if_re.c revision 121816
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
35 *
36 * Written by Bill Paul <wpaul@windriver.com>
37 * Senior Networking Software Engineer
38 * Wind River Systems
39 */
40
41/*
42 * This driver is designed to support RealTek's next generation of
43 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
44 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
45 * and the RTL8110S.
46 *
47 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
48 * with the older 8139 family, however it also supports a special
49 * C+ mode of operation that provides several new performance enhancing
50 * features. These include:
51 *
52 *	o Descriptor based DMA mechanism. Each descriptor represents
53 *	  a single packet fragment. Data buffers may be aligned on
54 *	  any byte boundary.
55 *
56 *	o 64-bit DMA
57 *
58 *	o TCP/IP checksum offload for both RX and TX
59 *
60 *	o High and normal priority transmit DMA rings
61 *
62 *	o VLAN tag insertion and extraction
63 *
64 *	o TCP large send (segmentation offload)
65 *
66 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
67 * programming API is fairly straightforward. The RX filtering, EEPROM
68 * access and PHY access is the same as it is on the older 8139 series
69 * chips.
70 *
71 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
72 * same programming API and feature set as the 8139C+ with the following
73 * differences and additions:
74 *
75 *	o 1000Mbps mode
76 *
77 *	o Jumbo frames
78 *
79 * 	o GMII and TBI ports/registers for interfacing with copper
80 *	  or fiber PHYs
81 *
82 *      o RX and TX DMA rings can have up to 1024 descriptors
83 *        (the 8139C+ allows a maximum of 64)
84 *
85 *	o Slight differences in register layout from the 8139C+
86 *
87 * The TX start and timer interrupt registers are at different locations
88 * on the 8169 than they are on the 8139C+. Also, the status word in the
89 * RX descriptor has a slightly different bit layout. The 8169 does not
90 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
91 * copper gigE PHY.
92 *
93 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
94 * (the 'S' stands for 'single-chip'). These devices have the same
95 * programming API as the older 8169, but also have some vendor-specific
96 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
97 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
98 *
99 * This driver takes advantage of the RX and TX checksum offload and
100 * VLAN tag insertion/extraction features. It also implements TX
101 * interrupt moderation using the timer interrupt registers, which
102 * significantly reduces TX interrupt load. There is also support
103 * for jumbo frames, however the 8169/8169S/8110S can not transmit
104 * jumbo frames larger than 7.5K, so the max MTU possible with this
105 * driver is 7500 bytes.
106 */
107
108#include <sys/cdefs.h>
109__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 121816 2003-10-31 18:32:15Z brooks $");
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/kernel.h>
118#include <sys/socket.h>
119
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/ethernet.h>
123#include <net/if_dl.h>
124#include <net/if_media.h>
125#include <net/if_vlan_var.h>
126
127#include <net/bpf.h>
128
129#include <machine/bus_pio.h>
130#include <machine/bus_memio.h>
131#include <machine/bus.h>
132#include <machine/resource.h>
133#include <sys/bus.h>
134#include <sys/rman.h>
135
136#include <dev/mii/mii.h>
137#include <dev/mii/miivar.h>
138
139#include <dev/pci/pcireg.h>
140#include <dev/pci/pcivar.h>
141
142MODULE_DEPEND(re, pci, 1, 1, 1);
143MODULE_DEPEND(re, ether, 1, 1, 1);
144MODULE_DEPEND(re, miibus, 1, 1, 1);
145
146/* "controller miibus0" required.  See GENERIC if you get errors here. */
147#include "miibus_if.h"
148
149/*
150 * Default to using PIO access for this driver.
151 */
152#define RE_USEIOSPACE
153
154#include <pci/if_rlreg.h>
155
156#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157
158/*
159 * Various supported device vendors/types and their names.
160 */
161static struct rl_type re_devs[] = {
162	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163		"RealTek 8139C+ 10/100BaseTX" },
164	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165		"RealTek 8169 Gigabit Ethernet" },
166	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167		"RealTek 8169S Single-chip Gigabit Ethernet" },
168	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169		"RealTek 8110S Single-chip Gigabit Ethernet" },
170	{ 0, 0, 0, NULL }
171};
172
173static struct rl_hwrev re_hwrevs[] = {
174	{ RL_HWREV_8139, RL_8139,  "" },
175	{ RL_HWREV_8139A, RL_8139, "A" },
176	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177	{ RL_HWREV_8139B, RL_8139, "B" },
178	{ RL_HWREV_8130, RL_8139, "8130" },
179	{ RL_HWREV_8139C, RL_8139, "C" },
180	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182	{ RL_HWREV_8169, RL_8169, "8169"},
183	{ RL_HWREV_8169S, RL_8169, "8169S"},
184	{ RL_HWREV_8110S, RL_8169, "8110S"},
185	{ RL_HWREV_8100, RL_8139, "8100"},
186	{ RL_HWREV_8101, RL_8139, "8101"},
187	{ 0, 0, NULL }
188};
189
190static int re_probe		(device_t);
191static int re_attach		(device_t);
192static int re_detach		(device_t);
193
194static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195
196static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198				    bus_size_t, int);
199static int re_allocmem		(device_t, struct rl_softc *);
200static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201static int re_rx_list_init	(struct rl_softc *);
202static int re_tx_list_init	(struct rl_softc *);
203static void re_rxeof		(struct rl_softc *);
204static void re_txeof		(struct rl_softc *);
205static void re_intr		(void *);
206static void re_tick		(void *);
207static void re_start		(struct ifnet *);
208static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209static void re_init		(void *);
210static void re_stop		(struct rl_softc *);
211static void re_watchdog		(struct ifnet *);
212static int re_suspend		(device_t);
213static int re_resume		(device_t);
214static void re_shutdown		(device_t);
215static int re_ifmedia_upd	(struct ifnet *);
216static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static void re_eeprom_putbyte	(struct rl_softc *, int);
219static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221static int re_gmii_readreg	(device_t, int, int);
222static int re_gmii_writereg	(device_t, int, int, int);
223
224static int re_miibus_readreg	(device_t, int, int);
225static int re_miibus_writereg	(device_t, int, int, int);
226static void re_miibus_statchg	(device_t);
227
228static u_int8_t re_calchash	(caddr_t);
229static void re_setmulti		(struct rl_softc *);
230static void re_reset		(struct rl_softc *);
231
232static int re_diag		(struct rl_softc *);
233
234#ifdef RE_USEIOSPACE
235#define RL_RES			SYS_RES_IOPORT
236#define RL_RID			RL_PCI_LOIO
237#else
238#define RL_RES			SYS_RES_MEMORY
239#define RL_RID			RL_PCI_LOMEM
240#endif
241
242static device_method_t re_methods[] = {
243	/* Device interface */
244	DEVMETHOD(device_probe,		re_probe),
245	DEVMETHOD(device_attach,	re_attach),
246	DEVMETHOD(device_detach,	re_detach),
247	DEVMETHOD(device_suspend,	re_suspend),
248	DEVMETHOD(device_resume,	re_resume),
249	DEVMETHOD(device_shutdown,	re_shutdown),
250
251	/* bus interface */
252	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254
255	/* MII interface */
256	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259
260	{ 0, 0 }
261};
262
263static driver_t re_driver = {
264	"re",
265	re_methods,
266	sizeof(struct rl_softc)
267};
268
269static devclass_t re_devclass;
270
271DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274
275#define EE_SET(x)					\
276	CSR_WRITE_1(sc, RL_EECMD,			\
277		CSR_READ_1(sc, RL_EECMD) | x)
278
279#define EE_CLR(x)					\
280	CSR_WRITE_1(sc, RL_EECMD,			\
281		CSR_READ_1(sc, RL_EECMD) & ~x)
282
283/*
284 * Send a read command and address to the EEPROM, check for ACK.
285 */
286static void
287re_eeprom_putbyte(sc, addr)
288	struct rl_softc		*sc;
289	int			addr;
290{
291	register int		d, i;
292
293	d = addr | sc->rl_eecmd_read;
294
295	/*
296	 * Feed in each bit and strobe the clock.
297	 */
298	for (i = 0x400; i; i >>= 1) {
299		if (d & i) {
300			EE_SET(RL_EE_DATAIN);
301		} else {
302			EE_CLR(RL_EE_DATAIN);
303		}
304		DELAY(100);
305		EE_SET(RL_EE_CLK);
306		DELAY(150);
307		EE_CLR(RL_EE_CLK);
308		DELAY(100);
309	}
310
311	return;
312}
313
314/*
315 * Read a word of data stored in the EEPROM at address 'addr.'
