if_re.c revision 129879
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 129879 2004-05-30 20:08:47Z phk $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48 * and the RTL8110S.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 * 	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *      o RX and TX DMA rings can have up to 1024 descriptors
86 *        (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7.5K, so the max MTU possible with this
108 * driver is 7500 bytes.
109 */
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/module.h>
118#include <sys/kernel.h>
119#include <sys/socket.h>
120
121#include <net/if.h>
122#include <net/if_arp.h>
123#include <net/ethernet.h>
124#include <net/if_dl.h>
125#include <net/if_media.h>
126#include <net/if_vlan_var.h>
127
128#include <net/bpf.h>
129
130#include <machine/bus_pio.h>
131#include <machine/bus_memio.h>
132#include <machine/bus.h>
133#include <machine/resource.h>
134#include <sys/bus.h>
135#include <sys/rman.h>
136
137#include <dev/mii/mii.h>
138#include <dev/mii/miivar.h>
139
140#include <dev/pci/pcireg.h>
141#include <dev/pci/pcivar.h>
142
143MODULE_DEPEND(re, pci, 1, 1, 1);
144MODULE_DEPEND(re, ether, 1, 1, 1);
145MODULE_DEPEND(re, miibus, 1, 1, 1);
146
147/* "controller miibus0" required.  See GENERIC if you get errors here. */
148#include "miibus_if.h"
149
150/*
151 * Default to using PIO access for this driver.
152 */
153#define RE_USEIOSPACE
154
155#include <pci/if_rlreg.h>
156
157#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158
159/*
160 * Various supported device vendors/types and their names.
161 */
162static struct rl_type re_devs[] = {
163	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164		"RealTek 8139C+ 10/100BaseTX" },
165	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166		"RealTek 8169 Gigabit Ethernet" },
167	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168		"RealTek 8169S Single-chip Gigabit Ethernet" },
169	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
170		"RealTek 8110S Single-chip Gigabit Ethernet" },
171	{ 0, 0, 0, NULL }
172};
173
174static struct rl_hwrev re_hwrevs[] = {
175	{ RL_HWREV_8139, RL_8139,  "" },
176	{ RL_HWREV_8139A, RL_8139, "A" },
177	{ RL_HWREV_8139AG, RL_8139, "A-G" },
178	{ RL_HWREV_8139B, RL_8139, "B" },
179	{ RL_HWREV_8130, RL_8139, "8130" },
180	{ RL_HWREV_8139C, RL_8139, "C" },
181	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
182	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
183	{ RL_HWREV_8169, RL_8169, "8169"},
184	{ RL_HWREV_8169S, RL_8169, "8169S"},
185	{ RL_HWREV_8110S, RL_8169, "8110S"},
186	{ RL_HWREV_8100, RL_8139, "8100"},
187	{ RL_HWREV_8101, RL_8139, "8101"},
188	{ 0, 0, NULL }
189};
190
191static int re_probe		(device_t);
192static int re_attach		(device_t);
193static int re_detach		(device_t);
194
195static int re_encap		(struct rl_softc *, struct mbuf *, int *);
196
197static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
198static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
199				    bus_size_t, int);
200static int re_allocmem		(device_t, struct rl_softc *);
201static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
202static int re_rx_list_init	(struct rl_softc *);
203static int re_tx_list_init	(struct rl_softc *);
204static void re_rxeof		(struct rl_softc *);
205static void re_txeof		(struct rl_softc *);
206static void re_intr		(void *);
207static void re_tick		(void *);
208static void re_start		(struct ifnet *);
209static int re_ioctl		(struct ifnet *, u_long, caddr_t);
210static void re_init		(void *);
211static void re_stop		(struct rl_softc *);
212static void re_watchdog		(struct ifnet *);
213static int re_suspend		(device_t);
214static int re_resume		(device_t);
215static void re_shutdown		(device_t);
216static int re_ifmedia_upd	(struct ifnet *);
217static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
218
219static void re_eeprom_putbyte	(struct rl_softc *, int);
220static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
221static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
222static int re_gmii_readreg	(device_t, int, int);
223static int re_gmii_writereg	(device_t, int, int, int);
224
225static int re_miibus_readreg	(device_t, int, int);
226static int re_miibus_writereg	(device_t, int, int, int);
227static void re_miibus_statchg	(device_t);
228
229static uint32_t re_mchash	(const uint8_t *);
230static void re_setmulti		(struct rl_softc *);
231static void re_reset		(struct rl_softc *);
232
233static int re_diag		(struct rl_softc *);
234
235#ifdef RE_USEIOSPACE
236#define RL_RES			SYS_RES_IOPORT
237#define RL_RID			RL_PCI_LOIO
238#else
239#define RL_RES			SYS_RES_MEMORY
240#define RL_RID			RL_PCI_LOMEM
241#endif
242
243static device_method_t re_methods[] = {
244	/* Device interface */
245	DEVMETHOD(device_probe,		re_probe),
246	DEVMETHOD(device_attach,	re_attach),
247	DEVMETHOD(device_detach,	re_detach),
248	DEVMETHOD(device_suspend,	re_suspend),
249	DEVMETHOD(device_resume,	re_resume),
250	DEVMETHOD(device_shutdown,	re_shutdown),
251
252	/* bus interface */
253	DEVMETHOD(bus_print_child,	bus_generic_print_child),
254	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
255
256	/* MII interface */
257	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
258	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
259	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
260
261	{ 0, 0 }
262};
263
264static driver_t re_driver = {
265	"re",
266	re_methods,
267	sizeof(struct rl_softc)
268};
269
270static devclass_t re_devclass;
271
272DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
273DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
274DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
275
276#define EE_SET(x)					\
277	CSR_WRITE_1(sc, RL_EECMD,			\
278		CSR_READ_1(sc, RL_EECMD) | x)
279
280#define EE_CLR(x)					\
281	CSR_WRITE_1(sc, RL_EECMD,			\
282		CSR_READ_1(sc, RL_EECMD) & ~x)
283
284/*
285 * Send a read command and address to the EEPROM, check for ACK.
286 */
287static void
288re_eeprom_putbyte(sc, addr)
289	struct rl_softc		*sc;
290	int			addr;
291{
292	register int		d, i;
293
294	d = addr | sc->rl_eecmd_read;
295
296	/*
297	 * Feed in each bit and strobe the clock.
298	 */
299	for (i = 0x400; i; i >>= 1) {
300		if (d & i) {
301			EE_SET(RL_EE_DATAIN);
302		} else {
303			EE_CLR(RL_EE_DATAIN);
304		}
305		DELAY(100);
306		EE_SET(RL_EE_CLK);
307		DELAY(150);
308		EE_CLR(RL_EE_CLK);
309		DELAY(100);
310	}
311
312	return;
313}
314
315/*
316 * Read a word of data stored in the EEPROM at address 'addr.'
317 */
318static void
319re_eeprom_getword(sc, addr, dest)
320	struct rl_softc		*sc;
321	int			addr;
322	u_int16_t		*dest;
323{
324	register int		i;
325	u_int16_t		word = 0;
326
327	/* Enter EEPROM access mode. */
328	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
329
330	/*
331	 * Send address of word we want to read.
332	 */
333	re_eeprom_putbyte(sc, addr);
334
335	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
336
337	/*
338	 * Start reading bits from EEPROM.
339	 */
340	for (i = 0x8000; i; i >>= 1) {
341		EE_SET(RL_EE_CLK);
342		DELAY(100);
343		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
344			word |= i;
345		EE_CLR(RL_EE_CLK);
346		DELAY(100);
347	}
348
349	/* Turn off EEPROM access mode. */
350	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
351
352	*dest = word;
353
354	return;
355}
356
357/*
358 * Read a sequence of words from the EEPROM.
