if_re.c revision 128138
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 128138 2004-04-11 20:34:08Z ru $");
35
36/*
37 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38 *
39 * Written by Bill Paul <wpaul@windriver.com>
40 * Senior Networking Software Engineer
41 * Wind River Systems
42 */
43
44/*
45 * This driver is designed to support RealTek's next generation of
46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48 * and the RTL8110S.
49 *
50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51 * with the older 8139 family, however it also supports a special
52 * C+ mode of operation that provides several new performance enhancing
53 * features. These include:
54 *
55 *	o Descriptor based DMA mechanism. Each descriptor represents
56 *	  a single packet fragment. Data buffers may be aligned on
57 *	  any byte boundary.
58 *
59 *	o 64-bit DMA
60 *
61 *	o TCP/IP checksum offload for both RX and TX
62 *
63 *	o High and normal priority transmit DMA rings
64 *
65 *	o VLAN tag insertion and extraction
66 *
67 *	o TCP large send (segmentation offload)
68 *
69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70 * programming API is fairly straightforward. The RX filtering, EEPROM
71 * access and PHY access is the same as it is on the older 8139 series
72 * chips.
73 *
74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75 * same programming API and feature set as the 8139C+ with the following
76 * differences and additions:
77 *
78 *	o 1000Mbps mode
79 *
80 *	o Jumbo frames
81 *
82 * 	o GMII and TBI ports/registers for interfacing with copper
83 *	  or fiber PHYs
84 *
85 *      o RX and TX DMA rings can have up to 1024 descriptors
86 *        (the 8139C+ allows a maximum of 64)
87 *
88 *	o Slight differences in register layout from the 8139C+
89 *
90 * The TX start and timer interrupt registers are at different locations
91 * on the 8169 than they are on the 8139C+. Also, the status word in the
92 * RX descriptor has a slightly different bit layout. The 8169 does not
93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94 * copper gigE PHY.
95 *
96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97 * (the 'S' stands for 'single-chip'). These devices have the same
98 * programming API as the older 8169, but also have some vendor-specific
99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101 *
102 * This driver takes advantage of the RX and TX checksum offload and
103 * VLAN tag insertion/extraction features. It also implements TX
104 * interrupt moderation using the timer interrupt registers, which
105 * significantly reduces TX interrupt load. There is also support
106 * for jumbo frames, however the 8169/8169S/8110S can not transmit
107 * jumbo frames larger than 7.5K, so the max MTU possible with this
108 * driver is 7500 bytes.
109 */
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/kernel.h>
118#include <sys/socket.h>
119
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/ethernet.h>
123#include <net/if_dl.h>
124#include <net/if_media.h>
125#include <net/if_vlan_var.h>
126
127#include <net/bpf.h>
128
129#include <machine/bus_pio.h>
130#include <machine/bus_memio.h>
131#include <machine/bus.h>
132#include <machine/resource.h>
133#include <sys/bus.h>
134#include <sys/rman.h>
135
136#include <dev/mii/mii.h>
137#include <dev/mii/miivar.h>
138
139#include <dev/pci/pcireg.h>
140#include <dev/pci/pcivar.h>
141
142MODULE_DEPEND(re, pci, 1, 1, 1);
143MODULE_DEPEND(re, ether, 1, 1, 1);
144MODULE_DEPEND(re, miibus, 1, 1, 1);
145
146/* "controller miibus0" required.  See GENERIC if you get errors here. */
147#include "miibus_if.h"
148
149/*
150 * Default to using PIO access for this driver.
151 */
152#define RE_USEIOSPACE
153
154#include <pci/if_rlreg.h>
155
156#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157
158/*
159 * Various supported device vendors/types and their names.
160 */
161static struct rl_type re_devs[] = {
162	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163		"RealTek 8139C+ 10/100BaseTX" },
164	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165		"RealTek 8169 Gigabit Ethernet" },
166	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167		"RealTek 8169S Single-chip Gigabit Ethernet" },
168	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169		"RealTek 8110S Single-chip Gigabit Ethernet" },
170	{ 0, 0, 0, NULL }
171};
172
173static struct rl_hwrev re_hwrevs[] = {
174	{ RL_HWREV_8139, RL_8139,  "" },
175	{ RL_HWREV_8139A, RL_8139, "A" },
176	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177	{ RL_HWREV_8139B, RL_8139, "B" },
178	{ RL_HWREV_8130, RL_8139, "8130" },
179	{ RL_HWREV_8139C, RL_8139, "C" },
180	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182	{ RL_HWREV_8169, RL_8169, "8169"},
183	{ RL_HWREV_8169S, RL_8169, "8169S"},
184	{ RL_HWREV_8110S, RL_8169, "8110S"},
185	{ RL_HWREV_8100, RL_8139, "8100"},
186	{ RL_HWREV_8101, RL_8139, "8101"},
187	{ 0, 0, NULL }
188};
189
190static int re_probe		(device_t);
191static int re_attach		(device_t);
192static int re_detach		(device_t);
193
194static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195
196static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198				    bus_size_t, int);
199static int re_allocmem		(device_t, struct rl_softc *);
200static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201static int re_rx_list_init	(struct rl_softc *);
202static int re_tx_list_init	(struct rl_softc *);
203static void re_rxeof		(struct rl_softc *);
204static void re_txeof		(struct rl_softc *);
205static void re_intr		(void *);
206static void re_tick		(void *);
207static void re_start		(struct ifnet *);
208static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209static void re_init		(void *);
210static void re_stop		(struct rl_softc *);
211static void re_watchdog		(struct ifnet *);
212static int re_suspend		(device_t);
213static int re_resume		(device_t);
214static void re_shutdown		(device_t);
215static int re_ifmedia_upd	(struct ifnet *);
216static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static void re_eeprom_putbyte	(struct rl_softc *, int);
219static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221static int re_gmii_readreg	(device_t, int, int);
222static int re_gmii_writereg	(device_t, int, int, int);
223
224static int re_miibus_readreg	(device_t, int, int);
225static int re_miibus_writereg	(device_t, int, int, int);
226static void re_miibus_statchg	(device_t);
227
228static uint32_t re_mchash	(const uint8_t *);
229static void re_setmulti		(struct rl_softc *);
230static void re_reset		(struct rl_softc *);
231
232static int re_diag		(struct rl_softc *);
233
234#ifdef RE_USEIOSPACE
235#define RL_RES			SYS_RES_IOPORT
236#define RL_RID			RL_PCI_LOIO
237#else
238#define RL_RES			SYS_RES_MEMORY
239#define RL_RID			RL_PCI_LOMEM
240#endif
241
242static device_method_t re_methods[] = {
243	/* Device interface */
244	DEVMETHOD(device_probe,		re_probe),
245	DEVMETHOD(device_attach,	re_attach),
246	DEVMETHOD(device_detach,	re_detach),
247	DEVMETHOD(device_suspend,	re_suspend),
248	DEVMETHOD(device_resume,	re_resume),
249	DEVMETHOD(device_shutdown,	re_shutdown),
250
251	/* bus interface */
252	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254
255	/* MII interface */
256	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259
260	{ 0, 0 }
261};
262
263static driver_t re_driver = {
264	"re",
265	re_methods,
266	sizeof(struct rl_softc)
267};
268
269static devclass_t re_devclass;
270
271DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274
275#define EE_SET(x)					\
276	CSR_WRITE_1(sc, RL_EECMD,			\
277		CSR_READ_1(sc, RL_EECMD) | x)
278
279#define EE_CLR(x)					\
280	CSR_WRITE_1(sc, RL_EECMD,			\
281		CSR_READ_1(sc, RL_EECMD) & ~x)
282
283/*
284 * Send a read command and address to the EEPROM, check for ACK.
285 */
286static void
287re_eeprom_putbyte(sc, addr)
288	struct rl_softc		*sc;
289	int			addr;
290{
291	register int		d, i;
292
293	d = addr | sc->rl_eecmd_read;
294
295	/*
296	 * Feed in each bit and strobe the clock.
297	 */
298	for (i = 0x400; i; i >>= 1) {
299		if (d & i) {
300			EE_SET(RL_EE_DATAIN);
301		} else {
302			EE_CLR(RL_EE_DATAIN);
303		}
304		DELAY(100);
305		EE_SET(RL_EE_CLK);
306		DELAY(150);
307		EE_CLR(RL_EE_CLK);
308		DELAY(100);
309	}
310
311	return;
312}
313
314/*
315 * Read a word of data stored in the EEPROM at address 'addr.'
316 */
317static void
318re_eeprom_getword(sc, addr, dest)
319	struct rl_softc		*sc;
320	int			addr;
321	u_int16_t		*dest;
322{
323	register int		i;
324	u_int16_t		word = 0;
325
326	/* Enter EEPROM access mode. */
327	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328
329	/*
330	 * Send address of word we want to read.
