if_re.c revision 119982
1/*
2 * Copyright (c) 1997, 1998-2003
3 *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by Bill Paul.
16 * 4. Neither the name of the author nor the names of any co-contributors
17 *    may be used to endorse or promote products derived from this software
18 *    without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30 * THE POSSIBILITY OF SUCH DAMAGE.
31 */
32
33/*
34 * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
35 *
36 * Written by Bill Paul <wpaul@windriver.com>
37 * Senior Networking Software Engineer
38 * Wind River Systems
39 */
40
41/*
42 * This driver is designed to support RealTek's next generation of
43 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
44 * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
45 * and the RTL8110S.
46 *
47 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
48 * with the older 8139 family, however it also supports a special
49 * C+ mode of operation that provides several new performance enhancing
50 * features. These include:
51 *
52 *	o Descriptor based DMA mechanism. Each descriptor represents
53 *	  a single packet fragment. Data buffers may be aligned on
54 *	  any byte boundary.
55 *
56 *	o 64-bit DMA
57 *
58 *	o TCP/IP checksum offload for both RX and TX
59 *
60 *	o High and normal priority transmit DMA rings
61 *
62 *	o VLAN tag insertion and extraction
63 *
64 *	o TCP large send (segmentation offload)
65 *
66 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
67 * programming API is fairly straightforward. The RX filtering, EEPROM
68 * access and PHY access is the same as it is on the older 8139 series
69 * chips.
70 *
71 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
72 * same programming API and feature set as the 8139C+ with the following
73 * differences and additions:
74 *
75 *	o 1000Mbps mode
76 *
77 *	o Jumbo frames
78 *
79 * 	o GMII and TBI ports/registers for interfacing with copper
80 *	  or fiber PHYs
81 *
82 *      o RX and TX DMA rings can have up to 1024 descriptors
83 *        (the 8139C+ allows a maximum of 64)
84 *
85 *	o Slight differences in register layout from the 8139C+
86 *
87 * The TX start and timer interrupt registers are at different locations
88 * on the 8169 than they are on the 8139C+. Also, the status word in the
89 * RX descriptor has a slightly different bit layout. The 8169 does not
90 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
91 * copper gigE PHY.
92 *
93 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
94 * (the 'S' stands for 'single-chip'). These devices have the same
95 * programming API as the older 8169, but also have some vendor-specific
96 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
97 * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
98 *
99 * This driver takes advantage of the RX and TX checksum offload and
100 * VLAN tag insertion/extraction features. It also implements TX
101 * interrupt moderation using the timer interrupt registers, which
102 * significantly reduces TX interrupt load. There is also support
103 * for jumbo frames, however the 8169/8169S/8110S can not transmit
104 * jumbo frames larger than 7.5K, so the max MTU possible with this
105 * driver is 7500 bytes.
106 */
107
108#include <sys/cdefs.h>
109__FBSDID("$FreeBSD: head/sys/dev/re/if_re.c 119982 2003-09-11 07:54:16Z wpaul $");
110
111#include <sys/param.h>
112#include <sys/endian.h>
113#include <sys/systm.h>
114#include <sys/sockio.h>
115#include <sys/mbuf.h>
116#include <sys/malloc.h>
117#include <sys/kernel.h>
118#include <sys/socket.h>
119
120#include <net/if.h>
121#include <net/if_arp.h>
122#include <net/ethernet.h>
123#include <net/if_dl.h>
124#include <net/if_media.h>
125#include <net/if_vlan_var.h>
126
127#include <net/bpf.h>
128
129#include <machine/bus_pio.h>
130#include <machine/bus_memio.h>
131#include <machine/bus.h>
132#include <machine/resource.h>
133#include <sys/bus.h>
134#include <sys/rman.h>
135
136#include <dev/mii/mii.h>
137#include <dev/mii/miivar.h>
138
139#include <dev/pci/pcireg.h>
140#include <dev/pci/pcivar.h>
141
142MODULE_DEPEND(re, pci, 1, 1, 1);
143MODULE_DEPEND(re, ether, 1, 1, 1);
144MODULE_DEPEND(re, miibus, 1, 1, 1);
145
146/* "controller miibus0" required.  See GENERIC if you get errors here. */
147#include "miibus_if.h"
148
149/*
150 * Default to using PIO access for this driver.
151 */
152#define RE_USEIOSPACE
153
154#include <pci/if_rlreg.h>
155
156#define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157
158/*
159 * Various supported device vendors/types and their names.
160 */
161static struct rl_type re_devs[] = {
162	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163		"RealTek 8139C+ 10/100BaseTX" },
164	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165		"RealTek 8169 Gigabit Ethernet" },
166	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167		"RealTek 8169S Single-chip Gigabit Ethernet" },
168	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169		"RealTek 8110S Single-chip Gigabit Ethernet" },
170	{ 0, 0, 0, NULL }
171};
172
173static struct rl_hwrev re_hwrevs[] = {
174	{ RL_HWREV_8139, RL_8139,  "" },
175	{ RL_HWREV_8139A, RL_8139, "A" },
176	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177	{ RL_HWREV_8139B, RL_8139, "B" },
178	{ RL_HWREV_8130, RL_8139, "8130" },
179	{ RL_HWREV_8139C, RL_8139, "C" },
180	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182	{ RL_HWREV_8169, RL_8169, "8169"},
183	{ RL_HWREV_8169S, RL_8169, "8169S"},
184	{ RL_HWREV_8110S, RL_8169, "8110S"},
185	{ RL_HWREV_8100, RL_8139, "8100"},
186	{ RL_HWREV_8101, RL_8139, "8101"},
187	{ 0, 0, NULL }
188};
189
190static int re_probe		(device_t);
191static int re_attach		(device_t);
192static int re_detach		(device_t);
193
194static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195
196static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198				    bus_size_t, int);
199static int re_allocmem		(device_t, struct rl_softc *);
200static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201static int re_rx_list_init	(struct rl_softc *);
202static int re_tx_list_init	(struct rl_softc *);
203static void re_rxeof		(struct rl_softc *);
204static void re_txeof		(struct rl_softc *);
205static void re_intr		(void *);
206static void re_tick		(void *);
207static void re_start		(struct ifnet *);
208static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209static void re_init		(void *);
210static void re_stop		(struct rl_softc *);
211static void re_watchdog		(struct ifnet *);
212static int re_suspend		(device_t);
213static int re_resume		(device_t);
214static void re_shutdown		(device_t);
215static int re_ifmedia_upd	(struct ifnet *);
216static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217
218static void re_eeprom_putbyte	(struct rl_softc *, int);
219static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221static int re_gmii_readreg	(device_t, int, int);
222static int re_gmii_writereg	(device_t, int, int, int);
223
224static int re_miibus_readreg	(device_t, int, int);
225static int re_miibus_writereg	(device_t, int, int, int);
226static void re_miibus_statchg	(device_t);
227
228static u_int8_t re_calchash	(caddr_t);
229static void re_setmulti		(struct rl_softc *);
230static void re_reset		(struct rl_softc *);
231
232static int re_diag		(struct rl_softc *);
233
234#ifdef RE_USEIOSPACE
235#define RL_RES			SYS_RES_IOPORT
236#define RL_RID			RL_PCI_LOIO
237#else
238#define RL_RES			SYS_RES_MEMORY
239#define RL_RID			RL_PCI_LOMEM
240#endif
241
242static device_method_t re_methods[] = {
243	/* Device interface */
244	DEVMETHOD(device_probe,		re_probe),
245	DEVMETHOD(device_attach,	re_attach),
246	DEVMETHOD(device_detach,	re_detach),
247	DEVMETHOD(device_suspend,	re_suspend),
248	DEVMETHOD(device_resume,	re_resume),
249	DEVMETHOD(device_shutdown,	re_shutdown),
250
251	/* bus interface */
252	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254
255	/* MII interface */
256	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259
260	{ 0, 0 }
261};
262
263static driver_t re_driver = {
264	"re",
265	re_methods,
266	sizeof(struct rl_softc)
267};
268
269static devclass_t re_devclass;
270
271DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274
275#define EE_SET(x)					\
276	CSR_WRITE_1(sc, RL_EECMD,			\
277		CSR_READ_1(sc, RL_EECMD) | x)
278
279#define EE_CLR(x)					\
280	CSR_WRITE_1(sc, RL_EECMD,			\
281		CSR_READ_1(sc, RL_EECMD) & ~x)
282
283/*
284 * Send a read command and address to the EEPROM, check for ACK.
285 */
286static void
287re_eeprom_putbyte(sc, addr)
288	struct rl_softc		*sc;
289	int			addr;
290{
291	register int		d, i;
292
293	d = addr | sc->rl_eecmd_read;
294
295	/*
296	 * Feed in each bit and strobe the clock.