359 */
360static void
361re_read_eeprom(sc, dest, off, cnt, swap)
362	struct rl_softc		*sc;
363	caddr_t			dest;
364	int			off;
365	int			cnt;
366	int			swap;
367{
368	int			i;
369	u_int16_t		word = 0, *ptr;
370
371	for (i = 0; i < cnt; i++) {
372		re_eeprom_getword(sc, off + i, &word);
373		ptr = (u_int16_t *)(dest + (i * 2));
374		if (swap)
375			*ptr = ntohs(word);
376		else
377			*ptr = word;
378	}
379
380	return;
381}
382
383static int
384re_gmii_readreg(dev, phy, reg)
385	device_t		dev;
386	int			phy, reg;
387{
388	struct rl_softc		*sc;
389	u_int32_t		rval;
390	int			i;
391
392	if (phy != 1)
393		return(0);
394
395	sc = device_get_softc(dev);
396
397	/* Let the rgephy driver read the GMEDIASTAT register */
398
399	if (reg == RL_GMEDIASTAT) {
400		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
401		return(rval);
402	}
403
404	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
405	DELAY(1000);
406
407	for (i = 0; i < RL_TIMEOUT; i++) {
408		rval = CSR_READ_4(sc, RL_PHYAR);
409		if (rval & RL_PHYAR_BUSY)
410			break;
411		DELAY(100);
412	}
413
414	if (i == RL_TIMEOUT) {
415		printf ("re%d: PHY read failed\n", sc->rl_unit);
416		return (0);
417	}
418
419	return (rval & RL_PHYAR_PHYDATA);
420}
421
422static int
423re_gmii_writereg(dev, phy, reg, data)
424	device_t		dev;
425	int			phy, reg, data;
426{
427	struct rl_softc		*sc;
428	u_int32_t		rval;
429	int			i;
430
431	sc = device_get_softc(dev);
432
433	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
434	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
435	DELAY(1000);
436
437	for (i = 0; i < RL_TIMEOUT; i++) {
438		rval = CSR_READ_4(sc, RL_PHYAR);
439		if (!(rval & RL_PHYAR_BUSY))
440			break;
441		DELAY(100);
442	}
443
444	if (i == RL_TIMEOUT) {
445		printf ("re%d: PHY write failed\n", sc->rl_unit);
446		return (0);
447	}
448
449	return (0);
450}
451
452static int
453re_miibus_readreg(dev, phy, reg)
454	device_t		dev;
455	int			phy, reg;
456{
457	struct rl_softc		*sc;
458	u_int16_t		rval = 0;
459	u_int16_t		re8139_reg = 0;
460
461	sc = device_get_softc(dev);
462	RL_LOCK(sc);
463
464	if (sc->rl_type == RL_8169) {
465		rval = re_gmii_readreg(dev, phy, reg);
466		RL_UNLOCK(sc);
467		return (rval);
468	}
469
470	/* Pretend the internal PHY is only at address 0 */
471	if (phy) {
472		RL_UNLOCK(sc);
473		return(0);
474	}
475	switch(reg) {
476	case MII_BMCR:
477		re8139_reg = RL_BMCR;
478		break;
479	case MII_BMSR:
480		re8139_reg = RL_BMSR;
481		break;
482	case MII_ANAR:
483		re8139_reg = RL_ANAR;
484		break;
485	case MII_ANER:
486		re8139_reg = RL_ANER;
487		break;
488	case MII_ANLPAR:
489		re8139_reg = RL_LPAR;
490		break;
491	case MII_PHYIDR1:
492	case MII_PHYIDR2:
493		RL_UNLOCK(sc);
494		return(0);
495	/*
496	 * Allow the rlphy driver to read the media status
497	 * register. If we have a link partner which does not
498	 * support NWAY, this is the register which will tell
499	 * us the results of parallel detection.
500	 */
501	case RL_MEDIASTAT:
502		rval = CSR_READ_1(sc, RL_MEDIASTAT);
503		RL_UNLOCK(sc);
504		return(rval);
505	default:
506		printf("re%d: bad phy register\n", sc->rl_unit);
507		RL_UNLOCK(sc);
508		return(0);
509	}
510	rval = CSR_READ_2(sc, re8139_reg);
511	RL_UNLOCK(sc);
512	return(rval);
513}
514
515static int
516re_miibus_writereg(dev, phy, reg, data)
517	device_t		dev;
518	int			phy, reg, data;
519{
520	struct rl_softc		*sc;
521	u_int16_t		re8139_reg = 0;
522	int			rval = 0;
523
524	sc = device_get_softc(dev);
525	RL_LOCK(sc);
526
527	if (sc->rl_type == RL_8169) {
528		rval = re_gmii_writereg(dev, phy, reg, data);
529		RL_UNLOCK(sc);
530		return (rval);
531	}
532
533	/* Pretend the internal PHY is only at address 0 */
534	if (phy) {
535		RL_UNLOCK(sc);
536		return(0);
537	}
538	switch(reg) {
539	case MII_BMCR:
540		re8139_reg = RL_BMCR;
541		break;
542	case MII_BMSR:
543		re8139_reg = RL_BMSR;
544		break;
545	case MII_ANAR:
546		re8139_reg = RL_ANAR;
547		break;
548	case MII_ANER:
549		re8139_reg = RL_ANER;
550		break;
551	case MII_ANLPAR:
552		re8139_reg = RL_LPAR;
553		break;
554	case MII_PHYIDR1:
555	case MII_PHYIDR2:
556		RL_UNLOCK(sc);
557		return(0);
558		break;
559	default:
560		printf("re%d: bad phy register\n", sc->rl_unit);
561		RL_UNLOCK(sc);
562		return(0);
563	}
564	CSR_WRITE_2(sc, re8139_reg, data);
565	RL_UNLOCK(sc);
566	return(0);
567}
568
569static void
570re_miibus_statchg(dev)
571	device_t		dev;
572{
573	return;
574}
575
576/*
577 * Calculate CRC of a multicast group address, return the upper 6 bits.
578 */
579static uint32_t
580re_mchash(addr)
581	const uint8_t *addr;
582{
583	uint32_t crc, carry;
584	int idx, bit;
585	uint8_t data;
586
587	/* Compute CRC for the address value. */
588	crc = 0xFFFFFFFF; /* initial value */
589
590	for (idx = 0; idx < 6; idx++) {
591		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
592			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
593			crc <<= 1;
594			if (carry)
595				crc = (crc ^ 0x04c11db6) | carry;
596		}
597	}
598
599	/* return the filter bit position */
600	return(crc >> 26);
601}
602
603/*
604 * Program the 64-bit multicast hash filter.
605 */
606static void
607re_setmulti(sc)
608	struct rl_softc		*sc;
609{
610	struct ifnet		*ifp;
611	int			h = 0;
612	u_int32_t		hashes[2] = { 0, 0 };
613	struct ifmultiaddr	*ifma;
614	u_int32_t		rxfilt;
615	int			mcnt = 0;
616
617	ifp = &sc->arpcom.ac_if;
618
619	rxfilt = CSR_READ_4(sc, RL_RXCFG);
620
621	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
622		rxfilt |= RL_RXCFG_RX_MULTI;
623		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
624		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
625		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
626		return;
627	}
628
629	/* first, zot all the existing hash bits */
630	CSR_WRITE_4(sc, RL_MAR0, 0);
631	CSR_WRITE_4(sc, RL_MAR4, 0);
632
633	/* now program new ones */
634	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
635		if (ifma->ifma_addr->sa_family != AF_LINK)
636			continue;
637		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
638		if (h < 32)
639			hashes[0] |= (1 << h);
640		else
641			hashes[1] |= (1 << (h - 32));
642		mcnt++;
643	}
644
645	if (mcnt)
646		rxfilt |= RL_RXCFG_RX_MULTI;
647	else
648		rxfilt &= ~RL_RXCFG_RX_MULTI;
649
650	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
651	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
652	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
653
654	return;
655}
656
657static void
658re_reset(sc)
659	struct rl_softc		*sc;
660{
661	register int		i;
662
663	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
664
665	for (i = 0; i < RL_TIMEOUT; i++) {
666		DELAY(10);
667		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
668			break;
669	}
670	if (i == RL_TIMEOUT)
671		printf("re%d: reset never completed!\n", sc->rl_unit);
672
673	CSR_WRITE_1(sc, 0x82, 1);
674
675	return;
676}
677
678/*
679 * The following routine is designed to test for a defect on some
680 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
681 * lines connected to the bus, however for a 32-bit only card, they
682 * should be pulled high. The result of this defect is that the
683 * NIC will not work right if you plug it into a 64-bit slot: DMA
684 * operations will be done with 64-bit transfers, which will fail
685 * because the 64-bit data lines aren't connected.
686 *
687 * There's no way to work around this (short of talking a soldering
688 * iron to the board), however we can detect it. The method we use
689 * here is to put the NIC into digital loopback mode, set the receiver
690 * to promiscuous mode, and then try to send a frame. We then compare
691 * the frame data we sent to what was received. If the data matches,
692 * then the NIC is working correctly, otherwise we know the user has
693 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
694 * slot. In the latter case, there's no way the NIC can work correctly,
695 * so we print out a message on the console and abort the device attach.