331	 */
332	re_eeprom_putbyte(sc, addr);
333
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335
336	/*
337	 * Start reading bits from EEPROM.
338	 */
339	for (i = 0x8000; i; i >>= 1) {
340		EE_SET(RL_EE_CLK);
341		DELAY(100);
342		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343			word |= i;
344		EE_CLR(RL_EE_CLK);
345		DELAY(100);
346	}
347
348	/* Turn off EEPROM access mode. */
349	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350
351	*dest = word;
352
353	return;
354}
355
356/*
357 * Read a sequence of words from the EEPROM.
358 */
359static void
360re_read_eeprom(sc, dest, off, cnt, swap)
361	struct rl_softc		*sc;
362	caddr_t			dest;
363	int			off;
364	int			cnt;
365	int			swap;
366{
367	int			i;
368	u_int16_t		word = 0, *ptr;
369
370	for (i = 0; i < cnt; i++) {
371		re_eeprom_getword(sc, off + i, &word);
372		ptr = (u_int16_t *)(dest + (i * 2));
373		if (swap)
374			*ptr = ntohs(word);
375		else
376			*ptr = word;
377	}
378
379	return;
380}
381
382static int
383re_gmii_readreg(dev, phy, reg)
384	device_t		dev;
385	int			phy, reg;
386{
387	struct rl_softc		*sc;
388	u_int32_t		rval;
389	int			i;
390
391	if (phy != 1)
392		return(0);
393
394	sc = device_get_softc(dev);
395
396	/* Let the rgephy driver read the GMEDIASTAT register */
397
398	if (reg == RL_GMEDIASTAT) {
399		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400		return(rval);
401	}
402
403	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404	DELAY(1000);
405
406	for (i = 0; i < RL_TIMEOUT; i++) {
407		rval = CSR_READ_4(sc, RL_PHYAR);
408		if (rval & RL_PHYAR_BUSY)
409			break;
410		DELAY(100);
411	}
412
413	if (i == RL_TIMEOUT) {
414		printf ("re%d: PHY read failed\n", sc->rl_unit);
415		return (0);
416	}
417
418	return (rval & RL_PHYAR_PHYDATA);
419}
420
421static int
422re_gmii_writereg(dev, phy, reg, data)
423	device_t		dev;
424	int			phy, reg, data;
425{
426	struct rl_softc		*sc;
427	u_int32_t		rval;
428	int			i;
429
430	sc = device_get_softc(dev);
431
432	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434	DELAY(1000);
435
436	for (i = 0; i < RL_TIMEOUT; i++) {
437		rval = CSR_READ_4(sc, RL_PHYAR);
438		if (!(rval & RL_PHYAR_BUSY))
439			break;
440		DELAY(100);
441	}
442
443	if (i == RL_TIMEOUT) {
444		printf ("re%d: PHY write failed\n", sc->rl_unit);
445		return (0);
446	}
447
448	return (0);
449}
450
451static int
452re_miibus_readreg(dev, phy, reg)
453	device_t		dev;
454	int			phy, reg;
455{
456	struct rl_softc		*sc;
457	u_int16_t		rval = 0;
458	u_int16_t		re8139_reg = 0;
459
460	sc = device_get_softc(dev);
461	RL_LOCK(sc);
462
463	if (sc->rl_type == RL_8169) {
464		rval = re_gmii_readreg(dev, phy, reg);
465		RL_UNLOCK(sc);
466		return (rval);
467	}
468
469	/* Pretend the internal PHY is only at address 0 */
470	if (phy) {
471		RL_UNLOCK(sc);
472		return(0);
473	}
474	switch(reg) {
475	case MII_BMCR:
476		re8139_reg = RL_BMCR;
477		break;
478	case MII_BMSR:
479		re8139_reg = RL_BMSR;
480		break;
481	case MII_ANAR:
482		re8139_reg = RL_ANAR;
483		break;
484	case MII_ANER:
485		re8139_reg = RL_ANER;
486		break;
487	case MII_ANLPAR:
488		re8139_reg = RL_LPAR;
489		break;
490	case MII_PHYIDR1:
491	case MII_PHYIDR2:
492		RL_UNLOCK(sc);
493		return(0);
494	/*
495	 * Allow the rlphy driver to read the media status
496	 * register. If we have a link partner which does not
497	 * support NWAY, this is the register which will tell
498	 * us the results of parallel detection.
499	 */
500	case RL_MEDIASTAT:
501		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502		RL_UNLOCK(sc);
503		return(rval);
504	default:
505		printf("re%d: bad phy register\n", sc->rl_unit);
506		RL_UNLOCK(sc);
507		return(0);
508	}
509	rval = CSR_READ_2(sc, re8139_reg);
510	RL_UNLOCK(sc);
511	return(rval);
512}
513
514static int
515re_miibus_writereg(dev, phy, reg, data)
516	device_t		dev;
517	int			phy, reg, data;
518{
519	struct rl_softc		*sc;
520	u_int16_t		re8139_reg = 0;
521	int			rval = 0;
522
523	sc = device_get_softc(dev);
524	RL_LOCK(sc);
525
526	if (sc->rl_type == RL_8169) {
527		rval = re_gmii_writereg(dev, phy, reg, data);
528		RL_UNLOCK(sc);
529		return (rval);
530	}
531
532	/* Pretend the internal PHY is only at address 0 */
533	if (phy) {
534		RL_UNLOCK(sc);
535		return(0);
536	}
537	switch(reg) {
538	case MII_BMCR:
539		re8139_reg = RL_BMCR;
540		break;
541	case MII_BMSR:
542		re8139_reg = RL_BMSR;
543		break;
544	case MII_ANAR:
545		re8139_reg = RL_ANAR;
546		break;
547	case MII_ANER:
548		re8139_reg = RL_ANER;
549		break;
550	case MII_ANLPAR:
551		re8139_reg = RL_LPAR;
552		break;
553	case MII_PHYIDR1:
554	case MII_PHYIDR2:
555		RL_UNLOCK(sc);
556		return(0);
557		break;
558	default:
559		printf("re%d: bad phy register\n", sc->rl_unit);
560		RL_UNLOCK(sc);
561		return(0);
562	}
563	CSR_WRITE_2(sc, re8139_reg, data);
564	RL_UNLOCK(sc);
565	return(0);
566}
567
568static void
569re_miibus_statchg(dev)
570	device_t		dev;
571{
572	return;
573}
574
575/*
576 * Calculate CRC of a multicast group address, return the upper 6 bits.
577 */
578static uint32_t
579re_mchash(addr)
580	const uint8_t *addr;
581{
582	uint32_t crc, carry;
583	int idx, bit;
584	uint8_t data;
585
586	/* Compute CRC for the address value. */
587	crc = 0xFFFFFFFF; /* initial value */
588
589	for (idx = 0; idx < 6; idx++) {
590		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
591			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
592			crc <<= 1;
593			if (carry)
594				crc = (crc ^ 0x04c11db6) | carry;
595		}
596	}
597
598	/* return the filter bit position */
599	return(crc >> 26);
600}
601
602/*
603 * Program the 64-bit multicast hash filter.
604 */
605static void
606re_setmulti(sc)
607	struct rl_softc		*sc;
608{
609	struct ifnet		*ifp;
610	int			h = 0;
611	u_int32_t		hashes[2] = { 0, 0 };
612	struct ifmultiaddr	*ifma;
613	u_int32_t		rxfilt;
614	int			mcnt = 0;
615
616	ifp = &sc->arpcom.ac_if;
617
618	rxfilt = CSR_READ_4(sc, RL_RXCFG);
619
620	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621		rxfilt |= RL_RXCFG_RX_MULTI;
622		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
624		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
625		return;
626	}
627
628	/* first, zot all the existing hash bits */
629	CSR_WRITE_4(sc, RL_MAR0, 0);
630	CSR_WRITE_4(sc, RL_MAR4, 0);
631
632	/* now program new ones */
633	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
634		if (ifma->ifma_addr->sa_family != AF_LINK)
635			continue;
636		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
637		if (h < 32)
638			hashes[0] |= (1 << h);
639		else
640			hashes[1] |= (1 << (h - 32));
641		mcnt++;
642	}
643
644	if (mcnt)
645		rxfilt |= RL_RXCFG_RX_MULTI;
646	else
647		rxfilt &= ~RL_RXCFG_RX_MULTI;
648
649	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
650	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
651	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
652
653	return;
654}
655
656static void
657re_reset(sc)
658	struct rl_softc		*sc;
659{
660	register int		i;
661
662	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
663
664	for (i = 0; i < RL_TIMEOUT; i++) {
665		DELAY(10);
666		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
667			break;
668	}
669	if (i == RL_TIMEOUT)
670		printf("re%d: reset never completed!\n", sc->rl_unit);
671
672	CSR_WRITE_1(sc, 0x82, 1);
673
674	return;
675}
676
677/*
678 * The following routine is designed to test for a defect on some
679 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
680 * lines connected to the bus, however for a 32-bit only card, they
681 * should be pulled high. The result of this defect is that the
682 * NIC will not work right if you plug it into a 64-bit slot: DMA
683 * operations will be done with 64-bit transfers, which will fail
684 * because the 64-bit data lines aren't connected.