297	 */
298	for (i = 0x400; i; i >>= 1) {
299		if (d & i) {
300			EE_SET(RL_EE_DATAIN);
301		} else {
302			EE_CLR(RL_EE_DATAIN);
303		}
304		DELAY(100);
305		EE_SET(RL_EE_CLK);
306		DELAY(150);
307		EE_CLR(RL_EE_CLK);
308		DELAY(100);
309	}
310
311	return;
312}
313
314/*
315 * Read a word of data stored in the EEPROM at address 'addr.'
316 */
317static void
318re_eeprom_getword(sc, addr, dest)
319	struct rl_softc		*sc;
320	int			addr;
321	u_int16_t		*dest;
322{
323	register int		i;
324	u_int16_t		word = 0;
325
326	/* Enter EEPROM access mode. */
327	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328
329	/*
330	 * Send address of word we want to read.
331	 */
332	re_eeprom_putbyte(sc, addr);
333
334	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335
336	/*
337	 * Start reading bits from EEPROM.
338	 */
339	for (i = 0x8000; i; i >>= 1) {
340		EE_SET(RL_EE_CLK);
341		DELAY(100);
342		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343			word |= i;
344		EE_CLR(RL_EE_CLK);
345		DELAY(100);
346	}
347
348	/* Turn off EEPROM access mode. */
349	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350
351	*dest = word;
352
353	return;
354}
355
356/*
357 * Read a sequence of words from the EEPROM.
358 */
359static void
360re_read_eeprom(sc, dest, off, cnt, swap)
361	struct rl_softc		*sc;
362	caddr_t			dest;
363	int			off;
364	int			cnt;
365	int			swap;
366{
367	int			i;
368	u_int16_t		word = 0, *ptr;
369
370	for (i = 0; i < cnt; i++) {
371		re_eeprom_getword(sc, off + i, &word);
372		ptr = (u_int16_t *)(dest + (i * 2));
373		if (swap)
374			*ptr = ntohs(word);
375		else
376			*ptr = word;
377	}
378
379	return;
380}
381
382static int
383re_gmii_readreg(dev, phy, reg)
384	device_t		dev;
385	int			phy, reg;
386{
387	struct rl_softc		*sc;
388	u_int32_t		rval;
389	int			i;
390
391	if (phy != 1)
392		return(0);
393
394	sc = device_get_softc(dev);
395
396	/* Let the rgephy driver read the GMEDIASTAT register */
397
398	if (reg == RL_GMEDIASTAT) {
399		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400		return(rval);
401	}
402
403	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404	DELAY(1000);
405
406	for (i = 0; i < RL_TIMEOUT; i++) {
407		rval = CSR_READ_4(sc, RL_PHYAR);
408		if (rval & RL_PHYAR_BUSY)
409			break;
410		DELAY(100);
411	}
412
413	if (i == RL_TIMEOUT) {
414		printf ("re%d: PHY read failed\n", sc->rl_unit);
415		return (0);
416	}
417
418	return (rval & RL_PHYAR_PHYDATA);
419}
420
421static int
422re_gmii_writereg(dev, phy, reg, data)
423	device_t		dev;
424	int			phy, reg, data;
425{
426	struct rl_softc		*sc;
427	u_int32_t		rval;
428	int			i;
429
430	sc = device_get_softc(dev);
431
432	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434	DELAY(1000);
435
436	for (i = 0; i < RL_TIMEOUT; i++) {
437		rval = CSR_READ_4(sc, RL_PHYAR);
438		if (!(rval & RL_PHYAR_BUSY))
439			break;
440		DELAY(100);
441	}
442
443	if (i == RL_TIMEOUT) {
444		printf ("re%d: PHY write failed\n", sc->rl_unit);
445		return (0);
446	}
447
448	return (0);
449}
450
451static int
452re_miibus_readreg(dev, phy, reg)
453	device_t		dev;
454	int			phy, reg;
455{
456	struct rl_softc		*sc;
457	u_int16_t		rval = 0;
458	u_int16_t		re8139_reg = 0;
459
460	sc = device_get_softc(dev);
461	RL_LOCK(sc);
462
463	if (sc->rl_type == RL_8169) {
464		rval = re_gmii_readreg(dev, phy, reg);
465		RL_UNLOCK(sc);
466		return (rval);
467	}
468
469	/* Pretend the internal PHY is only at address 0 */
470	if (phy) {
471		RL_UNLOCK(sc);
472		return(0);
473	}
474	switch(reg) {
475	case MII_BMCR:
476		re8139_reg = RL_BMCR;
477		break;
478	case MII_BMSR:
479		re8139_reg = RL_BMSR;
480		break;
481	case MII_ANAR:
482		re8139_reg = RL_ANAR;
483		break;
484	case MII_ANER:
485		re8139_reg = RL_ANER;
486		break;
487	case MII_ANLPAR:
488		re8139_reg = RL_LPAR;
489		break;
490	case MII_PHYIDR1:
491	case MII_PHYIDR2:
492		RL_UNLOCK(sc);
493		return(0);
494	/*
495	 * Allow the rlphy driver to read the media status
496	 * register. If we have a link partner which does not
497	 * support NWAY, this is the register which will tell
498	 * us the results of parallel detection.
499	 */
500	case RL_MEDIASTAT:
501		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502		RL_UNLOCK(sc);
503		return(rval);
504	default:
505		printf("re%d: bad phy register\n", sc->rl_unit);
506		RL_UNLOCK(sc);
507		return(0);
508	}
509	rval = CSR_READ_2(sc, re8139_reg);
510	RL_UNLOCK(sc);
511	return(rval);
512}
513
514static int
515re_miibus_writereg(dev, phy, reg, data)
516	device_t		dev;
517	int			phy, reg, data;
518{
519	struct rl_softc		*sc;
520	u_int16_t		re8139_reg = 0;
521	int			rval = 0;
522
523	sc = device_get_softc(dev);
524	RL_LOCK(sc);
525
526	if (sc->rl_type == RL_8169) {
527		rval = re_gmii_writereg(dev, phy, reg, data);
528		RL_UNLOCK(sc);
529		return (rval);
530	}
531
532	/* Pretend the internal PHY is only at address 0 */
533	if (phy) {
534		RL_UNLOCK(sc);
535		return(0);
536	}
537	switch(reg) {
538	case MII_BMCR:
539		re8139_reg = RL_BMCR;
540		break;
541	case MII_BMSR:
542		re8139_reg = RL_BMSR;
543		break;
544	case MII_ANAR:
545		re8139_reg = RL_ANAR;
546		break;
547	case MII_ANER:
548		re8139_reg = RL_ANER;
549		break;
550	case MII_ANLPAR:
551		re8139_reg = RL_LPAR;
552		break;
553	case MII_PHYIDR1:
554	case MII_PHYIDR2:
555		RL_UNLOCK(sc);
556		return(0);
557		break;
558	default:
559		printf("re%d: bad phy register\n", sc->rl_unit);
560		RL_UNLOCK(sc);
561		return(0);
562	}
563	CSR_WRITE_2(sc, re8139_reg, data);
564	RL_UNLOCK(sc);
565	return(0);
566}
567
568static void
569re_miibus_statchg(dev)
570	device_t		dev;
571{
572	return;
573}
574
575/*
576 * Calculate CRC of a multicast group address, return the upper 6 bits.
577 */
578static u_int8_t
579re_calchash(addr)
580	caddr_t			addr;
581{
582	u_int32_t		crc, carry;
583	int			i, j;
584	u_int8_t		c;
585
586	/* Compute CRC for the address value. */
587	crc = 0xFFFFFFFF; /* initial value */
588
589	for (i = 0; i < 6; i++) {
590		c = *(addr + i);
591		for (j = 0; j < 8; j++) {
592			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
593			crc <<= 1;
594			c >>= 1;
595			if (carry)
596				crc = (crc ^ 0x04c11db6) | carry;
597		}
598	}
599
600	/* return the filter bit position */
601	return(crc >> 26);
602}
603
604/*
605 * Program the 64-bit multicast hash filter.