316 */
317static void
318re_eeprom_getword(sc, addr, dest)
319	struct rl_softc		*sc;
320	int			addr;
321	u_int16_t		*dest;
322{
323	register int		i;
324	u_int16_t		word = 0;
325
326	/* Enter EEPROM access mode. */
327	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328
329	/*
330	 * Send address of word we want to read.
331	 */
332	re_eeprom_putbyte(sc, addr);
333
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335
336	/*
337	 * Start reading bits from EEPROM.
338	 */
339	for (i = 0x8000; i; i >>= 1) {
340		EE_SET(RL_EE_CLK);
341		DELAY(100);
342		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343			word |= i;
344		EE_CLR(RL_EE_CLK);
345		DELAY(100);
346	}
347
348	/* Turn off EEPROM access mode. */
349	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350
351	*dest = word;
352
353	return;
354}
355
356/*
357 * Read a sequence of words from the EEPROM.
358 */
359static void
360re_read_eeprom(sc, dest, off, cnt, swap)
361	struct rl_softc		*sc;
362	caddr_t			dest;
363	int			off;
364	int			cnt;
365	int			swap;
366{
367	int			i;
368	u_int16_t		word = 0, *ptr;
369
370	for (i = 0; i < cnt; i++) {
371		re_eeprom_getword(sc, off + i, &word);
372		ptr = (u_int16_t *)(dest + (i * 2));
373		if (swap)
374			*ptr = ntohs(word);
375		else
376			*ptr = word;
377	}
378
379	return;
380}
381
382static int
383re_gmii_readreg(dev, phy, reg)
384	device_t		dev;
385	int			phy, reg;
386{
387	struct rl_softc		*sc;
388	u_int32_t		rval;
389	int			i;
390
391	if (phy != 1)
392		return(0);
393
394	sc = device_get_softc(dev);
395
396	/* Let the rgephy driver read the GMEDIASTAT register */
397
398	if (reg == RL_GMEDIASTAT) {
399		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400		return(rval);
401	}
402
403	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404	DELAY(1000);
405
406	for (i = 0; i < RL_TIMEOUT; i++) {
407		rval = CSR_READ_4(sc, RL_PHYAR);
408		if (rval & RL_PHYAR_BUSY)
409			break;
410		DELAY(100);
411	}
412
413	if (i == RL_TIMEOUT) {
414		printf ("re%d: PHY read failed\n", sc->rl_unit);
415		return (0);
416	}
417
418	return (rval & RL_PHYAR_PHYDATA);
419}
420
421static int
422re_gmii_writereg(dev, phy, reg, data)
423	device_t		dev;
424	int			phy, reg, data;
425{
426	struct rl_softc		*sc;
427	u_int32_t		rval;
428	int			i;
429
430	sc = device_get_softc(dev);
431
432	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434	DELAY(1000);
435
436	for (i = 0; i < RL_TIMEOUT; i++) {
437		rval = CSR_READ_4(sc, RL_PHYAR);
438		if (!(rval & RL_PHYAR_BUSY))
439			break;
440		DELAY(100);
441	}
442
443	if (i == RL_TIMEOUT) {
444		printf ("re%d: PHY write failed\n", sc->rl_unit);
445		return (0);
446	}
447
448	return (0);
449}
450
451static int
452re_miibus_readreg(dev, phy, reg)
453	device_t		dev;
454	int			phy, reg;
455{
456	struct rl_softc		*sc;
457	u_int16_t		rval = 0;
458	u_int16_t		re8139_reg = 0;
459
460	sc = device_get_softc(dev);
461	RL_LOCK(sc);
462
463	if (sc->rl_type == RL_8169) {
464		rval = re_gmii_readreg(dev, phy, reg);
465		RL_UNLOCK(sc);
466		return (rval);
467	}
468
469	/* Pretend the internal PHY is only at address 0 */
470	if (phy) {
471		RL_UNLOCK(sc);
472		return(0);
473	}
474	switch(reg) {
475	case MII_BMCR:
476		re8139_reg = RL_BMCR;
477		break;
478	case MII_BMSR:
479		re8139_reg = RL_BMSR;
480		break;
481	case MII_ANAR:
482		re8139_reg = RL_ANAR;
483		break;
484	case MII_ANER:
485		re8139_reg = RL_ANER;
486		break;
487	case MII_ANLPAR:
488		re8139_reg = RL_LPAR;
489		break;
490	case MII_PHYIDR1:
491	case MII_PHYIDR2:
492		RL_UNLOCK(sc);
493		return(0);
494	/*
495	 * Allow the rlphy driver to read the media status
496	 * register. If we have a link partner which does not
497	 * support NWAY, this is the register which will tell
498	 * us the results of parallel detection.
499	 */
500	case RL_MEDIASTAT:
501		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502		RL_UNLOCK(sc);
503		return(rval);
504	default:
505		printf("re%d: bad phy register\n", sc->rl_unit);
506		RL_UNLOCK(sc);
507		return(0);
508	}
509	rval = CSR_READ_2(sc, re8139_reg);
510	RL_UNLOCK(sc);
511	return(rval);
512}
513
514static int
515re_miibus_writereg(dev, phy, reg, data)
516	device_t		dev;
517	int			phy, reg, data;
518{
519	struct rl_softc		*sc;
520	u_int16_t		re8139_reg = 0;
521	int			rval = 0;
522
523	sc = device_get_softc(dev);
524	RL_LOCK(sc);
525
526	if (sc->rl_type == RL_8169) {
527		rval = re_gmii_writereg(dev, phy, reg, data);
528		RL_UNLOCK(sc);
529		return (rval);
530	}
531
532	/* Pretend the internal PHY is only at address 0 */
533	if (phy) {
534		RL_UNLOCK(sc);
535		return(0);
536	}
537	switch(reg) {
538	case MII_BMCR:
539		re8139_reg = RL_BMCR;
540		break;
541	case MII_BMSR:
542		re8139_reg = RL_BMSR;
543		break;
544	case MII_ANAR:
545		re8139_reg = RL_ANAR;
546		break;
547	case MII_ANER:
548		re8139_reg = RL_ANER;
549		break;
550	case MII_ANLPAR:
551		re8139_reg = RL_LPAR;
552		break;
553	case MII_PHYIDR1:
554	case MII_PHYIDR2:
555		RL_UNLOCK(sc);
556		return(0);
557		break;
558	default:
559		printf("re%d: bad phy register\n", sc->rl_unit);
560		RL_UNLOCK(sc);
561		return(0);
562	}
563	CSR_WRITE_2(sc, re8139_reg, data);
564	RL_UNLOCK(sc);
565	return(0);
566}
567
568static void
569re_miibus_statchg(dev)
570	device_t		dev;
571{
572	return;
573}
574
575/*
576 * Calculate CRC of a multicast group address, return the upper 6 bits.
577 */
578static u_int8_t
579re_calchash(addr)
580	caddr_t			addr;
581{
582	u_int32_t		crc, carry;
583	int			i, j;
584	u_int8_t		c;
585
586	/* Compute CRC for the address value. */
587	crc = 0xFFFFFFFF; /* initial value */
588
589	for (i = 0; i < 6; i++) {
590		c = *(addr + i);
591		for (j = 0; j < 8; j++) {
592			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
593			crc <<= 1;
594			c >>= 1;
595			if (carry)
596				crc = (crc ^ 0x04c11db6) | carry;
597		}
598	}
599
600	/* return the filter bit position */
601	return(crc >> 26);
602}
603
604/*
605 * Program the 64-bit multicast hash filter.
606 */
607static void
608re_setmulti(sc)
609	struct rl_softc		*sc;
610{
611	struct ifnet		*ifp;
612	int			h = 0;
613	u_int32_t		hashes[2] = { 0, 0 };
614	struct ifmultiaddr	*ifma;
615	u_int32_t		rxfilt;
616	int			mcnt = 0;
617
618	ifp = &sc->arpcom.ac_if;
619
620	rxfilt = CSR_READ_4(sc, RL_RXCFG);
621
622	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
623		rxfilt |= RL_RXCFG_RX_MULTI;
624		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
625		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
626		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
627		return;
628	}
629
630	/* first, zot all the existing hash bits */
631	CSR_WRITE_4(sc, RL_MAR0, 0);
632	CSR_WRITE_4(sc, RL_MAR4, 0);
633
634	/* now program new ones */
635	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
636		if (ifma->ifma_addr->sa_family != AF_LINK)
637			continue;
638		h = re_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
639		if (h < 32)
640			hashes[0] |= (1 << h);
641		else
642			hashes[1] |= (1 << (h - 32));
643		mcnt++;
644	}
645
646	if (mcnt)
647		rxfilt |= RL_RXCFG_RX_MULTI;
648	else
649		rxfilt &= ~RL_RXCFG_RX_MULTI;
650
651	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
652	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
653	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
654
655	return;
656}
657
658static void
659re_reset(sc)
660	struct rl_softc		*sc;
661{
662	register int		i;
663
664	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
665
666	for (i = 0; i < RL_TIMEOUT; i++) {
667		DELAY(10);
668		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
669			break;
670	}
671	if (i == RL_TIMEOUT)
672		printf("re%d: reset never completed!\n", sc->rl_unit);
673
674	CSR_WRITE_1(sc, 0x82, 1);
675
676	return;
677}
678
679/*
680 * The following routine is designed to test for a defect on some
681 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
682 * lines connected to the bus, however for a 32-bit only card, they
683 * should be pulled high. The result of this defect is that the
684 * NIC will not work right if you plug it into a 64-bit slot: DMA
685 * operations will be done with 64-bit transfers, which will fail
686 * because the 64-bit data lines aren't connected.