685 *
686 * There's no way to work around this (short of talking a soldering
687 * iron to the board), however we can detect it. The method we use
688 * here is to put the NIC into digital loopback mode, set the receiver
689 * to promiscuous mode, and then try to send a frame. We then compare
690 * the frame data we sent to what was received. If the data matches,
691 * then the NIC is working correctly, otherwise we know the user has
692 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
693 * slot. In the latter case, there's no way the NIC can work correctly,
694 * so we print out a message on the console and abort the device attach.
695 */
696
697static int
698re_diag(sc)
699	struct rl_softc		*sc;
700{
701	struct ifnet		*ifp = &sc->arpcom.ac_if;
702	struct mbuf		*m0;
703	struct ether_header	*eh;
704	struct rl_desc		*cur_rx;
705	u_int16_t		status;
706	u_int32_t		rxstat;
707	int			total_len, i, error = 0;
708	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710
711	/* Allocate a single mbuf */
712
713	MGETHDR(m0, M_DONTWAIT, MT_DATA);
714	if (m0 == NULL)
715		return(ENOBUFS);
716
717	/*
718	 * Initialize the NIC in test mode. This sets the chip up
719	 * so that it can send and receive frames, but performs the
720	 * following special functions:
721	 * - Puts receiver in promiscuous mode
722	 * - Enables digital loopback mode
723	 * - Leaves interrupts turned off
724	 */
725
726	ifp->if_flags |= IFF_PROMISC;
727	sc->rl_testmode = 1;
728	re_init(sc);
729	re_stop(sc);
730	DELAY(100000);
731	re_init(sc);
732
733	/* Put some data in the mbuf */
734
735	eh = mtod(m0, struct ether_header *);
736	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
737	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
738	eh->ether_type = htons(ETHERTYPE_IP);
739	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
740
741	/*
742	 * Queue the packet, start transmission.
743	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
744	 */
745
746	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
747	IF_HANDOFF(&ifp->if_snd, m0, ifp);
748	m0 = NULL;
749
750	/* Wait for it to propagate through the chip */
751
752	DELAY(100000);
753	for (i = 0; i < RL_TIMEOUT; i++) {
754		status = CSR_READ_2(sc, RL_ISR);
755		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
756		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
757			break;
758		DELAY(10);
759	}
760
761	if (i == RL_TIMEOUT) {
762		printf("re%d: diagnostic failed, failed to receive packet "
763		    "in loopback mode\n", sc->rl_unit);
764		error = EIO;
765		goto done;
766	}
767
768	/*
769	 * The packet should have been dumped into the first
770	 * entry in the RX DMA ring. Grab it from there.
771	 */
772
773	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
774	    sc->rl_ldata.rl_rx_list_map,
775	    BUS_DMASYNC_POSTREAD);
776	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
777	    sc->rl_ldata.rl_rx_dmamap[0],
778	    BUS_DMASYNC_POSTWRITE);
779	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
780	    sc->rl_ldata.rl_rx_dmamap[0]);
781
782	m0 = sc->rl_ldata.rl_rx_mbuf[0];
783	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
784	eh = mtod(m0, struct ether_header *);
785
786	cur_rx = &sc->rl_ldata.rl_rx_list[0];
787	total_len = RL_RXBYTES(cur_rx);
788	rxstat = le32toh(cur_rx->rl_cmdstat);
789
790	if (total_len != ETHER_MIN_LEN) {
791		printf("re%d: diagnostic failed, received short packet\n",
792		    sc->rl_unit);
793		error = EIO;
794		goto done;
795	}
796
797	/* Test that the received packet data matches what we sent. */
798
799	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
800	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
801	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
802		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
803		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
804		    dst, ":", src, ":", ETHERTYPE_IP);
805		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
806		    eh->ether_dhost, ":",  eh->ether_shost, ":",
807		    ntohs(eh->ether_type));
808		printf("re%d: You may have a defective 32-bit NIC plugged "
809		    "into a 64-bit PCI slot.\n", sc->rl_unit);
810		printf("re%d: Please re-install the NIC in a 32-bit slot "
811		    "for proper operation.\n", sc->rl_unit);
812		printf("re%d: Read the re(4) man page for more details.\n",
813		    sc->rl_unit);
814		error = EIO;
815	}
816
817done:
818	/* Turn interface off, release resources */
819
820	sc->rl_testmode = 0;
821	ifp->if_flags &= ~IFF_PROMISC;
822	re_stop(sc);
823	if (m0 != NULL)
824		m_freem(m0);
825
826	return (error);
827}
828
829/*
830 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
831 * IDs against our list and return a device name if we find a match.
832 */
833static int
834re_probe(dev)
835	device_t		dev;
836{
837	struct rl_type		*t;
838	struct rl_softc		*sc;
839	int			rid;
840	u_int32_t		hwrev;
841
842	t = re_devs;
843	sc = device_get_softc(dev);
844
845	while(t->rl_name != NULL) {
846		if ((pci_get_vendor(dev) == t->rl_vid) &&
847		    (pci_get_device(dev) == t->rl_did)) {
848
849			/*
850			 * Temporarily map the I/O space
851			 * so we can read the chip ID register.
852			 */
853			rid = RL_RID;
854			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
855			    RF_ACTIVE);
856			if (sc->rl_res == NULL) {
857				device_printf(dev,
858				    "couldn't map ports/memory\n");
859				return(ENXIO);
860			}
861			sc->rl_btag = rman_get_bustag(sc->rl_res);
862			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
863			mtx_init(&sc->rl_mtx,
864			    device_get_nameunit(dev),
865			    MTX_NETWORK_LOCK, MTX_DEF);
866			RL_LOCK(sc);
867			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
868			bus_release_resource(dev, RL_RES,
869			    RL_RID, sc->rl_res);
870			RL_UNLOCK(sc);
871			mtx_destroy(&sc->rl_mtx);
872			if (t->rl_basetype == hwrev) {
873				device_set_desc(dev, t->rl_name);
874				return(0);
875			}
876		}
877		t++;
878	}
879
880	return(ENXIO);
881}
882
883/*
884 * This routine takes the segment list provided as the result of
885 * a bus_dma_map_load() operation and assigns the addresses/lengths
886 * to RealTek DMA descriptors. This can be called either by the RX
887 * code or the TX code. In the RX case, we'll probably wind up mapping
888 * at most one segment. For the TX case, there could be any number of
889 * segments since TX packets may span multiple mbufs. In either case,
890 * if the number of segments is larger than the rl_maxsegs limit
891 * specified by the caller, we abort the mapping operation. Sadly,
892 * whoever designed the buffer mapping API did not provide a way to
893 * return an error from here, so we have to fake it a bit.
894 */
895
896static void
897re_dma_map_desc(arg, segs, nseg, mapsize, error)
898	void			*arg;
899	bus_dma_segment_t	*segs;
900	int			nseg;
901	bus_size_t		mapsize;
902	int			error;
903{
904	struct rl_dmaload_arg	*ctx;
905	struct rl_desc		*d = NULL;
906	int			i = 0, idx;
907
908	if (error)
909		return;
910
911	ctx = arg;
912
913	/* Signal error to caller if there's too many segments */
914	if (nseg > ctx->rl_maxsegs) {
915		ctx->rl_maxsegs = 0;
916		return;
917	}
918
919	/*
920	 * Map the segment array into descriptors. Note that we set the
921	 * start-of-frame and end-of-frame markers for either TX or RX, but
922	 * they really only have meaning in the TX case. (In the RX case,
923	 * it's the chip that tells us where packets begin and end.)
924	 * We also keep track of the end of the ring and set the
925	 * end-of-ring bits as needed, and we set the ownership bits
926	 * in all except the very first descriptor. (The caller will
927	 * set this descriptor later when it start transmission or
928	 * reception.)