606 */
607static void
608re_setmulti(sc)
609	struct rl_softc		*sc;
610{
611	struct ifnet		*ifp;
612	int			h = 0;
613	u_int32_t		hashes[2] = { 0, 0 };
614	struct ifmultiaddr	*ifma;
615	u_int32_t		rxfilt;
616	int			mcnt = 0;
617
618	ifp = &sc->arpcom.ac_if;
619
620	rxfilt = CSR_READ_4(sc, RL_RXCFG);
621
622	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
623		rxfilt |= RL_RXCFG_RX_MULTI;
624		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
625		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
626		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
627		return;
628	}
629
630	/* first, zot all the existing hash bits */
631	CSR_WRITE_4(sc, RL_MAR0, 0);
632	CSR_WRITE_4(sc, RL_MAR4, 0);
633
634	/* now program new ones */
635	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
636		if (ifma->ifma_addr->sa_family != AF_LINK)
637			continue;
638		h = re_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
639		if (h < 32)
640			hashes[0] |= (1 << h);
641		else
642			hashes[1] |= (1 << (h - 32));
643		mcnt++;
644	}
645
646	if (mcnt)
647		rxfilt |= RL_RXCFG_RX_MULTI;
648	else
649		rxfilt &= ~RL_RXCFG_RX_MULTI;
650
651	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
652	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
653	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
654
655	return;
656}
657
658static void
659re_reset(sc)
660	struct rl_softc		*sc;
661{
662	register int		i;
663
664	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
665
666	for (i = 0; i < RL_TIMEOUT; i++) {
667		DELAY(10);
668		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
669			break;
670	}
671	if (i == RL_TIMEOUT)
672		printf("re%d: reset never completed!\n", sc->rl_unit);
673
674	CSR_WRITE_1(sc, 0x82, 1);
675
676	return;
677}
678
679/*
680 * The following routine is designed to test for a defect on some
681 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
682 * lines connected to the bus, however for a 32-bit only card, they
683 * should be pulled high. The result of this defect is that the
684 * NIC will not work right if you plug it into a 64-bit slot: DMA
685 * operations will be done with 64-bit transfers, which will fail
686 * because the 64-bit data lines aren't connected.
687 *
688 * There's no way to work around this (short of talking a soldering
689 * iron to the board), however we can detect it. The method we use
690 * here is to put the NIC into digital loopback mode, set the receiver
691 * to promiscuous mode, and then try to send a frame. We then compare
692 * the frame data we sent to what was received. If the data matches,
693 * then the NIC is working correctly, otherwise we know the user has
694 * a defective NIC which has been mistakenly plugged into a 64-bit PCI
695 * slot. In the latter case, there's no way the NIC can work correctly,
696 * so we print out a message on the console and abort the device attach.
697 */
698
699static int
700re_diag(sc)
701	struct rl_softc		*sc;
702{
703	struct ifnet		*ifp = &sc->arpcom.ac_if;
704	struct mbuf		*m0;
705	struct ether_header	*eh;
706	struct rl_desc		*cur_rx;
707	u_int16_t		status;
708	u_int32_t		rxstat;
709	int			total_len, i, error = 0;
710	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
711	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
712
713	/* Allocate a single mbuf */
714
715	MGETHDR(m0, M_DONTWAIT, MT_DATA);
716	if (m0 == NULL)
717		return(ENOBUFS);
718
719	/*
720	 * Initialize the NIC in test mode. This sets the chip up
721	 * so that it can send and receive frames, but performs the
722	 * following special functions:
723	 * - Puts receiver in promiscuous mode
724	 * - Enables digital loopback mode
725	 * - Leaves interrupts turned off
726	 */
727
728	ifp->if_flags |= IFF_PROMISC;
729	sc->rl_testmode = 1;
730	re_init(sc);
731	re_stop(sc);
732	DELAY(100000);
733	re_init(sc);
734
735	/* Put some data in the mbuf */
736
737	eh = mtod(m0, struct ether_header *);
738	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
739	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
740	eh->ether_type = htons(ETHERTYPE_IP);
741	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
742
743	/* Queue the packet, start transmission */
744
745	IF_HANDOFF(&ifp->if_snd, m0, ifp);
746	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
747	re_start(ifp);
748	m0 = NULL;
749
750	/* Wait for it to propagate through the chip */
751
752	DELAY(100000);
753	for (i = 0; i < RL_TIMEOUT; i++) {
754		status = CSR_READ_2(sc, RL_ISR);
755		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
756		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
757			break;
758		DELAY(10);
759	}
760
761	if (i == RL_TIMEOUT) {
762		printf("re%d: diagnostic failed, failed to receive packet "
763		    "in loopback mode\n", sc->rl_unit);
764		error = EIO;
765		goto done;
766	}
767
768	/*
769	 * The packet should have been dumped into the first
770	 * entry in the RX DMA ring. Grab it from there.
771	 */
772
773	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
774	    sc->rl_ldata.rl_rx_list_map,
775	    BUS_DMASYNC_POSTREAD);
776	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
777	    sc->rl_ldata.rl_rx_dmamap[0],
778	    BUS_DMASYNC_POSTWRITE);
779	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
780	    sc->rl_ldata.rl_rx_dmamap[0]);
781
782	m0 = sc->rl_ldata.rl_rx_mbuf[0];
783	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
784	eh = mtod(m0, struct ether_header *);
785
786	cur_rx = &sc->rl_ldata.rl_rx_list[0];
787	total_len = RL_RXBYTES(cur_rx);
788	rxstat = le32toh(cur_rx->rl_cmdstat);
789
790	if (total_len != ETHER_MIN_LEN) {
791		printf("re%d: diagnostic failed, received short packet\n",
792		    sc->rl_unit);
793		error = EIO;
794		goto done;
795	}
796
797	/* Test that the received packet data matches what we sent. */
798
799	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
800	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
801	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
802		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
803		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
804		    dst, ":", src, ":", ETHERTYPE_IP);
805		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
806		    eh->ether_dhost, ":",  eh->ether_shost, ":",
807		    ntohs(eh->ether_type));
808		printf("re%d: You may have a defective 32-bit NIC plugged "
809		    "into a 64-bit PCI slot.\n", sc->rl_unit);
810		printf("re%d: Please re-install the NIC in a 32-bit slot "
811		    "for proper operation.\n", sc->rl_unit);
812		printf("re%d: Read the re(4) man page for more details.\n",
813		    sc->rl_unit);
814		error = EIO;
815	}
816
817done:
818	/* Turn interface off, release resources */
819
820	sc->rl_testmode = 0;
821	ifp->if_flags &= ~IFF_PROMISC;
822	re_stop(sc);
823	if (m0 != NULL)
824		m_freem(m0);
825
826	return (error);
827}
828
829/*
830 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
831 * IDs against our list and return a device name if we find a match.
832 */
833static int
834re_probe(dev)
835	device_t		dev;
836{
837	struct rl_type		*t;
838	struct rl_softc		*sc;
839	int			rid;
840	u_int32_t		hwrev;
841
842	t = re_devs;
843	sc = device_get_softc(dev);
844
845	while(t->rl_name != NULL) {
846		if ((pci_get_vendor(dev) == t->rl_vid) &&
847		    (pci_get_device(dev) == t->rl_did)) {
848
849			/*
850			 * Temporarily map the I/O space
851			 * so we can read the chip ID register.
852			 */
853			rid = RL_RID;
854			sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
855			    0, ~0, 1, RF_ACTIVE);
856			if (sc->rl_res == NULL) {
857				device_printf(dev,
858				    "couldn't map ports/memory\n");
859				return(ENXIO);
860			}
861			sc->rl_btag = rman_get_bustag(sc->rl_res);
862			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
863			mtx_init(&sc->rl_mtx,
864			    device_get_nameunit(dev),
865			    MTX_NETWORK_LOCK, MTX_DEF);
866			RL_LOCK(sc);
867			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
868			bus_release_resource(dev, RL_RES,
869			    RL_RID, sc->rl_res);
870			RL_UNLOCK(sc);
871			mtx_destroy(&sc->rl_mtx);
872			if (t->rl_basetype == hwrev) {
873				device_set_desc(dev, t->rl_name);
874				return(0);
875			}
876		}
877		t++;
878	}
879
880	return(ENXIO);
881}
882
883/*
884 * This routine takes the segment list provided as the result of
885 * a bus_dma_map_load() operation and assigns the addresses/lengths
886 * to RealTek DMA descriptors. This can be called either by the RX
887 * code or the TX code. In the RX case, we'll probably wind up mapping
888 * at most one segment. For the TX case, there could be any number of
889 * segments since TX packets may span multiple mbufs. In either case,
890 * if the number of segments is larger than the rl_maxsegs limit
891 * specified by the caller, we abort the mapping operation. Sadly,
892 * whoever designed the buffer mapping API did not provide a way to
893 * return an error from here, so we have to fake it a bit.
894 */
895
896static void
897re_dma_map_desc(arg, segs, nseg, mapsize, error)
898	void			*arg;
899	bus_dma_segment_t	*segs;
900	int			nseg;
901	bus_size_t		mapsize;
902	int			error;
903{
904	struct rl_dmaload_arg	*ctx;
905	struct rl_desc		*d = NULL;
906	int			i = 0, idx;
907
908	if (error)
909		return;
910
911	ctx = arg;
912
913	/* Signal error to caller if there's too many segments */
914	if (nseg > ctx->rl_maxsegs) {
915		ctx->rl_maxsegs = 0;
916		return;
917	}
918
919	/*
920	 * Map the segment array into descriptors. Note that we set the
921	 * start-of-frame and end-of-frame markers for either TX or RX, but
922	 * they really only have meaning in the TX case. (In the RX case,
923	 * it's the chip that tells us where packets begin and end.)
