mpt.c revision 231629
1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice immediately at the beginning of the file, without modification,
12 *    this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 *    substantially similar to the "NO WARRANTY" disclaimer below
39 *    ("Disclaimer") and any redistribution must be conditioned upon including
40 *    a substantially similar Disclaimer requirement for further binary
41 *    redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 *    of any contributors may be used to endorse or promote products derived
44 *    from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 *    substantially similar to the "NO WARRANTY" disclaimer below
78 *    ("Disclaimer") and any redistribution must be conditioned upon including
79 *    a substantially similar Disclaimer requirement for further binary
80 *    redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 *    of any contributors may be used to endorse or promote products derived
83 *    from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
99__FBSDID("$FreeBSD: stable/9/sys/dev/mpt/mpt.c 231629 2012-02-14 01:15:01Z marius $");
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143	mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151		("mpt_pers_find: starting position out of range"));
152
153	while (start_at < MPT_MAX_PERSONALITIES
154	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155		start_at++;
156	}
157	return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168	while (start_at < MPT_MAX_PERSONALITIES
169	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170		start_at--;
171	}
172	if (start_at < MPT_MAX_PERSONALITIES)
173		return (mpt_personalities[start_at]);
174	return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers)				\
178	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179	     pers != NULL;					\
180	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184	     pers != NULL;						\
185	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t      mpt_stdload;
188static mpt_probe_handler_t     mpt_stdprobe;
189static mpt_attach_handler_t    mpt_stdattach;
190static mpt_enable_handler_t    mpt_stdenable;
191static mpt_ready_handler_t     mpt_stdready;
192static mpt_event_handler_t     mpt_stdevent;
193static mpt_reset_handler_t     mpt_stdreset;
194static mpt_shutdown_handler_t  mpt_stdshutdown;
195static mpt_detach_handler_t    mpt_stddetach;
196static mpt_unload_handler_t    mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199	.load		= mpt_stdload,
200	.probe		= mpt_stdprobe,
201	.attach		= mpt_stdattach,
202	.enable		= mpt_stdenable,
203	.ready		= mpt_stdready,
204	.event		= mpt_stdevent,
205	.reset		= mpt_stdreset,
206	.shutdown	= mpt_stdshutdown,
207	.detach		= mpt_stddetach,
208	.unload		= mpt_stdunload
209};
210
211static mpt_load_handler_t      mpt_core_load;
212static mpt_attach_handler_t    mpt_core_attach;
213static mpt_enable_handler_t    mpt_core_enable;
214static mpt_reset_handler_t     mpt_core_ioc_reset;
215static mpt_event_handler_t     mpt_core_event;
216static mpt_shutdown_handler_t  mpt_core_shutdown;
217static mpt_shutdown_handler_t  mpt_core_detach;
218static mpt_unload_handler_t    mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221	.name		= "mpt_core",
222	.load		= mpt_core_load,
223//	.attach		= mpt_core_attach,
224//	.enable		= mpt_core_enable,
225	.event		= mpt_core_event,
226	.reset		= mpt_core_ioc_reset,
227	.shutdown	= mpt_core_shutdown,
228	.detach		= mpt_core_detach,
229	.unload		= mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information.  We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238	"mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248	struct mpt_personality *pers;
249	int error;
250
251	pers = (struct mpt_personality *)data;
252
253	error = 0;
254	switch (type) {
255	case MOD_LOAD:
256	{
257		mpt_load_handler_t **def_handler;
258		mpt_load_handler_t **pers_handler;
259		int i;
260
261		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262			if (mpt_personalities[i] == NULL)
263				break;
264		}
265		if (i >= MPT_MAX_PERSONALITIES) {
266			error = ENOMEM;
267			break;
268		}
269		pers->id = i;
270		mpt_personalities[i] = pers;
271
272		/* Install standard/noop handlers for any NULL entries. */
273		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276			if (*pers_handler == NULL)
277				*pers_handler = *def_handler;
278			pers_handler++;
279			def_handler++;
280		}
281
282		error = (pers->load(pers));
283		if (error != 0)
284			mpt_personalities[i] = NULL;
285		break;
286	}
287	case MOD_SHUTDOWN:
288		break;
289#if __FreeBSD_version >= 500000
290	case MOD_QUIESCE:
291		break;
292#endif
293	case MOD_UNLOAD:
294		error = pers->unload(pers);
295		mpt_personalities[pers->id] = NULL;
296		break;
297	default:
298		error = EINVAL;
299		break;
300	}
301	return (error);
302}
303
304static int
305mpt_stdload(struct mpt_personality *pers)
306{
307
308	/* Load is always successful. */
309	return (0);
310}
311
312static int
313mpt_stdprobe(struct mpt_softc *mpt)
314{
315
316	/* Probe is always successful. */
317	return (0);
318}
319
320static int
321mpt_stdattach(struct mpt_softc *mpt)
322{
323
324	/* Attach is always successful. */
325	return (0);
326}
327
328static int
329mpt_stdenable(struct mpt_softc *mpt)
330{
331
332	/* Enable is always successful. */
333	return (0);
334}
335
336static void
337mpt_stdready(struct mpt_softc *mpt)
338{
339
340}
341
342static int
343mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344{
345
346	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347	/* Event was not for us. */
348	return (0);
349}
350
351static void
352mpt_stdreset(struct mpt_softc *mpt, int type)
353{
354
355}
356
357static void
358mpt_stdshutdown(struct mpt_softc *mpt)
359{
360
361}
362
363static void
364mpt_stddetach(struct mpt_softc *mpt)
365{
366
367}
368
369static int
370mpt_stdunload(struct mpt_personality *pers)
371{
372
373	/* Unload is always successful. */
374	return (0);
375}
376
377/*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382static void
383mpt_postattach(void *unused)
384{
385	struct mpt_softc *mpt;
386	struct mpt_personality *pers;
387
388	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389		MPT_PERS_FOREACH(mpt, pers)
390			pers->ready(mpt);
391	}
392}
393SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395/******************************* Bus DMA Support ******************************/
396void
397mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398{
399	struct mpt_map_info *map_info;
400
401	map_info = (struct mpt_map_info *)arg;
402	map_info->error = error;
403	map_info->phys = segs->ds_addr;
404}
405
406/**************************** Reply/Event Handling ****************************/
407int
408mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409		     mpt_handler_t handler, uint32_t *phandler_id)
410{
411
412	switch (type) {
413	case MPT_HANDLER_REPLY:
414	{
415		u_int cbi;
416		u_int free_cbi;
417
418		if (phandler_id == NULL)
419			return (EINVAL);
420
421		free_cbi = MPT_HANDLER_ID_NONE;
422		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423			/*
424			 * If the same handler is registered multiple
425			 * times, don't error out.  Just return the
426			 * index of the original registration.