687 *
688 * There's no way to work around this (short of talking a soldering
689 * iron to the board), however we can detect it. The method we use
690 * here is to put the NIC into digital loopback mode, set the receiver
691 * to promiscuous mode, and then try to send a frame. We then compare
692 * the frame data we sent to what was received. If the data matches,
693 * then the NIC is working correctly, otherwise we know the user has
694 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
695 * slot. In the latter case, there's no way the NIC can work correctly,
696 * so we print out a message on the console and abort the device attach.
697 */
698
699static int
700re_diag(sc)
701	struct rl_softc		*sc;
702{
703	struct ifnet		*ifp = &sc->arpcom.ac_if;
704	struct mbuf		*m0;
705	struct ether_header	*eh;
706	struct rl_desc		*cur_rx;
707	u_int16_t		status;
708	u_int32_t		rxstat;
709	int			total_len, i, error = 0;
710	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
711	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
712
713	/* Allocate a single mbuf */
714
715	MGETHDR(m0, M_DONTWAIT, MT_DATA);
716	if (m0 == NULL)
717		return(ENOBUFS);
718
719	/*
720	 * Initialize the NIC in test mode. This sets the chip up
721	 * so that it can send and receive frames, but performs the
722	 * following special functions:
723	 * - Puts receiver in promiscuous mode
724	 * - Enables digital loopback mode
725	 * - Leaves interrupts turned off
726	 */
727
728	ifp->if_flags |= IFF_PROMISC;
729	sc->rl_testmode = 1;
730	re_init(sc);
731	re_stop(sc);
732	DELAY(100000);
733	re_init(sc);
734
735	/* Put some data in the mbuf */
736
737	eh = mtod(m0, struct ether_header *);
738	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
739	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
740	eh->ether_type = htons(ETHERTYPE_IP);
741	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
742
743	/*
744	 * Queue the packet, start transmission.
745	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
746	 */
747
748	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
749	IF_HANDOFF(&ifp->if_snd, m0, ifp);
750	m0 = NULL;
751
752	/* Wait for it to propagate through the chip */
753
754	DELAY(100000);
755	for (i = 0; i < RL_TIMEOUT; i++) {
756		status = CSR_READ_2(sc, RL_ISR);
757		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
758		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
759			break;
760		DELAY(10);
761	}
762
763	if (i == RL_TIMEOUT) {
764		printf("re%d: diagnostic failed, failed to receive packet "
765		    "in loopback mode\n", sc->rl_unit);
766		error = EIO;
767		goto done;
768	}
769
770	/*
771	 * The packet should have been dumped into the first
772	 * entry in the RX DMA ring. Grab it from there.
773	 */
774
775	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
776	    sc->rl_ldata.rl_rx_list_map,
777	    BUS_DMASYNC_POSTREAD);
778	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
779	    sc->rl_ldata.rl_rx_dmamap[0],
780	    BUS_DMASYNC_POSTWRITE);
781	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
782	    sc->rl_ldata.rl_rx_dmamap[0]);
783
784	m0 = sc->rl_ldata.rl_rx_mbuf[0];
785	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
786	eh = mtod(m0, struct ether_header *);
787
788	cur_rx = &sc->rl_ldata.rl_rx_list[0];
789	total_len = RL_RXBYTES(cur_rx);
790	rxstat = le32toh(cur_rx->rl_cmdstat);
791
792	if (total_len != ETHER_MIN_LEN) {
793		printf("re%d: diagnostic failed, received short packet\n",
794		    sc->rl_unit);
795		error = EIO;
796		goto done;
797	}
798
799	/* Test that the received packet data matches what we sent. */
800
801	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
802	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
803	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
804		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
805		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
806		    dst, ":", src, ":", ETHERTYPE_IP);
807		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
808		    eh->ether_dhost, ":",  eh->ether_shost, ":",
809		    ntohs(eh->ether_type));
810		printf("re%d: You may have a defective 32-bit NIC plugged "
811		    "into a 64-bit PCI slot.\n", sc->rl_unit);
812		printf("re%d: Please re-install the NIC in a 32-bit slot "
813		    "for proper operation.\n", sc->rl_unit);
814		printf("re%d: Read the re(4) man page for more details.\n",
815		    sc->rl_unit);
816		error = EIO;
817	}
818
819done:
820	/* Turn interface off, release resources */
821
822	sc->rl_testmode = 0;
823	ifp->if_flags &= ~IFF_PROMISC;
824	re_stop(sc);
825	if (m0 != NULL)
826		m_freem(m0);
827
828	return (error);
829}
830
831/*
832 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
833 * IDs against our list and return a device name if we find a match.
834 */
835static int
836re_probe(dev)
837	device_t		dev;
838{
839	struct rl_type		*t;
840	struct rl_softc		*sc;
841	int			rid;
842	u_int32_t		hwrev;
843
844	t = re_devs;
845	sc = device_get_softc(dev);
846
847	while(t->rl_name != NULL) {
848		if ((pci_get_vendor(dev) == t->rl_vid) &&
849		    (pci_get_device(dev) == t->rl_did)) {
850
851			/*
852			 * Temporarily map the I/O space
853			 * so we can read the chip ID register.
854			 */
855			rid = RL_RID;
856			sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
857			    0, ~0, 1, RF_ACTIVE);
858			if (sc->rl_res == NULL) {
859				device_printf(dev,
860				    "couldn't map ports/memory\n");
861				return(ENXIO);
862			}
863			sc->rl_btag = rman_get_bustag(sc->rl_res);
864			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
865			mtx_init(&sc->rl_mtx,
866			    device_get_nameunit(dev),
867			    MTX_NETWORK_LOCK, MTX_DEF);
868			RL_LOCK(sc);
869			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
870			bus_release_resource(dev, RL_RES,
871			    RL_RID, sc->rl_res);
872			RL_UNLOCK(sc);
873			mtx_destroy(&sc->rl_mtx);
874			if (t->rl_basetype == hwrev) {
875				device_set_desc(dev, t->rl_name);
876				return(0);
877			}
878		}
879		t++;
880	}
881
882	return(ENXIO);
883}
884
885/*
886 * This routine takes the segment list provided as the result of
887 * a bus_dma_map_load() operation and assigns the addresses/lengths
888 * to RealTek DMA descriptors. This can be called either by the RX
889 * code or the TX code. In the RX case, we'll probably wind up mapping
890 * at most one segment. For the TX case, there could be any number of
891 * segments since TX packets may span multiple mbufs. In either case,
892 * if the number of segments is larger than the rl_maxsegs limit
893 * specified by the caller, we abort the mapping operation. Sadly,
894 * whoever designed the buffer mapping API did not provide a way to
895 * return an error from here, so we have to fake it a bit.
896 */
897
898static void
899re_dma_map_desc(arg, segs, nseg, mapsize, error)
900	void			*arg;
901	bus_dma_segment_t	*segs;
902	int			nseg;
903	bus_size_t		mapsize;
904	int			error;
905{
906	struct rl_dmaload_arg	*ctx;
907	struct rl_desc		*d = NULL;
908	int			i = 0, idx;
909
910	if (error)
911		return;
912
913	ctx = arg;
914
915	/* Signal error to caller if there's too many segments */
916	if (nseg > ctx->rl_maxsegs) {
917		ctx->rl_maxsegs = 0;
918		return;
919	}
920
921	/*
922	 * Map the segment array into descriptors. Note that we set the
923	 * start-of-frame and end-of-frame markers for either TX or RX, but
924	 * they really only have meaning in the TX case. (In the RX case,
925	 * it's the chip that tells us where packets begin and end.)
926	 * We also keep track of the end of the ring and set the
927	 * end-of-ring bits as needed, and we set the ownership bits
928	 * in all except the very first descriptor. (The caller will
929	 * set this descriptor later when it start transmission or
930	 * reception.)