696 */
697
698static int
699re_diag(sc)
700	struct rl_softc		*sc;
701{
702	struct ifnet		*ifp = &sc->arpcom.ac_if;
703	struct mbuf		*m0;
704	struct ether_header	*eh;
705	struct rl_desc		*cur_rx;
706	u_int16_t		status;
707	u_int32_t		rxstat;
708	int			total_len, i, error = 0;
709	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
710	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
711
712	/* Allocate a single mbuf */
713
714	MGETHDR(m0, M_DONTWAIT, MT_DATA);
715	if (m0 == NULL)
716		return(ENOBUFS);
717
718	/*
719	 * Initialize the NIC in test mode. This sets the chip up
720	 * so that it can send and receive frames, but performs the
721	 * following special functions:
722	 * - Puts receiver in promiscuous mode
723	 * - Enables digital loopback mode
724	 * - Leaves interrupts turned off
725	 */
726
727	ifp->if_flags |= IFF_PROMISC;
728	sc->rl_testmode = 1;
729	re_init(sc);
730	re_stop(sc);
731	DELAY(100000);
732	re_init(sc);
733
734	/* Put some data in the mbuf */
735
736	eh = mtod(m0, struct ether_header *);
737	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
738	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
739	eh->ether_type = htons(ETHERTYPE_IP);
740	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
741
742	/*
743	 * Queue the packet, start transmission.
744	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
745	 */
746
747	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
748	IF_HANDOFF(&ifp->if_snd, m0, ifp);
749	m0 = NULL;
750
751	/* Wait for it to propagate through the chip */
752
753	DELAY(100000);
754	for (i = 0; i < RL_TIMEOUT; i++) {
755		status = CSR_READ_2(sc, RL_ISR);
756		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
757		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
758			break;
759		DELAY(10);
760	}
761
762	if (i == RL_TIMEOUT) {
763		printf("re%d: diagnostic failed, failed to receive packet "
764		    "in loopback mode\n", sc->rl_unit);
765		error = EIO;
766		goto done;
767	}
768
769	/*
770	 * The packet should have been dumped into the first
771	 * entry in the RX DMA ring. Grab it from there.
772	 */
773
774	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
775	    sc->rl_ldata.rl_rx_list_map,
776	    BUS_DMASYNC_POSTREAD);
777	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
778	    sc->rl_ldata.rl_rx_dmamap[0],
779	    BUS_DMASYNC_POSTWRITE);
780	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
781	    sc->rl_ldata.rl_rx_dmamap[0]);
782
783	m0 = sc->rl_ldata.rl_rx_mbuf[0];
784	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
785	eh = mtod(m0, struct ether_header *);
786
787	cur_rx = &sc->rl_ldata.rl_rx_list[0];
788	total_len = RL_RXBYTES(cur_rx);
789	rxstat = le32toh(cur_rx->rl_cmdstat);
790
791	if (total_len != ETHER_MIN_LEN) {
792		printf("re%d: diagnostic failed, received short packet\n",
793		    sc->rl_unit);
794		error = EIO;
795		goto done;
796	}
797
798	/* Test that the received packet data matches what we sent. */
799
800	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
801	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
802	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
803		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
804		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
805		    dst, ":", src, ":", ETHERTYPE_IP);
806		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
807		    eh->ether_dhost, ":",  eh->ether_shost, ":",
808		    ntohs(eh->ether_type));
809		printf("re%d: You may have a defective 32-bit NIC plugged "
810		    "into a 64-bit PCI slot.\n", sc->rl_unit);
811		printf("re%d: Please re-install the NIC in a 32-bit slot "
812		    "for proper operation.\n", sc->rl_unit);
813		printf("re%d: Read the re(4) man page for more details.\n",
814		    sc->rl_unit);
815		error = EIO;
816	}
817
818done:
819	/* Turn interface off, release resources */
820
821	sc->rl_testmode = 0;
822	ifp->if_flags &= ~IFF_PROMISC;
823	re_stop(sc);
824	if (m0 != NULL)
825		m_freem(m0);
826
827	return (error);
828}
829
830/*
831 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
832 * IDs against our list and return a device name if we find a match.
833 */
834static int
835re_probe(dev)
836	device_t		dev;
837{
838	struct rl_type		*t;
839	struct rl_softc		*sc;
840	int			rid;
841	u_int32_t		hwrev;
842
843	t = re_devs;
844	sc = device_get_softc(dev);
845
846	while(t->rl_name != NULL) {
847		if ((pci_get_vendor(dev) == t->rl_vid) &&
848		    (pci_get_device(dev) == t->rl_did)) {
849
850			/*
851			 * Temporarily map the I/O space
852			 * so we can read the chip ID register.
853			 */
854			rid = RL_RID;
855			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
856			    RF_ACTIVE);
857			if (sc->rl_res == NULL) {
858				device_printf(dev,
859				    "couldn't map ports/memory\n");
860				return(ENXIO);
861			}
862			sc->rl_btag = rman_get_bustag(sc->rl_res);
863			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
864			mtx_init(&sc->rl_mtx,
865			    device_get_nameunit(dev),
866			    MTX_NETWORK_LOCK, MTX_DEF);
867			RL_LOCK(sc);
868			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
869			bus_release_resource(dev, RL_RES,
870			    RL_RID, sc->rl_res);
871			RL_UNLOCK(sc);
872			mtx_destroy(&sc->rl_mtx);
873			if (t->rl_basetype == hwrev) {
874				device_set_desc(dev, t->rl_name);
875				return(0);
876			}
877		}
878		t++;
879	}
880
881	return(ENXIO);
882}
883
884/*
885 * This routine takes the segment list provided as the result of
886 * a bus_dma_map_load() operation and assigns the addresses/lengths
887 * to RealTek DMA descriptors. This can be called either by the RX
888 * code or the TX code. In the RX case, we'll probably wind up mapping
889 * at most one segment. For the TX case, there could be any number of
890 * segments since TX packets may span multiple mbufs. In either case,
891 * if the number of segments is larger than the rl_maxsegs limit
892 * specified by the caller, we abort the mapping operation. Sadly,
893 * whoever designed the buffer mapping API did not provide a way to
894 * return an error from here, so we have to fake it a bit.
895 */
896
897static void
898re_dma_map_desc(arg, segs, nseg, mapsize, error)
899	void			*arg;
900	bus_dma_segment_t	*segs;
901	int			nseg;
902	bus_size_t		mapsize;
903	int			error;
904{
905	struct rl_dmaload_arg	*ctx;
906	struct rl_desc		*d = NULL;
907	int			i = 0, idx;
908
909	if (error)
910		return;
911
912	ctx = arg;
913
914	/* Signal error to caller if there's too many segments */
915	if (nseg > ctx->rl_maxsegs) {
916		ctx->rl_maxsegs = 0;
917		return;
918	}
919
920	/*
921	 * Map the segment array into descriptors. Note that we set the
922	 * start-of-frame and end-of-frame markers for either TX or RX, but
923	 * they really only have meaning in the TX case. (In the RX case,
924	 * it's the chip that tells us where packets begin and end.)
925	 * We also keep track of the end of the ring and set the
926	 * end-of-ring bits as needed, and we set the ownership bits
927	 * in all except the very first descriptor. (The caller will
928	 * set this descriptor later when it start transmission or
929	 * reception.)
930	 */
931	idx = ctx->rl_idx;
932	while(1) {
933		u_int32_t		cmdstat;
934		d = &ctx->rl_ring[idx];
935		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
936			ctx->rl_maxsegs = 0;
937			return;
938		}
939		cmdstat = segs[i].ds_len;
940		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
941		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
942		if (i == 0)
943			cmdstat |= RL_TDESC_CMD_SOF;
944		else
945			cmdstat |= RL_TDESC_CMD_OWN;
946		if (idx == (RL_RX_DESC_CNT - 1))
947			cmdstat |= RL_TDESC_CMD_EOR;
948		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
949		i++;
950		if (i == nseg)
951			break;
952		RL_DESC_INC(idx);
953	}
954
955	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
956	ctx->rl_maxsegs = nseg;
957	ctx->rl_idx = idx;
958
959	return;
960}
961
962/*
963 * Map a single buffer address.
964 */
965
966static void
967re_dma_map_addr(arg, segs, nseg, error)
968	void			*arg;
969	bus_dma_segment_t	*segs;
970	int			nseg;
971	int			error;
972{
973	u_int32_t		*addr;
974
975	if (error)
976		return;
977
978	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
979	addr = arg;
980	*addr = segs->ds_addr;
981
982	return;
983}
984
985static int
986re_allocmem(dev, sc)
987	device_t		dev;
988	struct rl_softc		*sc;
989{
990	int			error;
991	int			nseg;
992	int			i;
993
994	/*
995	 * Allocate map for RX mbufs.
