qla_hw.c revision 227064
1/*
2 * Copyright (c) 2010-2011 Qlogic Corporation
3 * All rights reserved.
4 *
5 *  Redistribution and use in source and binary forms, with or without
6 *  modification, are permitted provided that the following conditions
7 *  are met:
8 *
9 *  1. Redistributions of source code must retain the above copyright
10 *     notice, this list of conditions and the following disclaimer.
11 *  2. Redistributions in binary form must reproduce the above copyright
12 *     notice, this list of conditions and the following disclaimer in the
13 *     documentation and/or other materials provided with the distribution.
14 *
15 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 *  POSSIBILITY OF SUCH DAMAGE.
26 */
27
28/*
29 * File: qla_hw.c
30 * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31 * Content: Contains Hardware dependant functions
32 */
33
34#include <sys/cdefs.h>
35__FBSDID("$FreeBSD: head/sys/dev/qlxgb/qla_hw.c 227064 2011-11-03 21:20:22Z bz $");
36
37#include "qla_os.h"
38#include "qla_reg.h"
39#include "qla_hw.h"
40#include "qla_def.h"
41#include "qla_inline.h"
42#include "qla_ver.h"
43#include "qla_glbl.h"
44#include "qla_dbg.h"
45
46static uint32_t sysctl_num_rds_rings = 2;
47static uint32_t sysctl_num_sds_rings = 4;
48
49/*
50 * Static Functions
51 */
52
53static void qla_init_cntxt_regions(qla_host_t *ha);
54static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57		uint16_t cntxt_id, uint32_t add_multi);
58static void qla_del_rcv_cntxt(qla_host_t *ha);
59static int qla_init_rcv_cntxt(qla_host_t *ha);
60static void qla_del_xmt_cntxt(qla_host_t *ha);
61static int qla_init_xmt_cntxt(qla_host_t *ha);
62static int qla_get_max_rds(qla_host_t *ha);
63static int qla_get_max_sds(qla_host_t *ha);
64static int qla_get_max_rules(qla_host_t *ha);
65static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66static int qla_get_max_tx_cntxts(qla_host_t *ha);
67static int qla_get_max_mtu(qla_host_t *ha);
68static int qla_get_max_lro(qla_host_t *ha);
69static int qla_get_flow_control(qla_host_t *ha);
70static void qla_hw_tx_done_locked(qla_host_t *ha);
71
72int
73qla_get_msix_count(qla_host_t *ha)
74{
75	return (sysctl_num_sds_rings);
76}
77
78/*
79 * Name: qla_hw_add_sysctls
80 * Function: Add P3Plus specific sysctls
81 */
82void
83qla_hw_add_sysctls(qla_host_t *ha)
84{
85        device_t	dev;
86
87        dev = ha->pci_dev;
88
89        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93
94        SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98}
99
100/*
101 * Name: qla_free_dma
102 * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103 */
104void
105qla_free_dma(qla_host_t *ha)
106{
107	uint32_t i;
108
109        if (ha->hw.dma_buf.flags.context) {
110		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111        	ha->hw.dma_buf.flags.context = 0;
112	}
113
114        if (ha->hw.dma_buf.flags.sds_ring) {
115		for (i = 0; i < ha->hw.num_sds_rings; i++)
116			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117        	ha->hw.dma_buf.flags.sds_ring = 0;
118	}
119
120        if (ha->hw.dma_buf.flags.rds_ring) {
121		for (i = 0; i < ha->hw.num_rds_rings; i++)
122			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123        	ha->hw.dma_buf.flags.rds_ring = 0;
124	}
125
126        if (ha->hw.dma_buf.flags.tx_ring) {
127		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128        	ha->hw.dma_buf.flags.tx_ring = 0;
129	}
130}
131
132/*
133 * Name: qla_alloc_dma
134 * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135 */
136int
137qla_alloc_dma(qla_host_t *ha)
138{
139        device_t                dev;
140	uint32_t		i, j, size;
141
142        dev = ha->pci_dev;
143
144        QL_DPRINT2((dev, "%s: enter\n", __func__));
145
146	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148
149	/*
150	 * Allocate Transmit Ring
151	 */
152
153	ha->hw.dma_buf.tx_ring.alignment = 8;
154	ha->hw.dma_buf.tx_ring.size =
155		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156
157        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                goto qla_alloc_dma_exit;
160        }
161        ha->hw.dma_buf.flags.tx_ring = 1;
162
163	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165		ha->hw.dma_buf.tx_ring.dma_b));
166	/*
167	 * Allocate Receive Descriptor Rings
168	 */
169
170	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172
173		if (i == RDS_RING_INDEX_NORMAL) {
174			ha->hw.dma_buf.rds_ring[i].size =
175				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176		} else if (i == RDS_RING_INDEX_JUMBO) {
177			ha->hw.dma_buf.rds_ring[i].size =
178				(sizeof(q80_recv_desc_t)) *
179					NUM_RX_JUMBO_DESCRIPTORS;
180		} else
181			break;
182
183		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185				__func__));
186
187			for (j = 0; j < i; j++)
188				qla_free_dmabuf(ha,
189					&ha->hw.dma_buf.rds_ring[j]);
190
191			goto qla_alloc_dma_exit;
192		}
193		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194			__func__, i,
195			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196			ha->hw.dma_buf.rds_ring[i].dma_b));
197	}
198	ha->hw.dma_buf.flags.rds_ring = 1;
199
200	/*
201	 * Allocate Status Descriptor Rings
202	 */
203
204	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206		ha->hw.dma_buf.sds_ring[i].size =
207			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208
209		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210			device_printf(dev, "%s: sds ring alloc failed\n",
211				__func__);
212
213			for (j = 0; j < i; j++)
214				qla_free_dmabuf(ha,
215					&ha->hw.dma_buf.sds_ring[j]);
216
217			goto qla_alloc_dma_exit;
218		}
219		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220			__func__, i,
221			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222			ha->hw.dma_buf.sds_ring[i].dma_b));
223	}
224	ha->hw.dma_buf.flags.sds_ring = 1;
225
226	/*
227	 * Allocate Context Area
228	 */
229	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230
231	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232
233	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234
235	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236
237	size += sizeof (uint32_t); /* for tx consumer index */
238
239	size = QL_ALIGN(size, PAGE_SIZE);
240
241	ha->hw.dma_buf.context.alignment = 8;
242	ha->hw.dma_buf.context.size = size;
243
244        if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                device_printf(dev, "%s: context alloc failed\n", __func__);
246                goto qla_alloc_dma_exit;
247        }
248        ha->hw.dma_buf.flags.context = 1;
249	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251		ha->hw.dma_buf.context.dma_b));
252
253	qla_init_cntxt_regions(ha);
254
255	return 0;
256
257qla_alloc_dma_exit:
258	qla_free_dma(ha);
259	return -1;
260}
261
262/*
263 * Name: qla_init_cntxt_regions
264 * Function: Initializes Tx/Rx Contexts.
