		*sc;
1459{
1460	int			i;
1461
1462	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1463	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1464	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1465
1466	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1467		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1468			return (ENOBUFS);
1469	}
1470
1471	/* Flush the RX descriptors */
1472
1473	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1474	    sc->rl_ldata.rl_rx_list_map,
1475	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1476
1477	sc->rl_ldata.rl_rx_prodidx = 0;
1478	sc->rl_head = sc->rl_tail = NULL;
1479
1480	return (0);
1481}
1482
1483/*
1484 * RX handler for C+ and 8169. For the gigE chips, we support
1485 * the reception of jumbo frames that have been fragmented
1486 * across multiple 2K mbuf cluster buffers.
1487 */
1488static void
1489re_rxeof(sc)
1490	struct rl_softc		*sc;
1491{
1492	struct mbuf		*m;
1493	struct ifnet		*ifp;
1494	int			i, total_len;
1495	struct rl_desc		*cur_rx;
1496	u_int32_t		rxstat, rxvlan;
1497
1498	RL_LOCK_ASSERT(sc);
1499
1500	ifp = &sc->arpcom.ac_if;
1501	i = sc->rl_ldata.rl_rx_prodidx;
1502
1503	/* Invalidate the descriptor memory */
1504
1505	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1506	    sc->rl_ldata.rl_rx_list_map,
1507	    BUS_DMASYNC_POSTREAD);
1508
1509	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1510		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1511		m = sc->rl_ldata.rl_rx_mbuf[i];
1512		total_len = RL_RXBYTES(cur_rx);
1513		rxstat = le32toh(cur_rx->rl_cmdstat);
1514		rxvlan = le32toh(cur_rx->rl_vlanctl);
1515
1516		/* Invalidate the RX mbuf and unload its map */
1517
1518		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1519		    sc->rl_ldata.rl_rx_dmamap[i],
1520		    BUS_DMASYNC_POSTWRITE);
1521		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1522		    sc->rl_ldata.rl_rx_dmamap[i]);
1523
1524		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1525			m->m_len = RE_RX_DESC_BUFLEN;
1526			if (sc->rl_head == NULL)
1527				sc->rl_head = sc->rl_tail = m;
1528			else {
1529				m->m_flags &= ~M_PKTHDR;
1530				sc->rl_tail->m_next = m;
1531				sc->rl_tail = m;
1532			}
1533			re_newbuf(sc, i, NULL);
1534			RL_DESC_INC(i);
1535			continue;
1536		}
1537
1538		/*
1539		 * NOTE: for the 8139C+, the frame length field
1540		 * is always 12 bits in size, but for the gigE chips,
1541		 * it is 13 bits (since the max RX frame length is 16K).
1542		 * Unfortunately, all 32 bits in the status word
1543		 * were already used, so to make room for the extra
1544		 * length bit, RealTek took out the 'frame alignment
1545		 * error' bit and shifted the other status bits
1546		 * over one slot. The OWN, EOR, FS and LS bits are
1547		 * still in the same places. We have already extracted
1548		 * the frame length and checked the OWN bit, so rather
1549		 * than using an alternate bit mapping, we shift the
1550		 * status bits one space to the right so we can evaluate
1551		 * them using the 8169 status as though it was in the
1552		 * same format as that of the 8139C+.
1553		 */
1554		if (sc->rl_type == RL_8169)
1555			rxstat >>= 1;
1556
1557		/*
1558		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1559		 * set, but if CRC is clear, it will still be a valid frame.
1560		 */
1561		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1562		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1563			ifp->if_ierrors++;
1564			/*
1565			 * If this is part of a multi-fragment packet,
1566			 * discard all the pieces.
1567			 */
1568			if (sc->rl_head != NULL) {
1569				m_freem(sc->rl_head);
1570				sc->rl_head = sc->rl_tail = NULL;
1571			}
1572			re_newbuf(sc, i, m);
1573			RL_DESC_INC(i);
1574			continue;
1575		}
1576
1577		/*
1578		 * If allocating a replacement mbuf fails,
1579		 * reload the current one.