931	 */
932	idx = ctx->rl_idx;
933	while(1) {
934		u_int32_t		cmdstat;
935		d = &ctx->rl_ring[idx];
936		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
937			ctx->rl_maxsegs = 0;
938			return;
939		}
940		cmdstat = segs[i].ds_len;
941		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
942		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
943		if (i == 0)
944			cmdstat |= RL_TDESC_CMD_SOF;
945		else
946			cmdstat |= RL_TDESC_CMD_OWN;
947		if (idx == (RL_RX_DESC_CNT - 1))
948			cmdstat |= RL_TDESC_CMD_EOR;
949		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
950		i++;
951		if (i == nseg)
952			break;
953		RL_DESC_INC(idx);
954	}
955
956	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
957	ctx->rl_maxsegs = nseg;
958	ctx->rl_idx = idx;
959
960	return;
961}
962
963/*
964 * Map a single buffer address.
965 */
966
967static void
968re_dma_map_addr(arg, segs, nseg, error)
969	void			*arg;
970	bus_dma_segment_t	*segs;
971	int			nseg;
972	int			error;
973{
974	u_int32_t		*addr;
975
976	if (error)
977		return;
978
979	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
980	addr = arg;
981	*addr = segs->ds_addr;
982
983	return;
984}
985
986static int
987re_allocmem(dev, sc)
988	device_t		dev;
989	struct rl_softc		*sc;
990{
991	int			error;
992	int			nseg;
993	int			i;
994
995	/*
996	 * Allocate map for RX mbufs.
997	 */
998	nseg = 32;
999	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1000	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1001	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1002	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1003	if (error) {
1004		device_printf(dev, "could not allocate dma tag\n");
1005		return (ENOMEM);
1006	}
1007
1008	/*
1009	 * Allocate map for TX descriptor list.
1010	 */
1011	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1012	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1013            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1014	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1015	if (error) {
1016		device_printf(dev, "could not allocate dma tag\n");
1017		return (ENOMEM);
1018	}
1019
1020	/* Allocate DMA'able memory for the TX ring */
1021
1022        error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1023	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1024            &sc->rl_ldata.rl_tx_list_map);
1025        if (error)
1026                return (ENOMEM);
1027
1028	/* Load the map for the TX ring. */
1029
1030	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1031	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1032	     RL_TX_LIST_SZ, re_dma_map_addr,
1033	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1034
1035	/* Create DMA maps for TX buffers */
1036
1037	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1038		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1039			    &sc->rl_ldata.rl_tx_dmamap[i]);
1040		if (error) {
1041			device_printf(dev, "can't create DMA map for TX\n");
1042			return(ENOMEM);
1043		}
1044	}
1045
1046	/*
1047	 * Allocate map for RX descriptor list.
1048	 */
1049	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1050	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1051            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1052	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1053	if (error) {
1054		device_printf(dev, "could not allocate dma tag\n");
1055		return (ENOMEM);
1056	}
1057
1058	/* Allocate DMA'able memory for the RX ring */
1059
1060        error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1061	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1062            &sc->rl_ldata.rl_rx_list_map);
1063        if (error)
1064                return (ENOMEM);
1065
1066	/* Load the map for the RX ring. */
1067
1068	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1069	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1070	     RL_TX_LIST_SZ, re_dma_map_addr,
1071	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1072
1073	/* Create DMA maps for RX buffers */
1074
1075	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1076		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1077			    &sc->rl_ldata.rl_rx_dmamap[i]);
1078		if (error) {
1079			device_printf(dev, "can't create DMA map for RX\n");
1080			return(ENOMEM);
1081		}
1082	}
1083
1084	return(0);
1085}
1086
1087/*
1088 * Attach the interface. Allocate softc structures, do ifmedia
1089 * setup and ethernet/BPF attach.
1090 */
1091static int
1092re_attach(dev)
1093	device_t		dev;
1094{
1095	u_char			eaddr[ETHER_ADDR_LEN];
1096	u_int16_t		as[3];
1097	struct rl_softc		*sc;
1098	struct ifnet		*ifp;
1099	struct rl_hwrev		*hw_rev;
1100	int			hwrev;
1101	u_int16_t		re_did = 0;
1102	int			unit, error = 0, rid, i;
1103
1104	sc = device_get_softc(dev);
1105	unit = device_get_unit(dev);
1106
1107	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1108	    MTX_DEF | MTX_RECURSE);
1109#ifndef BURN_BRIDGES
1110	/*
1111	 * Handle power management nonsense.
1112	 */
1113
1114	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1115		u_int32_t		iobase, membase, irq;
1116
1117		/* Save important PCI config data. */
1118		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1119		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1120		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1121
1122		/* Reset the power state. */
1123		printf("re%d: chip is is in D%d power mode "
1124		    "-- setting to D0\n", unit,
1125		    pci_get_powerstate(dev));
1126
1127		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1128
1129		/* Restore PCI config data. */
1130		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1131		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1132		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1133	}
1134#endif
1135	/*
1136	 * Map control/status registers.
1137	 */
1138	pci_enable_busmaster(dev);
1139
1140	rid = RL_RID;
1141	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
1142	    0, ~0, 1, RF_ACTIVE);
1143
1144	if (sc->rl_res == NULL) {
1145		printf ("re%d: couldn't map ports/memory\n", unit);
1146		error = ENXIO;
1147		goto fail;
1148	}
1149
1150	sc->rl_btag = rman_get_bustag(sc->rl_res);
1151	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1152
1153	/* Allocate interrupt */
1154	rid = 0;
1155	sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1156	    RF_SHAREABLE | RF_ACTIVE);
1157
1158	if (sc->rl_irq == NULL) {
1159		printf("re%d: couldn't map interrupt\n", unit);
1160		error = ENXIO;
1161		goto fail;
1162	}
1163
1164	/* Reset the adapter. */
1165	re_reset(sc);
1166
1167	hw_rev = re_hwrevs;
1168	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1169	while (hw_rev->rl_desc != NULL) {
1170		if (hw_rev->rl_rev == hwrev) {
1171			sc->rl_type = hw_rev->rl_type;
1172			break;
1173		}
1174		hw_rev++;
1175	}
1176
1177	if (sc->rl_type == RL_8169) {
1178
1179		/* Set RX length mask */
1180
1181		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1182
1183		/* Force station address autoload from the EEPROM */
1184
1185		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1186		for (i = 0; i < RL_TIMEOUT; i++) {
1187			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1188				break;
1189			DELAY(100);
1190		}
1191		if (i == RL_TIMEOUT)
1192			printf ("re%d: eeprom autoload timed out\n", unit);
1193
1194			for (i = 0; i < ETHER_ADDR_LEN; i++)
1195				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1196	} else {
1197
1198		/* Set RX length mask */
1199
1200		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1201
1202		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1203		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1204		if (re_did != 0x8129)
1205			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1206
1207		/*
1208		 * Get station address from the EEPROM.
1209		 */
1210		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1211		for (i = 0; i < 3; i++) {
1212			eaddr[(i * 2) + 0] = as[i] & 0xff;
1213			eaddr[(i * 2) + 1] = as[i] >> 8;
1214		}
1215	}
1216
1217	/*
1218	 * A RealTek chip was detected. Inform the world.
1219	 */
1220	printf("re%d: Ethernet address: %6D\n", unit, eaddr, ":");
1221
1222	sc->rl_unit = unit;
1223	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1224
1225	/*
1226	 * Allocate the parent bus DMA tag appropriate for PCI.
1227	 */
1228#define RL_NSEG_NEW 32
1229	error = bus_dma_tag_create(NULL,	/* parent */
1230			1, 0,			/* alignment, boundary */
1231			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1232			BUS_SPACE_MAXADDR,	/* highaddr */
1233			NULL, NULL,		/* filter, filterarg */
1234			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1235			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1236			BUS_DMA_ALLOCNOW,	/* flags */
1237			NULL, NULL,		/* lockfunc, lockarg */
1238			&sc->rl_parent_tag);
1239	if (error)
1240		goto fail;
1241
1242	error = re_allocmem(dev, sc);
1243
1244	if (error)
1245		goto fail;
1246
1247	/* Do MII setup */
1248	if (mii_phy_probe(dev, &sc->rl_miibus,
1249	    re_ifmedia_upd, re_ifmedia_sts)) {
1250		printf("re%d: MII without any phy!\n", sc->rl_unit);
1251		error = ENXIO;
1252		goto fail;
1253	}
1254
1255	ifp = &sc->arpcom.ac_if;
1256	ifp->if_softc = sc;
1257	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1258	ifp->if_mtu = ETHERMTU;
1259	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1260	ifp->if_ioctl = re_ioctl;
1261	ifp->if_output = ether_output;
1262	ifp->if_capabilities = IFCAP_VLAN_MTU;
1263	ifp->if_start = re_start;
1264	ifp->if_hwassist = RE_CSUM_FEATURES;
1265	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1266	ifp->if_watchdog = re_watchdog;
1267	ifp->if_init = re_init;
1268	if (sc->rl_type == RL_8169)
1269		ifp->if_baudrate = 1000000000;
1270	else
1271		ifp->if_baudrate = 100000000;
1272	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1273	ifp->if_capenable = ifp->if_capabilities;
1274
1275	callout_handle_init(&sc->rl_stat_ch);
1276
1277	/*
1278	 * Call MI attach routine.
