if_re.c revision 129672
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 129672 2004-05-24 19:39:23Z jhb $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48 * and the RTL8110S.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 * 	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *      o RX and TX DMA rings can have up to 1024 descriptors
86 *        (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7.5K, so the max MTU possible with this
108 * driver is 7500 bytes.
109 */
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/kernel.h>
118#include <sys/socket.h>
119
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/ethernet.h>
123#include <net/if_dl.h>
124#include <net/if_media.h>
125#include <net/if_vlan_var.h>
126
127#include <net/bpf.h>
128
129#include <machine/bus_pio.h>
130#include <machine/bus_memio.h>
131#include <machine/bus.h>
132#include <machine/resource.h>
133#include <sys/bus.h>
134#include <sys/rman.h>
135
136#include <dev/mii/mii.h>
137#include <dev/mii/miivar.h>
138
139#include <dev/pci/pcireg.h>
140#include <dev/pci/pcivar.h>
141
142MODULE_DEPEND(re, pci, 1, 1, 1);
143MODULE_DEPEND(re, ether, 1, 1, 1);
144MODULE_DEPEND(re, miibus, 1, 1, 1);
145
146/* "controller miibus0" required.  See GENERIC if you get errors here. */
147#include "miibus_if.h"
148
149/*
150 * Default to using PIO access for this driver.
151 */
152#define RE_USEIOSPACE
153
154#include <pci/if_rlreg.h>
155
156#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157
158/*
159 * Various supported device vendors/types and their names.
160 */
161static struct rl_type re_devs[] = {
162	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163		"RealTek 8139C+ 10/100BaseTX" },
164	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165		"RealTek 8169 Gigabit Ethernet" },
166	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167		"RealTek 8169S Single-chip Gigabit Ethernet" },
168	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169		"RealTek 8110S Single-chip Gigabit Ethernet" },
170	{ 0, 0, 0, NULL }
171};
172
173static struct rl_hwrev re_hwrevs[] = {
174	{ RL_HWREV_8139, RL_8139,  "" },
175	{ RL_HWREV_8139A, RL_8139, "A" },
176	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177	{ RL_HWREV_8139B, RL_8139, "B" },
178	{ RL_HWREV_8130, RL_8139, "8130" },
179	{ RL_HWREV_8139C, RL_8139, "C" },
180	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182	{ RL_HWREV_8169, RL_8169, "8169"},
183	{ RL_HWREV_8169S, RL_8169, "8169S"},
184	{ RL_HWREV_8110S, RL_8169, "8110S"},
185	{ RL_HWREV_8100, RL_8139, "8100"},
186	{ RL_HWREV_8101, RL_8139, "8101"},
187	{ 0, 0, NULL }
188};
189
190static int re_probe		(device_t);
191static int re_attach		(device_t);
192static int re_detach		(device_t);
193
194static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195
196static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198				    bus_size_t, int);
199static int re_allocmem		(device_t, struct rl_softc *);
200static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201static int re_rx_list_init	(struct rl_softc *);
202static int re_tx_list_init	(struct rl_softc *);
203static void re_rxeof		(struct rl_softc *);
204static void re_txeof		(struct rl_softc *);
205static void re_intr		(void *);
206static void re_tick		(void *);
207static void re_start		(struct ifnet *);
208static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209static void re_init		(void *);
210static void re_stop		(struct rl_softc *);
211static void re_watchdog		(struct ifnet *);
212static int re_suspend		(device_t);
213static int re_resume		(device_t);
214static void re_shutdown		(device_t);
215static int re_ifmedia_upd	(struct ifnet *);
216static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static void re_eeprom_putbyte	(struct rl_softc *, int);
219static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221static int re_gmii_readreg	(device_t, int, int);
222static int re_gmii_writereg	(device_t, int, int, int);
223
224static int re_miibus_readreg	(device_t, int, int);
225static int re_miibus_writereg	(device_t, int, int, int);
226static void re_miibus_statchg	(device_t);
227
228static uint32_t re_mchash	(const uint8_t *);
229static void re_setmulti		(struct rl_softc *);
230static void re_reset		(struct rl_softc *);
231
232static int re_diag		(struct rl_softc *);
233
234#ifdef RE_USEIOSPACE
235#define RL_RES			SYS_RES_IOPORT
236#define RL_RID			RL_PCI_LOIO
237#else
238#define RL_RES			SYS_RES_MEMORY
239#define RL_RID			RL_PCI_LOMEM
240#endif
241
242static device_method_t re_methods[] = {
243	/* Device interface */
244	DEVMETHOD(device_probe,		re_probe),
245	DEVMETHOD(device_attach,	re_attach),
246	DEVMETHOD(device_detach,	re_detach),
247	DEVMETHOD(device_suspend,	re_suspend),
248	DEVMETHOD(device_resume,	re_resume),
249	DEVMETHOD(device_shutdown,	re_shutdown),
250
251	/* bus interface */
252	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254
255	/* MII interface */
256	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259
260	{ 0, 0 }
261};
262
263static driver_t re_driver = {
264	"re",
265	re_methods,
266	sizeof(struct rl_softc)
267};
268
269static devclass_t re_devclass;
270
271DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274
275#define EE_SET(x)					\
276	CSR_WRITE_1(sc, RL_EECMD,			\
277		CSR_READ_1(sc, RL_EECMD) | x)
278
279#define EE_CLR(x)					\
280	CSR_WRITE_1(sc, RL_EECMD,			\
281		CSR_READ_1(sc, RL_EECMD) & ~x)
282
283/*
284 * Send a read command and address to the EEPROM, check for ACK.
285 */
286static void
287re_eeprom_putbyte(sc, addr)
288	struct rl_softc		*sc;
289	int			addr;
290{
291	register int		d, i;
292
293	d = addr | sc->rl_eecmd_read;
294
295	/*
296	 * Feed in each bit and strobe the clock.
297	 */
298	for (i = 0x400; i; i >>= 1) {
299		if (d & i) {
300			EE_SET(RL_EE_DATAIN);
301		} else {
302			EE_CLR(RL_EE_DATAIN);
303		}
304		DELAY(100);
305		EE_SET(RL_EE_CLK);
306		DELAY(150);
307		EE_CLR(RL_EE_CLK);
308		DELAY(100);
309	}
310
311	return;
312}
313
314/*
315 * Read a word of data stored in the EEPROM at address 'addr.'
316 */
317static void
318re_eeprom_getword(sc, addr, dest)
319	struct rl_softc		*sc;
320	int			addr;
321	u_int16_t		*dest;
322{
323	register int		i;
324	u_int16_t		word = 0;
325
326	/* Enter EEPROM access mode. */
327	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328
329	/*
330	 * Send address of word we want to read.
331	 */
332	re_eeprom_putbyte(sc, addr);
333
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335
336	/*
337	 * Start reading bits from EEPROM.
338	 */
339	for (i = 0x8000; i; i >>= 1) {
340		EE_SET(RL_EE_CLK);
341		DELAY(100);
342		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343			word |= i;
344		EE_CLR(RL_EE_CLK);
345		DELAY(100);
346	}
347
348	/* Turn off EEPROM access mode. */
349	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350
351	*dest = word;
352
353	return;
354}
355
356/*
357 * Read a sequence of words from the EEPROM.