924	 * We also keep track of the end of the ring and set the
925	 * end-of-ring bits as needed, and we set the ownership bits
926	 * in all except the very first descriptor. (The caller will
927	 * set this descriptor later when it start transmission or
928	 * reception.)
929	 */
930	idx = ctx->rl_idx;
931	while(1) {
932		u_int32_t		cmdstat;
933		d = &ctx->rl_ring[idx];
934		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
935			ctx->rl_maxsegs = 0;
936			return;
937		}
938		cmdstat = segs[i].ds_len;
939		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
940		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
941		if (i == 0)
942			cmdstat |= RL_TDESC_CMD_SOF;
943		else
944			cmdstat |= RL_TDESC_CMD_OWN;
945		if (idx == (RL_RX_DESC_CNT - 1))
946			cmdstat |= RL_TDESC_CMD_EOR;
947		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
948		i++;
949		if (i == nseg)
950			break;
951		RL_DESC_INC(idx);
952	}
953
954	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
955	ctx->rl_maxsegs = nseg;
956	ctx->rl_idx = idx;
957
958	return;
959}
960
961/*
962 * Map a single buffer address.
963 */
964
965static void
966re_dma_map_addr(arg, segs, nseg, error)
967	void			*arg;
968	bus_dma_segment_t	*segs;
969	int			nseg;
970	int			error;
971{
972	u_int32_t		*addr;
973
974	if (error)
975		return;
976
977	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
978	addr = arg;
979	*addr = segs->ds_addr;
980
981	return;
982}
983
984static int
985re_allocmem(dev, sc)
986	device_t		dev;
987	struct rl_softc		*sc;
988{
989	int			error;
990	int			nseg;
991	int			i;
992
993	/*
994	 * Allocate map for RX mbufs.
995	 */
996	nseg = 32;
997	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
998	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999	    NULL, MCLBYTES * nseg, nseg, RL_JLEN, BUS_DMA_ALLOCNOW,
1000	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1001	if (error) {
1002		device_printf(dev, "could not allocate dma tag\n");
1003		return (ENOMEM);
1004	}
1005
1006	/*
1007	 * Allocate map for TX descriptor list.
1008	 */
1009	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1010	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1011            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1012	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1013	if (error) {
1014		device_printf(dev, "could not allocate dma tag\n");
1015		return (ENOMEM);
1016	}
1017
1018	/* Allocate DMA'able memory for the TX ring */
1019
1020        error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1021	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1022            &sc->rl_ldata.rl_tx_list_map);
1023        if (error)
1024                return (ENOMEM);
1025
1026	/* Load the map for the TX ring. */
1027
1028	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030	     RL_TX_LIST_SZ, re_dma_map_addr,
1031	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032
1033	/* Create DMA maps for TX buffers */
1034
1035	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1036		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1037			    &sc->rl_ldata.rl_tx_dmamap[i]);
1038		if (error) {
1039			device_printf(dev, "can't create DMA map for TX\n");
1040			return(ENOMEM);
1041		}
1042	}
1043
1044	/*
1045	 * Allocate map for RX descriptor list.
1046	 */
1047	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1048	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1049            NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1050	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1051	if (error) {
1052		device_printf(dev, "could not allocate dma tag\n");
1053		return (ENOMEM);
1054	}
1055
1056	/* Allocate DMA'able memory for the RX ring */
1057
1058        error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1059	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1060            &sc->rl_ldata.rl_rx_list_map);
1061        if (error)
1062                return (ENOMEM);
1063
1064	/* Load the map for the RX ring. */
1065
1066	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068	     RL_TX_LIST_SZ, re_dma_map_addr,
1069	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070
1071	/* Create DMA maps for RX buffers */
1072
1073	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1074		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1075			    &sc->rl_ldata.rl_rx_dmamap[i]);
1076		if (error) {
1077			device_printf(dev, "can't create DMA map for RX\n");
1078			return(ENOMEM);
1079		}
1080	}
1081
1082	return(0);
1083}
1084
1085/*
1086 * Attach the interface. Allocate softc structures, do ifmedia
1087 * setup and ethernet/BPF attach.
1088 */
1089static int
1090re_attach(dev)
1091	device_t		dev;
1092{
1093	u_char			eaddr[ETHER_ADDR_LEN];
1094	u_int16_t		as[3];
1095	struct rl_softc		*sc;
1096	struct ifnet		*ifp;
1097	struct rl_hwrev		*hw_rev;
1098	int			hwrev;
1099	u_int16_t		re_did = 0;
1100	int			unit, error = 0, rid, i;
1101
1102	sc = device_get_softc(dev);
1103	unit = device_get_unit(dev);
1104
1105	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1106	    MTX_DEF | MTX_RECURSE);
1107#ifndef BURN_BRIDGES
1108	/*
1109	 * Handle power management nonsense.
1110	 */
1111
1112	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1113		u_int32_t		iobase, membase, irq;
1114
1115		/* Save important PCI config data. */
1116		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1117		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1118		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1119
1120		/* Reset the power state. */
1121		printf("re%d: chip is is in D%d power mode "
1122		    "-- setting to D0\n", unit,
1123		    pci_get_powerstate(dev));
1124
1125		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1126
1127		/* Restore PCI config data. */
1128		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1129		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1130		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1131	}
1132#endif
1133	/*
1134	 * Map control/status registers.
1135	 */
1136	pci_enable_busmaster(dev);
1137
1138	rid = RL_RID;
1139	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
1140	    0, ~0, 1, RF_ACTIVE);
1141
1142	if (sc->rl_res == NULL) {
1143		printf ("re%d: couldn't map ports/memory\n", unit);
1144		error = ENXIO;
1145		goto fail;
1146	}
1147
1148	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150
1151	/* Allocate interrupt */
1152	rid = 0;
1153	sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1154	    RF_SHAREABLE | RF_ACTIVE);
1155
1156	if (sc->rl_irq == NULL) {
1157		printf("re%d: couldn't map interrupt\n", unit);
1158		error = ENXIO;
1159		goto fail;
1160	}
1161
1162	/* Reset the adapter. */
1163	re_reset(sc);
1164
1165	hw_rev = re_hwrevs;
1166	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1167	while (hw_rev->rl_desc != NULL) {
1168		if (hw_rev->rl_rev == hwrev) {
1169			sc->rl_type = hw_rev->rl_type;
1170			break;
1171		}
1172		hw_rev++;
1173	}
1174
1175	if (sc->rl_type == RL_8169) {
1176
1177		/* Set RX length mask */
1178
1179		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1180
1181		/* Force station address autoload from the EEPROM */
1182
1183		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1184		for (i = 0; i < RL_TIMEOUT; i++) {
1185			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1186				break;
1187			DELAY(100);
1188		}
1189		if (i == RL_TIMEOUT)
1190			printf ("re%d: eeprom autoload timed out\n", unit);
1191
1192			for (i = 0; i < ETHER_ADDR_LEN; i++)
1193				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1194	} else {
1195
1196		/* Set RX length mask */
1197
1198		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1199
1200		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1201		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1202		if (re_did != 0x8129)
1203			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1204
1205		/*
1206		 * Get station address from the EEPROM.
1207		 */
1208		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1209		for (i = 0; i < 3; i++) {
1210			eaddr[(i * 2) + 0] = as[i] & 0xff;
1211			eaddr[(i * 2) + 1] = as[i] >> 8;
1212		}
1213	}
1214
1215	/*
1216	 * A RealTek chip was detected. Inform the world.
1217	 */
1218	printf("re%d: Ethernet address: %6D\n", unit, eaddr, ":");
1219
1220	sc->rl_unit = unit;
1221	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1222
1223	/*
1224	 * Allocate the parent bus DMA tag appropriate for PCI.