996	 */
997	nseg = 32;
998	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
999	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1000	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1001	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1002	if (error) {
1003		device_printf(dev, "could not allocate dma tag\n");
1004		return (ENOMEM);
1005	}
1006
1007	/*
1008	 * Allocate map for TX descriptor list.
1009	 */
1010	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1011	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1012            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1013	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1014	if (error) {
1015		device_printf(dev, "could not allocate dma tag\n");
1016		return (ENOMEM);
1017	}
1018
1019	/* Allocate DMA'able memory for the TX ring */
1020
1021        error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1022	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1023            &sc->rl_ldata.rl_tx_list_map);
1024        if (error)
1025                return (ENOMEM);
1026
1027	/* Load the map for the TX ring. */
1028
1029	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1030	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1031	     RL_TX_LIST_SZ, re_dma_map_addr,
1032	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1033
1034	/* Create DMA maps for TX buffers */
1035
1036	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1037		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1038			    &sc->rl_ldata.rl_tx_dmamap[i]);
1039		if (error) {
1040			device_printf(dev, "can't create DMA map for TX\n");
1041			return(ENOMEM);
1042		}
1043	}
1044
1045	/*
1046	 * Allocate map for RX descriptor list.
1047	 */
1048	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1049	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1050            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1051	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1052	if (error) {
1053		device_printf(dev, "could not allocate dma tag\n");
1054		return (ENOMEM);
1055	}
1056
1057	/* Allocate DMA'able memory for the RX ring */
1058
1059        error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1060	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1061            &sc->rl_ldata.rl_rx_list_map);
1062        if (error)
1063                return (ENOMEM);
1064
1065	/* Load the map for the RX ring. */
1066
1067	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1068	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1069	     RL_TX_LIST_SZ, re_dma_map_addr,
1070	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1071
1072	/* Create DMA maps for RX buffers */
1073
1074	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1075		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1076			    &sc->rl_ldata.rl_rx_dmamap[i]);
1077		if (error) {
1078			device_printf(dev, "can't create DMA map for RX\n");
1079			return(ENOMEM);
1080		}
1081	}
1082
1083	return(0);
1084}
1085
1086/*
1087 * Attach the interface. Allocate softc structures, do ifmedia
1088 * setup and ethernet/BPF attach.
1089 */
1090static int
1091re_attach(dev)
1092	device_t		dev;
1093{
1094	u_char			eaddr[ETHER_ADDR_LEN];
1095	u_int16_t		as[3];
1096	struct rl_softc		*sc;
1097	struct ifnet		*ifp;
1098	struct rl_hwrev		*hw_rev;
1099	int			hwrev;
1100	u_int16_t		re_did = 0;
1101	int			unit, error = 0, rid, i;
1102
1103	sc = device_get_softc(dev);
1104	unit = device_get_unit(dev);
1105
1106	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1107	    MTX_DEF | MTX_RECURSE);
1108#ifndef BURN_BRIDGES
1109	/*
1110	 * Handle power management nonsense.
1111	 */
1112
1113	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1114		u_int32_t		iobase, membase, irq;
1115
1116		/* Save important PCI config data. */
1117		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1118		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1119		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1120
1121		/* Reset the power state. */
1122		printf("re%d: chip is is in D%d power mode "
1123		    "-- setting to D0\n", unit,
1124		    pci_get_powerstate(dev));
1125
1126		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1127
1128		/* Restore PCI config data. */
1129		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1130		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1131		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1132	}
1133#endif
1134	/*
1135	 * Map control/status registers.
1136	 */
1137	pci_enable_busmaster(dev);
1138
1139	rid = RL_RID;
1140	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1141	    RF_ACTIVE);
1142
1143	if (sc->rl_res == NULL) {
1144		printf ("re%d: couldn't map ports/memory\n", unit);
1145		error = ENXIO;
1146		goto fail;
1147	}
1148
1149	sc->rl_btag = rman_get_bustag(sc->rl_res);
1150	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1151
1152	/* Allocate interrupt */
1153	rid = 0;
1154	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1155	    RF_SHAREABLE | RF_ACTIVE);
1156
1157	if (sc->rl_irq == NULL) {
1158		printf("re%d: couldn't map interrupt\n", unit);
1159		error = ENXIO;
1160		goto fail;
1161	}
1162
1163	/* Reset the adapter. */
1164	re_reset(sc);
1165
1166	hw_rev = re_hwrevs;
1167	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1168	while (hw_rev->rl_desc != NULL) {
1169		if (hw_rev->rl_rev == hwrev) {
1170			sc->rl_type = hw_rev->rl_type;
1171			break;
1172		}
1173		hw_rev++;
1174	}
1175
1176	if (sc->rl_type == RL_8169) {
1177
1178		/* Set RX length mask */
1179
1180		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1181
1182		/* Force station address autoload from the EEPROM */
1183
1184		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1185		for (i = 0; i < RL_TIMEOUT; i++) {
1186			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1187				break;
1188			DELAY(100);
1189		}
1190		if (i == RL_TIMEOUT)
1191			printf ("re%d: eeprom autoload timed out\n", unit);
1192
1193			for (i = 0; i < ETHER_ADDR_LEN; i++)
1194				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1195	} else {
1196
1197		/* Set RX length mask */
1198
1199		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1200
1201		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1202		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1203		if (re_did != 0x8129)
1204			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1205
1206		/*
1207		 * Get station address from the EEPROM.
1208		 */
1209		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1210		for (i = 0; i < 3; i++) {
1211			eaddr[(i * 2) + 0] = as[i] & 0xff;
1212			eaddr[(i * 2) + 1] = as[i] >> 8;
1213		}
1214	}
1215
1216	sc->rl_unit = unit;
1217	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1218
1219	/*
1220	 * Allocate the parent bus DMA tag appropriate for PCI.
1221	 */
1222#define RL_NSEG_NEW 32
1223	error = bus_dma_tag_create(NULL,	/* parent */
1224			1, 0,			/* alignment, boundary */
1225			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1226			BUS_SPACE_MAXADDR,	/* highaddr */
1227			NULL, NULL,		/* filter, filterarg */
1228			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1229			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1230			BUS_DMA_ALLOCNOW,	/* flags */
1231			NULL, NULL,		/* lockfunc, lockarg */
1232			&sc->rl_parent_tag);
1233	if (error)
1234		goto fail;
1235
1236	error = re_allocmem(dev, sc);
1237
1238	if (error)
1239		goto fail;
1240
1241	/* Do MII setup */
1242	if (mii_phy_probe(dev, &sc->rl_miibus,
1243	    re_ifmedia_upd, re_ifmedia_sts)) {
1244		printf("re%d: MII without any phy!\n", sc->rl_unit);
1245		error = ENXIO;
1246		goto fail;
1247	}
1248
1249	ifp = &sc->arpcom.ac_if;
1250	ifp->if_softc = sc;
1251	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1252	ifp->if_mtu = ETHERMTU;
1253	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1254	ifp->if_ioctl = re_ioctl;
1255	ifp->if_capabilities = IFCAP_VLAN_MTU;
1256	ifp->if_start = re_start;
1257	ifp->if_hwassist = RE_CSUM_FEATURES;
1258	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1259#ifdef DEVICE_POLLING
1260	ifp->if_capabilities |= IFCAP_POLLING;
1261#endif
1262	ifp->if_watchdog = re_watchdog;
1263	ifp->if_init = re_init;
1264	if (sc->rl_type == RL_8169)
1265		ifp->if_baudrate = 1000000000;
1266	else
1267		ifp->if_baudrate = 100000000;
1268	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1269	ifp->if_capenable = ifp->if_capabilities;
1270
1271	callout_handle_init(&sc->rl_stat_ch);
1272
1273	/*
1274	 * Call MI attach routine.
1275	 */
1276	ether_ifattach(ifp, eaddr);
1277
1278	/* Perform hardware diagnostic. */
1279	error = re_diag(sc);
1280
1281	if (error) {
1282		printf("re%d: attach aborted due to hardware diag failure\n",
1283		    unit);
1284		ether_ifdetach(ifp);
1285		goto fail;
1286	}
1287
1288	/* Hook interrupt last to avoid having to lock softc */
1289	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1290	    re_intr, sc, &sc->rl_intrhand);
1291
1292	if (error) {
1293		printf("re%d: couldn't set up irq\n", unit);
1294		ether_ifdetach(ifp);
1295		goto fail;
1296	}
1297
1298fail:
1299	if (error)
1300		re_detach(dev);
1301
1302	return (error);
1303}
1304
1305/*
1306 * Shutdown hardware and free up resources. This can be called any
1307 * time after the mutex has been initialized. It is called in both
1308 * the error case in attach and the normal detach case so it needs
1309 * to be careful about only freeing resources that have actually been
1310 * allocated.