1279	 */
1280	ether_ifattach(ifp, eaddr);
1281
1282	/* Perform hardware diagnostic. */
1283	error = re_diag(sc);
1284
1285	if (error) {
1286		printf("re%d: attach aborted due to hardware diag failure\n",
1287		    unit);
1288		ether_ifdetach(ifp);
1289		goto fail;
1290	}
1291
1292	/* Hook interrupt last to avoid having to lock softc */
1293	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1294	    re_intr, sc, &sc->rl_intrhand);
1295
1296	if (error) {
1297		printf("re%d: couldn't set up irq\n", unit);
1298		ether_ifdetach(ifp);
1299		goto fail;
1300	}
1301
1302fail:
1303	if (error)
1304		re_detach(dev);
1305
1306	return (error);
1307}
1308
1309/*
1310 * Shutdown hardware and free up resources. This can be called any
1311 * time after the mutex has been initialized. It is called in both
1312 * the error case in attach and the normal detach case so it needs
1313 * to be careful about only freeing resources that have actually been
1314 * allocated.
1315 */
1316static int
1317re_detach(dev)
1318	device_t		dev;
1319{
1320	struct rl_softc		*sc;
1321	struct ifnet		*ifp;
1322	int			i;
1323
1324	sc = device_get_softc(dev);
1325	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1326	RL_LOCK(sc);
1327	ifp = &sc->arpcom.ac_if;
1328
1329	/* These should only be active if attach succeeded */
1330	if (device_is_attached(dev)) {
1331		re_stop(sc);
1332		/*
1333		 * Force off the IFF_UP flag here, in case someone
1334		 * still had a BPF descriptor attached to this
1335		 * interface. If they do, ether_ifattach() will cause
1336		 * the BPF code to try and clear the promisc mode
1337		 * flag, which will bubble down to re_ioctl(),
1338		 * which will try to call re_init() again. This will
1339		 * turn the NIC back on and restart the MII ticker,
1340		 * which will panic the system when the kernel tries
1341		 * to invoke the re_tick() function that isn't there
1342		 * anymore.
1343		 */
1344		ifp->if_flags &= ~IFF_UP;
1345		ether_ifdetach(ifp);
1346	}
1347	if (sc->rl_miibus)
1348		device_delete_child(dev, sc->rl_miibus);
1349	bus_generic_detach(dev);
1350
1351	if (sc->rl_intrhand)
1352		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1353	if (sc->rl_irq)
1354		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1355	if (sc->rl_res)
1356		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1357
1358
1359	/* Unload and free the RX DMA ring memory and map */
1360
1361	if (sc->rl_ldata.rl_rx_list_tag) {
1362		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1363		    sc->rl_ldata.rl_rx_list_map);
1364		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1365		    sc->rl_ldata.rl_rx_list,
1366		    sc->rl_ldata.rl_rx_list_map);
1367		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1368	}
1369
1370	/* Unload and free the TX DMA ring memory and map */
1371
1372	if (sc->rl_ldata.rl_tx_list_tag) {
1373		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1374		    sc->rl_ldata.rl_tx_list_map);
1375		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1376		    sc->rl_ldata.rl_tx_list,
1377		    sc->rl_ldata.rl_tx_list_map);
1378		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1379	}
1380
1381	/* Destroy all the RX and TX buffer maps */
1382
1383	if (sc->rl_ldata.rl_mtag) {
1384		for (i = 0; i < RL_TX_DESC_CNT; i++)
1385			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1386			    sc->rl_ldata.rl_tx_dmamap[i]);
1387		for (i = 0; i < RL_RX_DESC_CNT; i++)
1388			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1389			    sc->rl_ldata.rl_rx_dmamap[i]);
1390		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1391	}
1392
1393	/* Unload and free the stats buffer and map */
1394
1395	if (sc->rl_ldata.rl_stag) {
1396		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1397		    sc->rl_ldata.rl_rx_list_map);
1398		bus_dmamem_free(sc->rl_ldata.rl_stag,
1399		    sc->rl_ldata.rl_stats,
1400		    sc->rl_ldata.rl_smap);
1401		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1402	}
1403
1404	if (sc->rl_parent_tag)
1405		bus_dma_tag_destroy(sc->rl_parent_tag);
1406
1407	RL_UNLOCK(sc);
1408	mtx_destroy(&sc->rl_mtx);
1409
1410	return(0);
1411}
1412
1413static int
1414re_newbuf(sc, idx, m)
1415	struct rl_softc		*sc;
1416	int			idx;
1417	struct mbuf		*m;
1418{
1419	struct rl_dmaload_arg	arg;
1420	struct mbuf		*n = NULL;
1421	int			error;
1422
1423	if (m == NULL) {
1424		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1425		if (n == NULL)
1426			return(ENOBUFS);
1427		m = n;
1428	} else
1429		m->m_data = m->m_ext.ext_buf;
1430
1431	/*
1432	 * Initialize mbuf length fields and fixup
1433	 * alignment so that the frame payload is
1434	 * longword aligned.
1435	 */
1436	m->m_len = m->m_pkthdr.len = MCLBYTES;
1437	m_adj(m, ETHER_ALIGN);
1438
1439	arg.sc = sc;
1440	arg.rl_idx = idx;
1441	arg.rl_maxsegs = 1;
1442	arg.rl_flags = 0;
1443	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1444
1445        error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1446	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1447	    &arg, BUS_DMA_NOWAIT);
1448	if (error || arg.rl_maxsegs != 1) {
1449		if (n != NULL)
1450			m_freem(n);
1451		return (ENOMEM);
1452	}
1453
1454	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1455	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1456
1457        bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1458	    sc->rl_ldata.rl_rx_dmamap[idx],
1459	    BUS_DMASYNC_PREREAD);
1460
1461	return(0);
1462}
1463
1464static int
1465re_tx_list_init(sc)
1466	struct rl_softc		*sc;
1467{
1468	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1469	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1470	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1471
1472	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1473	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1474	sc->rl_ldata.rl_tx_prodidx = 0;
1475	sc->rl_ldata.rl_tx_considx = 0;
1476	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1477
1478	return(0);
1479}
1480
1481static int
1482re_rx_list_init(sc)
1483	struct rl_softc		*sc;
1484{
1485	int			i;
1486
1487	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1488	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1489	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1490
1491	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1492		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1493			return(ENOBUFS);
1494	}
1495
1496	/* Flush the RX descriptors */
1497
1498	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1499	    sc->rl_ldata.rl_rx_list_map,
1500	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1501
1502	sc->rl_ldata.rl_rx_prodidx = 0;
1503	sc->rl_head = sc->rl_tail = NULL;
1504
1505	return(0);
1506}
1507
1508/*
1509 * RX handler for C+ and 8169. For the gigE chips, we support
1510 * the reception of jumbo frames that have been fragmented
1511 * across multiple 2K mbuf cluster buffers.
1512 */
1513static void
1514re_rxeof(sc)
1515	struct rl_softc		*sc;
1516{
1517	struct mbuf		*m;
1518	struct ifnet		*ifp;
1519	int			i, total_len;
1520	struct rl_desc		*cur_rx;
1521	u_int32_t		rxstat, rxvlan;
1522
1523	ifp = &sc->arpcom.ac_if;
1524	i = sc->rl_ldata.rl_rx_prodidx;
1525
1526	/* Invalidate the descriptor memory */
1527
1528	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1529	    sc->rl_ldata.rl_rx_list_map,
1530	    BUS_DMASYNC_POSTREAD);
1531
1532	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1533
1534		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1535		m = sc->rl_ldata.rl_rx_mbuf[i];
1536		total_len = RL_RXBYTES(cur_rx);
1537		rxstat = le32toh(cur_rx->rl_cmdstat);
1538		rxvlan = le32toh(cur_rx->rl_vlanctl);
1539
1540		/* Invalidate the RX mbuf and unload its map */
1541
1542		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1543		    sc->rl_ldata.rl_rx_dmamap[i],
1544		    BUS_DMASYNC_POSTWRITE);
1545		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1546		    sc->rl_ldata.rl_rx_dmamap[i]);
1547
1548		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1549			m->m_len = MCLBYTES - ETHER_ALIGN;
1550			if (sc->rl_head == NULL)
1551				sc->rl_head = sc->rl_tail = m;
1552			else {
1553				m->m_flags &= ~M_PKTHDR;
1554				sc->rl_tail->m_next = m;
1555				sc->rl_tail = m;
1556			}
1557			re_newbuf(sc, i, NULL);
1558			RL_DESC_INC(i);
1559			continue;
1560		}
1561
1562		/*
1563		 * NOTE: for the 8139C+, the frame length field
1564		 * is always 12 bits in size, but for the gigE chips,
1565		 * it is 13 bits (since the max RX frame length is 16K).