358 */
359static void
360re_read_eeprom(sc, dest, off, cnt, swap)
361	struct rl_softc		*sc;
362	caddr_t			dest;
363	int			off;
364	int			cnt;
365	int			swap;
366{
367	int			i;
368	u_int16_t		word = 0, *ptr;
369
370	for (i = 0; i < cnt; i++) {
371		re_eeprom_getword(sc, off + i, &word);
372		ptr = (u_int16_t *)(dest + (i * 2));
373		if (swap)
374			*ptr = ntohs(word);
375		else
376			*ptr = word;
377	}
378
379	return;
380}
381
382static int
383re_gmii_readreg(dev, phy, reg)
384	device_t		dev;
385	int			phy, reg;
386{
387	struct rl_softc		*sc;
388	u_int32_t		rval;
389	int			i;
390
391	if (phy != 1)
392		return(0);
393
394	sc = device_get_softc(dev);
395
396	/* Let the rgephy driver read the GMEDIASTAT register */
397
398	if (reg == RL_GMEDIASTAT) {
399		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400		return(rval);
401	}
402
403	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404	DELAY(1000);
405
406	for (i = 0; i < RL_TIMEOUT; i++) {
407		rval = CSR_READ_4(sc, RL_PHYAR);
408		if (rval & RL_PHYAR_BUSY)
409			break;
410		DELAY(100);
411	}
412
413	if (i == RL_TIMEOUT) {
414		printf ("re%d: PHY read failed\n", sc->rl_unit);
415		return (0);
416	}
417
418	return (rval & RL_PHYAR_PHYDATA);
419}
420
421static int
422re_gmii_writereg(dev, phy, reg, data)
423	device_t		dev;
424	int			phy, reg, data;
425{
426	struct rl_softc		*sc;
427	u_int32_t		rval;
428	int			i;
429
430	sc = device_get_softc(dev);
431
432	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434	DELAY(1000);
435
436	for (i = 0; i < RL_TIMEOUT; i++) {
437		rval = CSR_READ_4(sc, RL_PHYAR);
438		if (!(rval & RL_PHYAR_BUSY))
439			break;
440		DELAY(100);
441	}
442
443	if (i == RL_TIMEOUT) {
444		printf ("re%d: PHY write failed\n", sc->rl_unit);
445		return (0);
446	}
447
448	return (0);
449}
450
451static int
452re_miibus_readreg(dev, phy, reg)
453	device_t		dev;
454	int			phy, reg;
455{
456	struct rl_softc		*sc;
457	u_int16_t		rval = 0;
458	u_int16_t		re8139_reg = 0;
459
460	sc = device_get_softc(dev);
461	RL_LOCK(sc);
462
463	if (sc->rl_type == RL_8169) {
464		rval = re_gmii_readreg(dev, phy, reg);
465		RL_UNLOCK(sc);
466		return (rval);
467	}
468
469	/* Pretend the internal PHY is only at address 0 */
470	if (phy) {
471		RL_UNLOCK(sc);
472		return(0);
473	}
474	switch(reg) {
475	case MII_BMCR:
476		re8139_reg = RL_BMCR;
477		break;
478	case MII_BMSR:
479		re8139_reg = RL_BMSR;
480		break;
481	case MII_ANAR:
482		re8139_reg = RL_ANAR;
483		break;
484	case MII_ANER:
485		re8139_reg = RL_ANER;
486		break;
487	case MII_ANLPAR:
488		re8139_reg = RL_LPAR;
489		break;
490	case MII_PHYIDR1:
491	case MII_PHYIDR2:
492		RL_UNLOCK(sc);
493		return(0);
494	/*
495	 * Allow the rlphy driver to read the media status
496	 * register. If we have a link partner which does not
497	 * support NWAY, this is the register which will tell
498	 * us the results of parallel detection.
499	 */
500	case RL_MEDIASTAT:
501		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502		RL_UNLOCK(sc);
503		return(rval);
504	default:
505		printf("re%d: bad phy register\n", sc->rl_unit);
506		RL_UNLOCK(sc);
507		return(0);
508	}
509	rval = CSR_READ_2(sc, re8139_reg);
510	RL_UNLOCK(sc);
511	return(rval);
512}
513
514static int
515re_miibus_writereg(dev, phy, reg, data)
516	device_t		dev;
517	int			phy, reg, data;
518{
519	struct rl_softc		*sc;
520	u_int16_t		re8139_reg = 0;
521	int			rval = 0;
522
523	sc = device_get_softc(dev);
524	RL_LOCK(sc);
525
526	if (sc->rl_type == RL_8169) {
527		rval = re_gmii_writereg(dev, phy, reg, data);
528		RL_UNLOCK(sc);
529		return (rval);
530	}
531
532	/* Pretend the internal PHY is only at address 0 */
533	if (phy) {
534		RL_UNLOCK(sc);
535		return(0);
536	}
537	switch(reg) {
538	case MII_BMCR:
539		re8139_reg = RL_BMCR;
540		break;
541	case MII_BMSR:
542		re8139_reg = RL_BMSR;
543		break;
544	case MII_ANAR:
545		re8139_reg = RL_ANAR;
546		break;
547	case MII_ANER:
548		re8139_reg = RL_ANER;
549		break;
550	case MII_ANLPAR:
551		re8139_reg = RL_LPAR;
552		break;
553	case MII_PHYIDR1:
554	case MII_PHYIDR2:
555		RL_UNLOCK(sc);
556		return(0);
557		break;
558	default:
559		printf("re%d: bad phy register\n", sc->rl_unit);
560		RL_UNLOCK(sc);
561		return(0);
562	}
563	CSR_WRITE_2(sc, re8139_reg, data);
564	RL_UNLOCK(sc);
565	return(0);
566}
567
568static void
569re_miibus_statchg(dev)
570	device_t		dev;
571{
572	return;
573}
574
575/*
576 * Calculate CRC of a multicast group address, return the upper 6 bits.
577 */
578static uint32_t
579re_mchash(addr)
580	const uint8_t *addr;
581{
582	uint32_t crc, carry;
583	int idx, bit;
584	uint8_t data;
585
586	/* Compute CRC for the address value. */
587	crc = 0xFFFFFFFF; /* initial value */
588
589	for (idx = 0; idx < 6; idx++) {
590		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
591			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
592			crc <<= 1;
593			if (carry)
594				crc = (crc ^ 0x04c11db6) | carry;
595		}
596	}
597
598	/* return the filter bit position */
599	return(crc >> 26);
600}
601
602/*
603 * Program the 64-bit multicast hash filter.
604 */
605static void
606re_setmulti(sc)
607	struct rl_softc		*sc;
608{
609	struct ifnet		*ifp;
610	int			h = 0;
611	u_int32_t		hashes[2] = { 0, 0 };
612	struct ifmultiaddr	*ifma;
613	u_int32_t		rxfilt;
614	int			mcnt = 0;
615
616	ifp = &sc->arpcom.ac_if;
617
618	rxfilt = CSR_READ_4(sc, RL_RXCFG);
619
620	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621		rxfilt |= RL_RXCFG_RX_MULTI;
622		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
624		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
625		return;
626	}
627
628	/* first, zot all the existing hash bits */
629	CSR_WRITE_4(sc, RL_MAR0, 0);
630	CSR_WRITE_4(sc, RL_MAR4, 0);
631
632	/* now program new ones */
633	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
634		if (ifma->ifma_addr->sa_family != AF_LINK)
635			continue;
636		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
637		if (h < 32)
638			hashes[0] |= (1 << h);
639		else
640			hashes[1] |= (1 << (h - 32));
641		mcnt++;
642	}
643
644	if (mcnt)
645		rxfilt |= RL_RXCFG_RX_MULTI;
646	else
647		rxfilt &= ~RL_RXCFG_RX_MULTI;
648
649	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
650	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
651	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
652
653	return;
654}
655
656static void
657re_reset(sc)
658	struct rl_softc		*sc;
659{
660	register int		i;
661
662	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
663
664	for (i = 0; i < RL_TIMEOUT; i++) {
665		DELAY(10);
666		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
667			break;
668	}
669	if (i == RL_TIMEOUT)
670		printf("re%d: reset never completed!\n", sc->rl_unit);
671
672	CSR_WRITE_1(sc, 0x82, 1);
673
674	return;
675}
676
677/*
678 * The following routine is designed to test for a defect on some
679 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
680 * lines connected to the bus, however for a 32-bit only card, they
681 * should be pulled high. The result of this defect is that the
682 * NIC will not work right if you plug it into a 64-bit slot: DMA
683 * operations will be done with 64-bit transfers, which will fail
684 * because the 64-bit data lines aren't connected.
685 *
686 * There's no way to work around this (short of talking a soldering
687 * iron to the board), however we can detect it. The method we use
688 * here is to put the NIC into digital loopback mode, set the receiver
689 * to promiscuous mode, and then try to send a frame. We then compare
690 * the frame data we sent to what was received. If the data matches,
691 * then the NIC is working correctly, otherwise we know the user has
692 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
693 * slot. In the latter case, there's no way the NIC can work correctly,
694 * so we print out a message on the console and abort the device attach.