1580		 */
1581
1582		if (re_newbuf(sc, i, NULL)) {
1583			ifp->if_ierrors++;
1584			if (sc->rl_head != NULL) {
1585				m_freem(sc->rl_head);
1586				sc->rl_head = sc->rl_tail = NULL;
1587			}
1588			re_newbuf(sc, i, m);
1589			RL_DESC_INC(i);
1590			continue;
1591		}
1592
1593		RL_DESC_INC(i);
1594
1595		if (sc->rl_head != NULL) {
1596			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1597			if (m->m_len == 0)
1598				m->m_len = RE_RX_DESC_BUFLEN;
1599			/*
1600			 * Special case: if there's 4 bytes or less
1601			 * in this buffer, the mbuf can be discarded:
1602			 * the last 4 bytes is the CRC, which we don't
1603			 * care about anyway.
1604			 */
1605			if (m->m_len <= ETHER_CRC_LEN) {
1606				sc->rl_tail->m_len -=
1607				    (ETHER_CRC_LEN - m->m_len);
1608				m_freem(m);
1609			} else {
1610				m->m_len -= ETHER_CRC_LEN;
1611				m->m_flags &= ~M_PKTHDR;
1612				sc->rl_tail->m_next = m;
1613			}
1614			m = sc->rl_head;
1615			sc->rl_head = sc->rl_tail = NULL;
1616			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1617		} else
1618			m->m_pkthdr.len = m->m_len =
1619			    (total_len - ETHER_CRC_LEN);
1620
1621#ifdef RE_FIXUP_RX
1622		re_fixup_rx(m);
1623#endif
1624		ifp->if_ipackets++;
1625		m->m_pkthdr.rcvif = ifp;
1626
1627		/* Do RX checksumming if enabled */
1628
1629		if (ifp->if_capenable & IFCAP_RXCSUM) {
1630
1631			/* Check IP header checksum */
1632			if (rxstat & RL_RDESC_STAT_PROTOID)
1633				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1634			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1635				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1636
1637			/* Check TCP/UDP checksum */
1638			if ((RL_TCPPKT(rxstat) &&
1639			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1640			    (RL_UDPPKT(rxstat) &&
1641			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1642				m->m_pkthdr.csum_flags |=
1643				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1644				m->m_pkthdr.csum_data = 0xffff;
1645			}
1646		}
1647
1648		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1649			VLAN_INPUT_TAG(ifp, m,
1650			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1651		RL_UNLOCK(sc);
1652		(*ifp->if_input)(ifp, m);
1653		RL_LOCK(sc);
1654	}
1655
1656	/* Flush the RX DMA ring */
1657
1658	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1659	    sc->rl_ldata.rl_rx_list_map,
1660	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1661
1662	sc->rl_ldata.rl_rx_prodidx = i;
1663}
1664
1665static void
1666re_txeof(sc)
1667	struct rl_softc		*sc;
1668{
1669	struct ifnet		*ifp;
1670	u_int32_t		txstat;
1671	int			idx;
1672
1673	ifp = &sc->arpcom.ac_if;
1674	idx = sc->rl_ldata.rl_tx_considx;
1675
1676	/* Invalidate the TX descriptor list */
1677
1678	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1679	    sc->rl_ldata.rl_tx_list_map,
1680	    BUS_DMASYNC_POSTREAD);
1681
1682	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1683
1684		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1685		if (txstat & RL_TDESC_CMD_OWN)
1686			break;
1687
1688		/*
1689		 * We only stash mbufs in the last descriptor
1690		 * in a fragment chain, which also happens to
1691		 * be the only place where the TX status bits
1692		 * are valid.
1693		 */
1694
1695		if (txstat & RL_TDESC_CMD_EOF) {
1696			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1697			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1698			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1699			    sc->rl_ldata.rl_tx_dmamap[idx]);
1700			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1701			    RL_TDESC_STAT_COLCNT))
1702				ifp->if_collisions++;
1703			if (txstat & RL_TDESC_STAT_TXERRSUM)
1704				ifp->if_oerrors++;
1705			else
1706				ifp->if_opackets++;
1707		}
1708		sc->rl_ldata.rl_tx_free++;
1709		RL_DESC_INC(idx);
1710	}
1711
1712	/* No changes made to the TX ring, so no flush needed */
1713
1714	if (idx != sc->rl_ldata.rl_tx_considx) {
1715		sc->rl_ldata.rl_tx_considx = idx;
1716		ifp->if_flags &= ~IFF_OACTIVE;
1717		ifp->if_timer = 0;
1718	}
1719
1720	/*
1721	 * If not all descriptors have been released reaped yet,
1722	 * reload the timer so that we will eventually get another
1723	 * interrupt that will cause us to re-enter this routine.