929	 */
930	idx = ctx->rl_idx;
931	while(1) {
932		u_int32_t		cmdstat;
933		d = &ctx->rl_ring[idx];
934		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
935			ctx->rl_maxsegs = 0;
936			return;
937		}
938		cmdstat = segs[i].ds_len;
939		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
940		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
941		if (i == 0)
942			cmdstat |= RL_TDESC_CMD_SOF;
943		else
944			cmdstat |= RL_TDESC_CMD_OWN;
945		if (idx == (RL_RX_DESC_CNT - 1))
946			cmdstat |= RL_TDESC_CMD_EOR;
947		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
948		i++;
949		if (i == nseg)
950			break;
951		RL_DESC_INC(idx);
952	}
953
954	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
955	ctx->rl_maxsegs = nseg;
956	ctx->rl_idx = idx;
957
958	return;
959}
960
961/*
962 * Map a single buffer address.
963 */
964
965static void
966re_dma_map_addr(arg, segs, nseg, error)
967	void			*arg;
968	bus_dma_segment_t	*segs;
969	int			nseg;
970	int			error;
971{
972	u_int32_t		*addr;
973
974	if (error)
975		return;
976
977	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
978	addr = arg;
979	*addr = segs->ds_addr;
980
981	return;
982}
983
984static int
985re_allocmem(dev, sc)
986	device_t		dev;
987	struct rl_softc		*sc;
988{
989	int			error;
990	int			nseg;
991	int			i;
992
993	/*
994	 * Allocate map for RX mbufs.
995	 */
996	nseg = 32;
997	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
998	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1000	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1001	if (error) {
1002		device_printf(dev, "could not allocate dma tag\n");
1003		return (ENOMEM);
1004	}
1005
1006	/*
1007	 * Allocate map for TX descriptor list.
1008	 */
1009	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1010	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1011            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1012	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1013	if (error) {
1014		device_printf(dev, "could not allocate dma tag\n");
1015		return (ENOMEM);
1016	}
1017
1018	/* Allocate DMA'able memory for the TX ring */
1019
1020        error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1021	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1022            &sc->rl_ldata.rl_tx_list_map);
1023        if (error)
1024                return (ENOMEM);
1025
1026	/* Load the map for the TX ring. */
1027
1028	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030	     RL_TX_LIST_SZ, re_dma_map_addr,
1031	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032
1033	/* Create DMA maps for TX buffers */
1034
1035	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1036		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1037			    &sc->rl_ldata.rl_tx_dmamap[i]);
1038		if (error) {
1039			device_printf(dev, "can't create DMA map for TX\n");
1040			return(ENOMEM);
1041		}
1042	}
1043
1044	/*
1045	 * Allocate map for RX descriptor list.
1046	 */
1047	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1048	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1049            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1050	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1051	if (error) {
1052		device_printf(dev, "could not allocate dma tag\n");
1053		return (ENOMEM);
1054	}
1055
1056	/* Allocate DMA'able memory for the RX ring */
1057
1058        error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1059	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1060            &sc->rl_ldata.rl_rx_list_map);
1061        if (error)
1062                return (ENOMEM);
1063
1064	/* Load the map for the RX ring. */
1065
1066	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068	     RL_TX_LIST_SZ, re_dma_map_addr,
1069	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070
1071	/* Create DMA maps for RX buffers */
1072
1073	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1074		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1075			    &sc->rl_ldata.rl_rx_dmamap[i]);
1076		if (error) {
1077			device_printf(dev, "can't create DMA map for RX\n");
1078			return(ENOMEM);
1079		}
1080	}
1081
1082	return(0);
1083}
1084
1085/*
1086 * Attach the interface. Allocate softc structures, do ifmedia
1087 * setup and ethernet/BPF attach.
1088 */
1089static int
1090re_attach(dev)
1091	device_t		dev;
1092{
1093	u_char			eaddr[ETHER_ADDR_LEN];
1094	u_int16_t		as[3];
1095	struct rl_softc		*sc;
1096	struct ifnet		*ifp;
1097	struct rl_hwrev		*hw_rev;
1098	int			hwrev;
1099	u_int16_t		re_did = 0;
1100	int			unit, error = 0, rid, i;
1101
1102	sc = device_get_softc(dev);
1103	unit = device_get_unit(dev);
1104
1105	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1106	    MTX_DEF | MTX_RECURSE);
1107#ifndef BURN_BRIDGES
1108	/*
1109	 * Handle power management nonsense.
1110	 */
1111
1112	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1113		u_int32_t		iobase, membase, irq;
1114
1115		/* Save important PCI config data. */
1116		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1117		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1118		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1119
1120		/* Reset the power state. */
1121		printf("re%d: chip is is in D%d power mode "
1122		    "-- setting to D0\n", unit,
1123		    pci_get_powerstate(dev));
1124
1125		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1126
1127		/* Restore PCI config data. */
1128		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1129		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1130		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1131	}
1132#endif
1133	/*
1134	 * Map control/status registers.
1135	 */
1136	pci_enable_busmaster(dev);
1137
1138	rid = RL_RID;
1139	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1140	    RF_ACTIVE);
1141
1142	if (sc->rl_res == NULL) {
1143		printf ("re%d: couldn't map ports/memory\n", unit);
1144		error = ENXIO;
1145		goto fail;
1146	}
1147
1148	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150
1151	/* Allocate interrupt */
1152	rid = 0;
1153	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1154	    RF_SHAREABLE | RF_ACTIVE);
1155
1156	if (sc->rl_irq == NULL) {
1157		printf("re%d: couldn't map interrupt\n", unit);
1158		error = ENXIO;
1159		goto fail;
1160	}
1161
1162	/* Reset the adapter. */
1163	re_reset(sc);
1164
1165	hw_rev = re_hwrevs;
1166	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1167	while (hw_rev->rl_desc != NULL) {
1168		if (hw_rev->rl_rev == hwrev) {
1169			sc->rl_type = hw_rev->rl_type;
1170			break;
1171		}
1172		hw_rev++;
1173	}
1174
1175	if (sc->rl_type == RL_8169) {
1176
1177		/* Set RX length mask */
1178
1179		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1180
1181		/* Force station address autoload from the EEPROM */
1182
1183		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1184		for (i = 0; i < RL_TIMEOUT; i++) {
1185			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1186				break;
1187			DELAY(100);
1188		}
1189		if (i == RL_TIMEOUT)
1190			printf ("re%d: eeprom autoload timed out\n", unit);
1191
1192			for (i = 0; i < ETHER_ADDR_LEN; i++)
1193				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1194	} else {
1195
1196		/* Set RX length mask */
1197
1198		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1199
1200		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1201		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1202		if (re_did != 0x8129)
1203			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1204
1205		/*
1206		 * Get station address from the EEPROM.
1207		 */
1208		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1209		for (i = 0; i < 3; i++) {
1210			eaddr[(i * 2) + 0] = as[i] & 0xff;
1211			eaddr[(i * 2) + 1] = as[i] >> 8;
1212		}
1213	}
1214
1215	sc->rl_unit = unit;
1216	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1217
1218	/*
1219	 * Allocate the parent bus DMA tag appropriate for PCI.
1220	 */
1221#define RL_NSEG_NEW 32
1222	error = bus_dma_tag_create(NULL,	/* parent */
1223			1, 0,			/* alignment, boundary */
1224			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1225			BUS_SPACE_MAXADDR,	/* highaddr */
1226			NULL, NULL,		/* filter, filterarg */
1227			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1228			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1229			BUS_DMA_ALLOCNOW,	/* flags */
1230			NULL, NULL,		/* lockfunc, lockarg */
1231			&sc->rl_parent_tag);
1232	if (error)
1233		goto fail;
1234
1235	error = re_allocmem(dev, sc);
1236
1237	if (error)
1238		goto fail;
1239
1240	/* Do MII setup */
1241	if (mii_phy_probe(dev, &sc->rl_miibus,
1242	    re_ifmedia_upd, re_ifmedia_sts)) {
1243		printf("re%d: MII without any phy!\n", sc->rl_unit);
1244		error = ENXIO;
1245		goto fail;
1246	}
1247
1248	ifp = &sc->arpcom.ac_if;
1249	ifp->if_softc = sc;
1250	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1251	ifp->if_mtu = ETHERMTU;
1252	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253	ifp->if_ioctl = re_ioctl;
1254	ifp->if_output = ether_output;
1255	ifp->if_capabilities = IFCAP_VLAN_MTU;
1256	ifp->if_start = re_start;
1257	ifp->if_hwassist = RE_CSUM_FEATURES;
1258	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1259#ifdef DEVICE_POLLING
1260	ifp->if_capabilities |= IFCAP_POLLING;
1261#endif
1262	ifp->if_watchdog = re_watchdog;
1263	ifp->if_init = re_init;
1264	if (sc->rl_type == RL_8169)
1265		ifp->if_baudrate = 1000000000;
1266	else
1267		ifp->if_baudrate = 100000000;
1268	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1269	ifp->if_capenable = ifp->if_capabilities;
1270
1271	callout_handle_init(&sc->rl_stat_ch);
1272
1273	/*
1274	 * Call MI attach routine.