1311 */
1312static int
1313re_detach(dev)
1314	device_t		dev;
1315{
1316	struct rl_softc		*sc;
1317	struct ifnet		*ifp;
1318	int			i;
1319
1320	sc = device_get_softc(dev);
1321	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1322	RL_LOCK(sc);
1323	ifp = &sc->arpcom.ac_if;
1324
1325	/* These should only be active if attach succeeded */
1326	if (device_is_attached(dev)) {
1327		re_stop(sc);
1328		/*
1329		 * Force off the IFF_UP flag here, in case someone
1330		 * still had a BPF descriptor attached to this
1331		 * interface. If they do, ether_ifattach() will cause
1332		 * the BPF code to try and clear the promisc mode
1333		 * flag, which will bubble down to re_ioctl(),
1334		 * which will try to call re_init() again. This will
1335		 * turn the NIC back on and restart the MII ticker,
1336		 * which will panic the system when the kernel tries
1337		 * to invoke the re_tick() function that isn't there
1338		 * anymore.
1339		 */
1340		ifp->if_flags &= ~IFF_UP;
1341		ether_ifdetach(ifp);
1342	}
1343	if (sc->rl_miibus)
1344		device_delete_child(dev, sc->rl_miibus);
1345	bus_generic_detach(dev);
1346
1347	if (sc->rl_intrhand)
1348		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1349	if (sc->rl_irq)
1350		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1351	if (sc->rl_res)
1352		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1353
1354
1355	/* Unload and free the RX DMA ring memory and map */
1356
1357	if (sc->rl_ldata.rl_rx_list_tag) {
1358		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1359		    sc->rl_ldata.rl_rx_list_map);
1360		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1361		    sc->rl_ldata.rl_rx_list,
1362		    sc->rl_ldata.rl_rx_list_map);
1363		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1364	}
1365
1366	/* Unload and free the TX DMA ring memory and map */
1367
1368	if (sc->rl_ldata.rl_tx_list_tag) {
1369		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1370		    sc->rl_ldata.rl_tx_list_map);
1371		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1372		    sc->rl_ldata.rl_tx_list,
1373		    sc->rl_ldata.rl_tx_list_map);
1374		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1375	}
1376
1377	/* Destroy all the RX and TX buffer maps */
1378
1379	if (sc->rl_ldata.rl_mtag) {
1380		for (i = 0; i < RL_TX_DESC_CNT; i++)
1381			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1382			    sc->rl_ldata.rl_tx_dmamap[i]);
1383		for (i = 0; i < RL_RX_DESC_CNT; i++)
1384			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1385			    sc->rl_ldata.rl_rx_dmamap[i]);
1386		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1387	}
1388
1389	/* Unload and free the stats buffer and map */
1390
1391	if (sc->rl_ldata.rl_stag) {
1392		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1393		    sc->rl_ldata.rl_rx_list_map);
1394		bus_dmamem_free(sc->rl_ldata.rl_stag,
1395		    sc->rl_ldata.rl_stats,
1396		    sc->rl_ldata.rl_smap);
1397		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1398	}
1399
1400	if (sc->rl_parent_tag)
1401		bus_dma_tag_destroy(sc->rl_parent_tag);
1402
1403	RL_UNLOCK(sc);
1404	mtx_destroy(&sc->rl_mtx);
1405
1406	return(0);
1407}
1408
1409static int
1410re_newbuf(sc, idx, m)
1411	struct rl_softc		*sc;
1412	int			idx;
1413	struct mbuf		*m;
1414{
1415	struct rl_dmaload_arg	arg;
1416	struct mbuf		*n = NULL;
1417	int			error;
1418
1419	if (m == NULL) {
1420		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1421		if (n == NULL)
1422			return(ENOBUFS);
1423		m = n;
1424	} else
1425		m->m_data = m->m_ext.ext_buf;
1426
1427	/*
1428	 * Initialize mbuf length fields and fixup
1429	 * alignment so that the frame payload is
1430	 * longword aligned.
1431	 */
1432	m->m_len = m->m_pkthdr.len = MCLBYTES;
1433	m_adj(m, ETHER_ALIGN);
1434
1435	arg.sc = sc;
1436	arg.rl_idx = idx;
1437	arg.rl_maxsegs = 1;
1438	arg.rl_flags = 0;
1439	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1440
1441        error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1442	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1443	    &arg, BUS_DMA_NOWAIT);
1444	if (error || arg.rl_maxsegs != 1) {
1445		if (n != NULL)
1446			m_freem(n);
1447		return (ENOMEM);
1448	}
1449
1450	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1451	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1452
1453        bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1454	    sc->rl_ldata.rl_rx_dmamap[idx],
1455	    BUS_DMASYNC_PREREAD);
1456
1457	return(0);
1458}
1459
1460static int
1461re_tx_list_init(sc)
1462	struct rl_softc		*sc;
1463{
1464	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1465	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1466	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1467
1468	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1469	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1470	sc->rl_ldata.rl_tx_prodidx = 0;
1471	sc->rl_ldata.rl_tx_considx = 0;
1472	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1473
1474	return(0);
1475}
1476
1477static int
1478re_rx_list_init(sc)
1479	struct rl_softc		*sc;
1480{
1481	int			i;
1482
1483	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1484	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1485	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1486
1487	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1488		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1489			return(ENOBUFS);
1490	}
1491
1492	/* Flush the RX descriptors */
1493
1494	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1495	    sc->rl_ldata.rl_rx_list_map,
1496	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1497
1498	sc->rl_ldata.rl_rx_prodidx = 0;
1499	sc->rl_head = sc->rl_tail = NULL;
1500
1501	return(0);
1502}
1503
1504/*
1505 * RX handler for C+ and 8169. For the gigE chips, we support
1506 * the reception of jumbo frames that have been fragmented
1507 * across multiple 2K mbuf cluster buffers.
1508 */
1509static void
1510re_rxeof(sc)
1511	struct rl_softc		*sc;
1512{
1513	struct mbuf		*m;
1514	struct ifnet		*ifp;
1515	int			i, total_len;
1516	struct rl_desc		*cur_rx;
1517	u_int32_t		rxstat, rxvlan;
1518
1519	RL_LOCK_ASSERT(sc);
1520
1521	ifp = &sc->arpcom.ac_if;
1522	i = sc->rl_ldata.rl_rx_prodidx;
1523
1524	/* Invalidate the descriptor memory */
1525
1526	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1527	    sc->rl_ldata.rl_rx_list_map,
1528	    BUS_DMASYNC_POSTREAD);
1529
1530	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1531
1532		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1533		m = sc->rl_ldata.rl_rx_mbuf[i];
1534		total_len = RL_RXBYTES(cur_rx);
1535		rxstat = le32toh(cur_rx->rl_cmdstat);
1536		rxvlan = le32toh(cur_rx->rl_vlanctl);
1537
1538		/* Invalidate the RX mbuf and unload its map */
1539
1540		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1541		    sc->rl_ldata.rl_rx_dmamap[i],
1542		    BUS_DMASYNC_POSTWRITE);
1543		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1544		    sc->rl_ldata.rl_rx_dmamap[i]);
1545
1546		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1547			m->m_len = MCLBYTES - ETHER_ALIGN;
1548			if (sc->rl_head == NULL)
1549				sc->rl_head = sc->rl_tail = m;
1550			else {
1551				m->m_flags &= ~M_PKTHDR;
1552				sc->rl_tail->m_next = m;
1553				sc->rl_tail = m;
1554			}
1555			re_newbuf(sc, i, NULL);
1556			RL_DESC_INC(i);
1557			continue;
1558		}
1559
1560		/*
1561		 * NOTE: for the 8139C+, the frame length field
1562		 * is always 12 bits in size, but for the gigE chips,
1563		 * it is 13 bits (since the max RX frame length is 16K).
1564		 * Unfortunately, all 32 bits in the status word
1565		 * were already used, so to make room for the extra
1566		 * length bit, RealTek took out the 'frame alignment
1567		 * error' bit and shifted the other status bits
1568		 * over one slot. The OWN, EOR, FS and LS bits are
1569		 * still in the same places. We have already extracted
1570		 * the frame length and checked the OWN bit, so rather
1571		 * than using an alternate bit mapping, we shift the
1572		 * status bits one space to the right so we can evaluate
1573		 * them using the 8169 status as though it was in the
1574		 * same format as that of the 8139C+.