265 */
266static void
267qla_init_cntxt_regions(qla_host_t *ha)
268{
269	qla_hw_t		*hw;
270	q80_tx_cntxt_req_t	*tx_cntxt_req;
271	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272	bus_addr_t		phys_addr;
273	uint32_t		i;
274        device_t                dev;
275	uint32_t		size;
276
277        dev = ha->pci_dev;
278
279	hw = &ha->hw;
280
281	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
282
283	for (i = 0; i < ha->hw.num_sds_rings; i++)
284		hw->sds[i].sds_ring_base =
285			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
286
287
288	phys_addr = hw->dma_buf.context.dma_addr;
289
290	memset((void *)hw->dma_buf.context.dma_b, 0,
291		ha->hw.dma_buf.context.size);
292
293	hw->tx_cntxt_req	=
294		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
295	hw->tx_cntxt_req_paddr	= phys_addr;
296
297	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
298
299	hw->tx_cntxt_rsp	=
300		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
301	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
302
303	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
304
305	hw->rx_cntxt_req =
306		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
307	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
308
309	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
310
311	hw->rx_cntxt_rsp =
312		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
313	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
314
315	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
316
317	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
318	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
319
320	/*
321	 * Initialize the Transmit Context Request so that we don't need to
322	 * do it everytime we need to create a context
323	 */
324	tx_cntxt_req = hw->tx_cntxt_req;
325
326	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
327
328	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
329
330	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
331					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
332
333	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
334
335	tx_cntxt_req->phys_addr =
336		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
337
338	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
339
340	/*
341	 * Initialize the Receive Context Request
342	 */
343
344	rx_cntxt_req = hw->rx_cntxt_req;
345
346	rx_cntxt_req->rx_req.rsp_dma_addr =
347		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
348
349	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
350						CNTXT_CAP0_LEGACY_MN |
351						CNTXT_CAP0_JUMBO |
352						CNTXT_CAP0_LRO|
353						CNTXT_CAP0_HW_LRO);
354
355	rx_cntxt_req->rx_req.intr_mode =
356		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
357
358	rx_cntxt_req->rx_req.rds_intr_mode =
359		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
360
361	rx_cntxt_req->rx_req.rds_ring_offset = 0;
362	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
363		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
364	rx_cntxt_req->rx_req.num_rds_rings =
365		qla_host_to_le16(hw->num_rds_rings);
366	rx_cntxt_req->rx_req.num_sds_rings =
367		qla_host_to_le16(hw->num_sds_rings);
368
369	for (i = 0; i < hw->num_rds_rings; i++) {
370		rx_cntxt_req->rds_req[i].phys_addr =
371			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
372
373		if (i == RDS_RING_INDEX_NORMAL) {
374			rx_cntxt_req->rds_req[i].buf_size =
375				qla_host_to_le64(MCLBYTES);
376			rx_cntxt_req->rds_req[i].size =
377				qla_host_to_le32(NUM_RX_DESCRIPTORS);
378		} else {
379			rx_cntxt_req->rds_req[i].buf_size =
380				qla_host_to_le64(MJUM9BYTES);
381			rx_cntxt_req->rds_req[i].size =
382				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
383		}
384	}
385
386	for (i = 0; i < hw->num_sds_rings; i++) {
387		rx_cntxt_req->sds_req[i].phys_addr =
388			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
389		rx_cntxt_req->sds_req[i].size =
390			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
391		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
392	}
393
394	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
395		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
396	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
397		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
398	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
399		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
400	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
401		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
402	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
403		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
404}
405
406/*
407 * Name: qla_issue_cmd
408 * Function: Issues commands on the CDRP interface and returns responses.
409 */
410static int
411qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
412{
413	int	ret = 0;
414	uint32_t signature;
415	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
416	uint32_t data;
417	device_t dev;
418
419	dev = ha->pci_dev;
420
421	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
422
423	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
424
425	if (ret) {
426		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
427		return (ret);
428	}
429
430	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
431
432	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
433	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
434	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
435
436	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
437
438	while (count) {
439		qla_mdelay(__func__, 10);
440
441		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
442
443		if ((!(data & 0x80000000)))
444			break;
445		count--;
446	}
447	if ((!count) || (data != 1))
448		ret = -1;
449
450	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
451	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
452	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
453	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
454
455	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
456
457	if (ret) {
458		device_printf(dev, "%s: "
459			"cmd[0x%08x] = 0x%08x\n"
460			"\tsig[0x%08x] = 0x%08x\n"
461			"\targ1[0x%08x] = 0x%08x\n"
462			"\targ2[0x%08x] = 0x%08x\n"
463			"\targ3[0x%08x] = 0x%08x\n",
464			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
465			Q8_NX_CDRP_SIGNATURE, signature,
466			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
467			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
468			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
469
470		device_printf(dev, "%s: exit (ret = 0x%x)\n"
471			"\t\t rsp = 0x%08x\n"
472			"\t\t arg1 = 0x%08x\n"
473			"\t\t arg2 = 0x%08x\n"
474			"\t\t arg3 = 0x%08x\n",
475			__func__, ret, cdrp->rsp,
476			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
477	}
478
479	return (ret);
480}
481
482#define QLA_TX_MIN_FREE	2
483
484/*
485 * Name: qla_fw_cmd
486 * Function: Issues firmware control commands on the Tx Ring.