1275	 */
1276	ether_ifattach(ifp, eaddr);
1277
1278	/* Perform hardware diagnostic. */
1279	error = re_diag(sc);
1280
1281	if (error) {
1282		printf("re%d: attach aborted due to hardware diag failure\n",
1283		    unit);
1284		ether_ifdetach(ifp);
1285		goto fail;
1286	}
1287
1288	/* Hook interrupt last to avoid having to lock softc */
1289	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1290	    re_intr, sc, &sc->rl_intrhand);
1291
1292	if (error) {
1293		printf("re%d: couldn't set up irq\n", unit);
1294		ether_ifdetach(ifp);
1295		goto fail;
1296	}
1297
1298fail:
1299	if (error)
1300		re_detach(dev);
1301
1302	return (error);
1303}
1304
1305/*
1306 * Shutdown hardware and free up resources. This can be called any
1307 * time after the mutex has been initialized. It is called in both
1308 * the error case in attach and the normal detach case so it needs
1309 * to be careful about only freeing resources that have actually been
1310 * allocated.
1311 */
1312static int
1313re_detach(dev)
1314	device_t		dev;
1315{
1316	struct rl_softc		*sc;
1317	struct ifnet		*ifp;
1318	int			i;
1319
1320	sc = device_get_softc(dev);
1321	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1322	RL_LOCK(sc);
1323	ifp = &sc->arpcom.ac_if;
1324
1325	/* These should only be active if attach succeeded */
1326	if (device_is_attached(dev)) {
1327		re_stop(sc);
1328		/*
1329		 * Force off the IFF_UP flag here, in case someone
1330		 * still had a BPF descriptor attached to this
1331		 * interface. If they do, ether_ifattach() will cause
1332		 * the BPF code to try and clear the promisc mode
1333		 * flag, which will bubble down to re_ioctl(),
1334		 * which will try to call re_init() again. This will
1335		 * turn the NIC back on and restart the MII ticker,
1336		 * which will panic the system when the kernel tries
1337		 * to invoke the re_tick() function that isn't there
1338		 * anymore.
1339		 */
1340		ifp->if_flags &= ~IFF_UP;
1341		ether_ifdetach(ifp);
1342	}
1343	if (sc->rl_miibus)
1344		device_delete_child(dev, sc->rl_miibus);
1345	bus_generic_detach(dev);
1346
1347	if (sc->rl_intrhand)
1348		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1349	if (sc->rl_irq)
1350		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1351	if (sc->rl_res)
1352		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1353
1354
1355	/* Unload and free the RX DMA ring memory and map */
1356
1357	if (sc->rl_ldata.rl_rx_list_tag) {
1358		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1359		    sc->rl_ldata.rl_rx_list_map);
1360		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1361		    sc->rl_ldata.rl_rx_list,
1362		    sc->rl_ldata.rl_rx_list_map);
1363		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1364	}
1365
1366	/* Unload and free the TX DMA ring memory and map */
1367
1368	if (sc->rl_ldata.rl_tx_list_tag) {
1369		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1370		    sc->rl_ldata.rl_tx_list_map);
1371		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1372		    sc->rl_ldata.rl_tx_list,
1373		    sc->rl_ldata.rl_tx_list_map);
1374		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1375	}
1376
1377	/* Destroy all the RX and TX buffer maps */
1378
1379	if (sc->rl_ldata.rl_mtag) {
1380		for (i = 0; i < RL_TX_DESC_CNT; i++)
1381			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1382			    sc->rl_ldata.rl_tx_dmamap[i]);
1383		for (i = 0; i < RL_RX_DESC_CNT; i++)
1384			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1385			    sc->rl_ldata.rl_rx_dmamap[i]);
1386		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1387	}
1388
1389	/* Unload and free the stats buffer and map */
1390
1391	if (sc->rl_ldata.rl_stag) {
1392		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1393		    sc->rl_ldata.rl_rx_list_map);
1394		bus_dmamem_free(sc->rl_ldata.rl_stag,
1395		    sc->rl_ldata.rl_stats,
1396		    sc->rl_ldata.rl_smap);
1397		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1398	}
1399
1400	if (sc->rl_parent_tag)
1401		bus_dma_tag_destroy(sc->rl_parent_tag);
1402
1403	RL_UNLOCK(sc);
1404	mtx_destroy(&sc->rl_mtx);
1405
1406	return(0);
1407}
1408
1409static int
1410re_newbuf(sc, idx, m)
1411	struct rl_softc		*sc;
1412	int			idx;
1413	struct mbuf		*m;
1414{
1415	struct rl_dmaload_arg	arg;
1416	struct mbuf		*n = NULL;
1417	int			error;
1418
1419	if (m == NULL) {
1420		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1421		if (n == NULL)
1422			return(ENOBUFS);
1423		m = n;
1424	} else
1425		m->m_data = m->m_ext.ext_buf;
1426
1427	/*
1428	 * Initialize mbuf length fields and fixup
1429	 * alignment so that the frame payload is
1430	 * longword aligned.
1431	 */
1432	m->m_len = m->m_pkthdr.len = MCLBYTES;
1433	m_adj(m, ETHER_ALIGN);
1434
1435	arg.sc = sc;
1436	arg.rl_idx = idx;
1437	arg.rl_maxsegs = 1;
1438	arg.rl_flags = 0;
1439	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1440
1441        error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1442	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1443	    &arg, BUS_DMA_NOWAIT);
1444	if (error || arg.rl_maxsegs != 1) {
1445		if (n != NULL)
1446			m_freem(n);
1447		return (ENOMEM);
1448	}
1449
1450	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1451	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1452
1453        bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1454	    sc->rl_ldata.rl_rx_dmamap[idx],
1455	    BUS_DMASYNC_PREREAD);
1456
1457	return(0);
1458}
1459
1460static int
1461re_tx_list_init(sc)
1462	struct rl_softc		*sc;
1463{
1464	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1465	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1466	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1467
1468	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1469	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1470	sc->rl_ldata.rl_tx_prodidx = 0;
1471	sc->rl_ldata.rl_tx_considx = 0;
1472	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1473
1474	return(0);
1475}
1476
1477static int
1478re_rx_list_init(sc)
1479	struct rl_softc		*sc;
1480{
1481	int			i;
1482
1483	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1484	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1485	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1486
1487	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1488		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1489			return(ENOBUFS);
1490	}
1491
1492	/* Flush the RX descriptors */
1493
1494	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1495	    sc->rl_ldata.rl_rx_list_map,
1496	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1497
1498	sc->rl_ldata.rl_rx_prodidx = 0;
1499	sc->rl_head = sc->rl_tail = NULL;
1500
1501	return(0);
1502}
1503
1504/*
1505 * RX handler for C+ and 8169. For the gigE chips, we support
1506 * the reception of jumbo frames that have been fragmented
1507 * across multiple 2K mbuf cluster buffers.
1508 */
1509static void
1510re_rxeof(sc)
1511	struct rl_softc		*sc;
1512{
1513	struct mbuf		*m;
1514	struct ifnet		*ifp;
1515	int			i, total_len;
1516	struct rl_desc		*cur_rx;
1517	u_int32_t		rxstat, rxvlan;
1518
1519	RL_LOCK_ASSERT(sc);
1520
1521	ifp = &sc->arpcom.ac_if;
1522	i = sc->rl_ldata.rl_rx_prodidx;
1523
1524	/* Invalidate the descriptor memory */
1525
1526	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1527	    sc->rl_ldata.rl_rx_list_map,
1528	    BUS_DMASYNC_POSTREAD);
1529
1530	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1531
1532		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1533		m = sc->rl_ldata.rl_rx_mbuf[i];
1534		total_len = RL_RXBYTES(cur_rx);
1535		rxstat = le32toh(cur_rx->rl_cmdstat);
1536		rxvlan = le32toh(cur_rx->rl_vlanctl);
1537
1538		/* Invalidate the RX mbuf and unload its map */
1539
1540		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1541		    sc->rl_ldata.rl_rx_dmamap[i],
1542		    BUS_DMASYNC_POSTWRITE);
1543		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1544		    sc->rl_ldata.rl_rx_dmamap[i]);
1545
1546		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1547			m->m_len = MCLBYTES - ETHER_ALIGN;
1548			if (sc->rl_head == NULL)
1549				sc->rl_head = sc->rl_tail = m;
1550			else {
1551				m->m_flags &= ~M_PKTHDR;
1552				sc->rl_tail->m_next = m;
1553				sc->rl_tail = m;
1554			}
1555			re_newbuf(sc, i, NULL);
1556			RL_DESC_INC(i);
1557			continue;
1558		}
1559
1560		/*
1561		 * NOTE: for the 8139C+, the frame length field
1562		 * is always 12 bits in size, but for the gigE chips,
1563		 * it is 13 bits (since the max RX frame length is 16K).