1575		 */
1576		if (sc->rl_type == RL_8169)
1577			rxstat >>= 1;
1578
1579		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1580			ifp->if_ierrors++;
1581			/*
1582			 * If this is part of a multi-fragment packet,
1583			 * discard all the pieces.
1584			 */
1585			if (sc->rl_head != NULL) {
1586				m_freem(sc->rl_head);
1587				sc->rl_head = sc->rl_tail = NULL;
1588			}
1589			re_newbuf(sc, i, m);
1590			RL_DESC_INC(i);
1591			continue;
1592		}
1593
1594		/*
1595		 * If allocating a replacement mbuf fails,
1596		 * reload the current one.
1597		 */
1598
1599		if (re_newbuf(sc, i, NULL)) {
1600			ifp->if_ierrors++;
1601			if (sc->rl_head != NULL) {
1602				m_freem(sc->rl_head);
1603				sc->rl_head = sc->rl_tail = NULL;
1604			}
1605			re_newbuf(sc, i, m);
1606			RL_DESC_INC(i);
1607			continue;
1608		}
1609
1610		RL_DESC_INC(i);
1611
1612		if (sc->rl_head != NULL) {
1613			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1614			/*
1615			 * Special case: if there's 4 bytes or less
1616			 * in this buffer, the mbuf can be discarded:
1617			 * the last 4 bytes is the CRC, which we don't
1618			 * care about anyway.
1619			 */
1620			if (m->m_len <= ETHER_CRC_LEN) {
1621				sc->rl_tail->m_len -=
1622				    (ETHER_CRC_LEN - m->m_len);
1623				m_freem(m);
1624			} else {
1625				m->m_len -= ETHER_CRC_LEN;
1626				m->m_flags &= ~M_PKTHDR;
1627				sc->rl_tail->m_next = m;
1628			}
1629			m = sc->rl_head;
1630			sc->rl_head = sc->rl_tail = NULL;
1631			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1632		} else
1633			m->m_pkthdr.len = m->m_len =
1634			    (total_len - ETHER_CRC_LEN);
1635
1636		ifp->if_ipackets++;
1637		m->m_pkthdr.rcvif = ifp;
1638
1639		/* Do RX checksumming if enabled */
1640
1641		if (ifp->if_capenable & IFCAP_RXCSUM) {
1642
1643			/* Check IP header checksum */
1644			if (rxstat & RL_RDESC_STAT_PROTOID)
1645				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1646			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1647				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1648
1649			/* Check TCP/UDP checksum */
1650			if ((RL_TCPPKT(rxstat) &&
1651			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1652			    (RL_UDPPKT(rxstat) &&
1653			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1654				m->m_pkthdr.csum_flags |=
1655				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1656				m->m_pkthdr.csum_data = 0xffff;
1657			}
1658		}
1659
1660		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1661			VLAN_INPUT_TAG(ifp, m,
1662			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1663		RL_UNLOCK(sc);
1664		(*ifp->if_input)(ifp, m);
1665		RL_LOCK(sc);
1666	}
1667
1668	/* Flush the RX DMA ring */
1669
1670	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1671	    sc->rl_ldata.rl_rx_list_map,
1672	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1673
1674	sc->rl_ldata.rl_rx_prodidx = i;
1675
1676	return;
1677}
1678
1679static void
1680re_txeof(sc)
1681	struct rl_softc		*sc;
1682{
1683	struct ifnet		*ifp;
1684	u_int32_t		txstat;
1685	int			idx;
1686
1687	ifp = &sc->arpcom.ac_if;
1688	idx = sc->rl_ldata.rl_tx_considx;
1689
1690	/* Invalidate the TX descriptor list */
1691
1692	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1693	    sc->rl_ldata.rl_tx_list_map,
1694	    BUS_DMASYNC_POSTREAD);
1695
1696	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1697
1698		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1699		if (txstat & RL_TDESC_CMD_OWN)
1700			break;
1701
1702		/*
1703		 * We only stash mbufs in the last descriptor
1704		 * in a fragment chain, which also happens to
1705		 * be the only place where the TX status bits
1706		 * are valid.
1707		 */
1708
1709		if (txstat & RL_TDESC_CMD_EOF) {
1710			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1711			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1712			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1713			    sc->rl_ldata.rl_tx_dmamap[idx]);
1714			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1715			    RL_TDESC_STAT_COLCNT))
1716				ifp->if_collisions++;
1717			if (txstat & RL_TDESC_STAT_TXERRSUM)
1718				ifp->if_oerrors++;
1719			else
1720				ifp->if_opackets++;
1721		}
1722		sc->rl_ldata.rl_tx_free++;
1723		RL_DESC_INC(idx);
1724	}
1725
1726	/* No changes made to the TX ring, so no flush needed */
1727
1728	if (idx != sc->rl_ldata.rl_tx_considx) {
1729		sc->rl_ldata.rl_tx_considx = idx;
1730		ifp->if_flags &= ~IFF_OACTIVE;
1731		ifp->if_timer = 0;
1732	}
1733
1734	/*
1735	 * If not all descriptors have been released reaped yet,
1736	 * reload the timer so that we will eventually get another
1737	 * interrupt that will cause us to re-enter this routine.
1738	 * This is done in case the transmitter has gone idle.
1739	 */
1740	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1741                CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1742
1743	return;
1744}
1745
1746static void
1747re_tick(xsc)
1748	void			*xsc;
1749{
1750	struct rl_softc		*sc;
1751	struct mii_data		*mii;
1752
1753	sc = xsc;
1754	RL_LOCK(sc);
1755	mii = device_get_softc(sc->rl_miibus);
1756
1757	mii_tick(mii);
1758
1759	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1760	RL_UNLOCK(sc);
1761
1762	return;
1763}
1764
1765#ifdef DEVICE_POLLING
1766static void
1767re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1768{
1769	struct rl_softc *sc = ifp->if_softc;
1770
1771	RL_LOCK(sc);
1772	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1773		ether_poll_deregister(ifp);
1774		cmd = POLL_DEREGISTER;
1775	}
1776	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1777		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1778		goto done;
1779	}
1780
1781	sc->rxcycles = count;
1782	re_rxeof(sc);
1783	re_txeof(sc);
1784
1785	if (ifp->if_snd.ifq_head != NULL)
1786		(*ifp->if_start)(ifp);
1787
1788	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1789		u_int16_t       status;
1790
1791		status = CSR_READ_2(sc, RL_ISR);
1792		if (status == 0xffff)
1793			goto done;
1794		if (status)
1795			CSR_WRITE_2(sc, RL_ISR, status);
1796
1797		/*
1798		 * XXX check behaviour on receiver stalls.
1799		 */
1800
1801		if (status & RL_ISR_SYSTEM_ERR) {
1802			re_reset(sc);
1803			re_init(sc);
1804		}
1805	}
1806done:
1807	RL_UNLOCK(sc);
1808}
1809#endif /* DEVICE_POLLING */
1810
1811static void
1812re_intr(arg)
1813	void			*arg;
1814{
1815	struct rl_softc		*sc;
1816	struct ifnet		*ifp;
1817	u_int16_t		status;
1818
1819	sc = arg;
1820
1821	if (sc->suspended) {
1822		return;
1823	}
1824
1825	RL_LOCK(sc);
1826	ifp = &sc->arpcom.ac_if;
1827
1828	if (!(ifp->if_flags & IFF_UP)) {
1829		RL_UNLOCK(sc);
1830		return;
1831	}
1832
1833#ifdef DEVICE_POLLING
1834	if  (ifp->if_flags & IFF_POLLING)
1835		goto done;
1836	if ((ifp->if_capenable & IFCAP_POLLING) &&
1837	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1838		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1839		re_poll(ifp, 0, 1);
1840		goto done;
1841	}
1842#endif /* DEVICE_POLLING */
1843
1844	for (;;) {
1845
1846		status = CSR_READ_2(sc, RL_ISR);
1847		/* If the card has gone away the read returns 0xffff. */
1848		if (status == 0xffff)
1849			break;
1850		if (status)
1851			CSR_WRITE_2(sc, RL_ISR, status);
1852
1853		if ((status & RL_INTRS_CPLUS) == 0)
1854			break;
1855
1856		if (status & RL_ISR_RX_OK)
1857			re_rxeof(sc);
1858
1859		if (status & RL_ISR_RX_ERR)
1860			re_rxeof(sc);
1861
1862		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1863		    (status & RL_ISR_TX_ERR) ||
1864		    (status & RL_ISR_TX_DESC_UNAVAIL))
1865			re_txeof(sc);
1866
1867		if (status & RL_ISR_SYSTEM_ERR) {
1868			re_reset(sc);
1869			re_init(sc);
1870		}
1871
1872		if (status & RL_ISR_LINKCHG) {
1873			untimeout(re_tick, sc, sc->rl_stat_ch);
1874			re_tick(sc);
1875		}
1876	}
1877
1878	if (ifp->if_snd.ifq_head != NULL)
1879		(*ifp->if_start)(ifp);
1880
1881#ifdef DEVICE_POLLING
1882done:
1883#endif
1884	RL_UNLOCK(sc);
1885
1886	return;
1887}
1888
1889static int
1890re_encap(sc, m_head, idx)
1891	struct rl_softc		*sc;
1892	struct mbuf		*m_head;
1893	int			*idx;
1894{
1895	struct mbuf		*m_new = NULL;
1896	struct rl_dmaload_arg	arg;
1897	bus_dmamap_t		map;
1898	int			error;
1899	struct m_tag		*mtag;
1900
1901	if (sc->rl_ldata.rl_tx_free <= 4)
1902		return(EFBIG);
1903
1904	/*
1905	 * Set up checksum offload. Note: checksum offload bits must
1906	 * appear in all descriptors of a multi-descriptor transmit
1907	 * attempt. (This is according to testing done with an 8169
1908	 * chip. I'm not sure if this is a requirement or a bug.)