487 */
488static int
489qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
490{
491	device_t dev;
492        q80_tx_cmd_t *tx_cmd;
493        qla_hw_t *hw = &ha->hw;
494	int count = 100;
495
496	dev = ha->pci_dev;
497
498	QLA_TX_LOCK(ha);
499
500        if (hw->txr_free <= QLA_TX_MIN_FREE) {
501		while (count--) {
502			qla_hw_tx_done_locked(ha);
503			if (hw->txr_free > QLA_TX_MIN_FREE)
504				break;
505
506			QLA_TX_UNLOCK(ha);
507			qla_mdelay(__func__, 10);
508			QLA_TX_LOCK(ha);
509		}
510        	if (hw->txr_free <= QLA_TX_MIN_FREE) {
511			QLA_TX_UNLOCK(ha);
512			device_printf(dev, "%s: xmit queue full\n", __func__);
513                	return (-1);
514		}
515        }
516        tx_cmd = &hw->tx_ring_base[hw->txr_next];
517
518        bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
519
520	bcopy(fw_cmd, tx_cmd, size);
521
522	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
523	hw->txr_free--;
524
525	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
526
527	QLA_TX_UNLOCK(ha);
528
529	return (0);
530}
531
532/*
533 * Name: qla_config_rss
534 * Function: Configure RSS for the context/interface.
535 */
536const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
537			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
538			0x255b0ec26d5a56daULL };
539
540static int
541qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
542{
543	qla_fw_cds_config_rss_t rss_config;
544	int ret, i;
545
546	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
547
548	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
549	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
550	rss_config.hdr.cntxt_id = cntxt_id;
551
552	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
553					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
554	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
555
556	rss_config.ind_tbl_mask = 0x7;
557
558	for (i = 0; i < 5; i++)
559		rss_config.rss_key[i] = rss_key[i];
560
561	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
562
563	return ret;
564}
565
566/*
567 * Name: qla_config_intr_coalesce
568 * Function: Configure Interrupt Coalescing.
569 */
570static int
571qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
572{
573	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
574	int ret;
575
576	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
577
578	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
579	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
580	intr_coalesce.hdr.cntxt_id = cntxt_id;
581
582	intr_coalesce.flags = 0x04;
583	intr_coalesce.max_rcv_pkts = 256;
584	intr_coalesce.max_rcv_usecs = 3;
585	intr_coalesce.max_snd_pkts = 64;
586	intr_coalesce.max_snd_usecs = 4;
587
588	if (tenable) {
589		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
590		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
591		intr_coalesce.sds_ring_bitmask =
592			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
593	}
594
595	ret = qla_fw_cmd(ha, &intr_coalesce,
596			sizeof(qla_fw_cds_config_intr_coalesc_t));
597
598	return ret;
599}
600
601
602/*
603 * Name: qla_config_mac_addr
604 * Function: binds a MAC address to the context/interface.
605 *	Can be unicast, multicast or broadcast.
606 */
607static int
608qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
609	uint32_t add_multi)
610{
611	qla_fw_cds_config_mac_addr_t mac_config;
612	int ret;
613
614//	device_printf(ha->pci_dev,
615//		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
616//		mac_addr[0], mac_addr[1], mac_addr[2],
617//		mac_addr[3], mac_addr[4], mac_addr[5]);
618
619	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
620
621	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
622	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
623	mac_config.hdr.cntxt_id = cntxt_id;
624
625	if (add_multi)
626		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
627	else
628		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
629	bcopy(mac_addr, mac_config.mac_addr,6);
630
631	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
632
633	return ret;
634}
635
636
637/*
638 * Name: qla_set_mac_rcv_mode
639 * Function: Enable/Disable AllMulticast and Promiscous Modes.
640 */
641static int
642qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
643{
644	qla_set_mac_rcv_mode_t rcv_mode;
645	int ret;
646
647	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
648
649	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
650	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
651	rcv_mode.hdr.cntxt_id = cntxt_id;
652
653	rcv_mode.mode = mode;
654
655	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
656
657	return ret;
658}
659
660void
661qla_set_promisc(qla_host_t *ha)
662{
663	(void)qla_set_mac_rcv_mode(ha,
664		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
665		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
666}
667
668void
669qla_set_allmulti(qla_host_t *ha)
670{
671	(void)qla_set_mac_rcv_mode(ha,
672		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
673		Q8_MAC_RCV_ENABLE_ALLMULTI);
674}
675
676void
677qla_reset_promisc_allmulti(qla_host_t *ha)
678{
679	(void)qla_set_mac_rcv_mode(ha,
680		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
681		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
682}
683
684/*
685 * Name: qla_config_ipv4_addr
686 * Function: Configures the Destination IP Addr for LRO.
687 */
688void
689qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
690{
691	qla_config_ipv4_t ip_conf;
692
693	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
694
695	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
696	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
697	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
698
699	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
700	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
701
702	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
703
704	return;
705}
706
707/*
708 * Name: qla_tx_tso
709 * Function: Checks if the packet to be transmitted is a candidate for
710 *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
711 *	Ring Structure are plugged in.