1724	 * This is done in case the transmitter has gone idle.
1725	 */
1726	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1727		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1728}
1729
1730static void
1731re_tick(xsc)
1732	void			*xsc;
1733{
1734	struct rl_softc		*sc;
1735
1736	sc = xsc;
1737	RL_LOCK(sc);
1738	re_tick_locked(sc);
1739	RL_UNLOCK(sc);
1740}
1741
1742static void
1743re_tick_locked(sc)
1744	struct rl_softc		*sc;
1745{
1746	struct mii_data		*mii;
1747
1748	RL_LOCK_ASSERT(sc);
1749
1750	mii = device_get_softc(sc->rl_miibus);
1751
1752	mii_tick(mii);
1753
1754	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1755}
1756
1757#ifdef DEVICE_POLLING
1758static void
1759re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1760{
1761	struct rl_softc *sc = ifp->if_softc;
1762
1763	RL_LOCK(sc);
1764	re_poll_locked(ifp, cmd, count);
1765	RL_UNLOCK(sc);
1766}
1767
1768static void
1769re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1770{
1771	struct rl_softc *sc = ifp->if_softc;
1772
1773	RL_LOCK_ASSERT(sc);
1774
1775	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1776		ether_poll_deregister(ifp);
1777		cmd = POLL_DEREGISTER;
1778	}
1779	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1780		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1781		return;
1782	}
1783
1784	sc->rxcycles = count;
1785	re_rxeof(sc);
1786	re_txeof(sc);
1787
1788	if (ifp->if_snd.ifq_head != NULL)
1789		re_start_locked(ifp);
1790
1791	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1792		u_int16_t       status;
1793
1794		status = CSR_READ_2(sc, RL_ISR);
1795		if (status == 0xffff)
1796			return;
1797		if (status)
1798			CSR_WRITE_2(sc, RL_ISR, status);
1799
1800		/*
1801		 * XXX check behaviour on receiver stalls.
1802		 */
1803
1804		if (status & RL_ISR_SYSTEM_ERR) {
1805			re_reset(sc);
1806			re_init_locked(sc);
1807		}
1808	}
1809}
1810#endif /* DEVICE_POLLING */
1811
1812static void
1813re_intr(arg)
1814	void			*arg;
1815{
1816	struct rl_softc		*sc;
1817	struct ifnet		*ifp;
1818	u_int16_t		status;
1819
1820	sc = arg;
1821
1822	RL_LOCK(sc);
1823
1824	ifp = &sc->arpcom.ac_if;
1825
1826	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1827		goto done_locked;
1828
1829#ifdef DEVICE_POLLING
1830	if  (ifp->if_flags & IFF_POLLING)
1831		goto done_locked;
1832	if ((ifp->if_capenable & IFCAP_POLLING) &&
1833	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1834		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1835		re_poll_locked(ifp, 0, 1);
1836		goto done_locked;
1837	}
1838#endif /* DEVICE_POLLING */
1839
1840	for (;;) {
1841
1842		status = CSR_READ_2(sc, RL_ISR);
1843		/* If the card has gone away the read returns 0xffff. */
1844		if (status == 0xffff)
1845			break;
1846		if (status)
1847			CSR_WRITE_2(sc, RL_ISR, status);
1848
1849		if ((status & RL_INTRS_CPLUS) == 0)
1850			break;
1851
1852		if ((status & RL_ISR_RX_OK) ||
1853		    (status & RL_ISR_RX_ERR))
1854			re_rxeof(sc);
1855
1856		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1857		    (status & RL_ISR_TX_ERR) ||
1858		    (status & RL_ISR_TX_DESC_UNAVAIL))
1859			re_txeof(sc);
1860
1861		if (status & RL_ISR_SYSTEM_ERR) {
1862			re_reset(sc);
1863			re_init_locked(sc);
1864		}
1865
1866		if (status & RL_ISR_LINKCHG) {
1867			untimeout(re_tick, sc, sc->rl_stat_ch);
1868			re_tick_locked(sc);
1869		}
1870	}
1871
1872	if (ifp->if_snd.ifq_head != NULL)
1873		re_start_locked(ifp);
1874
1875done_locked:
1876	RL_UNLOCK(sc);
1877}
1878
1879static int
1880re_encap(sc, m_head, idx)
1881	struct rl_softc		*sc;
1882	struct mbuf		**m_head;
1883	int			*idx;
1884{
1885	struct mbuf		*m_new = NULL;
1886	struct rl_dmaload_arg	arg;
1887	bus_dmamap_t		map;
1888	int			error;
1889	struct m_tag		*mtag;
1890
1891	RL_LOCK_ASSERT(sc);
1892
1893	if (sc->rl_ldata.rl_tx_free <= 4)
1894		return (EFBIG);
1895
1896	/*
1897	 * Set up checksum offload. Note: checksum offload bits must
1898	 * appear in all descriptors of a multi-descriptor transmit
1899	 * attempt. This is according to testing done with an 8169
1900	 * chip. This is a requirement.