1909	 */
1910
1911	arg.rl_flags = 0;
1912
1913	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1914		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1915	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1916		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1917	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1918		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1919
1920	arg.sc = sc;
1921	arg.rl_idx = *idx;
1922	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1923	if (arg.rl_maxsegs > 4)
1924		arg.rl_maxsegs -= 4;
1925	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1926
1927	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1928	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1929	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1930
1931	if (error && error != EFBIG) {
1932		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1933		return(ENOBUFS);
1934	}
1935
1936	/* Too many segments to map, coalesce into a single mbuf */
1937
1938	if (error || arg.rl_maxsegs == 0) {
1939		m_new = m_defrag(m_head, M_DONTWAIT);
1940		if (m_new == NULL)
1941			return(1);
1942		else
1943			m_head = m_new;
1944
1945		arg.sc = sc;
1946		arg.rl_idx = *idx;
1947		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1948		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1949
1950		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1951		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1952		if (error) {
1953			printf("re%d: can't map mbuf (error %d)\n",
1954			    sc->rl_unit, error);
1955			return(EFBIG);
1956		}
1957	}
1958
1959	/*
1960	 * Insure that the map for this transmission
1961	 * is placed at the array index of the last descriptor
1962	 * in this chain.
1963	 */
1964	sc->rl_ldata.rl_tx_dmamap[*idx] =
1965	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1966	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1967
1968	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1969	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1970
1971	/*
1972	 * Set up hardware VLAN tagging. Note: vlan tag info must
1973	 * appear in the first descriptor of a multi-descriptor
1974	 * transmission attempt.
1975	 */
1976
1977	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1978	if (mtag != NULL)
1979		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1980		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1981
1982	/* Transfer ownership of packet to the chip. */
1983
1984	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1985	    htole32(RL_TDESC_CMD_OWN);
1986	if (*idx != arg.rl_idx)
1987		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1988		    htole32(RL_TDESC_CMD_OWN);
1989
1990	RL_DESC_INC(arg.rl_idx);
1991	*idx = arg.rl_idx;
1992
1993	return(0);
1994}
1995
1996/*
1997 * Main transmit routine for C+ and gigE NICs.
1998 */
1999
2000static void
2001re_start(ifp)
2002	struct ifnet		*ifp;
2003{
2004	struct rl_softc		*sc;
2005	struct mbuf		*m_head = NULL;
2006	int			idx;
2007
2008	sc = ifp->if_softc;
2009	RL_LOCK(sc);
2010
2011	idx = sc->rl_ldata.rl_tx_prodidx;
2012
2013	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2014		IF_DEQUEUE(&ifp->if_snd, m_head);
2015		if (m_head == NULL)
2016			break;
2017
2018		if (re_encap(sc, m_head, &idx)) {
2019			IF_PREPEND(&ifp->if_snd, m_head);
2020			ifp->if_flags |= IFF_OACTIVE;
2021			break;
2022		}
2023
2024		/*
2025		 * If there's a BPF listener, bounce a copy of this frame
2026		 * to him.
2027		 */
2028		BPF_MTAP(ifp, m_head);
2029	}
2030
2031	/* Flush the TX descriptors */
2032
2033	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2034	    sc->rl_ldata.rl_tx_list_map,
2035	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2036
2037	sc->rl_ldata.rl_tx_prodidx = idx;
2038
2039	/*
2040	 * RealTek put the TX poll request register in a different
2041	 * location on the 8169 gigE chip. I don't know why.
2042	 */
2043
2044	if (sc->rl_type == RL_8169)
2045		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2046	else
2047		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2048
2049	/*
2050	 * Use the countdown timer for interrupt moderation.
2051	 * 'TX done' interrupts are disabled. Instead, we reset the
2052	 * countdown timer, which will begin counting until it hits
2053	 * the value in the TIMERINT register, and then trigger an
2054	 * interrupt. Each time we write to the TIMERCNT register,
2055	 * the timer count is reset to 0.
2056	 */
2057	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2058
2059	RL_UNLOCK(sc);
2060
2061	/*
2062	 * Set a timeout in case the chip goes out to lunch.
2063	 */
2064	ifp->if_timer = 5;
2065
2066	return;
2067}
2068
2069static void
2070re_init(xsc)
2071	void			*xsc;
2072{
2073	struct rl_softc		*sc = xsc;
2074	struct ifnet		*ifp = &sc->arpcom.ac_if;
2075	struct mii_data		*mii;
2076	u_int32_t		rxcfg = 0;
2077
2078	RL_LOCK(sc);
2079	mii = device_get_softc(sc->rl_miibus);
2080
2081	/*
2082	 * Cancel pending I/O and free all RX/TX buffers.
2083	 */
2084	re_stop(sc);
2085
2086	/*
2087	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2088	 * RX checksum offload. We must configure the C+ register
2089	 * before all others.
2090	 */
2091	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2092	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2093	    RL_CPLUSCMD_VLANSTRIP|
2094	    (ifp->if_capenable & IFCAP_RXCSUM ?
2095	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2096
2097	/*
2098	 * Init our MAC address.  Even though the chipset
2099	 * documentation doesn't mention it, we need to enter "Config
2100	 * register write enable" mode to modify the ID registers.
2101	 */
2102	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2103	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2104	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2105	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2106	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2107	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2108
2109	/*
2110	 * For C+ mode, initialize the RX descriptors and mbufs.
2111	 */
2112	re_rx_list_init(sc);
2113	re_tx_list_init(sc);
2114
2115	/*
2116	 * Enable transmit and receive.
2117	 */
2118	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2119
2120	/*
2121	 * Set the initial TX and RX configuration.
2122	 */
2123	if (sc->rl_testmode) {
2124		if (sc->rl_type == RL_8169)
2125			CSR_WRITE_4(sc, RL_TXCFG,
2126			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2127		else
2128			CSR_WRITE_4(sc, RL_TXCFG,
2129			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2130	} else
2131		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2132	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2133
2134	/* Set the individual bit to receive frames for this host only. */
2135	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2136	rxcfg |= RL_RXCFG_RX_INDIV;
2137
2138	/* If we want promiscuous mode, set the allframes bit. */
2139	if (ifp->if_flags & IFF_PROMISC) {
2140		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2141		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2142	} else {
2143		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2144		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2145	}
2146
2147	/*
2148	 * Set capture broadcast bit to capture broadcast frames.
2149	 */
2150	if (ifp->if_flags & IFF_BROADCAST) {
2151		rxcfg |= RL_RXCFG_RX_BROAD;
2152		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2153	} else {
2154		rxcfg &= ~RL_RXCFG_RX_BROAD;
2155		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2156	}
2157
2158	/*
2159	 * Program the multicast filter, if necessary.
2160	 */
2161	re_setmulti(sc);
2162
2163#ifdef DEVICE_POLLING
2164	/*
2165	 * Disable interrupts if we are polling.
2166	 */
2167	if (ifp->if_flags & IFF_POLLING)
2168		CSR_WRITE_2(sc, RL_IMR, 0);
2169	else	/* otherwise ... */
2170#endif /* DEVICE_POLLING */
2171	/*
2172	 * Enable interrupts.