712 */
713static int
714qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
715{
716	struct ether_vlan_header *eh;
717	struct ip *ip = NULL;
718	struct tcphdr *th = NULL;
719	uint32_t ehdrlen,  hdrlen, ip_hlen, tcp_hlen;
720	uint16_t etype, opcode, offload = 1;
721	device_t dev;
722
723	dev = ha->pci_dev;
724
725	if (mp->m_pkthdr.len <= ha->max_frame_size)
726		return (-1);
727
728	eh = mtod(mp, struct ether_vlan_header *);
729
730	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
731		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
732		etype = ntohs(eh->evl_proto);
733	} else {
734		ehdrlen = ETHER_HDR_LEN;
735		etype = ntohs(eh->evl_encap_proto);
736	}
737
738	switch (etype) {
739		case ETHERTYPE_IP:
740			ip = (struct ip *)(mp->m_data + ehdrlen);
741			ip_hlen = ip->ip_hl << 2;
742			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
743
744			if (ip->ip_p != IPPROTO_TCP) {
745				offload = 0;
746			} else
747				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
748		break;
749
750		default:
751			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
752			offload = 0;
753		break;
754	}
755
756	if (!offload)
757		return (-1);
758
759	tcp_hlen = th->th_off << 2;
760
761	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
762
763	if (mp->m_len < hdrlen) {
764		device_printf(dev, "%s: (mp->m_len < hdrlen)\n", __func__);
765		return (-1);
766	}
767
768	tx_cmd->flags_opcode = opcode ;
769	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
770	tx_cmd->ip_hdr_off = ehdrlen;
771	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
772	tx_cmd->total_hdr_len = hdrlen;
773
774	/* Check for Multicast least significant bit of MSB == 1 */
775	if (eh->evl_dhost[0] & 0x01) {
776		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
777	}
778
779	return (0);
780}
781
782/*
783 * Name: qla_tx_chksum
784 * Function: Checks if the packet to be transmitted is a candidate for
785 *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
786 *	Ring Structure are plugged in.
787 */
788static int
789qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
790{
791	struct ether_vlan_header *eh;
792	struct ip *ip;
793	struct ip6_hdr *ip6;
794	uint32_t ehdrlen, ip_hlen;
795	uint16_t etype, opcode, offload = 1;
796	device_t dev;
797
798	dev = ha->pci_dev;
799
800	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
801		return (-1);
802
803	eh = mtod(mp, struct ether_vlan_header *);
804
805	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
806		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
807		etype = ntohs(eh->evl_proto);
808	} else {
809		ehdrlen = ETHER_HDR_LEN;
810		etype = ntohs(eh->evl_encap_proto);
811	}
812
813
814	switch (etype) {
815		case ETHERTYPE_IP:
816			ip = (struct ip *)(mp->m_data + ehdrlen);
817
818			ip_hlen = ip->ip_hl << 2;
819
820			if (mp->m_len < (ehdrlen + ip_hlen)) {
821				device_printf(dev, "%s: ipv4 mlen\n", __func__);
822				offload = 0;
823				break;
824			}
825
826			if (ip->ip_p == IPPROTO_TCP)
827				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
828			else if (ip->ip_p == IPPROTO_UDP)
829				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
830			else {
831				device_printf(dev, "%s: ipv4\n", __func__);
832				offload = 0;
833			}
834		break;
835
836		case ETHERTYPE_IPV6:
837			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
838
839			ip_hlen = sizeof(struct ip6_hdr);
840
841			if (mp->m_len < (ehdrlen + ip_hlen)) {
842				device_printf(dev, "%s: ipv6 mlen\n", __func__);
843				offload = 0;
844				break;
845			}
846
847			if (ip6->ip6_nxt == IPPROTO_TCP)
848				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
849			else if (ip6->ip6_nxt == IPPROTO_UDP)
850				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
851			else {
852				device_printf(dev, "%s: ipv6\n", __func__);
853				offload = 0;
854			}
855		break;
856
857		default:
858			offload = 0;
859		break;
860	}
861	if (!offload)
862		return (-1);
863
864	tx_cmd->flags_opcode = opcode;
865
866	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
867
868	return (0);
869}
870
871/*
872 * Name: qla_hw_send
873 * Function: Transmits a packet. It first checks if the packet is a
874 *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
875 *	offload. If either of these creteria are not met, it is transmitted
876 *	as a regular ethernet frame.