1901	 */
1902
1903	arg.rl_flags = 0;
1904
1905	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1906		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1907	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1908		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1909	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1910		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1911
1912	arg.sc = sc;
1913	arg.rl_idx = *idx;
1914	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1915	if (arg.rl_maxsegs > 4)
1916		arg.rl_maxsegs -= 4;
1917	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1918
1919	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1920	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1921	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1922
1923	if (error && error != EFBIG) {
1924		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1925		return (ENOBUFS);
1926	}
1927
1928	/* Too many segments to map, coalesce into a single mbuf */
1929
1930	if (error || arg.rl_maxsegs == 0) {
1931		m_new = m_defrag(*m_head, M_DONTWAIT);
1932		if (m_new == NULL)
1933			return (ENOBUFS);
1934		else
1935			*m_head = m_new;
1936
1937		arg.sc = sc;
1938		arg.rl_idx = *idx;
1939		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1940		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1941
1942		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1943		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1944		if (error) {
1945			printf("re%d: can't map mbuf (error %d)\n",
1946			    sc->rl_unit, error);
1947			return (EFBIG);
1948		}
1949	}
1950
1951	/*
1952	 * Insure that the map for this transmission
1953	 * is placed at the array index of the last descriptor
1954	 * in this chain.  (Swap last and first dmamaps.)
1955	 */
1956	sc->rl_ldata.rl_tx_dmamap[*idx] =
1957	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1958	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1959
1960	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1961	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1962
1963	/*
1964	 * Set up hardware VLAN tagging. Note: vlan tag info must
1965	 * appear in the first descriptor of a multi-descriptor
1966	 * transmission attempt.
1967	 */
1968
1969	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, *m_head);
1970	if (mtag != NULL)
1971		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1972		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1973
1974	/* Transfer ownership of packet to the chip. */
1975
1976	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1977	    htole32(RL_TDESC_CMD_OWN);
1978	if (*idx != arg.rl_idx)
1979		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1980		    htole32(RL_TDESC_CMD_OWN);
1981
1982	RL_DESC_INC(arg.rl_idx);
1983	*idx = arg.rl_idx;
1984
1985	return (0);
1986}
1987
1988static void
1989re_start(ifp)
1990	struct ifnet		*ifp;
1991{
1992	struct rl_softc		*sc;
1993
1994	sc = ifp->if_softc;
1995	RL_LOCK(sc);
1996	re_start_locked(ifp);
1997	RL_UNLOCK(sc);
1998}
1999
2000/*
2001 * Main transmit routine for C+ and gigE NICs.
2002 */
2003static void
2004re_start_locked(ifp)
2005	struct ifnet		*ifp;
2006{
2007	struct rl_softc		*sc;
2008	struct mbuf		*m_head = NULL;
2009	int			idx;
2010
2011	sc = ifp->if_softc;
2012
2013	RL_LOCK_ASSERT(sc);
2014
2015	idx = sc->rl_ldata.rl_tx_prodidx;
2016
2017	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2018		IF_DEQUEUE(&ifp->if_snd, m_head);
2019		if (m_head == NULL)
2020			break;
2021
2022		if (re_encap(sc, &m_head, &idx)) {
2023			IF_PREPEND(&ifp->if_snd, m_head);
2024			ifp->if_flags |= IFF_OACTIVE;
2025			break;
2026		}
2027
2028		/*
2029		 * If there's a BPF listener, bounce a copy of this frame
2030		 * to him.