1564		 * Unfortunately, all 32 bits in the status word
1565		 * were already used, so to make room for the extra
1566		 * length bit, RealTek took out the 'frame alignment
1567		 * error' bit and shifted the other status bits
1568		 * over one slot. The OWN, EOR, FS and LS bits are
1569		 * still in the same places. We have already extracted
1570		 * the frame length and checked the OWN bit, so rather
1571		 * than using an alternate bit mapping, we shift the
1572		 * status bits one space to the right so we can evaluate
1573		 * them using the 8169 status as though it was in the
1574		 * same format as that of the 8139C+.
1575		 */
1576		if (sc->rl_type == RL_8169)
1577			rxstat >>= 1;
1578
1579		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1580			ifp->if_ierrors++;
1581			/*
1582			 * If this is part of a multi-fragment packet,
1583			 * discard all the pieces.
1584			 */
1585			if (sc->rl_head != NULL) {
1586				m_freem(sc->rl_head);
1587				sc->rl_head = sc->rl_tail = NULL;
1588			}
1589			re_newbuf(sc, i, m);
1590			RL_DESC_INC(i);
1591			continue;
1592		}
1593
1594		/*
1595		 * If allocating a replacement mbuf fails,
1596		 * reload the current one.
1597		 */
1598
1599		if (re_newbuf(sc, i, NULL)) {
1600			ifp->if_ierrors++;
1601			if (sc->rl_head != NULL) {
1602				m_freem(sc->rl_head);
1603				sc->rl_head = sc->rl_tail = NULL;
1604			}
1605			re_newbuf(sc, i, m);
1606			RL_DESC_INC(i);
1607			continue;
1608		}
1609
1610		RL_DESC_INC(i);
1611
1612		if (sc->rl_head != NULL) {
1613			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1614			/*
1615			 * Special case: if there's 4 bytes or less
1616			 * in this buffer, the mbuf can be discarded:
1617			 * the last 4 bytes is the CRC, which we don't
1618			 * care about anyway.
1619			 */
1620			if (m->m_len <= ETHER_CRC_LEN) {
1621				sc->rl_tail->m_len -=
1622				    (ETHER_CRC_LEN - m->m_len);
1623				m_freem(m);
1624			} else {
1625				m->m_len -= ETHER_CRC_LEN;
1626				m->m_flags &= ~M_PKTHDR;
1627				sc->rl_tail->m_next = m;
1628			}
1629			m = sc->rl_head;
1630			sc->rl_head = sc->rl_tail = NULL;
1631			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1632		} else
1633			m->m_pkthdr.len = m->m_len =
1634			    (total_len - ETHER_CRC_LEN);
1635
1636		ifp->if_ipackets++;
1637		m->m_pkthdr.rcvif = ifp;
1638
1639		/* Do RX checksumming if enabled */
1640
1641		if (ifp->if_capenable & IFCAP_RXCSUM) {
1642
1643			/* Check IP header checksum */
1644			if (rxstat & RL_RDESC_STAT_PROTOID)
1645				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1646			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1647				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1648
1649			/* Check TCP/UDP checksum */
1650			if ((RL_TCPPKT(rxstat) &&
1651			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1652			    (RL_UDPPKT(rxstat) &&
1653			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1654				m->m_pkthdr.csum_flags |=
1655				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1656				m->m_pkthdr.csum_data = 0xffff;
1657			}
1658		}
1659
1660		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1661			VLAN_INPUT_TAG(ifp, m,
1662			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1663		RL_UNLOCK(sc);
1664		(*ifp->if_input)(ifp, m);
1665		RL_LOCK(sc);
1666	}
1667
1668	/* Flush the RX DMA ring */
1669
1670	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1671	    sc->rl_ldata.rl_rx_list_map,
1672	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1673
1674	sc->rl_ldata.rl_rx_prodidx = i;
1675
1676	return;
1677}
1678
1679static void
1680re_txeof(sc)
1681	struct rl_softc		*sc;
1682{
1683	struct ifnet		*ifp;
1684	u_int32_t		txstat;
1685	int			idx;
1686
1687	ifp = &sc->arpcom.ac_if;
1688	idx = sc->rl_ldata.rl_tx_considx;
1689
1690	/* Invalidate the TX descriptor list */
1691
1692	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1693	    sc->rl_ldata.rl_tx_list_map,
1694	    BUS_DMASYNC_POSTREAD);
1695
1696	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1697
1698		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1699		if (txstat & RL_TDESC_CMD_OWN)
1700			break;
1701
1702		/*
1703		 * We only stash mbufs in the last descriptor
1704		 * in a fragment chain, which also happens to
1705		 * be the only place where the TX status bits
1706		 * are valid.
1707		 */
1708
1709		if (txstat & RL_TDESC_CMD_EOF) {
1710			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1711			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1712			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1713			    sc->rl_ldata.rl_tx_dmamap[idx]);
1714			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1715			    RL_TDESC_STAT_COLCNT))
1716				ifp->if_collisions++;
1717			if (txstat & RL_TDESC_STAT_TXERRSUM)
1718				ifp->if_oerrors++;
1719			else
1720				ifp->if_opackets++;
1721		}
1722		sc->rl_ldata.rl_tx_free++;
1723		RL_DESC_INC(idx);
1724	}
1725
1726	/* No changes made to the TX ring, so no flush needed */
1727
1728	if (idx != sc->rl_ldata.rl_tx_considx) {
1729		sc->rl_ldata.rl_tx_considx = idx;
1730		ifp->if_flags &= ~IFF_OACTIVE;
1731		ifp->if_timer = 0;
1732	}
1733
1734	/*
1735	 * If not all descriptors have been released reaped yet,
1736	 * reload the timer so that we will eventually get another
1737	 * interrupt that will cause us to re-enter this routine.
1738	 * This is done in case the transmitter has gone idle.
1739	 */
1740	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1741                CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1742
1743	return;
1744}
1745
1746static void
1747re_tick(xsc)
1748	void			*xsc;
1749{
1750	struct rl_softc		*sc;
1751	struct mii_data		*mii;
1752
1753	sc = xsc;
1754	RL_LOCK(sc);
1755	mii = device_get_softc(sc->rl_miibus);
1756
1757	mii_tick(mii);
1758
1759	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1760	RL_UNLOCK(sc);
1761
1762	return;
1763}
1764
1765#ifdef DEVICE_POLLING
1766static void
1767re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1768{
1769	struct rl_softc *sc = ifp->if_softc;
1770
1771	RL_LOCK(sc);
1772	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1773		ether_poll_deregister(ifp);
1774		cmd = POLL_DEREGISTER;
1775	}
1776	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1777		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1778		goto done;
1779	}
1780
1781	sc->rxcycles = count;
1782	re_rxeof(sc);
1783	re_txeof(sc);
1784
1785	if (ifp->if_snd.ifq_head != NULL)
1786		(*ifp->if_start)(ifp);
1787
1788	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1789		u_int16_t       status;
1790
1791		status = CSR_READ_2(sc, RL_ISR);
1792		if (status == 0xffff)
1793			goto done;
1794		if (status)
1795			CSR_WRITE_2(sc, RL_ISR, status);
1796
1797		/*
1798		 * XXX check behaviour on receiver stalls.