1566		 * Unfortunately, all 32 bits in the status word
1567		 * were already used, so to make room for the extra
1568		 * length bit, RealTek took out the 'frame alignment
1569		 * error' bit and shifted the other status bits
1570		 * over one slot. The OWN, EOR, FS and LS bits are
1571		 * still in the same places. We have already extracted
1572		 * the frame length and checked the OWN bit, so rather
1573		 * than using an alternate bit mapping, we shift the
1574		 * status bits one space to the right so we can evaluate
1575		 * them using the 8169 status as though it was in the
1576		 * same format as that of the 8139C+.
1577		 */
1578		if (sc->rl_type == RL_8169)
1579			rxstat >>= 1;
1580
1581		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1582			ifp->if_ierrors++;
1583			/*
1584			 * If this is part of a multi-fragment packet,
1585			 * discard all the pieces.
1586			 */
1587			if (sc->rl_head != NULL) {
1588				m_freem(sc->rl_head);
1589				sc->rl_head = sc->rl_tail = NULL;
1590			}
1591			re_newbuf(sc, i, m);
1592			RL_DESC_INC(i);
1593			continue;
1594		}
1595
1596		/*
1597		 * If allocating a replacement mbuf fails,
1598		 * reload the current one.
1599		 */
1600
1601		if (re_newbuf(sc, i, NULL)) {
1602			ifp->if_ierrors++;
1603			if (sc->rl_head != NULL) {
1604				m_freem(sc->rl_head);
1605				sc->rl_head = sc->rl_tail = NULL;
1606			}
1607			re_newbuf(sc, i, m);
1608			RL_DESC_INC(i);
1609			continue;
1610		}
1611
1612		RL_DESC_INC(i);
1613
1614		if (sc->rl_head != NULL) {
1615			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1616			/*
1617			 * Special case: if there's 4 bytes or less
1618			 * in this buffer, the mbuf can be discarded:
1619			 * the last 4 bytes is the CRC, which we don't
1620			 * care about anyway.
1621			 */
1622			if (m->m_len <= ETHER_CRC_LEN) {
1623				sc->rl_tail->m_len -=
1624				    (ETHER_CRC_LEN - m->m_len);
1625				m_freem(m);
1626			} else {
1627				m->m_len -= ETHER_CRC_LEN;
1628				m->m_flags &= ~M_PKTHDR;
1629				sc->rl_tail->m_next = m;
1630			}
1631			m = sc->rl_head;
1632			sc->rl_head = sc->rl_tail = NULL;
1633			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1634		} else
1635			m->m_pkthdr.len = m->m_len =
1636			    (total_len - ETHER_CRC_LEN);
1637
1638		ifp->if_ipackets++;
1639		m->m_pkthdr.rcvif = ifp;
1640
1641		/* Do RX checksumming if enabled */
1642
1643		if (ifp->if_capenable & IFCAP_RXCSUM) {
1644
1645			/* Check IP header checksum */
1646			if (rxstat & RL_RDESC_STAT_PROTOID)
1647				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1648			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1649				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1650
1651			/* Check TCP/UDP checksum */
1652			if ((RL_TCPPKT(rxstat) &&
1653			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1654			    (RL_UDPPKT(rxstat) &&
1655			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1656				m->m_pkthdr.csum_flags |=
1657				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1658				m->m_pkthdr.csum_data = 0xffff;
1659			}
1660		}
1661
1662		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1663			VLAN_INPUT_TAG(ifp, m,
1664			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1665		(*ifp->if_input)(ifp, m);
1666	}
1667
1668	/* Flush the RX DMA ring */
1669
1670	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1671	    sc->rl_ldata.rl_rx_list_map,
1672	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1673
1674	sc->rl_ldata.rl_rx_prodidx = i;
1675
1676	return;
1677}
1678
1679static void
1680re_txeof(sc)
1681	struct rl_softc		*sc;
1682{
1683	struct ifnet		*ifp;
1684	u_int32_t		txstat;
1685	int			idx;
1686
1687	ifp = &sc->arpcom.ac_if;
1688	idx = sc->rl_ldata.rl_tx_considx;
1689
1690	/* Invalidate the TX descriptor list */
1691
1692	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1693	    sc->rl_ldata.rl_tx_list_map,
1694	    BUS_DMASYNC_POSTREAD);
1695
1696	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1697
1698		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1699		if (txstat & RL_TDESC_CMD_OWN)
1700			break;
1701
1702		/*
1703		 * We only stash mbufs in the last descriptor
1704		 * in a fragment chain, which also happens to
1705		 * be the only place where the TX status bits
1706		 * are valid.
1707		 */
1708
1709		if (txstat & RL_TDESC_CMD_EOF) {
1710			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1711			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1712			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1713			    sc->rl_ldata.rl_tx_dmamap[idx]);
1714			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1715			    RL_TDESC_STAT_COLCNT))
1716				ifp->if_collisions++;
1717			if (txstat & RL_TDESC_STAT_TXERRSUM)
1718				ifp->if_oerrors++;
1719			else
1720				ifp->if_opackets++;
1721		}
1722		sc->rl_ldata.rl_tx_free++;
1723		RL_DESC_INC(idx);
1724	}
1725
1726	/* No changes made to the TX ring, so no flush needed */
1727
1728	if (idx != sc->rl_ldata.rl_tx_considx) {
1729		sc->rl_ldata.rl_tx_considx = idx;
1730		ifp->if_flags &= ~IFF_OACTIVE;
1731		ifp->if_timer = 0;
1732	}
1733
1734	/*
1735	 * If not all descriptors have been released reaped yet,
1736	 * reload the timer so that we will eventually get another
1737	 * interrupt that will cause us to re-enter this routine.
1738	 * This is done in case the transmitter has gone idle.
1739	 */
1740	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1741                CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1742
1743	return;
1744}
1745
1746static void
1747re_tick(xsc)
1748	void			*xsc;
1749{
1750	struct rl_softc		*sc;
1751	struct mii_data		*mii;
1752
1753	sc = xsc;
1754	RL_LOCK(sc);
1755	mii = device_get_softc(sc->rl_miibus);
1756
1757	mii_tick(mii);
1758
1759	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1760	RL_UNLOCK(sc);
1761
1762	return;
1763}
1764
1765#ifdef DEVICE_POLLING
1766static void
1767re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1768{
1769	struct rl_softc *sc = ifp->if_softc;
1770
1771	RL_LOCK(sc);
1772	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1773		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1774		goto done;
1775	}
1776
1777	sc->rxcycles = count;
1778	re_rxeof(sc);
1779	re_txeof(sc);
1780
1781	if (ifp->if_snd.ifq_head != NULL)
1782		(*ifp->if_start)(ifp);
1783
1784	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1785		u_int16_t       status;
1786
1787		status = CSR_READ_2(sc, RL_ISR);
1788		if (status == 0xffff)
1789			goto done;
1790		if (status)
1791			CSR_WRITE_2(sc, RL_ISR, status);
1792
1793		/*
1794		 * XXX check behaviour on receiver stalls.