2031		 */
2032		BPF_MTAP(ifp, m_head);
2033	}
2034
2035	/* Flush the TX descriptors */
2036
2037	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2038	    sc->rl_ldata.rl_tx_list_map,
2039	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2040
2041	sc->rl_ldata.rl_tx_prodidx = idx;
2042
2043	/*
2044	 * RealTek put the TX poll request register in a different
2045	 * location on the 8169 gigE chip. I don't know why.
2046	 */
2047
2048	if (sc->rl_type == RL_8169)
2049		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2050	else
2051		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2052
2053	/*
2054	 * Use the countdown timer for interrupt moderation.
2055	 * 'TX done' interrupts are disabled. Instead, we reset the
2056	 * countdown timer, which will begin counting until it hits
2057	 * the value in the TIMERINT register, and then trigger an
2058	 * interrupt. Each time we write to the TIMERCNT register,
2059	 * the timer count is reset to 0.
2060	 */
2061	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2062
2063	/*
2064	 * Set a timeout in case the chip goes out to lunch.
2065	 */
2066	ifp->if_timer = 5;
2067}
2068
2069static void
2070re_init(xsc)
2071	void			*xsc;
2072{
2073	struct rl_softc		*sc = xsc;
2074
2075	RL_LOCK(sc);
2076	re_init_locked(sc);
2077	RL_UNLOCK(sc);
2078}
2079
2080static void
2081re_init_locked(sc)
2082	struct rl_softc		*sc;
2083{
2084	struct ifnet		*ifp = &sc->arpcom.ac_if;
2085	struct mii_data		*mii;
2086	u_int32_t		rxcfg = 0;
2087
2088	RL_LOCK_ASSERT(sc);
2089
2090	mii = device_get_softc(sc->rl_miibus);
2091
2092	/*
2093	 * Cancel pending I/O and free all RX/TX buffers.
2094	 */
2095	re_stop(sc);
2096
2097	/*
2098	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2099	 * RX checksum offload. We must configure the C+ register
2100	 * before all others.
2101	 */
2102	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2103	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2104	    RL_CPLUSCMD_VLANSTRIP|
2105	    (ifp->if_capenable & IFCAP_RXCSUM ?
2106	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2107
2108	/*
2109	 * Init our MAC address.  Even though the chipset
2110	 * documentation doesn't mention it, we need to enter "Config
2111	 * register write enable" mode to modify the ID registers.
2112	 */
2113	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2114	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2115	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2116	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2117	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2118	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2119
2120	/*
2121	 * For C+ mode, initialize the RX descriptors and mbufs.
2122	 */
2123	re_rx_list_init(sc);
2124	re_tx_list_init(sc);
2125
2126	/*
2127	 * Enable transmit and receive.
2128	 */
2129	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2130
2131	/*
2132	 * Set the initial TX and RX configuration.
2133	 */
2134	if (sc->rl_testmode) {
2135		if (sc->rl_type == RL_8169)
2136			CSR_WRITE_4(sc, RL_TXCFG,
2137			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2138		else
2139			CSR_WRITE_4(sc, RL_TXCFG,
2140			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2141	} else
2142		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2143	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2144
2145	/* Set the individual bit to receive frames for this host only. */
2146	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2147	rxcfg |= RL_RXCFG_RX_INDIV;
2148
2149	/* If we want promiscuous mode, set the allframes bit. */
2150	if (ifp->if_flags & IFF_PROMISC)
2151		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2152	else
2153		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2154	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2155
2156	/*
2157	 * Set capture broadcast bit to capture broadcast frames.
2158	 */
2159	if (ifp->if_flags & IFF_BROADCAST)
2160		rxcfg |= RL_RXCFG_RX_BROAD;
2161	else
2162		rxcfg &= ~RL_RXCFG_RX_BROAD;
2163	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2164
2165	/*
2166	 * Program the multicast filter, if necessary.