1225	 */
1226#define RL_NSEG_NEW 32
1227	error = bus_dma_tag_create(NULL,	/* parent */
1228			1, 0,			/* alignment, boundary */
1229			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1230			BUS_SPACE_MAXADDR,	/* highaddr */
1231			NULL, NULL,		/* filter, filterarg */
1232			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1233			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1234			BUS_DMA_ALLOCNOW,	/* flags */
1235			NULL, NULL,		/* lockfunc, lockarg */
1236			&sc->rl_parent_tag);
1237	if (error)
1238		goto fail;
1239
1240	error = re_allocmem(dev, sc);
1241
1242	if (error)
1243		goto fail;
1244
1245	/* Do MII setup */
1246	if (mii_phy_probe(dev, &sc->rl_miibus,
1247	    re_ifmedia_upd, re_ifmedia_sts)) {
1248		printf("re%d: MII without any phy!\n", sc->rl_unit);
1249		error = ENXIO;
1250		goto fail;
1251	}
1252
1253	ifp = &sc->arpcom.ac_if;
1254	ifp->if_softc = sc;
1255	ifp->if_unit = unit;
1256	ifp->if_name = "re";
1257	ifp->if_mtu = ETHERMTU;
1258	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1259	ifp->if_ioctl = re_ioctl;
1260	ifp->if_output = ether_output;
1261	ifp->if_capabilities = IFCAP_VLAN_MTU;
1262	ifp->if_start = re_start;
1263	ifp->if_hwassist = RE_CSUM_FEATURES;
1264	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1265	ifp->if_watchdog = re_watchdog;
1266	ifp->if_init = re_init;
1267	if (sc->rl_type == RL_8169)
1268		ifp->if_baudrate = 1000000000;
1269	else
1270		ifp->if_baudrate = 100000000;
1271	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1272	ifp->if_capenable = ifp->if_capabilities;
1273
1274	callout_handle_init(&sc->rl_stat_ch);
1275
1276	/*
1277	 * Call MI attach routine.
1278	 */
1279	ether_ifattach(ifp, eaddr);
1280
1281	/* Perform hardware diagnostic. */
1282	error = re_diag(sc);
1283
1284	if (error) {
1285		printf("re%d: attach aborted due to hardware diag failure\n",
1286		    unit);
1287		ether_ifdetach(ifp);
1288		goto fail;
1289	}
1290
1291	/* Hook interrupt last to avoid having to lock softc */
1292	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1293	    re_intr, sc, &sc->rl_intrhand);
1294
1295	if (error) {
1296		printf("re%d: couldn't set up irq\n", unit);
1297		ether_ifdetach(ifp);
1298		goto fail;
1299	}
1300
1301fail:
1302	if (error)
1303		re_detach(dev);
1304
1305	return (error);
1306}
1307
1308/*
1309 * Shutdown hardware and free up resources. This can be called any
1310 * time after the mutex has been initialized. It is called in both
1311 * the error case in attach and the normal detach case so it needs
1312 * to be careful about only freeing resources that have actually been
1313 * allocated.
1314 */
1315static int
1316re_detach(dev)
1317	device_t		dev;
1318{
1319	struct rl_softc		*sc;
1320	struct ifnet		*ifp;
1321	int			i;
1322
1323	sc = device_get_softc(dev);
1324	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1325	RL_LOCK(sc);
1326	ifp = &sc->arpcom.ac_if;
1327
1328	/* These should only be active if attach succeeded */
1329	if (device_is_attached(dev)) {
1330		re_stop(sc);
1331		/*
1332		 * Force off the IFF_UP flag here, in case someone
1333		 * still had a BPF descriptor attached to this
1334		 * interface. If they do, ether_ifattach() will cause
1335		 * the BPF code to try and clear the promisc mode
1336		 * flag, which will bubble down to re_ioctl(),
1337		 * which will try to call re_init() again. This will
1338		 * turn the NIC back on and restart the MII ticker,
1339		 * which will panic the system when the kernel tries
1340		 * to invoke the re_tick() function that isn't there
1341		 * anymore.
1342		 */
1343		ifp->if_flags &= ~IFF_UP;
1344		ether_ifdetach(ifp);
1345	}
1346	if (sc->rl_miibus)
1347		device_delete_child(dev, sc->rl_miibus);
1348	bus_generic_detach(dev);
1349
1350	if (sc->rl_intrhand)
1351		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1352	if (sc->rl_irq)
1353		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1354	if (sc->rl_res)
1355		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1356
1357
1358	/* Unload and free the RX DMA ring memory and map */
1359
1360	if (sc->rl_ldata.rl_rx_list_tag) {
1361		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1362		    sc->rl_ldata.rl_rx_list_map);
1363		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1364		    sc->rl_ldata.rl_rx_list,
1365		    sc->rl_ldata.rl_rx_list_map);
1366		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1367	}
1368
1369	/* Unload and free the TX DMA ring memory and map */
1370
1371	if (sc->rl_ldata.rl_tx_list_tag) {
1372		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1373		    sc->rl_ldata.rl_tx_list_map);
1374		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1375		    sc->rl_ldata.rl_tx_list,
1376		    sc->rl_ldata.rl_tx_list_map);
1377		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1378	}
1379
1380	/* Destroy all the RX and TX buffer maps */
1381
1382	if (sc->rl_ldata.rl_mtag) {
1383		for (i = 0; i < RL_TX_DESC_CNT; i++)
1384			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1385			    sc->rl_ldata.rl_tx_dmamap[i]);
1386		for (i = 0; i < RL_RX_DESC_CNT; i++)
1387			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1388			    sc->rl_ldata.rl_rx_dmamap[i]);
1389		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1390	}
1391
1392	/* Unload and free the stats buffer and map */
1393
1394	if (sc->rl_ldata.rl_stag) {
1395		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1396		    sc->rl_ldata.rl_rx_list_map);
1397		bus_dmamem_free(sc->rl_ldata.rl_stag,
1398		    sc->rl_ldata.rl_stats,
1399		    sc->rl_ldata.rl_smap);
1400		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1401	}
1402
1403	if (sc->rl_parent_tag)
1404		bus_dma_tag_destroy(sc->rl_parent_tag);
1405
1406	RL_UNLOCK(sc);
1407	mtx_destroy(&sc->rl_mtx);
1408
1409	return(0);
1410}
1411
1412static int
1413re_newbuf(sc, idx, m)
1414	struct rl_softc		*sc;
1415	int			idx;
1416	struct mbuf		*m;
1417{
1418	struct rl_dmaload_arg	arg;
1419	struct mbuf		*n = NULL;
1420	int			error;
1421
1422	if (m == NULL) {
1423		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1424		if (n == NULL)
1425			return(ENOBUFS);
1426		m = n;
1427	} else
1428		m->m_data = m->m_ext.ext_buf;
1429
1430	/*
1431	 * Initialize mbuf length fields and fixup
1432	 * alignment so that the frame payload is
1433	 * longword aligned.
1434	 */
1435	m->m_len = m->m_pkthdr.len = MCLBYTES;
1436	m_adj(m, ETHER_ALIGN);
1437
1438	arg.sc = sc;
1439	arg.rl_idx = idx;
1440	arg.rl_maxsegs = 1;
1441	arg.rl_flags = 0;
1442	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1443
1444        error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1445	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1446	    &arg, BUS_DMA_NOWAIT);
1447	if (error || arg.rl_maxsegs != 1) {
1448		if (n != NULL)
1449			m_freem(n);
1450		return (ENOMEM);
1451	}
1452
1453	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1454	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1455
1456        bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1457	    sc->rl_ldata.rl_rx_dmamap[idx],
1458	    BUS_DMASYNC_PREREAD);
1459
1460	return(0);
1461}
1462
1463static int
1464re_tx_list_init(sc)
1465	struct rl_softc		*sc;
1466{
1467	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1468	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1469	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1470
1471	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1472	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1473	sc->rl_ldata.rl_tx_prodidx = 0;
1474	sc->rl_ldata.rl_tx_considx = 0;
1475	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1476
1477	return(0);
1478}
1479
1480static int
1481re_rx_list_init(sc)
1482	struct rl_softc		*sc;
1483{
1484	int			i;
1485
1486	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1487	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1488	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1489
1490	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1491		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1492			return(ENOBUFS);
1493	}
1494
1495	/* Flush the RX descriptors */
1496
1497	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1498	    sc->rl_ldata.rl_rx_list_map,
1499	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1500
1501	sc->rl_ldata.rl_rx_prodidx = 0;
1502	sc->rl_head = sc->rl_tail = NULL;
1503
1504	return(0);
1505}
1506
1507/*
1508 * RX handler for C+ and 8169. For the gigE chips, we support
1509 * the reception of jumbo frames that have been fragmented
1510 * across multiple 2K mbuf cluster buffers.
1511 */
1512static void
1513re_rxeof(sc)
1514	struct rl_softc		*sc;
1515{
1516	struct mbuf		*m;
1517	struct ifnet		*ifp;
1518	int			i, total_len;
1519	struct rl_desc		*cur_rx;
1520	u_int32_t		rxstat, rxvlan;
1521
1522	ifp = &sc->arpcom.ac_if;
1523	i = sc->rl_ldata.rl_rx_prodidx;
1524
1525	/* Invalidate the descriptor memory */
1526
1527	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1528	    sc->rl_ldata.rl_rx_list_map,
1529	    BUS_DMASYNC_POSTREAD);
1530
1531	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1532
1533		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1534		m = sc->rl_ldata.rl_rx_mbuf[i];
1535		total_len = RL_RXBYTES(cur_rx);
1536		rxstat = le32toh(cur_rx->rl_cmdstat);
1537		rxvlan = le32toh(cur_rx->rl_vlanctl);
1538
1539		/* Invalidate the RX mbuf and unload its map */
1540
1541		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1542		    sc->rl_ldata.rl_rx_dmamap[i],
1543		    BUS_DMASYNC_POSTWRITE);
1544		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1545		    sc->rl_ldata.rl_rx_dmamap[i]);
1546
1547		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1548			m->m_len = MCLBYTES - ETHER_ALIGN;
1549			if (sc->rl_head == NULL)
1550				sc->rl_head = sc->rl_tail = m;
1551			else {
1552				m->m_flags &= ~M_PKTHDR;
1553				sc->rl_tail->m_next = m;
1554				sc->rl_tail = m;
1555			}
1556			re_newbuf(sc, i, NULL);
1557			RL_DESC_INC(i);
1558			continue;
1559		}
1560
1561		/*
1562		 * NOTE: for the 8139C+, the frame length field
1563		 * is always 12 bits in size, but for the gigE chips,
1564		 * it is 13 bits (since the max RX frame length is 16K).