695 */
696
697static int
698re_diag(sc)
699	struct rl_softc		*sc;
700{
701	struct ifnet		*ifp = &sc->arpcom.ac_if;
702	struct mbuf		*m0;
703	struct ether_header	*eh;
704	struct rl_desc		*cur_rx;
705	u_int16_t		status;
706	u_int32_t		rxstat;
707	int			total_len, i, error = 0;
708	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710
711	/* Allocate a single mbuf */
712
713	MGETHDR(m0, M_DONTWAIT, MT_DATA);
714	if (m0 == NULL)
715		return(ENOBUFS);
716
717	/*
718	 * Initialize the NIC in test mode. This sets the chip up
719	 * so that it can send and receive frames, but performs the
720	 * following special functions:
721	 * - Puts receiver in promiscuous mode
722	 * - Enables digital loopback mode
723	 * - Leaves interrupts turned off
724	 */
725
726	ifp->if_flags |= IFF_PROMISC;
727	sc->rl_testmode = 1;
728	re_init(sc);
729	re_stop(sc);
730	DELAY(100000);
731	re_init(sc);
732
733	/* Put some data in the mbuf */
734
735	eh = mtod(m0, struct ether_header *);
736	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
737	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
738	eh->ether_type = htons(ETHERTYPE_IP);
739	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
740
741	/*
742	 * Queue the packet, start transmission.
743	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
744	 */
745
746	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
747	IF_HANDOFF(&ifp->if_snd, m0, ifp);
748	m0 = NULL;
749
750	/* Wait for it to propagate through the chip */
751
752	DELAY(100000);
753	for (i = 0; i < RL_TIMEOUT; i++) {
754		status = CSR_READ_2(sc, RL_ISR);
755		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
756		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
757			break;
758		DELAY(10);
759	}
760
761	if (i == RL_TIMEOUT) {
762		printf("re%d: diagnostic failed, failed to receive packet "
763		    "in loopback mode\n", sc->rl_unit);
764		error = EIO;
765		goto done;
766	}
767
768	/*
769	 * The packet should have been dumped into the first
770	 * entry in the RX DMA ring. Grab it from there.
771	 */
772
773	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
774	    sc->rl_ldata.rl_rx_list_map,
775	    BUS_DMASYNC_POSTREAD);
776	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
777	    sc->rl_ldata.rl_rx_dmamap[0],
778	    BUS_DMASYNC_POSTWRITE);
779	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
780	    sc->rl_ldata.rl_rx_dmamap[0]);
781
782	m0 = sc->rl_ldata.rl_rx_mbuf[0];
783	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
784	eh = mtod(m0, struct ether_header *);
785
786	cur_rx = &sc->rl_ldata.rl_rx_list[0];
787	total_len = RL_RXBYTES(cur_rx);
788	rxstat = le32toh(cur_rx->rl_cmdstat);
789
790	if (total_len != ETHER_MIN_LEN) {
791		printf("re%d: diagnostic failed, received short packet\n",
792		    sc->rl_unit);
793		error = EIO;
794		goto done;
795	}
796
797	/* Test that the received packet data matches what we sent. */
798
799	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
800	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
801	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
802		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
803		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
804		    dst, ":", src, ":", ETHERTYPE_IP);
805		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
806		    eh->ether_dhost, ":",  eh->ether_shost, ":",
807		    ntohs(eh->ether_type));
808		printf("re%d: You may have a defective 32-bit NIC plugged "
809		    "into a 64-bit PCI slot.\n", sc->rl_unit);
810		printf("re%d: Please re-install the NIC in a 32-bit slot "
811		    "for proper operation.\n", sc->rl_unit);
812		printf("re%d: Read the re(4) man page for more details.\n",
813		    sc->rl_unit);
814		error = EIO;
815	}
816
817done:
818	/* Turn interface off, release resources */
819
820	sc->rl_testmode = 0;
821	ifp->if_flags &= ~IFF_PROMISC;
822	re_stop(sc);
823	if (m0 != NULL)
824		m_freem(m0);
825
826	return (error);
827}
828
829/*
830 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
831 * IDs against our list and return a device name if we find a match.
832 */
833static int
834re_probe(dev)
835	device_t		dev;
836{
837	struct rl_type		*t;
838	struct rl_softc		*sc;
839	int			rid;
840	u_int32_t		hwrev;
841
842	t = re_devs;
843	sc = device_get_softc(dev);
844
845	while(t->rl_name != NULL) {
846		if ((pci_get_vendor(dev) == t->rl_vid) &&
847		    (pci_get_device(dev) == t->rl_did)) {
848
849			/*
850			 * Temporarily map the I/O space
851			 * so we can read the chip ID register.
852			 */
853			rid = RL_RID;
854			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
855			    RF_ACTIVE);
856			if (sc->rl_res == NULL) {
857				device_printf(dev,
858				    "couldn't map ports/memory\n");
859				return(ENXIO);
860			}
861			sc->rl_btag = rman_get_bustag(sc->rl_res);
862			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
863			mtx_init(&sc->rl_mtx,
864			    device_get_nameunit(dev),
865			    MTX_NETWORK_LOCK, MTX_DEF);
866			RL_LOCK(sc);
867			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
868			bus_release_resource(dev, RL_RES,
869			    RL_RID, sc->rl_res);
870			RL_UNLOCK(sc);
871			mtx_destroy(&sc->rl_mtx);
872			if (t->rl_basetype == hwrev) {
873				device_set_desc(dev, t->rl_name);
874				return(0);
875			}
876		}
877		t++;
878	}
879
880	return(ENXIO);
881}
882
883/*
884 * This routine takes the segment list provided as the result of
885 * a bus_dma_map_load() operation and assigns the addresses/lengths
886 * to RealTek DMA descriptors. This can be called either by the RX
887 * code or the TX code. In the RX case, we'll probably wind up mapping
888 * at most one segment. For the TX case, there could be any number of
889 * segments since TX packets may span multiple mbufs. In either case,
890 * if the number of segments is larger than the rl_maxsegs limit
891 * specified by the caller, we abort the mapping operation. Sadly,
892 * whoever designed the buffer mapping API did not provide a way to
893 * return an error from here, so we have to fake it a bit.
894 */
895
896static void
897re_dma_map_desc(arg, segs, nseg, mapsize, error)
898	void			*arg;
899	bus_dma_segment_t	*segs;
900	int			nseg;
901	bus_size_t		mapsize;
902	int			error;
903{
904	struct rl_dmaload_arg	*ctx;
905	struct rl_desc		*d = NULL;
906	int			i = 0, idx;
907
908	if (error)
909		return;
910
911	ctx = arg;
912
913	/* Signal error to caller if there's too many segments */
914	if (nseg > ctx->rl_maxsegs) {
915		ctx->rl_maxsegs = 0;
916		return;
917	}
918
919	/*
920	 * Map the segment array into descriptors. Note that we set the
921	 * start-of-frame and end-of-frame markers for either TX or RX, but
922	 * they really only have meaning in the TX case. (In the RX case,
923	 * it's the chip that tells us where packets begin and end.)
924	 * We also keep track of the end of the ring and set the
925	 * end-of-ring bits as needed, and we set the ownership bits
926	 * in all except the very first descriptor. (The caller will
927	 * set this descriptor later when it start transmission or
928	 * reception.)
929	 */
930	idx = ctx->rl_idx;
931	while(1) {
932		u_int32_t		cmdstat;
933		d = &ctx->rl_ring[idx];
934		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
935			ctx->rl_maxsegs = 0;
936			return;
937		}
938		cmdstat = segs[i].ds_len;
939		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
940		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
941		if (i == 0)
942			cmdstat |= RL_TDESC_CMD_SOF;
943		else
944			cmdstat |= RL_TDESC_CMD_OWN;
945		if (idx == (RL_RX_DESC_CNT - 1))
946			cmdstat |= RL_TDESC_CMD_EOR;
947		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
948		i++;
949		if (i == nseg)
950			break;
951		RL_DESC_INC(idx);
952	}
953
954	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
955	ctx->rl_maxsegs = nseg;
956	ctx->rl_idx = idx;
957
958	return;
959}
960
961/*
962 * Map a single buffer address.
963 */
964
965static void
966re_dma_map_addr(arg, segs, nseg, error)
967	void			*arg;
968	bus_dma_segment_t	*segs;
969	int			nseg;
970	int			error;
971{
972	u_int32_t		*addr;
973
974	if (error)
975		return;
976
977	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
978	addr = arg;
979	*addr = segs->ds_addr;
980
981	return;
982}
983
984static int
985re_allocmem(dev, sc)
986	device_t		dev;
987	struct rl_softc		*sc;
988{
989	int			error;
990	int			nseg;
991	int			i;
992
993	/*
994	 * Allocate map for RX mbufs.
995	 */
996	nseg = 32;
997	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
998	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1000	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1001	if (error) {
1002		device_printf(dev, "could not allocate dma tag\n");
1003		return (ENOMEM);
1004	}
1005
1006	/*
1007	 * Allocate map for TX descriptor list.