2167	 */
2168	re_setmulti(sc);
2169
2170#ifdef DEVICE_POLLING
2171	/*
2172	 * Disable interrupts if we are polling.
2173	 */
2174	if (ifp->if_flags & IFF_POLLING)
2175		CSR_WRITE_2(sc, RL_IMR, 0);
2176	else	/* otherwise ... */
2177#endif /* DEVICE_POLLING */
2178	/*
2179	 * Enable interrupts.
2180	 */
2181	if (sc->rl_testmode)
2182		CSR_WRITE_2(sc, RL_IMR, 0);
2183	else
2184		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2185
2186	/* Set initial TX threshold */
2187	sc->rl_txthresh = RL_TX_THRESH_INIT;
2188
2189	/* Start RX/TX process. */
2190	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2191#ifdef notdef
2192	/* Enable receiver and transmitter. */
2193	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2194#endif
2195	/*
2196	 * Load the addresses of the RX and TX lists into the chip.
2197	 */
2198
2199	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2200	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2201	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2202	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2203
2204	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2205	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2206	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2207	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2208
2209	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2210
2211	/*
2212	 * Initialize the timer interrupt register so that
2213	 * a timer interrupt will be generated once the timer
2214	 * reaches a certain number of ticks. The timer is
2215	 * reloaded on each transmit. This gives us TX interrupt
2216	 * moderation, which dramatically improves TX frame rate.
2217	 */
2218	if (sc->rl_type == RL_8169)
2219		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2220	else
2221		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2222
2223	/*
2224	 * For 8169 gigE NICs, set the max allowed RX packet
2225	 * size so we can receive jumbo frames.
2226	 */
2227	if (sc->rl_type == RL_8169)
2228		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2229
2230	if (sc->rl_testmode)
2231		return;
2232
2233	mii_mediachg(mii);
2234
2235	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2236
2237	ifp->if_flags |= IFF_RUNNING;
2238	ifp->if_flags &= ~IFF_OACTIVE;
2239
2240	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2241}
2242
2243/*
2244 * Set media options.
2245 */
2246static int
2247re_ifmedia_upd(ifp)
2248	struct ifnet		*ifp;
2249{
2250	struct rl_softc		*sc;
2251	struct mii_data		*mii;
2252
2253	sc = ifp->if_softc;
2254	mii = device_get_softc(sc->rl_miibus);
2255	mii_mediachg(mii);
2256
2257	return (0);
2258}
2259
2260/*
2261 * Report current media status.
2262 */
2263static void
2264re_ifmedia_sts(ifp, ifmr)
2265	struct ifnet		*ifp;
2266	struct ifmediareq	*ifmr;
2267{
2268	struct rl_softc		*sc;
2269	struct mii_data		*mii;
2270
2271	sc = ifp->if_softc;
2272	mii = device_get_softc(sc->rl_miibus);
2273
2274	mii_pollstat(mii);
2275	ifmr->ifm_active = mii->mii_media_active;
2276	ifmr->ifm_status = mii->mii_media_status;
2277}
2278
2279static int
2280re_ioctl(ifp, command, data)
2281	struct ifnet		*ifp;
2282	u_long			command;
2283	caddr_t			data;
2284{
2285	struct rl_softc		*sc = ifp->if_softc;
2286	struct ifreq		*ifr = (struct ifreq *) data;
2287	struct mii_data		*mii;
2288	int			error = 0;
2289
2290	switch (command) {
2291	case SIOCSIFMTU:
2292		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2293			error = EINVAL;
2294		ifp->if_mtu = ifr->ifr_mtu;
2295		break;
2296	case SIOCSIFFLAGS:
2297		RL_LOCK(sc);
2298		if (ifp->if_flags & IFF_UP)
2299			re_init_locked(sc);
2300		else if (ifp->if_flags & IFF_RUNNING)
2301			re_stop(sc);
2302		RL_UNLOCK(sc);
2303		error = 0;
2304		break;
2305	case SIOCADDMULTI:
2306	case SIOCDELMULTI:
2307		RL_LOCK(sc);
2308		re_setmulti(sc);
2309		RL_UNLOCK(sc);
2310		error = 0;
2311		break;
2312	case SIOCGIFMEDIA:
2313	case SIOCSIFMEDIA:
2314		mii = device_get_softc(sc->rl_miibus);
2315		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2316		break;
2317	case SIOCSIFCAP:
2318		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2319		ifp->if_capenable |=
2320		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2321		if (ifp->if_capenable & IFCAP_TXCSUM)
2322			ifp->if_hwassist = RE_CSUM_FEATURES;
2323		else
2324			ifp->if_hwassist = 0;
2325		if (ifp->if_flags & IFF_RUNNING)
2326			re_init(sc);
2327		break;
2328	default:
2329		error = ether_ioctl(ifp, command, data);
2330		break;
2331	}
2332
2333	return (error);
2334}
2335
2336static void
2337re_watchdog(ifp)
2338	struct ifnet		*ifp;
2339{
2340	struct rl_softc		*sc;
2341
2342	sc = ifp->if_softc;
2343	RL_LOCK(sc);
2344	printf("re%d: watchdog timeout\n", sc->rl_unit);
2345	ifp->if_oerrors++;
2346
2347	re_txeof(sc);
2348	re_rxeof(sc);
2349	re_init_locked(sc);
2350
2351	RL_UNLOCK(sc);
2352}
2353
2354/*
2355 * Stop the adapter and free any mbufs allocated to the
2356 * RX and TX lists.