1799		 */
1800
1801		if (status & RL_ISR_SYSTEM_ERR) {
1802			re_reset(sc);
1803			re_init(sc);
1804		}
1805	}
1806done:
1807	RL_UNLOCK(sc);
1808}
1809#endif /* DEVICE_POLLING */
1810
1811static void
1812re_intr(arg)
1813	void			*arg;
1814{
1815	struct rl_softc		*sc;
1816	struct ifnet		*ifp;
1817	u_int16_t		status;
1818
1819	sc = arg;
1820
1821	if (sc->suspended) {
1822		return;
1823	}
1824
1825	RL_LOCK(sc);
1826	ifp = &sc->arpcom.ac_if;
1827
1828	if (!(ifp->if_flags & IFF_UP)) {
1829		RL_UNLOCK(sc);
1830		return;
1831	}
1832
1833#ifdef DEVICE_POLLING
1834	if  (ifp->if_flags & IFF_POLLING)
1835		goto done;
1836	if ((ifp->if_capenable & IFCAP_POLLING) &&
1837	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1838		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1839		re_poll(ifp, 0, 1);
1840		goto done;
1841	}
1842#endif /* DEVICE_POLLING */
1843
1844	for (;;) {
1845
1846		status = CSR_READ_2(sc, RL_ISR);
1847		/* If the card has gone away the read returns 0xffff. */
1848		if (status == 0xffff)
1849			break;
1850		if (status)
1851			CSR_WRITE_2(sc, RL_ISR, status);
1852
1853		if ((status & RL_INTRS_CPLUS) == 0)
1854			break;
1855
1856		if (status & RL_ISR_RX_OK)
1857			re_rxeof(sc);
1858
1859		if (status & RL_ISR_RX_ERR)
1860			re_rxeof(sc);
1861
1862		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1863		    (status & RL_ISR_TX_ERR) ||
1864		    (status & RL_ISR_TX_DESC_UNAVAIL))
1865			re_txeof(sc);
1866
1867		if (status & RL_ISR_SYSTEM_ERR) {
1868			re_reset(sc);
1869			re_init(sc);
1870		}
1871
1872		if (status & RL_ISR_LINKCHG) {
1873			untimeout(re_tick, sc, sc->rl_stat_ch);
1874			re_tick(sc);
1875		}
1876	}
1877
1878	if (ifp->if_snd.ifq_head != NULL)
1879		(*ifp->if_start)(ifp);
1880
1881#ifdef DEVICE_POLLING
1882done:
1883#endif
1884	RL_UNLOCK(sc);
1885
1886	return;
1887}
1888
1889static int
1890re_encap(sc, m_head, idx)
1891	struct rl_softc		*sc;
1892	struct mbuf		*m_head;
1893	int			*idx;
1894{
1895	struct mbuf		*m_new = NULL;
1896	struct rl_dmaload_arg	arg;
1897	bus_dmamap_t		map;
1898	int			error;
1899	struct m_tag		*mtag;
1900
1901	if (sc->rl_ldata.rl_tx_free <= 4)
1902		return(EFBIG);
1903
1904	/*
1905	 * Set up checksum offload. Note: checksum offload bits must
1906	 * appear in all descriptors of a multi-descriptor transmit
1907	 * attempt. (This is according to testing done with an 8169
1908	 * chip. I'm not sure if this is a requirement or a bug.)
1909	 */
1910
1911	arg.rl_flags = 0;
1912
1913	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1914		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1915	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1916		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1917	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1918		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1919
1920	arg.sc = sc;
1921	arg.rl_idx = *idx;
1922	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1923	if (arg.rl_maxsegs > 4)
1924		arg.rl_maxsegs -= 4;
1925	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1926
1927	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1928	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1929	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1930
1931	if (error && error != EFBIG) {
1932		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1933		return(ENOBUFS);
1934	}
1935
1936	/* Too many segments to map, coalesce into a single mbuf */
1937
1938	if (error || arg.rl_maxsegs == 0) {
1939		m_new = m_defrag(m_head, M_DONTWAIT);
1940		if (m_new == NULL)
1941			return(1);
1942		else
1943			m_head = m_new;
1944
1945		arg.sc = sc;
1946		arg.rl_idx = *idx;
1947		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1948		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1949
1950		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1951		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1952		if (error) {
1953			printf("re%d: can't map mbuf (error %d)\n",
1954			    sc->rl_unit, error);
1955			return(EFBIG);
1956		}
1957	}
1958
1959	/*
1960	 * Insure that the map for this transmission
1961	 * is placed at the array index of the last descriptor
1962	 * in this chain.
1963	 */
1964	sc->rl_ldata.rl_tx_dmamap[*idx] =
1965	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1966	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1967
1968	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1969	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1970
1971	/*
1972	 * Set up hardware VLAN tagging. Note: vlan tag info must
1973	 * appear in the first descriptor of a multi-descriptor
1974	 * transmission attempt.
1975	 */
1976
1977	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1978	if (mtag != NULL)
1979		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1980		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1981
1982	/* Transfer ownership of packet to the chip. */
1983
1984	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1985	    htole32(RL_TDESC_CMD_OWN);
1986	if (*idx != arg.rl_idx)
1987		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1988		    htole32(RL_TDESC_CMD_OWN);
1989
1990	RL_DESC_INC(arg.rl_idx);
1991	*idx = arg.rl_idx;
1992
1993	return(0);
1994}
1995
1996/*
1997 * Main transmit routine for C+ and gigE NICs.
1998 */
1999
2000static void
2001re_start(ifp)
2002	struct ifnet		*ifp;
2003{
2004	struct rl_softc		*sc;
2005	struct mbuf		*m_head = NULL;
2006	int			idx;
2007
2008	sc = ifp->if_softc;
2009	RL_LOCK(sc);
2010
2011	idx = sc->rl_ldata.rl_tx_prodidx;
2012
2013	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2014		IF_DEQUEUE(&ifp->if_snd, m_head);
2015		if (m_head == NULL)
2016			break;
2017
2018		if (re_encap(sc, m_head, &idx)) {
2019			IF_PREPEND(&ifp->if_snd, m_head);
2020			ifp->if_flags |= IFF_OACTIVE;
2021			break;
2022		}
2023
2024		/*
2025		 * If there's a BPF listener, bounce a copy of this frame
2026		 * to him.
2027		 */
2028		BPF_MTAP(ifp, m_head);
2029	}
2030
2031	/* Flush the TX descriptors */
2032
2033	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2034	    sc->rl_ldata.rl_tx_list_map,
2035	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2036
2037	sc->rl_ldata.rl_tx_prodidx = idx;
2038
2039	/*
2040	 * RealTek put the TX poll request register in a different
2041	 * location on the 8169 gigE chip. I don't know why.
2042	 */
2043
2044	if (sc->rl_type == RL_8169)
2045		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2046	else
2047		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2048
2049	/*
2050	 * Use the countdown timer for interrupt moderation.
2051	 * 'TX done' interrupts are disabled. Instead, we reset the
2052	 * countdown timer, which will begin counting until it hits
2053	 * the value in the TIMERINT register, and then trigger an
2054	 * interrupt. Each time we write to the TIMERCNT register,
2055	 * the timer count is reset to 0.
2056	 */
2057	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2058
2059	RL_UNLOCK(sc);
2060
2061	/*
2062	 * Set a timeout in case the chip goes out to lunch.
2063	 */
2064	ifp->if_timer = 5;
2065
2066	return;
2067}
2068
2069static void
2070re_init(xsc)
2071	void			*xsc;
2072{
2073	struct rl_softc		*sc = xsc;
2074	struct ifnet		*ifp = &sc->arpcom.ac_if;
2075	struct mii_data		*mii;
2076	u_int32_t		rxcfg = 0;
2077
2078	RL_LOCK(sc);
2079	mii = device_get_softc(sc->rl_miibus);
2080
2081	/*
2082	 * Cancel pending I/O and free all RX/TX buffers.
2083	 */
2084	re_stop(sc);
2085
2086	/*
2087	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2088	 * RX checksum offload. We must configure the C+ register
2089	 * before all others.
2090	 */
2091	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2092	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2093	    RL_CPLUSCMD_VLANSTRIP|
2094	    (ifp->if_capenable & IFCAP_RXCSUM ?
2095	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2096
2097	/*
2098	 * Init our MAC address.  Even though the chipset
2099	 * documentation doesn't mention it, we need to enter "Config
2100	 * register write enable" mode to modify the ID registers.
2101	 */
2102	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2103	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2104	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2105	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2106	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2107	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2108
2109	/*
2110	 * For C+ mode, initialize the RX descriptors and mbufs.
2111	 */
2112	re_rx_list_init(sc);
2113	re_tx_list_init(sc);
2114
2115	/*
2116	 * Enable transmit and receive.
2117	 */
2118	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2119
2120	/*
2121	 * Set the initial TX and RX configuration.
2122	 */
2123	if (sc->rl_testmode) {
2124		if (sc->rl_type == RL_8169)
2125			CSR_WRITE_4(sc, RL_TXCFG,
2126			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2127		else
2128			CSR_WRITE_4(sc, RL_TXCFG,
2129			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2130	} else
2131		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2132	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2133
2134	/* Set the individual bit to receive frames for this host only. */
2135	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2136	rxcfg |= RL_RXCFG_RX_INDIV;
2137
2138	/* If we want promiscuous mode, set the allframes bit. */
2139	if (ifp->if_flags & IFF_PROMISC) {
2140		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2141		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2142	} else {
2143		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2144		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2145	}
2146
2147	/*
2148	 * Set capture broadcast bit to capture broadcast frames.
2149	 */
2150	if (ifp->if_flags & IFF_BROADCAST) {
2151		rxcfg |= RL_RXCFG_RX_BROAD;
2152		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2153	} else {
2154		rxcfg &= ~RL_RXCFG_RX_BROAD;
2155		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2156	}
2157
2158	/*
2159	 * Program the multicast filter, if necessary.