1008	 */
1009	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1010	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1011            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1012	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1013	if (error) {
1014		device_printf(dev, "could not allocate dma tag\n");
1015		return (ENOMEM);
1016	}
1017
1018	/* Allocate DMA'able memory for the TX ring */
1019
1020        error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1021	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1022            &sc->rl_ldata.rl_tx_list_map);
1023        if (error)
1024                return (ENOMEM);
1025
1026	/* Load the map for the TX ring. */
1027
1028	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030	     RL_TX_LIST_SZ, re_dma_map_addr,
1031	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032
1033	/* Create DMA maps for TX buffers */
1034
1035	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1036		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1037			    &sc->rl_ldata.rl_tx_dmamap[i]);
1038		if (error) {
1039			device_printf(dev, "can't create DMA map for TX\n");
1040			return(ENOMEM);
1041		}
1042	}
1043
1044	/*
1045	 * Allocate map for RX descriptor list.
1046	 */
1047	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1048	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1049            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1050	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1051	if (error) {
1052		device_printf(dev, "could not allocate dma tag\n");
1053		return (ENOMEM);
1054	}
1055
1056	/* Allocate DMA'able memory for the RX ring */
1057
1058        error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1059	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1060            &sc->rl_ldata.rl_rx_list_map);
1061        if (error)
1062                return (ENOMEM);
1063
1064	/* Load the map for the RX ring. */
1065
1066	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068	     RL_TX_LIST_SZ, re_dma_map_addr,
1069	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070
1071	/* Create DMA maps for RX buffers */
1072
1073	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1074		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1075			    &sc->rl_ldata.rl_rx_dmamap[i]);
1076		if (error) {
1077			device_printf(dev, "can't create DMA map for RX\n");
1078			return(ENOMEM);
1079		}
1080	}
1081
1082	return(0);
1083}
1084
1085/*
1086 * Attach the interface. Allocate softc structures, do ifmedia
1087 * setup and ethernet/BPF attach.
1088 */
1089static int
1090re_attach(dev)
1091	device_t		dev;
1092{
1093	u_char			eaddr[ETHER_ADDR_LEN];
1094	u_int16_t		as[3];
1095	struct rl_softc		*sc;
1096	struct ifnet		*ifp;
1097	struct rl_hwrev		*hw_rev;
1098	int			hwrev;
1099	u_int16_t		re_did = 0;
1100	int			unit, error = 0, rid, i;
1101
1102	sc = device_get_softc(dev);
1103	unit = device_get_unit(dev);
1104
1105	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1106	    MTX_DEF | MTX_RECURSE);
1107#ifndef BURN_BRIDGES
1108	/*
1109	 * Handle power management nonsense.
1110	 */
1111
1112	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1113		u_int32_t		iobase, membase, irq;
1114
1115		/* Save important PCI config data. */
1116		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1117		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1118		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1119
1120		/* Reset the power state. */
1121		printf("re%d: chip is is in D%d power mode "
1122		    "-- setting to D0\n", unit,
1123		    pci_get_powerstate(dev));
1124
1125		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1126
1127		/* Restore PCI config data. */
1128		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1129		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1130		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1131	}
1132#endif
1133	/*
1134	 * Map control/status registers.
1135	 */
1136	pci_enable_busmaster(dev);
1137
1138	rid = RL_RID;
1139	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1140	    RF_ACTIVE);
1141
1142	if (sc->rl_res == NULL) {
1143		printf ("re%d: couldn't map ports/memory\n", unit);
1144		error = ENXIO;
1145		goto fail;
1146	}
1147
1148	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150
1151	/* Allocate interrupt */
1152	rid = 0;
1153	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1154	    RF_SHAREABLE | RF_ACTIVE);
1155
1156	if (sc->rl_irq == NULL) {
1157		printf("re%d: couldn't map interrupt\n", unit);
1158		error = ENXIO;
1159		goto fail;
1160	}
1161
1162	/* Reset the adapter. */
1163	re_reset(sc);
1164
1165	hw_rev = re_hwrevs;
1166	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1167	while (hw_rev->rl_desc != NULL) {
1168		if (hw_rev->rl_rev == hwrev) {
1169			sc->rl_type = hw_rev->rl_type;
1170			break;
1171		}
1172		hw_rev++;
1173	}
1174
1175	if (sc->rl_type == RL_8169) {
1176
1177		/* Set RX length mask */
1178
1179		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1180
1181		/* Force station address autoload from the EEPROM */
1182
1183		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1184		for (i = 0; i < RL_TIMEOUT; i++) {
1185			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1186				break;
1187			DELAY(100);
1188		}
1189		if (i == RL_TIMEOUT)
1190			printf ("re%d: eeprom autoload timed out\n", unit);
1191
1192			for (i = 0; i < ETHER_ADDR_LEN; i++)
1193				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1194	} else {
1195
1196		/* Set RX length mask */
1197
1198		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1199
1200		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1201		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1202		if (re_did != 0x8129)
1203			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1204
1205		/*
1206		 * Get station address from the EEPROM.
1207		 */
1208		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1209		for (i = 0; i < 3; i++) {
1210			eaddr[(i * 2) + 0] = as[i] & 0xff;
1211			eaddr[(i * 2) + 1] = as[i] >> 8;
1212		}
1213	}
1214
1215	sc->rl_unit = unit;
1216	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1217
1218	/*
1219	 * Allocate the parent bus DMA tag appropriate for PCI.
1220	 */
1221#define RL_NSEG_NEW 32
1222	error = bus_dma_tag_create(NULL,	/* parent */
1223			1, 0,			/* alignment, boundary */
1224			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1225			BUS_SPACE_MAXADDR,	/* highaddr */
1226			NULL, NULL,		/* filter, filterarg */
1227			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1228			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1229			BUS_DMA_ALLOCNOW,	/* flags */
1230			NULL, NULL,		/* lockfunc, lockarg */
1231			&sc->rl_parent_tag);
1232	if (error)
1233		goto fail;
1234
1235	error = re_allocmem(dev, sc);
1236
1237	if (error)
1238		goto fail;
1239
1240	/* Do MII setup */
1241	if (mii_phy_probe(dev, &sc->rl_miibus,
1242	    re_ifmedia_upd, re_ifmedia_sts)) {
1243		printf("re%d: MII without any phy!\n", sc->rl_unit);
1244		error = ENXIO;
1245		goto fail;
1246	}
1247
1248	ifp = &sc->arpcom.ac_if;
1249	ifp->if_softc = sc;
1250	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1251	ifp->if_mtu = ETHERMTU;
1252	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253	ifp->if_ioctl = re_ioctl;
1254	ifp->if_capabilities = IFCAP_VLAN_MTU;
1255	ifp->if_start = re_start;
1256	ifp->if_hwassist = RE_CSUM_FEATURES;
1257	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1258#ifdef DEVICE_POLLING
1259	ifp->if_capabilities |= IFCAP_POLLING;
1260#endif
1261	ifp->if_watchdog = re_watchdog;
1262	ifp->if_init = re_init;
1263	if (sc->rl_type == RL_8169)
1264		ifp->if_baudrate = 1000000000;
1265	else
1266		ifp->if_baudrate = 100000000;
1267	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1268	ifp->if_capenable = ifp->if_capabilities;
1269
1270	callout_handle_init(&sc->rl_stat_ch);
1271
1272	/*
1273	 * Call MI attach routine.
1274	 */
1275	ether_ifattach(ifp, eaddr);
1276
1277	/* Perform hardware diagnostic. */
1278	error = re_diag(sc);
1279
1280	if (error) {
1281		printf("re%d: attach aborted due to hardware diag failure\n",
1282		    unit);
1283		ether_ifdetach(ifp);
1284		goto fail;
1285	}
1286
1287	/* Hook interrupt last to avoid having to lock softc */
1288	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1289	    re_intr, sc, &sc->rl_intrhand);
1290
1291	if (error) {
1292		printf("re%d: couldn't set up irq\n", unit);
1293		ether_ifdetach(ifp);
1294		goto fail;
1295	}
1296
1297fail:
1298	if (error)
1299		re_detach(dev);
1300
1301	return (error);
1302}
1303
1304/*
1305 * Shutdown hardware and free up resources. This can be called any
1306 * time after the mutex has been initialized. It is called in both
1307 * the error case in attach and the normal detach case so it needs
1308 * to be careful about only freeing resources that have actually been
1309 * allocated.