1795		 */
1796
1797		if (status & RL_ISR_SYSTEM_ERR) {
1798			re_reset(sc);
1799			re_init(sc);
1800		}
1801	}
1802done:
1803	RL_UNLOCK(sc);
1804}
1805#endif /* DEVICE_POLLING */
1806
1807static void
1808re_intr(arg)
1809	void			*arg;
1810{
1811	struct rl_softc		*sc;
1812	struct ifnet		*ifp;
1813	u_int16_t		status;
1814
1815	sc = arg;
1816
1817	if (sc->suspended) {
1818		return;
1819	}
1820
1821	RL_LOCK(sc);
1822	ifp = &sc->arpcom.ac_if;
1823
1824	if (!(ifp->if_flags & IFF_UP)) {
1825		RL_UNLOCK(sc);
1826		return;
1827	}
1828
1829#ifdef DEVICE_POLLING
1830	if  (ifp->if_flags & IFF_POLLING)
1831		goto done;
1832	if (ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1833		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1834		re_poll(ifp, 0, 1);
1835		goto done;
1836	}
1837#endif /* DEVICE_POLLING */
1838
1839	for (;;) {
1840
1841		status = CSR_READ_2(sc, RL_ISR);
1842		/* If the card has gone away the read returns 0xffff. */
1843		if (status == 0xffff)
1844			break;
1845		if (status)
1846			CSR_WRITE_2(sc, RL_ISR, status);
1847
1848		if ((status & RL_INTRS_CPLUS) == 0)
1849			break;
1850
1851		if (status & RL_ISR_RX_OK)
1852			re_rxeof(sc);
1853
1854		if (status & RL_ISR_RX_ERR)
1855			re_rxeof(sc);
1856
1857		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1858		    (status & RL_ISR_TX_ERR) ||
1859		    (status & RL_ISR_TX_DESC_UNAVAIL))
1860			re_txeof(sc);
1861
1862		if (status & RL_ISR_SYSTEM_ERR) {
1863			re_reset(sc);
1864			re_init(sc);
1865		}
1866
1867		if (status & RL_ISR_LINKCHG) {
1868			untimeout(re_tick, sc, sc->rl_stat_ch);
1869			re_tick(sc);
1870		}
1871	}
1872
1873	if (ifp->if_snd.ifq_head != NULL)
1874		(*ifp->if_start)(ifp);
1875
1876#ifdef DEVICE_POLLING
1877done:
1878#endif
1879	RL_UNLOCK(sc);
1880
1881	return;
1882}
1883
1884static int
1885re_encap(sc, m_head, idx)
1886	struct rl_softc		*sc;
1887	struct mbuf		*m_head;
1888	int			*idx;
1889{
1890	struct mbuf		*m_new = NULL;
1891	struct rl_dmaload_arg	arg;
1892	bus_dmamap_t		map;
1893	int			error;
1894	struct m_tag		*mtag;
1895
1896	if (sc->rl_ldata.rl_tx_free <= 4)
1897		return(EFBIG);
1898
1899	/*
1900	 * Set up checksum offload. Note: checksum offload bits must
1901	 * appear in all descriptors of a multi-descriptor transmit
1902	 * attempt. (This is according to testing done with an 8169
1903	 * chip. I'm not sure if this is a requirement or a bug.)
1904	 */
1905
1906	arg.rl_flags = 0;
1907
1908	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1909		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1910	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1911		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1912	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1913		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1914
1915	arg.sc = sc;
1916	arg.rl_idx = *idx;
1917	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1918	if (arg.rl_maxsegs > 4)
1919		arg.rl_maxsegs -= 4;
1920	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1921
1922	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1923	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1924	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1925
1926	if (error && error != EFBIG) {
1927		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1928		return(ENOBUFS);
1929	}
1930
1931	/* Too many segments to map, coalesce into a single mbuf */
1932
1933	if (error || arg.rl_maxsegs == 0) {
1934		m_new = m_defrag(m_head, M_DONTWAIT);
1935		if (m_new == NULL)
1936			return(1);
1937		else
1938			m_head = m_new;
1939
1940		arg.sc = sc;
1941		arg.rl_idx = *idx;
1942		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1943		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1944
1945		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1946		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1947		if (error) {
1948			printf("re%d: can't map mbuf (error %d)\n",
1949			    sc->rl_unit, error);
1950			return(EFBIG);
1951		}
1952	}
1953
1954	/*
1955	 * Insure that the map for this transmission
1956	 * is placed at the array index of the last descriptor
1957	 * in this chain.
1958	 */
1959	sc->rl_ldata.rl_tx_dmamap[*idx] =
1960	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1961	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1962
1963	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1964	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1965
1966	/*
1967	 * Set up hardware VLAN tagging. Note: vlan tag info must
1968	 * appear in the first descriptor of a multi-descriptor
1969	 * transmission attempt.
1970	 */
1971
1972	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1973	if (mtag != NULL)
1974		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1975		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1976
1977	/* Transfer ownership of packet to the chip. */
1978
1979	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1980	    htole32(RL_TDESC_CMD_OWN);
1981	if (*idx != arg.rl_idx)
1982		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1983		    htole32(RL_TDESC_CMD_OWN);
1984
1985	RL_DESC_INC(arg.rl_idx);
1986	*idx = arg.rl_idx;
1987
1988	return(0);
1989}
1990
1991/*
1992 * Main transmit routine for C+ and gigE NICs.
1993 */
1994
1995static void
1996re_start(ifp)
1997	struct ifnet		*ifp;
1998{
1999	struct rl_softc		*sc;
2000	struct mbuf		*m_head = NULL;
2001	int			idx;
2002
2003	sc = ifp->if_softc;
2004	RL_LOCK(sc);
2005
2006	idx = sc->rl_ldata.rl_tx_prodidx;
2007
2008	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2009		IF_DEQUEUE(&ifp->if_snd, m_head);
2010		if (m_head == NULL)
2011			break;
2012
2013		if (re_encap(sc, m_head, &idx)) {
2014			IF_PREPEND(&ifp->if_snd, m_head);
2015			ifp->if_flags |= IFF_OACTIVE;
2016			break;
2017		}
2018
2019		/*
2020		 * If there's a BPF listener, bounce a copy of this frame
2021		 * to him.
2022		 */
2023		BPF_MTAP(ifp, m_head);
2024	}
2025
2026	/* Flush the TX descriptors */
2027
2028	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2029	    sc->rl_ldata.rl_tx_list_map,
2030	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2031
2032	sc->rl_ldata.rl_tx_prodidx = idx;
2033
2034	/*
2035	 * RealTek put the TX poll request register in a different
2036	 * location on the 8169 gigE chip. I don't know why.
2037	 */
2038
2039	if (sc->rl_type == RL_8169)
2040		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2041	else
2042		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2043
2044	/*
2045	 * Use the countdown timer for interrupt moderation.
2046	 * 'TX done' interrupts are disabled. Instead, we reset the
2047	 * countdown timer, which will begin counting until it hits
2048	 * the value in the TIMERINT register, and then trigger an
2049	 * interrupt. Each time we write to the TIMERCNT register,
2050	 * the timer count is reset to 0.
2051	 */
2052	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2053
2054	RL_UNLOCK(sc);
2055
2056	/*
2057	 * Set a timeout in case the chip goes out to lunch.
2058	 */
2059	ifp->if_timer = 5;
2060
2061	return;
2062}
2063
2064static void
2065re_init(xsc)
2066	void			*xsc;
2067{
2068	struct rl_softc		*sc = xsc;
2069	struct ifnet		*ifp = &sc->arpcom.ac_if;
2070	struct mii_data		*mii;
2071	u_int32_t		rxcfg = 0;
2072
2073	RL_LOCK(sc);
2074	mii = device_get_softc(sc->rl_miibus);
2075
2076	/*
2077	 * Cancel pending I/O and free all RX/TX buffers.
2078	 */
2079	re_stop(sc);
2080
2081	/*
2082	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2083	 * RX checksum offload. We must configure the C+ register
2084	 * before all others.
2085	 */
2086	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2087	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2088	    RL_CPLUSCMD_VLANSTRIP|
2089	    (ifp->if_capenable & IFCAP_RXCSUM ?
2090	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2091
2092	/*
2093	 * Init our MAC address.  Even though the chipset
2094	 * documentation doesn't mention it, we need to enter "Config
2095	 * register write enable" mode to modify the ID registers.
2096	 */
2097	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2098	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2099	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2100	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2101	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2102	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2103
2104	/*
2105	 * For C+ mode, initialize the RX descriptors and mbufs.
2106	 */
2107	re_rx_list_init(sc);
2108	re_tx_list_init(sc);
2109
2110	/*
2111	 * Enable transmit and receive.
2112	 */
2113	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2114
2115	/*
2116	 * Set the initial TX and RX configuration.
2117	 */
2118	if (sc->rl_testmode) {
2119		if (sc->rl_type == RL_8169)
2120			CSR_WRITE_4(sc, RL_TXCFG,
2121			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2122		else
2123			CSR_WRITE_4(sc, RL_TXCFG,
2124			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2125	} else
2126		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2127	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2128
2129	/* Set the individual bit to receive frames for this host only. */
2130	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2131	rxcfg |= RL_RXCFG_RX_INDIV;
2132
2133	/* If we want promiscuous mode, set the allframes bit. */
2134	if (ifp->if_flags & IFF_PROMISC) {
2135		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2136		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2137	} else {
2138		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2139		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2140	}
2141
2142	/*
2143	 * Set capture broadcast bit to capture broadcast frames.
2144	 */
2145	if (ifp->if_flags & IFF_BROADCAST) {
2146		rxcfg |= RL_RXCFG_RX_BROAD;
2147		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2148	} else {
2149		rxcfg &= ~RL_RXCFG_RX_BROAD;
2150		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2151	}
2152
2153	/*
2154	 * Program the multicast filter, if necessary.