2160	 */
2161	re_setmulti(sc);
2162
2163#ifdef DEVICE_POLLING
2164	/*
2165	 * Disable interrupts if we are polling.
2166	 */
2167	if (ifp->if_flags & IFF_POLLING)
2168		CSR_WRITE_2(sc, RL_IMR, 0);
2169	else	/* otherwise ... */
2170#endif /* DEVICE_POLLING */
2171	/*
2172	 * Enable interrupts.
2173	 */
2174	if (sc->rl_testmode)
2175		CSR_WRITE_2(sc, RL_IMR, 0);
2176	else
2177		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2178
2179	/* Set initial TX threshold */
2180	sc->rl_txthresh = RL_TX_THRESH_INIT;
2181
2182	/* Start RX/TX process. */
2183	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2184#ifdef notdef
2185	/* Enable receiver and transmitter. */
2186	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2187#endif
2188	/*
2189	 * Load the addresses of the RX and TX lists into the chip.
2190	 */
2191
2192	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2193	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2194	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2195	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2196
2197	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2198	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2199	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2200	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2201
2202	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2203
2204	/*
2205	 * Initialize the timer interrupt register so that
2206	 * a timer interrupt will be generated once the timer
2207	 * reaches a certain number of ticks. The timer is
2208	 * reloaded on each transmit. This gives us TX interrupt
2209	 * moderation, which dramatically improves TX frame rate.
2210	 */
2211
2212	if (sc->rl_type == RL_8169)
2213		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2214	else
2215		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2216
2217	/*
2218	 * For 8169 gigE NICs, set the max allowed RX packet
2219	 * size so we can receive jumbo frames.
2220	 */
2221	if (sc->rl_type == RL_8169)
2222		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2223
2224	if (sc->rl_testmode) {
2225		RL_UNLOCK(sc);
2226		return;
2227	}
2228
2229	mii_mediachg(mii);
2230
2231	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2232
2233	ifp->if_flags |= IFF_RUNNING;
2234	ifp->if_flags &= ~IFF_OACTIVE;
2235
2236	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2237	RL_UNLOCK(sc);
2238
2239	return;
2240}
2241
2242/*
2243 * Set media options.
2244 */
2245static int
2246re_ifmedia_upd(ifp)
2247	struct ifnet		*ifp;
2248{
2249	struct rl_softc		*sc;
2250	struct mii_data		*mii;
2251
2252	sc = ifp->if_softc;
2253	mii = device_get_softc(sc->rl_miibus);
2254	mii_mediachg(mii);
2255
2256	return(0);
2257}
2258
2259/*
2260 * Report current media status.
2261 */
2262static void
2263re_ifmedia_sts(ifp, ifmr)
2264	struct ifnet		*ifp;
2265	struct ifmediareq	*ifmr;
2266{
2267	struct rl_softc		*sc;
2268	struct mii_data		*mii;
2269
2270	sc = ifp->if_softc;
2271	mii = device_get_softc(sc->rl_miibus);
2272
2273	mii_pollstat(mii);
2274	ifmr->ifm_active = mii->mii_media_active;
2275	ifmr->ifm_status = mii->mii_media_status;
2276
2277	return;
2278}
2279
2280static int
2281re_ioctl(ifp, command, data)
2282	struct ifnet		*ifp;
2283	u_long			command;
2284	caddr_t			data;
2285{
2286	struct rl_softc		*sc = ifp->if_softc;
2287	struct ifreq		*ifr = (struct ifreq *) data;
2288	struct mii_data		*mii;
2289	int			error = 0;
2290
2291	RL_LOCK(sc);
2292
2293	switch(command) {
2294	case SIOCSIFMTU:
2295		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2296			error = EINVAL;
2297		ifp->if_mtu = ifr->ifr_mtu;
2298		break;
2299	case SIOCSIFFLAGS:
2300		if (ifp->if_flags & IFF_UP) {
2301			re_init(sc);
2302		} else {
2303			if (ifp->if_flags & IFF_RUNNING)
2304				re_stop(sc);
2305		}
2306		error = 0;
2307		break;
2308	case SIOCADDMULTI:
2309	case SIOCDELMULTI:
2310		re_setmulti(sc);
2311		error = 0;
2312		break;
2313	case SIOCGIFMEDIA:
2314	case SIOCSIFMEDIA:
2315		mii = device_get_softc(sc->rl_miibus);
2316		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2317		break;
2318	case SIOCSIFCAP:
2319		ifp->if_capenable = ifr->ifr_reqcap;
2320		if (ifp->if_capenable & IFCAP_TXCSUM)
2321			ifp->if_hwassist = RE_CSUM_FEATURES;
2322		else
2323			ifp->if_hwassist = 0;
2324		if (ifp->if_flags & IFF_RUNNING)
2325			re_init(sc);
2326		break;
2327	default:
2328		error = ether_ioctl(ifp, command, data);
2329		break;
2330	}
2331
2332	RL_UNLOCK(sc);
2333
2334	return(error);
2335}
2336
2337static void
2338re_watchdog(ifp)
2339	struct ifnet		*ifp;
2340{
2341	struct rl_softc		*sc;
2342
2343	sc = ifp->if_softc;
2344	RL_LOCK(sc);
2345	printf("re%d: watchdog timeout\n", sc->rl_unit);
2346	ifp->if_oerrors++;
2347
2348	re_txeof(sc);
2349	re_rxeof(sc);
2350
2351	re_init(sc);
2352
2353	RL_UNLOCK(sc);
2354
2355	return;
2356}
2357
2358/*
2359 * Stop the adapter and free any mbufs allocated to the
2360 * RX and TX lists.
2361 */
2362static void
2363re_stop(sc)
2364	struct rl_softc		*sc;
2365{
2366	register int		i;
2367	struct ifnet		*ifp;
2368
2369	RL_LOCK(sc);
2370	ifp = &sc->arpcom.ac_if;
2371	ifp->if_timer = 0;
2372
2373	untimeout(re_tick, sc, sc->rl_stat_ch);
2374	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2375#ifdef DEVICE_POLLING
2376	ether_poll_deregister(ifp);
2377#endif /* DEVICE_POLLING */
2378
2379	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2380	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2381
2382	if (sc->rl_head != NULL) {
2383		m_freem(sc->rl_head);
2384		sc->rl_head = sc->rl_tail = NULL;
2385	}
2386
2387	/* Free the TX list buffers. */
2388
2389	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2390		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2391			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2392			    sc->rl_ldata.rl_tx_dmamap[i]);
2393			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2394			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2395		}
2396	}
2397
2398	/* Free the RX list buffers. */
2399
2400	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2401		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2402			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2403			    sc->rl_ldata.rl_rx_dmamap[i]);
2404			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2405			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2406		}
2407	}
2408
2409	RL_UNLOCK(sc);
2410	return;
2411}
2412
2413/*
2414 * Device suspend routine.  Stop the interface and save some PCI
2415 * settings in case the BIOS doesn't restore them properly on
2416 * resume.
2417 */
2418static int
2419re_suspend(dev)
2420	device_t		dev;
2421{
2422	register int		i;
2423	struct rl_softc		*sc;
2424
2425	sc = device_get_softc(dev);
2426
2427	re_stop(sc);
2428
2429	for (i = 0; i < 5; i++)
2430		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2431	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2432	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2433	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2434	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2435
2436	sc->suspended = 1;
2437
2438	return (0);
2439}
2440
2441/*
2442 * Device resume routine.  Restore some PCI settings in case the BIOS
2443 * doesn't, re-enable busmastering, and restart the interface if
2444 * appropriate.
2445 */
2446static int
2447re_resume(dev)
2448	device_t		dev;
2449{
2450	register int		i;
2451	struct rl_softc		*sc;
2452	struct ifnet		*ifp;
2453
2454	sc = device_get_softc(dev);
2455	ifp = &sc->arpcom.ac_if;
2456
2457	/* better way to do this? */
2458	for (i = 0; i < 5; i++)
2459		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2460	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2461	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2462	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2463	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2464
2465	/* reenable busmastering */
2466	pci_enable_busmaster(dev);
2467	pci_enable_io(dev, RL_RES);
2468
2469	/* reinitialize interface if necessary */
2470	if (ifp->if_flags & IFF_UP)
2471		re_init(sc);
2472
2473	sc->suspended = 0;
2474
2475	return (0);
2476}
2477
2478/*
2479 * Stop all chip I/O so that the kernel's probe routines don't
2480 * get confused by errant DMAs when rebooting.
2481 */
2482static void
2483re_shutdown(dev)
2484	device_t		dev;
2485{
2486	struct rl_softc		*sc;
2487
2488	sc = device_get_softc(dev);
2489
2490	re_stop(sc);
2491
2492	return;
2493}
2494