1565		 * Unfortunately, all 32 bits in the status word
1566		 * were already used, so to make room for the extra
1567		 * length bit, RealTek took out the 'frame alignment
1568		 * error' bit and shifted the other status bits
1569		 * over one slot. The OWN, EOR, FS and LS bits are
1570		 * still in the same places. We have already extracted
1571		 * the frame length and checked the OWN bit, so rather
1572		 * than using an alternate bit mapping, we shift the
1573		 * status bits one space to the right so we can evaluate
1574		 * them using the 8169 status as though it was in the
1575		 * same format as that of the 8139C+.
1576		 */
1577		if (sc->rl_type == RL_8169)
1578			rxstat >>= 1;
1579
1580		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1581			ifp->if_ierrors++;
1582			/*
1583			 * If this is part of a multi-fragment packet,
1584			 * discard all the pieces.
1585			 */
1586			if (sc->rl_head != NULL) {
1587				m_freem(sc->rl_head);
1588				sc->rl_head = sc->rl_tail = NULL;
1589			}
1590			re_newbuf(sc, i, m);
1591			RL_DESC_INC(i);
1592			continue;
1593		}
1594
1595		/*
1596		 * If allocating a replacement mbuf fails,
1597		 * reload the current one.
1598		 */
1599
1600		if (re_newbuf(sc, i, NULL)) {
1601			ifp->if_ierrors++;
1602			if (sc->rl_head != NULL) {
1603				m_freem(sc->rl_head);
1604				sc->rl_head = sc->rl_tail = NULL;
1605			}
1606			re_newbuf(sc, i, m);
1607			RL_DESC_INC(i);
1608			continue;
1609		}
1610
1611		RL_DESC_INC(i);
1612
1613		if (sc->rl_head != NULL) {
1614			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1615			/*
1616			 * Special case: if there's 4 bytes or less
1617			 * in this buffer, the mbuf can be discarded:
1618			 * the last 4 bytes is the CRC, which we don't
1619			 * care about anyway.
1620			 */
1621			if (m->m_len <= ETHER_CRC_LEN) {
1622				sc->rl_tail->m_len -=
1623				    (ETHER_CRC_LEN - m->m_len);
1624				m_freem(m);
1625			} else {
1626				m->m_len -= ETHER_CRC_LEN;
1627				m->m_flags &= ~M_PKTHDR;
1628				sc->rl_tail->m_next = m;
1629			}
1630			m = sc->rl_head;
1631			sc->rl_head = sc->rl_tail = NULL;
1632			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1633		} else
1634			m->m_pkthdr.len = m->m_len =
1635			    (total_len - ETHER_CRC_LEN);
1636
1637		ifp->if_ipackets++;
1638		m->m_pkthdr.rcvif = ifp;
1639
1640		/* Do RX checksumming if enabled */
1641
1642		if (ifp->if_capenable & IFCAP_RXCSUM) {
1643
1644			/* Check IP header checksum */
1645			if (rxstat & RL_RDESC_STAT_PROTOID)
1646				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1647			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1648				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1649
1650			/* Check TCP/UDP checksum */
1651			if ((RL_TCPPKT(rxstat) &&
1652			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1653			    (RL_UDPPKT(rxstat) &&
1654			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1655				m->m_pkthdr.csum_flags |=
1656				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1657				m->m_pkthdr.csum_data = 0xffff;
1658			}
1659		}
1660
1661		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1662			VLAN_INPUT_TAG(ifp, m,
1663			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1664		(*ifp->if_input)(ifp, m);
1665	}
1666
1667	/* Flush the RX DMA ring */
1668
1669	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1670	    sc->rl_ldata.rl_rx_list_map,
1671	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1672
1673	sc->rl_ldata.rl_rx_prodidx = i;
1674
1675	return;
1676}
1677
1678static void
1679re_txeof(sc)
1680	struct rl_softc		*sc;
1681{
1682	struct ifnet		*ifp;
1683	u_int32_t		txstat;
1684	int			idx;
1685
1686	ifp = &sc->arpcom.ac_if;
1687	idx = sc->rl_ldata.rl_tx_considx;
1688
1689	/* Invalidate the TX descriptor list */
1690
1691	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1692	    sc->rl_ldata.rl_tx_list_map,
1693	    BUS_DMASYNC_POSTREAD);
1694
1695	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1696
1697		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1698		if (txstat & RL_TDESC_CMD_OWN)
1699			break;
1700
1701		/*
1702		 * We only stash mbufs in the last descriptor
1703		 * in a fragment chain, which also happens to
1704		 * be the only place where the TX status bits
1705		 * are valid.
1706		 */
1707
1708		if (txstat & RL_TDESC_CMD_EOF) {
1709			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1710			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1711			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1712			    sc->rl_ldata.rl_tx_dmamap[idx]);
1713			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1714			    RL_TDESC_STAT_COLCNT))
1715				ifp->if_collisions++;
1716			if (txstat & RL_TDESC_STAT_TXERRSUM)
1717				ifp->if_oerrors++;
1718			else
1719				ifp->if_opackets++;
1720		}
1721		sc->rl_ldata.rl_tx_free++;
1722		RL_DESC_INC(idx);
1723	}
1724
1725	/* No changes made to the TX ring, so no flush needed */
1726
1727	if (idx != sc->rl_ldata.rl_tx_considx) {
1728		sc->rl_ldata.rl_tx_considx = idx;
1729		ifp->if_flags &= ~IFF_OACTIVE;
1730		ifp->if_timer = 0;
1731	}
1732
1733	/*
1734	 * If not all descriptors have been released reaped yet,
1735	 * reload the timer so that we will eventually get another
1736	 * interrupt that will cause us to re-enter this routine.
1737	 * This is done in case the transmitter has gone idle.
1738	 */
1739	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1740                CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1741
1742	return;
1743}
1744
1745static void
1746re_tick(xsc)
1747	void			*xsc;
1748{
1749	struct rl_softc		*sc;
1750	struct mii_data		*mii;
1751
1752	sc = xsc;
1753	RL_LOCK(sc);
1754	mii = device_get_softc(sc->rl_miibus);
1755
1756	mii_tick(mii);
1757
1758	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1759	RL_UNLOCK(sc);
1760
1761	return;
1762}
1763
1764#ifdef DEVICE_POLLING
1765static void
1766re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1767{
1768	struct rl_softc *sc = ifp->if_softc;
1769
1770	RL_LOCK(sc);
1771	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1772		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1773		goto done;
1774	}
1775
1776	sc->rxcycles = count;
1777	re_rxeof(sc);
1778	re_txeof(sc);
1779
1780	if (ifp->if_snd.ifq_head != NULL)
1781		(*ifp->if_start)(ifp);
1782
1783	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1784		u_int16_t       status;
1785
1786		status = CSR_READ_2(sc, RL_ISR);
1787		if (status == 0xffff)
1788			goto done;
1789		if (status)
1790			CSR_WRITE_2(sc, RL_ISR, status);
1791
1792		/*
1793		 * XXX check behaviour on receiver stalls.