877 */
878int
879qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
880	uint32_t *tx_idx,  struct mbuf *mp)
881{
882	struct ether_vlan_header *eh;
883	qla_hw_t *hw = &ha->hw;
884	q80_tx_cmd_t *tx_cmd, tso_cmd;
885	bus_dma_segment_t *c_seg;
886	uint32_t num_tx_cmds, hdr_len = 0;
887	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
888	device_t dev;
889	int i;
890
891	dev = ha->pci_dev;
892
893	/*
894	 * Always make sure there is atleast one empty slot in the tx_ring
895	 * tx_ring is considered full when there only one entry available
896	 */
897        num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
898
899	total_length = mp->m_pkthdr.len;
900	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
901		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
902			__func__, total_length);
903		return (-1);
904	}
905
906	bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
907
908	if (qla_tx_tso(ha, mp, &tso_cmd) == 0) {
909		/* find the additional tx_cmd descriptors required */
910
911		hdr_len = tso_cmd.total_hdr_len;
912
913		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
914		bytes = QL_MIN(bytes, hdr_len);
915
916		num_tx_cmds++;
917		hdr_len -= bytes;
918
919		while (hdr_len) {
920			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
921			hdr_len -= bytes;
922			num_tx_cmds++;
923		}
924		hdr_len = tso_cmd.total_hdr_len;
925	}
926
927	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
928		qla_hw_tx_done_locked(ha);
929		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
930        		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
931				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
932				__func__));
933			return (-1);
934		}
935	}
936
937	*tx_idx = hw->txr_next;
938
939        tx_cmd = &hw->tx_ring_base[hw->txr_next];
940
941	if (hdr_len == 0) {
942		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
943			(mp->m_pkthdr.len > ha->max_frame_size)){
944			/* TBD: copy into private buffer and send it */
945        		device_printf(dev,
946				"%s: (nsegs[%d, %d, 0x%x] > Q8_TX_MAX_SEGMENTS)\n",
947				__func__, nsegs, mp->m_pkthdr.len,
948				mp->m_pkthdr.csum_flags);
949			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
950				mtod(mp, char *), mp->m_len);
951			return (EINVAL);
952		}
953		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
954		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
955        		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
956	} else {
957		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
958	}
959
960	eh = mtod(mp, struct ether_vlan_header *);
961	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
962        	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
963	else if (mp->m_flags & M_VLANTAG) {
964        	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
965						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
966		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
967	}
968
969
970        tx_cmd->n_bufs = (uint8_t)nsegs;
971        tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
972        tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
973	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
974
975	c_seg = segs;
976
977	while (1) {
978		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
979
980			switch (i) {
981			case 0:
982				tx_cmd->buf1_addr = c_seg->ds_addr;
983				tx_cmd->buf1_len = c_seg->ds_len;
984				break;
985
986			case 1:
987				tx_cmd->buf2_addr = c_seg->ds_addr;
988				tx_cmd->buf2_len = c_seg->ds_len;
989				break;
990
991			case 2:
992				tx_cmd->buf3_addr = c_seg->ds_addr;
993				tx_cmd->buf3_len = c_seg->ds_len;
994				break;
995
996			case 3:
997				tx_cmd->buf4_addr = c_seg->ds_addr;
998				tx_cmd->buf4_len = c_seg->ds_len;
999				break;
1000			}
1001
1002			c_seg++;
1003			nsegs--;
1004		}
1005
1006		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1007		tx_cmd_count++;
1008
1009		if (!nsegs)
1010			break;
1011
1012        	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1013		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1014	}
1015
1016	if (hdr_len) {
1017		/* TSO : Copy the header in the following tx cmd descriptors */
1018		uint8_t *src, *dst;
1019
1020		src = (uint8_t *)eh;
1021
1022		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1023		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1024
1025		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1026		bytes = QL_MIN(bytes, hdr_len);
1027
1028		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1029
1030		if (mp->m_flags & M_VLANTAG) {
1031			/* first copy the src/dst MAC addresses */
1032			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1033			dst += (ETHER_ADDR_LEN * 2);
1034			src += (ETHER_ADDR_LEN * 2);
1035
1036			hdr_len -= (ETHER_ADDR_LEN * 2);
1037
1038			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1039			dst += 2;
1040			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1041			dst += 2;
1042
1043			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1044
1045			bcopy(src, dst, bytes);
1046			src += bytes;
1047			hdr_len -= bytes;
1048		} else {
1049			bcopy(src, dst, bytes);
1050			src += bytes;
1051			hdr_len -= bytes;
1052		}
1053
1054		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1055		tx_cmd_count++;
1056
1057		while (hdr_len) {
1058			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1059			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1060
1061			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1062
1063			bcopy(src, tx_cmd, bytes);
1064			src += bytes;
1065			hdr_len -= bytes;
1066			hw->txr_next =
1067				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1068			tx_cmd_count++;
1069		}
1070	}
1071
1072	hw->txr_free = hw->txr_free - tx_cmd_count;
1073
1074	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1075       	QL_DPRINT8((dev, "%s: return\n", __func__));
1076	return (0);
1077}
1078
1079/*
1080 * Name: qla_del_hw_if
1081 * Function: Destroys the hardware specific entities corresponding to an
1082 *	Ethernet Interface
1083 */
1084void
1085qla_del_hw_if(qla_host_t *ha)
1086{
1087	int	i;
1088
1089	for (i = 0; i < ha->hw.num_sds_rings; i++)
1090		QL_DISABLE_INTERRUPTS(ha, i);
1091
1092	qla_del_rcv_cntxt(ha);
1093	qla_del_xmt_cntxt(ha);
1094
1095	ha->hw.flags.lro = 0;
1096}
1097
1098/*
1099 * Name: qla_init_hw_if
1100 * Function: Creates the hardware specific entities corresponding to an
1101 *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1102 *	corresponding to the interface. Enables LRO if allowed.
1103 */
1104int
1105qla_init_hw_if(qla_host_t *ha)
1106{
1107	device_t	dev;
1108	int		i;
1109	uint8_t		bcast_mac[6];
1110
1111	qla_get_hw_caps(ha);
1112
1113	dev = ha->pci_dev;
1114
1115	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1116		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1117			ha->hw.dma_buf.sds_ring[i].size);
1118	}
1119	/*
1120	 * Create Receive Context
1121	 */
1122	if (qla_init_rcv_cntxt(ha)) {
1123		return (-1);
1124	}
1125
1126	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1127	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1128	ha->hw.rx_in = ha->hw.rxj_in = 0;
1129
1130	/* Update the RDS Producer Indices */
1131	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1132	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1133
1134	/*
1135	 * Create Transmit Context
1136	 */
1137	if (qla_init_xmt_cntxt(ha)) {
1138		qla_del_rcv_cntxt(ha);
1139		return (-1);
1140	}
1141
1142	qla_config_mac_addr(ha, ha->hw.mac_addr,
1143		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1144
1145	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1146	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1147	qla_config_mac_addr(ha, bcast_mac,
1148		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1149
1150	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1151
1152	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1153
1154	for (i = 0; i < ha->hw.num_sds_rings; i++)
1155		QL_ENABLE_INTERRUPTS(ha, i);
1156
1157	return (0);
1158}
1159
1160/*
1161 * Name: qla_init_rcv_cntxt
1162 * Function: Creates the Receive Context.