2173	 */
2174	if (sc->rl_testmode)
2175		CSR_WRITE_2(sc, RL_IMR, 0);
2176	else
2177		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2178
2179	/* Set initial TX threshold */
2180	sc->rl_txthresh = RL_TX_THRESH_INIT;
2181
2182	/* Start RX/TX process. */
2183	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2184#ifdef notdef
2185	/* Enable receiver and transmitter. */
2186	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2187#endif
2188	/*
2189	 * Load the addresses of the RX and TX lists into the chip.
2190	 */
2191
2192	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2193	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2194	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2195	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2196
2197	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2198	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2199	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2200	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2201
2202	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2203
2204	/*
2205	 * Initialize the timer interrupt register so that
2206	 * a timer interrupt will be generated once the timer
2207	 * reaches a certain number of ticks. The timer is
2208	 * reloaded on each transmit. This gives us TX interrupt
2209	 * moderation, which dramatically improves TX frame rate.
2210	 */
2211
2212	if (sc->rl_type == RL_8169)
2213		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2214	else
2215		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2216
2217	/*
2218	 * For 8169 gigE NICs, set the max allowed RX packet
2219	 * size so we can receive jumbo frames.
2220	 */
2221	if (sc->rl_type == RL_8169)
2222		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2223
2224	if (sc->rl_testmode) {
2225		RL_UNLOCK(sc);
2226		return;
2227	}
2228
2229	mii_mediachg(mii);
2230
2231	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2232
2233	ifp->if_flags |= IFF_RUNNING;
2234	ifp->if_flags &= ~IFF_OACTIVE;
2235
2236	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2237	RL_UNLOCK(sc);
2238
2239	return;
2240}
2241
2242/*
2243 * Set media options.
2244 */
2245static int
2246re_ifmedia_upd(ifp)
2247	struct ifnet		*ifp;
2248{
2249	struct rl_softc		*sc;
2250	struct mii_data		*mii;
2251
2252	sc = ifp->if_softc;
2253	mii = device_get_softc(sc->rl_miibus);
2254	mii_mediachg(mii);
2255
2256	return(0);
2257}
2258
2259/*
2260 * Report current media status.
2261 */
2262static void
2263re_ifmedia_sts(ifp, ifmr)
2264	struct ifnet		*ifp;
2265	struct ifmediareq	*ifmr;
2266{
2267	struct rl_softc		*sc;
2268	struct mii_data		*mii;
2269
2270	sc = ifp->if_softc;
2271	mii = device_get_softc(sc->rl_miibus);
2272
2273	mii_pollstat(mii);
2274	ifmr->ifm_active = mii->mii_media_active;
2275	ifmr->ifm_status = mii->mii_media_status;
2276
2277	return;
2278}
2279
2280static int
2281re_ioctl(ifp, command, data)
2282	struct ifnet		*ifp;
2283	u_long			command;
2284	caddr_t			data;
2285{
2286	struct rl_softc		*sc = ifp->if_softc;
2287	struct ifreq		*ifr = (struct ifreq *) data;
2288	struct mii_data		*mii;
2289	int			error = 0;
2290
2291	RL_LOCK(sc);
2292
2293	switch(command) {
2294	case SIOCSIFMTU:
2295		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2296			error = EINVAL;
2297		ifp->if_mtu = ifr->ifr_mtu;
2298		break;
2299	case SIOCSIFFLAGS:
2300		if (ifp->if_flags & IFF_UP) {
2301			re_init(sc);
2302		} else {
2303			if (ifp->if_flags & IFF_RUNNING)
2304				re_stop(sc);
2305		}
2306		error = 0;
2307		break;
2308	case SIOCADDMULTI:
2309	case SIOCDELMULTI:
2310		re_setmulti(sc);
2311		error = 0;
2312		break;
2313	case SIOCGIFMEDIA:
2314	case SIOCSIFMEDIA:
2315		mii = device_get_softc(sc->rl_miibus);
2316		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2317		break;
2318	case SIOCSIFCAP:
2319		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2320		ifp->if_capenable |=
2321		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2322		if (ifp->if_capenable & IFCAP_TXCSUM)
2323			ifp->if_hwassist = RE_CSUM_FEATURES;
2324		else
2325			ifp->if_hwassist = 0;
2326		if (ifp->if_flags & IFF_RUNNING)
2327			re_init(sc);
2328		break;
2329	default:
2330		error = ether_ioctl(ifp, command, data);
2331		break;
2332	}
2333
2334	RL_UNLOCK(sc);
2335
2336	return(error);
2337}
2338
2339static void
2340re_watchdog(ifp)
2341	struct ifnet		*ifp;
2342{
2343	struct rl_softc		*sc;
2344
2345	sc = ifp->if_softc;
2346	RL_LOCK(sc);
2347	printf("re%d: watchdog timeout\n", sc->rl_unit);
2348	ifp->if_oerrors++;
2349
2350	re_txeof(sc);
2351	re_rxeof(sc);
2352
2353	re_init(sc);
2354
2355	RL_UNLOCK(sc);
2356
2357	return;
2358}
2359
2360/*
2361 * Stop the adapter and free any mbufs allocated to the
2362 * RX and TX lists.
2363 */
2364static void
2365re_stop(sc)
2366	struct rl_softc		*sc;
2367{
2368	register int		i;
2369	struct ifnet		*ifp;
2370
2371	RL_LOCK(sc);
2372	ifp = &sc->arpcom.ac_if;
2373	ifp->if_timer = 0;
2374
2375	untimeout(re_tick, sc, sc->rl_stat_ch);
2376	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2377#ifdef DEVICE_POLLING
2378	ether_poll_deregister(ifp);
2379#endif /* DEVICE_POLLING */
2380
2381	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2382	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2383
2384	if (sc->rl_head != NULL) {
2385		m_freem(sc->rl_head);
2386		sc->rl_head = sc->rl_tail = NULL;
2387	}
2388
2389	/* Free the TX list buffers. */
2390
2391	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2392		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2393			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2394			    sc->rl_ldata.rl_tx_dmamap[i]);
2395			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2396			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2397		}
2398	}
2399
2400	/* Free the RX list buffers. */
2401
2402	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2403		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2404			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2405			    sc->rl_ldata.rl_rx_dmamap[i]);
2406			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2407			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2408		}
2409	}
2410
2411	RL_UNLOCK(sc);
2412	return;
2413}
2414
2415/*
2416 * Device suspend routine.  Stop the interface and save some PCI
2417 * settings in case the BIOS doesn't restore them properly on
2418 * resume.
2419 */
2420static int
2421re_suspend(dev)
2422	device_t		dev;
2423{
2424#ifndef BURN_BRIDGES
2425	register int		i;
2426#endif
2427	struct rl_softc		*sc;
2428
2429	sc = device_get_softc(dev);
2430
2431	re_stop(sc);
2432
2433#ifndef BURN_BRIDGES
2434	for (i = 0; i < 5; i++)
2435		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2436	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2437	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2438	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2439	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2440#endif
2441
2442	sc->suspended = 1;
2443
2444	return (0);
2445}
2446
2447/*
2448 * Device resume routine.  Restore some PCI settings in case the BIOS
2449 * doesn't, re-enable busmastering, and restart the interface if
2450 * appropriate.
2451 */
2452static int
2453re_resume(dev)
2454	device_t		dev;
2455{
2456#ifndef BURN_BRIDGES
2457	register int		i;
2458#endif
2459	struct rl_softc		*sc;
2460	struct ifnet		*ifp;
2461
2462	sc = device_get_softc(dev);
2463	ifp = &sc->arpcom.ac_if;
2464
2465#ifndef BURN_BRIDGES
2466	/* better way to do this? */
2467	for (i = 0; i < 5; i++)
2468		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2469	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2470	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2471	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2472	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2473
2474	/* reenable busmastering */
2475	pci_enable_busmaster(dev);
2476	pci_enable_io(dev, RL_RES);
2477#endif
2478
2479	/* reinitialize interface if necessary */
2480	if (ifp->if_flags & IFF_UP)
2481		re_init(sc);
2482
2483	sc->suspended = 0;
2484
2485	return (0);
2486}
2487
2488/*
2489 * Stop all chip I/O so that the kernel's probe routines don't
2490 * get confused by errant DMAs when rebooting.
2491 */
2492static void
2493re_shutdown(dev)
2494	device_t		dev;
2495{
2496	struct rl_softc		*sc;
2497
2498	sc = device_get_softc(dev);
2499
2500	re_stop(sc);
2501
2502	return;
2503}
2504