1794		 */
1795
1796		if (status & RL_ISR_SYSTEM_ERR) {
1797			re_reset(sc);
1798			re_init(sc);
1799		}
1800	}
1801done:
1802	RL_UNLOCK(sc);
1803}
1804#endif /* DEVICE_POLLING */
1805
1806static void
1807re_intr(arg)
1808	void			*arg;
1809{
1810	struct rl_softc		*sc;
1811	struct ifnet		*ifp;
1812	u_int16_t		status;
1813
1814	sc = arg;
1815
1816	if (sc->suspended) {
1817		return;
1818	}
1819
1820	RL_LOCK(sc);
1821	ifp = &sc->arpcom.ac_if;
1822
1823	if (!(ifp->if_flags & IFF_UP)) {
1824		RL_UNLOCK(sc);
1825		return;
1826	}
1827
1828#ifdef DEVICE_POLLING
1829	if  (ifp->if_flags & IFF_POLLING)
1830		goto done;
1831	if (ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1832		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1833		re_poll(ifp, 0, 1);
1834		goto done;
1835	}
1836#endif /* DEVICE_POLLING */
1837
1838	for (;;) {
1839
1840		status = CSR_READ_2(sc, RL_ISR);
1841		/* If the card has gone away the read returns 0xffff. */
1842		if (status == 0xffff)
1843			break;
1844		if (status)
1845			CSR_WRITE_2(sc, RL_ISR, status);
1846
1847		if ((status & RL_INTRS_CPLUS) == 0)
1848			break;
1849
1850		if (status & RL_ISR_RX_OK)
1851			re_rxeof(sc);
1852
1853		if (status & RL_ISR_RX_ERR)
1854			re_rxeof(sc);
1855
1856		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1857		    (status & RL_ISR_TX_ERR) ||
1858		    (status & RL_ISR_TX_DESC_UNAVAIL))
1859			re_txeof(sc);
1860
1861		if (status & RL_ISR_SYSTEM_ERR) {
1862			re_reset(sc);
1863			re_init(sc);
1864		}
1865
1866		if (status & RL_ISR_LINKCHG) {
1867			untimeout(re_tick, sc, sc->rl_stat_ch);
1868			re_tick(sc);
1869		}
1870	}
1871
1872	if (ifp->if_snd.ifq_head != NULL)
1873		(*ifp->if_start)(ifp);
1874
1875#ifdef DEVICE_POLLING
1876done:
1877#endif
1878	RL_UNLOCK(sc);
1879
1880	return;
1881}
1882
1883static int
1884re_encap(sc, m_head, idx)
1885	struct rl_softc		*sc;
1886	struct mbuf		*m_head;
1887	int			*idx;
1888{
1889	struct mbuf		*m_new = NULL;
1890	struct rl_dmaload_arg	arg;
1891	bus_dmamap_t		map;
1892	int			error;
1893	struct m_tag		*mtag;
1894
1895	if (sc->rl_ldata.rl_tx_free < 4)
1896		return(EFBIG);
1897
1898	/*
1899	 * Set up checksum offload. Note: checksum offload bits must
1900	 * appear in all descriptors of a multi-descriptor transmit
1901	 * attempt. (This is according to testing done with an 8169
1902	 * chip. I'm not sure if this is a requirement or a bug.)
1903	 */
1904
1905	arg.rl_flags = 0;
1906
1907	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1908		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1909	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1910		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1911	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1912		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1913
1914	arg.sc = sc;
1915	arg.rl_idx = *idx;
1916	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1917	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1918
1919	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1920	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1921	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1922
1923	if (error && error != EFBIG) {
1924		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1925		return(ENOBUFS);
1926	}
1927
1928	/* Too many segments to map, coalesce into a single mbuf */
1929
1930	if (error || arg.rl_maxsegs == 0) {
1931		m_new = m_defrag(m_head, M_DONTWAIT);
1932		if (m_new == NULL)
1933			return(1);
1934		else
1935			m_head = m_new;
1936
1937		arg.sc = sc;
1938		arg.rl_idx = *idx;
1939		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1940		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1941
1942		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1943		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1944		if (error) {
1945			printf("re%d: can't map mbuf (error %d)\n",
1946			    sc->rl_unit, error);
1947			return(EFBIG);
1948		}
1949	}
1950
1951	/*
1952	 * Insure that the map for this transmission
1953	 * is placed at the array index of the last descriptor
1954	 * in this chain.
1955	 */
1956	sc->rl_ldata.rl_tx_dmamap[*idx] =
1957	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1958	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1959
1960	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1961	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1962
1963	/*
1964	 * Set up hardware VLAN tagging. Note: vlan tag info must
1965	 * appear in the first descriptor of a multi-descriptor
1966	 * transmission attempt.
1967	 */
1968
1969	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1970	if (mtag != NULL)
1971		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1972		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1973
1974	/* Transfer ownership of packet to the chip. */
1975
1976	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1977	    htole32(RL_TDESC_CMD_OWN);
1978	if (*idx != arg.rl_idx)
1979		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1980		    htole32(RL_TDESC_CMD_OWN);
1981
1982	RL_DESC_INC(arg.rl_idx);
1983	*idx = arg.rl_idx;
1984
1985	return(0);
1986}
1987
1988/*
1989 * Main transmit routine for C+ and gigE NICs.
1990 */
1991
1992static void
1993re_start(ifp)
1994	struct ifnet		*ifp;
1995{
1996	struct rl_softc		*sc;
1997	struct mbuf		*m_head = NULL;
1998	int			idx;
1999
2000	sc = ifp->if_softc;
2001	RL_LOCK(sc);
2002
2003	idx = sc->rl_ldata.rl_tx_prodidx;
2004
2005	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2006		IF_DEQUEUE(&ifp->if_snd, m_head);
2007		if (m_head == NULL)
2008			break;
2009
2010		if (re_encap(sc, m_head, &idx)) {
2011			IF_PREPEND(&ifp->if_snd, m_head);
2012			ifp->if_flags |= IFF_OACTIVE;
2013			break;
2014		}
2015
2016		/*
2017		 * If there's a BPF listener, bounce a copy of this frame
2018		 * to him.
2019		 */
2020		BPF_MTAP(ifp, m_head);
2021	}
2022
2023	/* Flush the TX descriptors */
2024
2025	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2026	    sc->rl_ldata.rl_tx_list_map,
2027	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2028
2029	sc->rl_ldata.rl_tx_prodidx = idx;
2030
2031	/*
2032	 * RealTek put the TX poll request register in a different
2033	 * location on the 8169 gigE chip. I don't know why.
2034	 */
2035
2036	if (sc->rl_type == RL_8169)
2037		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2038	else
2039		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2040
2041	/*
2042	 * Use the countdown timer for interrupt moderation.
2043	 * 'TX done' interrupts are disabled. Instead, we reset the
2044	 * countdown timer, which will begin counting until it hits
2045	 * the value in the TIMERINT register, and then trigger an
2046	 * interrupt. Each time we write to the TIMERCNT register,
2047	 * the timer count is reset to 0.
2048	 */
2049	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2050
2051	RL_UNLOCK(sc);
2052
2053	/*
2054	 * Set a timeout in case the chip goes out to lunch.
2055	 */
2056	ifp->if_timer = 5;
2057
2058	return;
2059}
2060
2061static void
2062re_init(xsc)
2063	void			*xsc;
2064{
2065	struct rl_softc		*sc = xsc;
2066	struct ifnet		*ifp = &sc->arpcom.ac_if;
2067	struct mii_data		*mii;
2068	u_int32_t		rxcfg = 0;
2069
2070	RL_LOCK(sc);
2071	mii = device_get_softc(sc->rl_miibus);
2072
2073	/*
2074	 * Cancel pending I/O and free all RX/TX buffers.
2075	 */
2076	re_stop(sc);
2077
2078	/*
2079	 * Init our MAC address.  Even though the chipset
2080	 * documentation doesn't mention it, we need to enter "Config
2081	 * register write enable" mode to modify the ID registers.
2082	 */
2083	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2084	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2085	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2086	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2087	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2088	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2089
2090	/*
2091	 * For C+ mode, initialize the RX descriptors and mbufs.
2092	 */
2093	re_rx_list_init(sc);
2094	re_tx_list_init(sc);
2095
2096	/*
2097	 * Enable transmit and receive.
2098	 */
2099	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2100
2101	/*
2102	 * Set the initial TX and RX configuration.
2103	 */
2104	if (sc->rl_testmode) {
2105		if (sc->rl_type == RL_8169)
2106			CSR_WRITE_4(sc, RL_TXCFG,
2107			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2108		else
2109			CSR_WRITE_4(sc, RL_TXCFG,
2110			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2111	} else
2112		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2113	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2114
2115	/* Set the individual bit to receive frames for this host only. */
2116	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2117	rxcfg |= RL_RXCFG_RX_INDIV;
2118
2119	/* If we want promiscuous mode, set the allframes bit. */
2120	if (ifp->if_flags & IFF_PROMISC) {
2121		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2122		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2123	} else {
2124		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2125		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2126	}
2127
2128	/*
2129	 * Set capture broadcast bit to capture broadcast frames.
2130	 */
2131	if (ifp->if_flags & IFF_BROADCAST) {
2132		rxcfg |= RL_RXCFG_RX_BROAD;
2133		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2134	} else {
2135		rxcfg &= ~RL_RXCFG_RX_BROAD;
2136		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2137	}
2138
2139	/*
2140	 * Program the multicast filter, if necessary.
2141	 */
2142	re_setmulti(sc);
2143
2144#ifdef DEVICE_POLLING
2145	/*
2146	 * Disable interrupts if we are polling.