1163 */
1164static int
1165qla_init_rcv_cntxt(qla_host_t *ha)
1166{
1167	device_t		dev;
1168	qla_cdrp_t		cdrp;
1169	q80_rcv_cntxt_rsp_t	*rsp;
1170	q80_stat_desc_t		*sdesc;
1171	bus_addr_t		phys_addr;
1172	int			i, j;
1173        qla_hw_t		*hw = &ha->hw;
1174
1175	dev = ha->pci_dev;
1176
1177	/*
1178	 * Create Receive Context
1179	 */
1180
1181	for (i = 0; i < hw->num_sds_rings; i++) {
1182		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1183		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1184			sdesc->data[0] =
1185				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1186		}
1187	}
1188
1189	phys_addr = ha->hw.rx_cntxt_req_paddr;
1190
1191	bzero(&cdrp, sizeof(qla_cdrp_t));
1192
1193	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1194	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1195	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1196	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1197
1198	if (qla_issue_cmd(ha, &cdrp)) {
1199		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1200			__func__);
1201		return (-1);
1202	} else {
1203		rsp = ha->hw.rx_cntxt_rsp;
1204
1205		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1206			" rds_ring_offset = 0x%08x"
1207			" sds_ring_offset = 0x%08x"
1208			" cntxt_state = 0x%08x"
1209			" funcs_per_port = 0x%08x"
1210			" num_rds_rings = 0x%04x"
1211			" num_sds_rings = 0x%04x"
1212			" cntxt_id = 0x%04x"
1213			" phys_port = 0x%02x"
1214			" virt_port = 0x%02x\n",
1215			__func__,
1216			rsp->rx_rsp.rds_ring_offset,
1217			rsp->rx_rsp.sds_ring_offset,
1218			rsp->rx_rsp.cntxt_state,
1219			rsp->rx_rsp.funcs_per_port,
1220			rsp->rx_rsp.num_rds_rings,
1221			rsp->rx_rsp.num_sds_rings,
1222			rsp->rx_rsp.cntxt_id,
1223			rsp->rx_rsp.phys_port,
1224			rsp->rx_rsp.virt_port));
1225
1226		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1227			QL_DPRINT2((dev,
1228				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1229				__func__, i, rsp->rds_rsp[i].producer_reg));
1230		}
1231		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1232			QL_DPRINT2((dev,
1233				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1234				" sds[%i].intr_mask_reg = 0x%08x\n",
1235				__func__, i, rsp->sds_rsp[i].consumer_reg,
1236				i, rsp->sds_rsp[i].intr_mask_reg));
1237		}
1238	}
1239	ha->hw.flags.init_rx_cnxt = 1;
1240	return (0);
1241}
1242
1243/*
1244 * Name: qla_del_rcv_cntxt
1245 * Function: Destroys the Receive Context.
1246 */
1247void
1248qla_del_rcv_cntxt(qla_host_t *ha)
1249{
1250	qla_cdrp_t	cdrp;
1251	device_t	dev = ha->pci_dev;
1252
1253	if (!ha->hw.flags.init_rx_cnxt)
1254		return;
1255
1256	bzero(&cdrp, sizeof(qla_cdrp_t));
1257
1258	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1259	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1260
1261	if (qla_issue_cmd(ha, &cdrp)) {
1262		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1263			__func__);
1264	}
1265	ha->hw.flags.init_rx_cnxt = 0;
1266}
1267
1268/*
1269 * Name: qla_init_xmt_cntxt
1270 * Function: Creates the Transmit Context.
1271 */
1272static int
1273qla_init_xmt_cntxt(qla_host_t *ha)
1274{
1275	bus_addr_t		phys_addr;
1276	device_t		dev;
1277	q80_tx_cntxt_rsp_t	*tx_rsp;
1278	qla_cdrp_t		cdrp;
1279        qla_hw_t		*hw = &ha->hw;
1280
1281	dev = ha->pci_dev;
1282
1283	/*
1284	 * Create Transmit Context
1285	 */
1286	phys_addr = ha->hw.tx_cntxt_req_paddr;
1287	tx_rsp = ha->hw.tx_cntxt_rsp;
1288
1289	hw->txr_comp = hw->txr_next = 0;
1290	*(hw->tx_cons) = 0;
1291
1292	bzero(&cdrp, sizeof(qla_cdrp_t));
1293
1294	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1295	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1296	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1297	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1298
1299	if (qla_issue_cmd(ha, &cdrp)) {
1300		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1301			__func__);
1302		return (-1);
1303	} else {
1304		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1305
1306		QL_DPRINT2((dev, "%s: tx cntxt successful"
1307			" cntxt_state = 0x%08x "
1308			" cntxt_id = 0x%04x "
1309			" phys_port_id = 0x%02x "
1310			" virt_port_id = 0x%02x "
1311			" producer_reg = 0x%08x "
1312			" intr_mask_reg = 0x%08x\n",
1313			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1314			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1315			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1316	}
1317	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1318
1319	ha->hw.flags.init_tx_cnxt = 1;
1320	return (0);
1321}
1322
1323/*
1324 * Name: qla_del_xmt_cntxt
1325 * Function: Destroys the Transmit Context.
1326 */
1327static void
1328qla_del_xmt_cntxt(qla_host_t *ha)
1329{
1330	qla_cdrp_t	cdrp;
1331	device_t	dev = ha->pci_dev;
1332
1333	if (!ha->hw.flags.init_tx_cnxt)
1334		return;
1335
1336	bzero(&cdrp, sizeof(qla_cdrp_t));
1337
1338	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1339	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1340
1341	if (qla_issue_cmd(ha, &cdrp)) {
1342		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1343			__func__);
1344	}
1345	ha->hw.flags.init_tx_cnxt = 0;
1346}
1347
1348/*
1349 * Name: qla_get_max_rds
1350 * Function: Returns the maximum number of Receive Descriptor Rings per context.