1310 */
1311static int
1312re_detach(dev)
1313	device_t		dev;
1314{
1315	struct rl_softc		*sc;
1316	struct ifnet		*ifp;
1317	int			i;
1318
1319	sc = device_get_softc(dev);
1320	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1321	RL_LOCK(sc);
1322	ifp = &sc->arpcom.ac_if;
1323
1324	/* These should only be active if attach succeeded */
1325	if (device_is_attached(dev)) {
1326		re_stop(sc);
1327		/*
1328		 * Force off the IFF_UP flag here, in case someone
1329		 * still had a BPF descriptor attached to this
1330		 * interface. If they do, ether_ifattach() will cause
1331		 * the BPF code to try and clear the promisc mode
1332		 * flag, which will bubble down to re_ioctl(),
1333		 * which will try to call re_init() again. This will
1334		 * turn the NIC back on and restart the MII ticker,
1335		 * which will panic the system when the kernel tries
1336		 * to invoke the re_tick() function that isn't there
1337		 * anymore.
1338		 */
1339		ifp->if_flags &= ~IFF_UP;
1340		ether_ifdetach(ifp);
1341	}
1342	if (sc->rl_miibus)
1343		device_delete_child(dev, sc->rl_miibus);
1344	bus_generic_detach(dev);
1345
1346	if (sc->rl_intrhand)
1347		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1348	if (sc->rl_irq)
1349		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1350	if (sc->rl_res)
1351		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1352
1353
1354	/* Unload and free the RX DMA ring memory and map */
1355
1356	if (sc->rl_ldata.rl_rx_list_tag) {
1357		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1358		    sc->rl_ldata.rl_rx_list_map);
1359		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1360		    sc->rl_ldata.rl_rx_list,
1361		    sc->rl_ldata.rl_rx_list_map);
1362		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1363	}
1364
1365	/* Unload and free the TX DMA ring memory and map */
1366
1367	if (sc->rl_ldata.rl_tx_list_tag) {
1368		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1369		    sc->rl_ldata.rl_tx_list_map);
1370		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1371		    sc->rl_ldata.rl_tx_list,
1372		    sc->rl_ldata.rl_tx_list_map);
1373		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1374	}
1375
1376	/* Destroy all the RX and TX buffer maps */
1377
1378	if (sc->rl_ldata.rl_mtag) {
1379		for (i = 0; i < RL_TX_DESC_CNT; i++)
1380			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1381			    sc->rl_ldata.rl_tx_dmamap[i]);
1382		for (i = 0; i < RL_RX_DESC_CNT; i++)
1383			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1384			    sc->rl_ldata.rl_rx_dmamap[i]);
1385		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1386	}
1387
1388	/* Unload and free the stats buffer and map */
1389
1390	if (sc->rl_ldata.rl_stag) {
1391		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1392		    sc->rl_ldata.rl_rx_list_map);
1393		bus_dmamem_free(sc->rl_ldata.rl_stag,
1394		    sc->rl_ldata.rl_stats,
1395		    sc->rl_ldata.rl_smap);
1396		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1397	}
1398
1399	if (sc->rl_parent_tag)
1400		bus_dma_tag_destroy(sc->rl_parent_tag);
1401
1402	RL_UNLOCK(sc);
1403	mtx_destroy(&sc->rl_mtx);
1404
1405	return(0);
1406}
1407
1408static int
1409re_newbuf(sc, idx, m)
1410	struct rl_softc		*sc;
1411	int			idx;
1412	struct mbuf		*m;
1413{
1414	struct rl_dmaload_arg	arg;
1415	struct mbuf		*n = NULL;
1416	int			error;
1417
1418	if (m == NULL) {
1419		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1420		if (n == NULL)
1421			return(ENOBUFS);
1422		m = n;
1423	} else
1424		m->m_data = m->m_ext.ext_buf;
1425
1426	/*
1427	 * Initialize mbuf length fields and fixup
1428	 * alignment so that the frame payload is
1429	 * longword aligned.
1430	 */
1431	m->m_len = m->m_pkthdr.len = MCLBYTES;
1432	m_adj(m, ETHER_ALIGN);
1433
1434	arg.sc = sc;
1435	arg.rl_idx = idx;
1436	arg.rl_maxsegs = 1;
1437	arg.rl_flags = 0;
1438	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1439
1440        error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1441	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1442	    &arg, BUS_DMA_NOWAIT);
1443	if (error || arg.rl_maxsegs != 1) {
1444		if (n != NULL)
1445			m_freem(n);
1446		return (ENOMEM);
1447	}
1448
1449	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1450	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1451
1452        bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1453	    sc->rl_ldata.rl_rx_dmamap[idx],
1454	    BUS_DMASYNC_PREREAD);
1455
1456	return(0);
1457}
1458
1459static int
1460re_tx_list_init(sc)
1461	struct rl_softc		*sc;
1462{
1463	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1464	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1465	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1466
1467	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1468	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1469	sc->rl_ldata.rl_tx_prodidx = 0;
1470	sc->rl_ldata.rl_tx_considx = 0;
1471	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1472
1473	return(0);
1474}
1475
1476static int
1477re_rx_list_init(sc)
1478	struct rl_softc		*sc;
1479{
1480	int			i;
1481
1482	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1483	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1484	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1485
1486	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1487		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1488			return(ENOBUFS);
1489	}
1490
1491	/* Flush the RX descriptors */
1492
1493	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1494	    sc->rl_ldata.rl_rx_list_map,
1495	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1496
1497	sc->rl_ldata.rl_rx_prodidx = 0;
1498	sc->rl_head = sc->rl_tail = NULL;
1499
1500	return(0);
1501}
1502
1503/*
1504 * RX handler for C+ and 8169. For the gigE chips, we support
1505 * the reception of jumbo frames that have been fragmented
1506 * across multiple 2K mbuf cluster buffers.
1507 */
1508static void
1509re_rxeof(sc)
1510	struct rl_softc		*sc;
1511{
1512	struct mbuf		*m;
1513	struct ifnet		*ifp;
1514	int			i, total_len;
1515	struct rl_desc		*cur_rx;
1516	u_int32_t		rxstat, rxvlan;
1517
1518	RL_LOCK_ASSERT(sc);
1519
1520	ifp = &sc->arpcom.ac_if;
1521	i = sc->rl_ldata.rl_rx_prodidx;
1522
1523	/* Invalidate the descriptor memory */
1524
1525	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1526	    sc->rl_ldata.rl_rx_list_map,
1527	    BUS_DMASYNC_POSTREAD);
1528
1529	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1530
1531		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1532		m = sc->rl_ldata.rl_rx_mbuf[i];
1533		total_len = RL_RXBYTES(cur_rx);
1534		rxstat = le32toh(cur_rx->rl_cmdstat);
1535		rxvlan = le32toh(cur_rx->rl_vlanctl);
1536
1537		/* Invalidate the RX mbuf and unload its map */
1538
1539		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1540		    sc->rl_ldata.rl_rx_dmamap[i],
1541		    BUS_DMASYNC_POSTWRITE);
1542		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1543		    sc->rl_ldata.rl_rx_dmamap[i]);
1544
1545		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1546			m->m_len = MCLBYTES - ETHER_ALIGN;
1547			if (sc->rl_head == NULL)
1548				sc->rl_head = sc->rl_tail = m;
1549			else {
1550				m->m_flags &= ~M_PKTHDR;
1551				sc->rl_tail->m_next = m;
1552				sc->rl_tail = m;
1553			}
1554			re_newbuf(sc, i, NULL);
1555			RL_DESC_INC(i);
1556			continue;
1557		}
1558
1559		/*
1560		 * NOTE: for the 8139C+, the frame length field
1561		 * is always 12 bits in size, but for the gigE chips,
1562		 * it is 13 bits (since the max RX frame length is 16K).
1563		 * Unfortunately, all 32 bits in the status word
1564		 * were already used, so to make room for the extra
1565		 * length bit, RealTek took out the 'frame alignment
1566		 * error' bit and shifted the other status bits
1567		 * over one slot. The OWN, EOR, FS and LS bits are
1568		 * still in the same places. We have already extracted
1569		 * the frame length and checked the OWN bit, so rather
1570		 * than using an alternate bit mapping, we shift the
1571		 * status bits one space to the right so we can evaluate
1572		 * them using the 8169 status as though it was in the
1573		 * same format as that of the 8139C+.
1574		 */
1575		if (sc->rl_type == RL_8169)
1576			rxstat >>= 1;
1577
1578		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1579			ifp->if_ierrors++;
1580			/*
1581			 * If this is part of a multi-fragment packet,
1582			 * discard all the pieces.