2147	 */
2148	if (ifp->if_flags & IFF_POLLING)
2149		CSR_WRITE_2(sc, RL_IMR, 0);
2150	else	/* otherwise ... */
2151#endif /* DEVICE_POLLING */
2152	/*
2153	 * Enable interrupts.
2154	 */
2155	if (sc->rl_testmode)
2156		CSR_WRITE_2(sc, RL_IMR, 0);
2157	else
2158		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2159
2160	/* Set initial TX threshold */
2161	sc->rl_txthresh = RL_TX_THRESH_INIT;
2162
2163	/* Start RX/TX process. */
2164	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2165#ifdef notdef
2166	/* Enable receiver and transmitter. */
2167	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2168#endif
2169	/*
2170	 * If this is a C+ capable chip, enable C+ RX and TX mode,
2171	 * and load the addresses of the RX and TX lists into the chip.
2172	 */
2173	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2174	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2175	    RL_CPLUSCMD_VLANSTRIP|
2176	    (ifp->if_capenable & IFCAP_RXCSUM ?
2177	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2178
2179	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2180	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2181	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2182	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2183
2184	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2185	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2186	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2187	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2188
2189	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2190
2191	/*
2192	 * Initialize the timer interrupt register so that
2193	 * a timer interrupt will be generated once the timer
2194	 * reaches a certain number of ticks. The timer is
2195	 * reloaded on each transmit. This gives us TX interrupt
2196	 * moderation, which dramatically improves TX frame rate.
2197	 */
2198
2199	if (sc->rl_type == RL_8169)
2200		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2201	else
2202		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2203
2204	/*
2205	 * For 8169 gigE NICs, set the max allowed RX packet
2206	 * size so we can receive jumbo frames.
2207	 */
2208	if (sc->rl_type == RL_8169)
2209		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2210
2211	if (sc->rl_testmode) {
2212		RL_UNLOCK(sc);
2213		return;
2214	}
2215
2216	mii_mediachg(mii);
2217
2218	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2219
2220	ifp->if_flags |= IFF_RUNNING;
2221	ifp->if_flags &= ~IFF_OACTIVE;
2222
2223	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2224	RL_UNLOCK(sc);
2225
2226	return;
2227}
2228
2229/*
2230 * Set media options.
2231 */
2232static int
2233re_ifmedia_upd(ifp)
2234	struct ifnet		*ifp;
2235{
2236	struct rl_softc		*sc;
2237	struct mii_data		*mii;
2238
2239	sc = ifp->if_softc;
2240	mii = device_get_softc(sc->rl_miibus);
2241	mii_mediachg(mii);
2242
2243	return(0);
2244}
2245
2246/*
2247 * Report current media status.
2248 */
2249static void
2250re_ifmedia_sts(ifp, ifmr)
2251	struct ifnet		*ifp;
2252	struct ifmediareq	*ifmr;
2253{
2254	struct rl_softc		*sc;
2255	struct mii_data		*mii;
2256
2257	sc = ifp->if_softc;
2258	mii = device_get_softc(sc->rl_miibus);
2259
2260	mii_pollstat(mii);
2261	ifmr->ifm_active = mii->mii_media_active;
2262	ifmr->ifm_status = mii->mii_media_status;
2263
2264	return;
2265}
2266
2267static int
2268re_ioctl(ifp, command, data)
2269	struct ifnet		*ifp;
2270	u_long			command;
2271	caddr_t			data;
2272{
2273	struct rl_softc		*sc = ifp->if_softc;
2274	struct ifreq		*ifr = (struct ifreq *) data;
2275	struct mii_data		*mii;
2276	int			error = 0;
2277
2278	RL_LOCK(sc);
2279
2280	switch(command) {
2281	case SIOCSIFMTU:
2282		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2283			error = EINVAL;
2284		ifp->if_mtu = ifr->ifr_mtu;
2285		break;
2286	case SIOCSIFFLAGS:
2287		if (ifp->if_flags & IFF_UP) {
2288			re_init(sc);
2289		} else {
2290			if (ifp->if_flags & IFF_RUNNING)
2291				re_stop(sc);
2292		}
2293		error = 0;
2294		break;
2295	case SIOCADDMULTI:
2296	case SIOCDELMULTI:
2297		re_setmulti(sc);
2298		error = 0;
2299		break;
2300	case SIOCGIFMEDIA:
2301	case SIOCSIFMEDIA:
2302		mii = device_get_softc(sc->rl_miibus);
2303		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2304		break;
2305	case SIOCSIFCAP:
2306		ifp->if_capenable = ifr->ifr_reqcap;
2307		if (ifp->if_capenable & IFCAP_TXCSUM)
2308			ifp->if_hwassist = RE_CSUM_FEATURES;
2309		else
2310			ifp->if_hwassist = 0;
2311		if (ifp->if_flags & IFF_RUNNING)
2312			re_init(sc);
2313		break;
2314	default:
2315		error = ether_ioctl(ifp, command, data);
2316		break;
2317	}
2318
2319	RL_UNLOCK(sc);
2320
2321	return(error);
2322}
2323
2324static void
2325re_watchdog(ifp)
2326	struct ifnet		*ifp;
2327{
2328	struct rl_softc		*sc;
2329
2330	sc = ifp->if_softc;
2331	RL_LOCK(sc);
2332	printf("re%d: watchdog timeout\n", sc->rl_unit);
2333	ifp->if_oerrors++;
2334
2335	re_txeof(sc);
2336	re_rxeof(sc);
2337
2338	re_init(sc);
2339
2340	RL_UNLOCK(sc);
2341
2342	return;
2343}
2344
2345/*
2346 * Stop the adapter and free any mbufs allocated to the
2347 * RX and TX lists.
2348 */
2349static void
2350re_stop(sc)
2351	struct rl_softc		*sc;
2352{
2353	register int		i;
2354	struct ifnet		*ifp;
2355
2356	RL_LOCK(sc);
2357	ifp = &sc->arpcom.ac_if;
2358	ifp->if_timer = 0;
2359
2360	untimeout(re_tick, sc, sc->rl_stat_ch);
2361	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2362#ifdef DEVICE_POLLING
2363	ether_poll_deregister(ifp);
2364#endif /* DEVICE_POLLING */
2365
2366	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2367	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2368
2369	if (sc->rl_head != NULL) {
2370		m_freem(sc->rl_head);
2371		sc->rl_head = sc->rl_tail = NULL;
2372	}
2373
2374	/* Free the TX list buffers. */
2375
2376	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2377		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2378			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2379			    sc->rl_ldata.rl_tx_dmamap[i]);
2380			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2381			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2382		}
2383	}
2384
2385	/* Free the RX list buffers. */
2386
2387	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2388		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2389			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2390			    sc->rl_ldata.rl_rx_dmamap[i]);
2391			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2392			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2393		}
2394	}
2395
2396	RL_UNLOCK(sc);
2397	return;
2398}
2399
2400/*
2401 * Device suspend routine.  Stop the interface and save some PCI
2402 * settings in case the BIOS doesn't restore them properly on
2403 * resume.
2404 */
2405static int
2406re_suspend(dev)
2407	device_t		dev;
2408{
2409	register int		i;
2410	struct rl_softc		*sc;
2411
2412	sc = device_get_softc(dev);
2413
2414	re_stop(sc);
2415
2416	for (i = 0; i < 5; i++)
2417		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2418	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2419	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2420	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2421	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2422
2423	sc->suspended = 1;
2424
2425	return (0);
2426}
2427
2428/*
2429 * Device resume routine.  Restore some PCI settings in case the BIOS
2430 * doesn't, re-enable busmastering, and restart the interface if
2431 * appropriate.
2432 */
2433static int
2434re_resume(dev)
2435	device_t		dev;
2436{
2437	register int		i;
2438	struct rl_softc		*sc;
2439	struct ifnet		*ifp;
2440
2441	sc = device_get_softc(dev);
2442	ifp = &sc->arpcom.ac_if;
2443
2444	/* better way to do this? */
2445	for (i = 0; i < 5; i++)
2446		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2447	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2448	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2449	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2450	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2451
2452	/* reenable busmastering */
2453	pci_enable_busmaster(dev);
2454	pci_enable_io(dev, RL_RES);
2455
2456	/* reinitialize interface if necessary */
2457	if (ifp->if_flags & IFF_UP)
2458		re_init(sc);
2459
2460	sc->suspended = 0;
2461
2462	return (0);
2463}
2464
2465/*
2466 * Stop all chip I/O so that the kernel's probe routines don't
2467 * get confused by errant DMAs when rebooting.
2468 */
2469static void
2470re_shutdown(dev)
2471	device_t		dev;
2472{
2473	struct rl_softc		*sc;
2474
2475	sc = device_get_softc(dev);
2476
2477	re_stop(sc);
2478
2479	return;
2480}
2481