1351 */
1352static int
1353qla_get_max_rds(qla_host_t *ha)
1354{
1355	qla_cdrp_t	cdrp;
1356	device_t	dev;
1357
1358	dev = ha->pci_dev;
1359
1360	bzero(&cdrp, sizeof(qla_cdrp_t));
1361
1362	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1363
1364	if (qla_issue_cmd(ha, &cdrp)) {
1365		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1366			__func__);
1367		return (-1);
1368	} else {
1369		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1370		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1371			__func__, ha->hw.max_rds_per_cntxt));
1372	}
1373	return 0;
1374}
1375
1376/*
1377 * Name: qla_get_max_sds
1378 * Function: Returns the maximum number of Status Descriptor Rings per context.
1379 */
1380static int
1381qla_get_max_sds(qla_host_t *ha)
1382{
1383	qla_cdrp_t	cdrp;
1384	device_t	dev;
1385
1386	dev = ha->pci_dev;
1387
1388	bzero(&cdrp, sizeof(qla_cdrp_t));
1389
1390	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1391
1392	if (qla_issue_cmd(ha, &cdrp)) {
1393		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1394			__func__);
1395		return (-1);
1396	} else {
1397		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1398		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1399			__func__, ha->hw.max_sds_per_cntxt));
1400	}
1401	return 0;
1402}
1403
1404/*
1405 * Name: qla_get_max_rules
1406 * Function: Returns the maximum number of Rules per context.
1407 */
1408static int
1409qla_get_max_rules(qla_host_t *ha)
1410{
1411	qla_cdrp_t	cdrp;
1412	device_t	dev;
1413
1414	dev = ha->pci_dev;
1415
1416	bzero(&cdrp, sizeof(qla_cdrp_t));
1417
1418	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1419
1420	if (qla_issue_cmd(ha, &cdrp)) {
1421		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1422			__func__);
1423		return (-1);
1424	} else {
1425		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1426		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1427			__func__, ha->hw.max_rules_per_cntxt));
1428	}
1429	return 0;
1430}
1431
1432/*
1433 * Name: qla_get_max_rcv_cntxts
1434 * Function: Returns the maximum number of Receive Contexts supported.
1435 */
1436static int
1437qla_get_max_rcv_cntxts(qla_host_t *ha)
1438{
1439	qla_cdrp_t	cdrp;
1440	device_t	dev;
1441
1442	dev = ha->pci_dev;
1443
1444	bzero(&cdrp, sizeof(qla_cdrp_t));
1445
1446	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1447
1448	if (qla_issue_cmd(ha, &cdrp)) {
1449		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1450			__func__);
1451		return (-1);
1452	} else {
1453		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1454		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1455			__func__, ha->hw.max_rcv_cntxts));
1456	}
1457	return 0;
1458}
1459
1460/*
1461 * Name: qla_get_max_tx_cntxts
1462 * Function: Returns the maximum number of Transmit Contexts supported.
1463 */
1464static int
1465qla_get_max_tx_cntxts(qla_host_t *ha)
1466{
1467	qla_cdrp_t	cdrp;
1468	device_t	dev;
1469
1470	dev = ha->pci_dev;
1471
1472	bzero(&cdrp, sizeof(qla_cdrp_t));
1473
1474	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1475
1476	if (qla_issue_cmd(ha, &cdrp)) {
1477		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1478			__func__);
1479		return (-1);
1480	} else {
1481		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1482		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1483			__func__, ha->hw.max_xmt_cntxts));
1484	}
1485	return 0;
1486}
1487
1488/*
1489 * Name: qla_get_max_mtu
1490 * Function: Returns the MTU supported for a context.
1491 */
1492static int
1493qla_get_max_mtu(qla_host_t *ha)
1494{
1495	qla_cdrp_t	cdrp;
1496	device_t	dev;
1497
1498	dev = ha->pci_dev;
1499
1500	bzero(&cdrp, sizeof(qla_cdrp_t));
1501
1502	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1503
1504	if (qla_issue_cmd(ha, &cdrp)) {
1505		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1506		return (-1);
1507	} else {
1508		ha->hw.max_mtu = cdrp.rsp_arg1;
1509		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1510			ha->hw.max_mtu));
1511	}
1512	return 0;
1513}
1514
1515/*
1516 * Name: qla_set_max_mtu
1517 * Function:
1518 *	Sets the maximum transfer unit size for the specified rcv context.
1519 */
1520int
1521qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1522{
1523	qla_cdrp_t	cdrp;
1524	device_t	dev;
1525
1526	dev = ha->pci_dev;
1527
1528	bzero(&cdrp, sizeof(qla_cdrp_t));
1529
1530	cdrp.cmd = Q8_CMD_SET_MTU;
1531	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1532	cdrp.cmd_arg2 = mtu;
1533
1534	if (qla_issue_cmd(ha, &cdrp)) {
1535		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1536		return (-1);
1537	} else {
1538		ha->hw.max_mtu = cdrp.rsp_arg1;
1539	}
1540	return 0;
1541}
1542
1543/*
1544 * Name: qla_get_max_lro
1545 * Function: Returns the maximum number of TCP Connection which can be supported
1546 *	with LRO.
1547 */
1548static int
1549qla_get_max_lro(qla_host_t *ha)
1550{
1551	qla_cdrp_t	cdrp;
1552	device_t	dev;
1553
1554	dev = ha->pci_dev;
1555
1556	bzero(&cdrp, sizeof(qla_cdrp_t));
1557
1558	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1559
1560	if (qla_issue_cmd(ha, &cdrp)) {
1561		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1562		return (-1);
1563	} else {
1564		ha->hw.max_lro = cdrp.rsp_arg1;
1565		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1566			ha->hw.max_lro));
1567	}
1568	return 0;
1569}
1570
1571/*
1572 * Name: qla_get_flow_control
1573 * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1574 *	PCI function.