2357 */
2358static void
2359re_stop(sc)
2360	struct rl_softc		*sc;
2361{
2362	register int		i;
2363	struct ifnet		*ifp;
2364
2365	RL_LOCK_ASSERT(sc);
2366
2367	ifp = &sc->arpcom.ac_if;
2368	ifp->if_timer = 0;
2369
2370	untimeout(re_tick, sc, sc->rl_stat_ch);
2371	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2372#ifdef DEVICE_POLLING
2373	ether_poll_deregister(ifp);
2374#endif /* DEVICE_POLLING */
2375
2376	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2377	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2378
2379	if (sc->rl_head != NULL) {
2380		m_freem(sc->rl_head);
2381		sc->rl_head = sc->rl_tail = NULL;
2382	}
2383
2384	/* Free the TX list buffers. */
2385
2386	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2387		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2388			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2389			    sc->rl_ldata.rl_tx_dmamap[i]);
2390			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2391			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2392		}
2393	}
2394
2395	/* Free the RX list buffers. */
2396
2397	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2398		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2399			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2400			    sc->rl_ldata.rl_rx_dmamap[i]);
2401			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2402			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2403		}
2404	}
2405}
2406
2407/*
2408 * Device suspend routine.  Stop the interface and save some PCI
2409 * settings in case the BIOS doesn't restore them properly on
2410 * resume.
2411 */
2412static int
2413re_suspend(dev)
2414	device_t		dev;
2415{
2416	struct rl_softc		*sc;
2417
2418	sc = device_get_softc(dev);
2419
2420	RL_LOCK(sc);
2421	re_stop(sc);
2422	sc->suspended = 1;
2423	RL_UNLOCK(sc);
2424
2425	return (0);
2426}
2427
2428/*
2429 * Device resume routine.  Restore some PCI settings in case the BIOS
2430 * doesn't, re-enable busmastering, and restart the interface if
2431 * appropriate.
2432 */
2433static int
2434re_resume(dev)
2435	device_t		dev;
2436{
2437	struct rl_softc		*sc;
2438	struct ifnet		*ifp;
2439
2440	sc = device_get_softc(dev);
2441
2442	RL_LOCK(sc);
2443
2444	ifp = &sc->arpcom.ac_if;
2445
2446	/* reinitialize interface if necessary */
2447	if (ifp->if_flags & IFF_UP)
2448		re_init_locked(sc);
2449
2450	sc->suspended = 0;
2451	RL_UNLOCK(sc);
2452
2453	return (0);
2454}
2455
2456/*
2457 * Stop all chip I/O so that the kernel's probe routines don't
2458 * get confused by errant DMAs when rebooting.
2459 */
2460static void
2461re_shutdown(dev)
2462	device_t		dev;
2463{
2464	struct rl_softc		*sc;
2465
2466	sc = device_get_softc(dev);
2467
2468	RL_LOCK(sc);
2469	re_stop(sc);
2470	RL_UNLOCK(sc);
2471}
2472