1583			 */
1584			if (sc->rl_head != NULL) {
1585				m_freem(sc->rl_head);
1586				sc->rl_head = sc->rl_tail = NULL;
1587			}
1588			re_newbuf(sc, i, m);
1589			RL_DESC_INC(i);
1590			continue;
1591		}
1592
1593		/*
1594		 * If allocating a replacement mbuf fails,
1595		 * reload the current one.
1596		 */
1597
1598		if (re_newbuf(sc, i, NULL)) {
1599			ifp->if_ierrors++;
1600			if (sc->rl_head != NULL) {
1601				m_freem(sc->rl_head);
1602				sc->rl_head = sc->rl_tail = NULL;
1603			}
1604			re_newbuf(sc, i, m);
1605			RL_DESC_INC(i);
1606			continue;
1607		}
1608
1609		RL_DESC_INC(i);
1610
1611		if (sc->rl_head != NULL) {
1612			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1613			/*
1614			 * Special case: if there's 4 bytes or less
1615			 * in this buffer, the mbuf can be discarded:
1616			 * the last 4 bytes is the CRC, which we don't
1617			 * care about anyway.
1618			 */
1619			if (m->m_len <= ETHER_CRC_LEN) {
1620				sc->rl_tail->m_len -=
1621				    (ETHER_CRC_LEN - m->m_len);
1622				m_freem(m);
1623			} else {
1624				m->m_len -= ETHER_CRC_LEN;
1625				m->m_flags &= ~M_PKTHDR;
1626				sc->rl_tail->m_next = m;
1627			}
1628			m = sc->rl_head;
1629			sc->rl_head = sc->rl_tail = NULL;
1630			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1631		} else
1632			m->m_pkthdr.len = m->m_len =
1633			    (total_len - ETHER_CRC_LEN);
1634
1635		ifp->if_ipackets++;
1636		m->m_pkthdr.rcvif = ifp;
1637
1638		/* Do RX checksumming if enabled */
1639
1640		if (ifp->if_capenable & IFCAP_RXCSUM) {
1641
1642			/* Check IP header checksum */
1643			if (rxstat & RL_RDESC_STAT_PROTOID)
1644				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1645			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1646				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1647
1648			/* Check TCP/UDP checksum */
1649			if ((RL_TCPPKT(rxstat) &&
1650			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1651			    (RL_UDPPKT(rxstat) &&
1652			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1653				m->m_pkthdr.csum_flags |=
1654				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1655				m->m_pkthdr.csum_data = 0xffff;
1656			}
1657		}
1658
1659		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1660			VLAN_INPUT_TAG(ifp, m,
1661			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1662		RL_UNLOCK(sc);
1663		(*ifp->if_input)(ifp, m);
1664		RL_LOCK(sc);
1665	}
1666
1667	/* Flush the RX DMA ring */
1668
1669	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1670	    sc->rl_ldata.rl_rx_list_map,
1671	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1672
1673	sc->rl_ldata.rl_rx_prodidx = i;
1674
1675	return;
1676}
1677
1678static void
1679re_txeof(sc)
1680	struct rl_softc		*sc;
1681{
1682	struct ifnet		*ifp;
1683	u_int32_t		txstat;
1684	int			idx;
1685
1686	ifp = &sc->arpcom.ac_if;
1687	idx = sc->rl_ldata.rl_tx_considx;
1688
1689	/* Invalidate the TX descriptor list */
1690
1691	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1692	    sc->rl_ldata.rl_tx_list_map,
1693	    BUS_DMASYNC_POSTREAD);
1694
1695	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1696
1697		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1698		if (txstat & RL_TDESC_CMD_OWN)
1699			break;
1700
1701		/*
1702		 * We only stash mbufs in the last descriptor
1703		 * in a fragment chain, which also happens to
1704		 * be the only place where the TX status bits
1705		 * are valid.
1706		 */
1707
1708		if (txstat & RL_TDESC_CMD_EOF) {
1709			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1710			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1711			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1712			    sc->rl_ldata.rl_tx_dmamap[idx]);
1713			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1714			    RL_TDESC_STAT_COLCNT))
1715				ifp->if_collisions++;
1716			if (txstat & RL_TDESC_STAT_TXERRSUM)
1717				ifp->if_oerrors++;
1718			else
1719				ifp->if_opackets++;
1720		}
1721		sc->rl_ldata.rl_tx_free++;
1722		RL_DESC_INC(idx);
1723	}
1724
1725	/* No changes made to the TX ring, so no flush needed */
1726
1727	if (idx != sc->rl_ldata.rl_tx_considx) {
1728		sc->rl_ldata.rl_tx_considx = idx;
1729		ifp->if_flags &= ~IFF_OACTIVE;
1730		ifp->if_timer = 0;
1731	}
1732
1733	/*
1734	 * If not all descriptors have been released reaped yet,
1735	 * reload the timer so that we will eventually get another
1736	 * interrupt that will cause us to re-enter this routine.
1737	 * This is done in case the transmitter has gone idle.
1738	 */
1739	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1740                CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1741
1742	return;
1743}
1744
1745static void
1746re_tick(xsc)
1747	void			*xsc;
1748{
1749	struct rl_softc		*sc;
1750	struct mii_data		*mii;
1751
1752	sc = xsc;
1753	RL_LOCK(sc);
1754	mii = device_get_softc(sc->rl_miibus);
1755
1756	mii_tick(mii);
1757
1758	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1759	RL_UNLOCK(sc);
1760
1761	return;
1762}
1763
1764#ifdef DEVICE_POLLING
1765static void
1766re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1767{
1768	struct rl_softc *sc = ifp->if_softc;
1769
1770	RL_LOCK(sc);
1771	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1772		ether_poll_deregister(ifp);
1773		cmd = POLL_DEREGISTER;
1774	}
1775	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1776		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1777		goto done;
1778	}
1779
1780	sc->rxcycles = count;
1781	re_rxeof(sc);
1782	re_txeof(sc);
1783
1784	if (ifp->if_snd.ifq_head != NULL)
1785		(*ifp->if_start)(ifp);
1786
1787	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1788		u_int16_t       status;
1789
1790		status = CSR_READ_2(sc, RL_ISR);
1791		if (status == 0xffff)
1792			goto done;
1793		if (status)
1794			CSR_WRITE_2(sc, RL_ISR, status);
1795
1796		/*
1797		 * XXX check behaviour on receiver stalls.
1798		 */
1799
1800		if (status & RL_ISR_SYSTEM_ERR) {
1801			re_reset(sc);
1802			re_init(sc);
1803		}
1804	}
1805done:
1806	RL_UNLOCK(sc);
1807}
1808#endif /* DEVICE_POLLING */
1809
1810static void
1811re_intr(arg)
1812	void			*arg;
1813{
1814	struct rl_softc		*sc;
1815	struct ifnet		*ifp;
1816	u_int16_t		status;
1817
1818	sc = arg;
1819
1820	if (sc->suspended) {
1821		return;
1822	}
1823
1824	RL_LOCK(sc);
1825	ifp = &sc->arpcom.ac_if;
1826
1827	if (!(ifp->if_flags & IFF_UP)) {
1828		RL_UNLOCK(sc);
1829		return;
1830	}
1831
1832#ifdef DEVICE_POLLING
1833	if  (ifp->if_flags & IFF_POLLING)
1834		goto done;
1835	if ((ifp->if_capenable & IFCAP_POLLING) &&
1836	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1837		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1838		re_poll(ifp, 0, 1);
1839		goto done;
1840	}
1841#endif /* DEVICE_POLLING */
1842
1843	for (;;) {
1844
1845		status = CSR_READ_2(sc, RL_ISR);
1846		/* If the card has gone away the read returns 0xffff. */
1847		if (status == 0xffff)
1848			break;
1849		if (status)
1850			CSR_WRITE_2(sc, RL_ISR, status);
1851
1852		if ((status & RL_INTRS_CPLUS) == 0)
1853			break;
1854
1855		if (status & RL_ISR_RX_OK)
1856			re_rxeof(sc);
1857
1858		if (status & RL_ISR_RX_ERR)
1859			re_rxeof(sc);
1860
1861		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1862		    (status & RL_ISR_TX_ERR) ||
1863		    (status & RL_ISR_TX_DESC_UNAVAIL))
1864			re_txeof(sc);
1865
1866		if (status & RL_ISR_SYSTEM_ERR) {
1867			re_reset(sc);
1868			re_init(sc);
1869		}
1870
1871		if (status & RL_ISR_LINKCHG) {
1872			untimeout(re_tick, sc, sc->rl_stat_ch);
1873			re_tick(sc);
1874		}
1875	}
1876
1877	if (ifp->if_snd.ifq_head != NULL)
1878		(*ifp->if_start)(ifp);
1879
1880#ifdef DEVICE_POLLING
1881done:
1882#endif
1883	RL_UNLOCK(sc);
1884
1885	return;
1886}
1887
1888static int
1889re_encap(sc, m_head, idx)
1890	struct rl_softc		*sc;
1891	struct mbuf		*m_head;
1892	int			*idx;
1893{
1894	struct mbuf		*m_new = NULL;
1895	struct rl_dmaload_arg	arg;
1896	bus_dmamap_t		map;
1897	int			error;
1898	struct m_tag		*mtag;
1899
1900	if (sc->rl_ldata.rl_tx_free <= 4)
1901		return(EFBIG);
1902
1903	/*
1904	 * Set up checksum offload. Note: checksum offload bits must
1905	 * appear in all descriptors of a multi-descriptor transmit
1906	 * attempt. (This is according to testing done with an 8169
1907	 * chip. I'm not sure if this is a requirement or a bug.)