2155	 */
2156	re_setmulti(sc);
2157
2158#ifdef DEVICE_POLLING
2159	/*
2160	 * Disable interrupts if we are polling.
2161	 */
2162	if (ifp->if_flags & IFF_POLLING)
2163		CSR_WRITE_2(sc, RL_IMR, 0);
2164	else	/* otherwise ... */
2165#endif /* DEVICE_POLLING */
2166	/*
2167	 * Enable interrupts.
2168	 */
2169	if (sc->rl_testmode)
2170		CSR_WRITE_2(sc, RL_IMR, 0);
2171	else
2172		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2173
2174	/* Set initial TX threshold */
2175	sc->rl_txthresh = RL_TX_THRESH_INIT;
2176
2177	/* Start RX/TX process. */
2178	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2179#ifdef notdef
2180	/* Enable receiver and transmitter. */
2181	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2182#endif
2183	/*
2184	 * Load the addresses of the RX and TX lists into the chip.
2185	 */
2186
2187	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2188	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2189	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2190	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2191
2192	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2193	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2194	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2195	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2196
2197	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2198
2199	/*
2200	 * Initialize the timer interrupt register so that
2201	 * a timer interrupt will be generated once the timer
2202	 * reaches a certain number of ticks. The timer is
2203	 * reloaded on each transmit. This gives us TX interrupt
2204	 * moderation, which dramatically improves TX frame rate.
2205	 */
2206
2207	if (sc->rl_type == RL_8169)
2208		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2209	else
2210		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2211
2212	/*
2213	 * For 8169 gigE NICs, set the max allowed RX packet
2214	 * size so we can receive jumbo frames.
2215	 */
2216	if (sc->rl_type == RL_8169)
2217		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2218
2219	if (sc->rl_testmode) {
2220		RL_UNLOCK(sc);
2221		return;
2222	}
2223
2224	mii_mediachg(mii);
2225
2226	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2227
2228	ifp->if_flags |= IFF_RUNNING;
2229	ifp->if_flags &= ~IFF_OACTIVE;
2230
2231	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2232	RL_UNLOCK(sc);
2233
2234	return;
2235}
2236
2237/*
2238 * Set media options.
2239 */
2240static int
2241re_ifmedia_upd(ifp)
2242	struct ifnet		*ifp;
2243{
2244	struct rl_softc		*sc;
2245	struct mii_data		*mii;
2246
2247	sc = ifp->if_softc;
2248	mii = device_get_softc(sc->rl_miibus);
2249	mii_mediachg(mii);
2250
2251	return(0);
2252}
2253
2254/*
2255 * Report current media status.
2256 */
2257static void
2258re_ifmedia_sts(ifp, ifmr)
2259	struct ifnet		*ifp;
2260	struct ifmediareq	*ifmr;
2261{
2262	struct rl_softc		*sc;
2263	struct mii_data		*mii;
2264
2265	sc = ifp->if_softc;
2266	mii = device_get_softc(sc->rl_miibus);
2267
2268	mii_pollstat(mii);
2269	ifmr->ifm_active = mii->mii_media_active;
2270	ifmr->ifm_status = mii->mii_media_status;
2271
2272	return;
2273}
2274
2275static int
2276re_ioctl(ifp, command, data)
2277	struct ifnet		*ifp;
2278	u_long			command;
2279	caddr_t			data;
2280{
2281	struct rl_softc		*sc = ifp->if_softc;
2282	struct ifreq		*ifr = (struct ifreq *) data;
2283	struct mii_data		*mii;
2284	int			error = 0;
2285
2286	RL_LOCK(sc);
2287
2288	switch(command) {
2289	case SIOCSIFMTU:
2290		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2291			error = EINVAL;
2292		ifp->if_mtu = ifr->ifr_mtu;
2293		break;
2294	case SIOCSIFFLAGS:
2295		if (ifp->if_flags & IFF_UP) {
2296			re_init(sc);
2297		} else {
2298			if (ifp->if_flags & IFF_RUNNING)
2299				re_stop(sc);
2300		}
2301		error = 0;
2302		break;
2303	case SIOCADDMULTI:
2304	case SIOCDELMULTI:
2305		re_setmulti(sc);
2306		error = 0;
2307		break;
2308	case SIOCGIFMEDIA:
2309	case SIOCSIFMEDIA:
2310		mii = device_get_softc(sc->rl_miibus);
2311		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2312		break;
2313	case SIOCSIFCAP:
2314		ifp->if_capenable = ifr->ifr_reqcap;
2315		if (ifp->if_capenable & IFCAP_TXCSUM)
2316			ifp->if_hwassist = RE_CSUM_FEATURES;
2317		else
2318			ifp->if_hwassist = 0;
2319		if (ifp->if_flags & IFF_RUNNING)
2320			re_init(sc);
2321		break;
2322	default:
2323		error = ether_ioctl(ifp, command, data);
2324		break;
2325	}
2326
2327	RL_UNLOCK(sc);
2328
2329	return(error);
2330}
2331
2332static void
2333re_watchdog(ifp)
2334	struct ifnet		*ifp;
2335{
2336	struct rl_softc		*sc;
2337
2338	sc = ifp->if_softc;
2339	RL_LOCK(sc);
2340	printf("re%d: watchdog timeout\n", sc->rl_unit);
2341	ifp->if_oerrors++;
2342
2343	re_txeof(sc);
2344	re_rxeof(sc);
2345
2346	re_init(sc);
2347
2348	RL_UNLOCK(sc);
2349
2350	return;
2351}
2352
2353/*
2354 * Stop the adapter and free any mbufs allocated to the
2355 * RX and TX lists.
2356 */
2357static void
2358re_stop(sc)
2359	struct rl_softc		*sc;
2360{
2361	register int		i;
2362	struct ifnet		*ifp;
2363
2364	RL_LOCK(sc);
2365	ifp = &sc->arpcom.ac_if;
2366	ifp->if_timer = 0;
2367
2368	untimeout(re_tick, sc, sc->rl_stat_ch);
2369	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2370#ifdef DEVICE_POLLING
2371	ether_poll_deregister(ifp);
2372#endif /* DEVICE_POLLING */
2373
2374	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2375	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2376
2377	if (sc->rl_head != NULL) {
2378		m_freem(sc->rl_head);
2379		sc->rl_head = sc->rl_tail = NULL;
2380	}
2381
2382	/* Free the TX list buffers. */
2383
2384	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2385		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2386			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2387			    sc->rl_ldata.rl_tx_dmamap[i]);
2388			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2389			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2390		}
2391	}
2392
2393	/* Free the RX list buffers. */
2394
2395	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2396		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2397			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2398			    sc->rl_ldata.rl_rx_dmamap[i]);
2399			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2400			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2401		}
2402	}
2403
2404	RL_UNLOCK(sc);
2405	return;
2406}
2407
2408/*
2409 * Device suspend routine.  Stop the interface and save some PCI
2410 * settings in case the BIOS doesn't restore them properly on
2411 * resume.
2412 */
2413static int
2414re_suspend(dev)
2415	device_t		dev;
2416{
2417	register int		i;
2418	struct rl_softc		*sc;
2419
2420	sc = device_get_softc(dev);
2421
2422	re_stop(sc);
2423
2424	for (i = 0; i < 5; i++)
2425		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2426	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2427	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2428	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2429	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2430
2431	sc->suspended = 1;
2432
2433	return (0);
2434}
2435
2436/*
2437 * Device resume routine.  Restore some PCI settings in case the BIOS
2438 * doesn't, re-enable busmastering, and restart the interface if
2439 * appropriate.
2440 */
2441static int
2442re_resume(dev)
2443	device_t		dev;
2444{
2445	register int		i;
2446	struct rl_softc		*sc;
2447	struct ifnet		*ifp;
2448
2449	sc = device_get_softc(dev);
2450	ifp = &sc->arpcom.ac_if;
2451
2452	/* better way to do this? */
2453	for (i = 0; i < 5; i++)
2454		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2455	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2456	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2457	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2458	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2459
2460	/* reenable busmastering */
2461	pci_enable_busmaster(dev);
2462	pci_enable_io(dev, RL_RES);
2463
2464	/* reinitialize interface if necessary */
2465	if (ifp->if_flags & IFF_UP)
2466		re_init(sc);
2467
2468	sc->suspended = 0;
2469
2470	return (0);
2471}
2472
2473/*
2474 * Stop all chip I/O so that the kernel's probe routines don't
2475 * get confused by errant DMAs when rebooting.
2476 */
2477static void
2478re_shutdown(dev)
2479	device_t		dev;
2480{
2481	struct rl_softc		*sc;
2482
2483	sc = device_get_softc(dev);
2484
2485	re_stop(sc);
2486
2487	return;
2488}
2489