1575 */
1576static int
1577qla_get_flow_control(qla_host_t *ha)
1578{
1579	qla_cdrp_t	cdrp;
1580	device_t	dev;
1581
1582	dev = ha->pci_dev;
1583
1584	bzero(&cdrp, sizeof(qla_cdrp_t));
1585
1586	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1587
1588	if (qla_issue_cmd(ha, &cdrp)) {
1589		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1590			__func__);
1591		return (-1);
1592	} else {
1593		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1594			cdrp.rsp_arg1));
1595	}
1596	return 0;
1597}
1598
1599/*
1600 * Name: qla_get_flow_control
1601 * Function: Retrieves hardware capabilities
1602 */
1603void
1604qla_get_hw_caps(qla_host_t *ha)
1605{
1606	//qla_read_mac_addr(ha);
1607	qla_get_max_rds(ha);
1608	qla_get_max_sds(ha);
1609	qla_get_max_rules(ha);
1610	qla_get_max_rcv_cntxts(ha);
1611	qla_get_max_tx_cntxts(ha);
1612	qla_get_max_mtu(ha);
1613	qla_get_max_lro(ha);
1614	qla_get_flow_control(ha);
1615	return;
1616}
1617
1618/*
1619 * Name: qla_hw_set_multi
1620 * Function: Sets the Multicast Addresses provided the host O.S into the
1621 *	hardware (for the given interface)
1622 */
1623void
1624qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1625	uint32_t add_multi)
1626{
1627	q80_rcv_cntxt_rsp_t	*rsp;
1628	int i;
1629
1630	rsp = ha->hw.rx_cntxt_rsp;
1631	for (i = 0; i < mcnt; i++) {
1632		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1633		mta += Q8_MAC_ADDR_LEN;
1634	}
1635	return;
1636}
1637
1638/*
1639 * Name: qla_hw_tx_done_locked
1640 * Function: Handle Transmit Completions
1641 */
1642static void
1643qla_hw_tx_done_locked(qla_host_t *ha)
1644{
1645	qla_tx_buf_t *txb;
1646        qla_hw_t *hw = &ha->hw;
1647	uint32_t comp_idx, comp_count = 0;
1648
1649	/* retrieve index of last entry in tx ring completed */
1650	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1651
1652	while (comp_idx != hw->txr_comp) {
1653
1654		txb = &ha->tx_buf[hw->txr_comp];
1655
1656		hw->txr_comp++;
1657		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1658			hw->txr_comp = 0;
1659
1660		comp_count++;
1661
1662		if (txb->m_head) {
1663			bus_dmamap_sync(ha->tx_tag, txb->map,
1664				BUS_DMASYNC_POSTWRITE);
1665			bus_dmamap_unload(ha->tx_tag, txb->map);
1666			bus_dmamap_destroy(ha->tx_tag, txb->map);
1667			m_freem(txb->m_head);
1668
1669			txb->map = (bus_dmamap_t)0;
1670			txb->m_head = NULL;
1671		}
1672	}
1673
1674	hw->txr_free += comp_count;
1675
1676       	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1677		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1678
1679	return;
1680}
1681
1682/*
1683 * Name: qla_hw_tx_done
1684 * Function: Handle Transmit Completions
1685 */
1686void
1687qla_hw_tx_done(qla_host_t *ha)
1688{
1689	if (!mtx_trylock(&ha->tx_lock)) {
1690       		QL_DPRINT8((ha->pci_dev,
1691			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1692		return;
1693	}
1694	qla_hw_tx_done_locked(ha);
1695
1696	if (ha->hw.txr_free > free_pkt_thres)
1697		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1698
1699	mtx_unlock(&ha->tx_lock);
1700	return;
1701}
1702
1703void
1704qla_update_link_state(qla_host_t *ha)
1705{
1706	uint32_t link_state;
1707
1708	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1709		ha->hw.flags.link_up = 0;
1710		return;
1711	}
1712	link_state = READ_REG32(ha, Q8_LINK_STATE);
1713
1714	if (ha->pci_func == 0)
1715		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1716	else
1717		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1718}
1719
1720int
1721qla_config_lro(qla_host_t *ha)
1722{
1723	int i;
1724        qla_hw_t *hw = &ha->hw;
1725	struct lro_ctrl *lro;
1726
1727	for (i = 0; i < hw->num_sds_rings; i++) {
1728		lro = &hw->sds[i].lro;
1729		if (tcp_lro_init(lro)) {
1730			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1731				__func__);
1732			return (-1);
1733		}
1734		lro->ifp = ha->ifp;
1735	}
1736	ha->flags.lro_init = 1;
1737
1738	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1739	return (0);
1740}
1741
1742void
1743qla_free_lro(qla_host_t *ha)
1744{
1745	int i;
1746        qla_hw_t *hw = &ha->hw;
1747	struct lro_ctrl *lro;
1748
1749	if (!ha->flags.lro_init)
1750		return;
1751
1752	for (i = 0; i < hw->num_sds_rings; i++) {
1753		lro = &hw->sds[i].lro;
1754		tcp_lro_free(lro);
1755	}
1756	ha->flags.lro_init = 0;
1757}
1758
1759void
1760qla_hw_stop_rcv(qla_host_t *ha)
1761{
1762	int i, done, count = 100;
1763
1764	while (count--) {
1765		done = 1;
1766		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1767			if (ha->hw.sds[i].rcv_active)
1768				done = 0;
1769		}
1770		if (done)
1771			break;
1772		else
1773			qla_mdelay(__func__, 10);
1774	}
1775}
1776
1777