1908	 */
1909
1910	arg.rl_flags = 0;
1911
1912	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1913		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1914	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1915		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1916	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1917		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1918
1919	arg.sc = sc;
1920	arg.rl_idx = *idx;
1921	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1922	if (arg.rl_maxsegs > 4)
1923		arg.rl_maxsegs -= 4;
1924	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1925
1926	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1927	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1928	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1929
1930	if (error && error != EFBIG) {
1931		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1932		return(ENOBUFS);
1933	}
1934
1935	/* Too many segments to map, coalesce into a single mbuf */
1936
1937	if (error || arg.rl_maxsegs == 0) {
1938		m_new = m_defrag(m_head, M_DONTWAIT);
1939		if (m_new == NULL)
1940			return(1);
1941		else
1942			m_head = m_new;
1943
1944		arg.sc = sc;
1945		arg.rl_idx = *idx;
1946		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1947		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1948
1949		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1950		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1951		if (error) {
1952			printf("re%d: can't map mbuf (error %d)\n",
1953			    sc->rl_unit, error);
1954			return(EFBIG);
1955		}
1956	}
1957
1958	/*
1959	 * Insure that the map for this transmission
1960	 * is placed at the array index of the last descriptor
1961	 * in this chain.
1962	 */
1963	sc->rl_ldata.rl_tx_dmamap[*idx] =
1964	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1965	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1966
1967	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1968	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1969
1970	/*
1971	 * Set up hardware VLAN tagging. Note: vlan tag info must
1972	 * appear in the first descriptor of a multi-descriptor
1973	 * transmission attempt.
1974	 */
1975
1976	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1977	if (mtag != NULL)
1978		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1979		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1980
1981	/* Transfer ownership of packet to the chip. */
1982
1983	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1984	    htole32(RL_TDESC_CMD_OWN);
1985	if (*idx != arg.rl_idx)
1986		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1987		    htole32(RL_TDESC_CMD_OWN);
1988
1989	RL_DESC_INC(arg.rl_idx);
1990	*idx = arg.rl_idx;
1991
1992	return(0);
1993}
1994
1995/*
1996 * Main transmit routine for C+ and gigE NICs.
1997 */
1998
1999static void
2000re_start(ifp)
2001	struct ifnet		*ifp;
2002{
2003	struct rl_softc		*sc;
2004	struct mbuf		*m_head = NULL;
2005	int			idx;
2006
2007	sc = ifp->if_softc;
2008	RL_LOCK(sc);
2009
2010	idx = sc->rl_ldata.rl_tx_prodidx;
2011
2012	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2013		IF_DEQUEUE(&ifp->if_snd, m_head);
2014		if (m_head == NULL)
2015			break;
2016
2017		if (re_encap(sc, m_head, &idx)) {
2018			IF_PREPEND(&ifp->if_snd, m_head);
2019			ifp->if_flags |= IFF_OACTIVE;
2020			break;
2021		}
2022
2023		/*
2024		 * If there's a BPF listener, bounce a copy of this frame
2025		 * to him.
2026		 */
2027		BPF_MTAP(ifp, m_head);
2028	}
2029
2030	/* Flush the TX descriptors */
2031
2032	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2033	    sc->rl_ldata.rl_tx_list_map,
2034	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2035
2036	sc->rl_ldata.rl_tx_prodidx = idx;
2037
2038	/*
2039	 * RealTek put the TX poll request register in a different
2040	 * location on the 8169 gigE chip. I don't know why.
2041	 */
2042
2043	if (sc->rl_type == RL_8169)
2044		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2045	else
2046		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2047
2048	/*
2049	 * Use the countdown timer for interrupt moderation.
2050	 * 'TX done' interrupts are disabled. Instead, we reset the
2051	 * countdown timer, which will begin counting until it hits
2052	 * the value in the TIMERINT register, and then trigger an
2053	 * interrupt. Each time we write to the TIMERCNT register,
2054	 * the timer count is reset to 0.
2055	 */
2056	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2057
2058	RL_UNLOCK(sc);
2059
2060	/*
2061	 * Set a timeout in case the chip goes out to lunch.
2062	 */
2063	ifp->if_timer = 5;
2064
2065	return;
2066}
2067
2068static void
2069re_init(xsc)
2070	void			*xsc;
2071{
2072	struct rl_softc		*sc = xsc;
2073	struct ifnet		*ifp = &sc->arpcom.ac_if;
2074	struct mii_data		*mii;
2075	u_int32_t		rxcfg = 0;
2076
2077	RL_LOCK(sc);
2078	mii = device_get_softc(sc->rl_miibus);
2079
2080	/*
2081	 * Cancel pending I/O and free all RX/TX buffers.
2082	 */
2083	re_stop(sc);
2084
2085	/*
2086	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2087	 * RX checksum offload. We must configure the C+ register
2088	 * before all others.
2089	 */
2090	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2091	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2092	    RL_CPLUSCMD_VLANSTRIP|
2093	    (ifp->if_capenable & IFCAP_RXCSUM ?
2094	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2095
2096	/*
2097	 * Init our MAC address.  Even though the chipset
2098	 * documentation doesn't mention it, we need to enter "Config
2099	 * register write enable" mode to modify the ID registers.
2100	 */
2101	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2102	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2103	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2104	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2105	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2106	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2107
2108	/*
2109	 * For C+ mode, initialize the RX descriptors and mbufs.
2110	 */
2111	re_rx_list_init(sc);
2112	re_tx_list_init(sc);
2113
2114	/*
2115	 * Enable transmit and receive.
2116	 */
2117	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2118
2119	/*
2120	 * Set the initial TX and RX configuration.
2121	 */
2122	if (sc->rl_testmode) {
2123		if (sc->rl_type == RL_8169)
2124			CSR_WRITE_4(sc, RL_TXCFG,
2125			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2126		else
2127			CSR_WRITE_4(sc, RL_TXCFG,
2128			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2129	} else
2130		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2131	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2132
2133	/* Set the individual bit to receive frames for this host only. */
2134	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2135	rxcfg |= RL_RXCFG_RX_INDIV;
2136
2137	/* If we want promiscuous mode, set the allframes bit. */
2138	if (ifp->if_flags & IFF_PROMISC) {
2139		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2140		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2141	} else {
2142		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2143		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2144	}
2145
2146	/*
2147	 * Set capture broadcast bit to capture broadcast frames.
2148	 */
2149	if (ifp->if_flags & IFF_BROADCAST) {
2150		rxcfg |= RL_RXCFG_RX_BROAD;
2151		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2152	} else {
2153		rxcfg &= ~RL_RXCFG_RX_BROAD;
2154		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2155	}
2156
2157	/*
2158	 * Program the multicast filter, if necessary.
2159	 */
2160	re_setmulti(sc);
2161
2162#ifdef DEVICE_POLLING
2163	/*
2164	 * Disable interrupts if we are polling.
2165	 */
2166	if (ifp->if_flags & IFF_POLLING)
2167		CSR_WRITE_2(sc, RL_IMR, 0);
2168	else	/* otherwise ... */
2169#endif /* DEVICE_POLLING */
2170	/*
2171	 * Enable interrupts.
2172	 */
2173	if (sc->rl_testmode)
2174		CSR_WRITE_2(sc, RL_IMR, 0);
2175	else
2176		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2177
2178	/* Set initial TX threshold */
2179	sc->rl_txthresh = RL_TX_THRESH_INIT;
2180
2181	/* Start RX/TX process. */
2182	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2183#ifdef notdef
2184	/* Enable receiver and transmitter. */
2185	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2186#endif
2187	/*
2188	 * Load the addresses of the RX and TX lists into the chip.
2189	 */
2190
2191	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2192	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2193	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2194	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2195
2196	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2197	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2198	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2199	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2200
2201	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2202
2203	/*
2204	 * Initialize the timer interrupt register so that
2205	 * a timer interrupt will be generated once the timer
2206	 * reaches a certain number of ticks. The timer is
2207	 * reloaded on each transmit. This gives us TX interrupt
2208	 * moderation, which dramatically improves TX frame rate.
2209	 */
2210
2211	if (sc->rl_type == RL_8169)
2212		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2213	else
2214		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2215
2216	/*
2217	 * For 8169 gigE NICs, set the max allowed RX packet
2218	 * size so we can receive jumbo frames.
2219	 */
2220	if (sc->rl_type == RL_8169)
2221		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2222
2223	if (sc->rl_testmode) {
2224		RL_UNLOCK(sc);
2225		return;
2226	}
2227
2228	mii_mediachg(mii);
2229
2230	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2231
2232	ifp->if_flags |= IFF_RUNNING;
2233	ifp->if_flags &= ~IFF_OACTIVE;
2234
2235	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2236	RL_UNLOCK(sc);
2237
2238	return;
2239}
2240
2241/*
2242 * Set media options.
2243 */
2244static int
2245re_ifmedia_upd(ifp)
2246	struct ifnet		*ifp;
2247{
2248	struct rl_softc		*sc;
2249	struct mii_data		*mii;
2250
2251	sc = ifp->if_softc;
2252	mii = device_get_softc(sc->rl_miibus);
2253	mii_mediachg(mii);
2254
2255	return(0);
2256}
2257
2258/*
2259 * Report current media status.
2260 */
2261static void
2262re_ifmedia_sts(ifp, ifmr)
2263	struct ifnet		*ifp;
2264	struct ifmediareq	*ifmr;
2265{
2266	struct rl_softc		*sc;
2267	struct mii_data		*mii;
2268
2269	sc = ifp->if_softc;
2270	mii = device_get_softc(sc->rl_miibus);
2271
2272	mii_pollstat(mii);
2273	ifmr->ifm_active = mii->mii_media_active;
2274	ifmr->ifm_status = mii->mii_media_status;
2275
2276	return;
2277}
2278
2279static int
2280re_ioctl(ifp, command, data)
2281	struct ifnet		*ifp;
2282	u_long			command;
2283	caddr_t			data;
2284{
2285	struct rl_softc		*sc = ifp->if_softc;
2286	struct ifreq		*ifr = (struct ifreq *) data;
2287	struct mii_data		*mii;
2288	int			error = 0;
2289
2290	RL_LOCK(sc);
2291
2292	switch(command) {
2293	case SIOCSIFMTU:
2294		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2295			error = EINVAL;
2296		ifp->if_mtu = ifr->ifr_mtu;
2297		break;
2298	case SIOCSIFFLAGS:
2299		if (ifp->if_flags & IFF_UP) {
2300			re_init(sc);
2301		} else {
2302			if (ifp->if_flags & IFF_RUNNING)
2303				re_stop(sc);
2304		}
2305		error = 0;
2306		break;
2307	case SIOCADDMULTI:
2308	case SIOCDELMULTI:
2309		re_setmulti(sc);
2310		error = 0;
2311		break;
2312	case SIOCGIFMEDIA:
2313	case SIOCSIFMEDIA:
2314		mii = device_get_softc(sc->rl_miibus);
2315		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2316		break;
2317	case SIOCSIFCAP:
2318		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2319		ifp->if_capenable |=
2320		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2321		if (ifp->if_capenable & IFCAP_TXCSUM)
2322			ifp->if_hwassist = RE_CSUM_FEATURES;
2323		else
2324			ifp->if_hwassist = 0;
2325		if (ifp->if_flags & IFF_RUNNING)
2326			re_init(sc);
2327		break;
2328	default:
2329		error = ether_ioctl(ifp, command, data);
2330		break;
2331	}
2332
2333	RL_UNLOCK(sc);
2334
2335	return(error);
2336}
2337
2338static void
2339re_watchdog(ifp)
2340	struct ifnet		*ifp;
2341{
2342	struct rl_softc		*sc;
2343
2344	sc = ifp->if_softc;
2345	RL_LOCK(sc);
2346	printf("re%d: watchdog timeout\n", sc->rl_unit);
2347	ifp->if_oerrors++;
2348
2349	re_txeof(sc);
2350	re_rxeof(sc);
2351
2352	re_init(sc);
2353
2354	RL_UNLOCK(sc);
2355
2356	return;
2357}
2358
2359/*
2360 * Stop the adapter and free any mbufs allocated to the
2361 * RX and TX lists.
2362 */
2363static void
2364re_stop(sc)
2365	struct rl_softc		*sc;
2366{
2367	register int		i;
2368	struct ifnet		*ifp;
2369
2370	RL_LOCK(sc);
2371	ifp = &sc->arpcom.ac_if;
2372	ifp->if_timer = 0;
2373
2374	untimeout(re_tick, sc, sc->rl_stat_ch);
2375	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2376#ifdef DEVICE_POLLING
2377	ether_poll_deregister(ifp);
2378#endif /* DEVICE_POLLING */
2379
2380	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2381	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2382
2383	if (sc->rl_head != NULL) {
2384		m_freem(sc->rl_head);
2385		sc->rl_head = sc->rl_tail = NULL;
2386	}
2387
2388	/* Free the TX list buffers. */
2389
2390	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2391		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2392			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2393			    sc->rl_ldata.rl_tx_dmamap[i]);
2394			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2395			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2396		}
2397	}
2398
2399	/* Free the RX list buffers. */
2400
2401	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2402		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2403			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2404			    sc->rl_ldata.rl_rx_dmamap[i]);
2405			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2406			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2407		}
2408	}
2409
2410	RL_UNLOCK(sc);
2411	return;
2412}
2413
2414/*
2415 * Device suspend routine.  Stop the interface and save some PCI
2416 * settings in case the BIOS doesn't restore them properly on
2417 * resume.
2418 */
2419static int
2420re_suspend(dev)
2421	device_t		dev;
2422{
2423#ifndef BURN_BRIDGES
2424	register int		i;
2425#endif
2426	struct rl_softc		*sc;
2427
2428	sc = device_get_softc(dev);
2429
2430	re_stop(sc);
2431
2432#ifndef BURN_BRIDGES
2433	for (i = 0; i < 5; i++)
2434		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2435	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2436	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2437	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2438	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2439#endif
2440
2441	sc->suspended = 1;
2442
2443	return (0);
2444}
2445
2446/*
2447 * Device resume routine.  Restore some PCI settings in case the BIOS
2448 * doesn't, re-enable busmastering, and restart the interface if
2449 * appropriate.
2450 */
2451static int
2452re_resume(dev)
2453	device_t		dev;
2454{
2455#ifndef BURN_BRIDGES
2456	register int		i;
2457#endif
2458	struct rl_softc		*sc;
2459	struct ifnet		*ifp;
2460
2461	sc = device_get_softc(dev);
2462	ifp = &sc->arpcom.ac_if;
2463
2464#ifndef BURN_BRIDGES
2465	/* better way to do this? */
2466	for (i = 0; i < 5; i++)
2467		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2468	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2469	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2470	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2471	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2472
2473	/* reenable busmastering */
2474	pci_enable_busmaster(dev);
2475	pci_enable_io(dev, RL_RES);
2476#endif
2477
2478	/* reinitialize interface if necessary */
2479	if (ifp->if_flags & IFF_UP)
2480		re_init(sc);
2481
2482	sc->suspended = 0;
2483
2484	return (0);
2485}
2486
2487/*
2488 * Stop all chip I/O so that the kernel's probe routines don't
2489 * get confused by errant DMAs when rebooting.
2490 */
2491static void
2492re_shutdown(dev)
2493	device_t		dev;
2494{
2495	struct rl_softc		*sc;
2496
2497	sc = device_get_softc(dev);
2498
2499	re_stop(sc);
2500
2501	return;
2502}
2503