427			 */
428			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429				*phandler_id = MPT_CBI_TO_HID(cbi);
430				return (0);
431			}
432
433			/*
434			 * Fill from the front in the hope that
435			 * all registered handlers consume only a
436			 * single cache line.
437			 *
438			 * We don't break on the first empty slot so
439			 * that the full table is checked to see if
440			 * this handler was previously registered.
441			 */
442			if (free_cbi == MPT_HANDLER_ID_NONE &&
443			    (mpt_reply_handlers[cbi]
444			  == mpt_default_reply_handler))
445				free_cbi = cbi;
446		}
447		if (free_cbi == MPT_HANDLER_ID_NONE) {
448			return (ENOMEM);
449		}
450		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452		break;
453	}
454	default:
455		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456		return (EINVAL);
457	}
458	return (0);
459}
460
461int
462mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463		       mpt_handler_t handler, uint32_t handler_id)
464{
465
466	switch (type) {
467	case MPT_HANDLER_REPLY:
468	{
469		u_int cbi;
470
471		cbi = MPT_CBI(handler_id);
472		if (cbi >= MPT_NUM_REPLY_HANDLERS
473		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474			return (ENOENT);
475		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476		break;
477	}
478	default:
479		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480		return (EINVAL);
481	}
482	return (0);
483}
484
485static int
486mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488{
489
490	mpt_prt(mpt,
491	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492	    req, req->serno, reply_desc, reply_frame);
493
494	if (reply_frame != NULL)
495		mpt_dump_reply_frame(mpt, reply_frame);
496
497	mpt_prt(mpt, "Reply Frame Ignored\n");
498
499	return (/*free_reply*/TRUE);
500}
501
502static int
503mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505{
506
507	if (req != NULL) {
508		if (reply_frame != NULL) {
509			MSG_CONFIG *cfgp;
510			MSG_CONFIG_REPLY *reply;
511
512			cfgp = (MSG_CONFIG *)req->req_vbuf;
513			reply = (MSG_CONFIG_REPLY *)reply_frame;
514			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515			bcopy(&reply->Header, &cfgp->Header,
516			      sizeof(cfgp->Header));
517			cfgp->ExtPageLength = reply->ExtPageLength;
518			cfgp->ExtPageType = reply->ExtPageType;
519		}
520		req->state &= ~REQ_STATE_QUEUED;
521		req->state |= REQ_STATE_DONE;
522		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524			wakeup(req);
525		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526			/*
527			 * Whew- we can free this request (late completion)
528			 */
529			mpt_free_request(mpt, req);
530		}
531	}
532
533	return (TRUE);
534}
535
536static int
537mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539{
540
541	/* Nothing to be done. */
542	return (TRUE);
543}
544
545static int
546mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548{
549	int free_reply;
550
551	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554	free_reply = TRUE;
555	switch (reply_frame->Function) {
556	case MPI_FUNCTION_EVENT_NOTIFICATION:
557	{
558		MSG_EVENT_NOTIFY_REPLY *msg;
559		struct mpt_personality *pers;
560		u_int handled;
561
562		handled = 0;
563		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564		msg->EventDataLength = le16toh(msg->EventDataLength);
565		msg->IOCStatus = le16toh(msg->IOCStatus);
566		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567		msg->Event = le32toh(msg->Event);
568		MPT_PERS_FOREACH(mpt, pers)
569			handled += pers->event(mpt, req, msg);
570
571		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572			mpt_lprt(mpt, MPT_PRT_INFO,
573				"No Handlers For Any Event Notify Frames. "
574				"Event %#x (ACK %sequired).\n",
575				msg->Event, msg->AckRequired? "r" : "not r");
576		} else if (handled == 0) {
577			mpt_lprt(mpt,
578				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579				"Unhandled Event Notify Frame. Event %#x "
580				"(ACK %sequired).\n",
581				msg->Event, msg->AckRequired? "r" : "not r");
582		}
583
584		if (msg->AckRequired) {
585			request_t *ack_req;
586			uint32_t context;
587
588			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589			ack_req = mpt_get_request(mpt, FALSE);
590			if (ack_req == NULL) {
591				struct mpt_evtf_record *evtf;
592
593				evtf = (struct mpt_evtf_record *)reply_frame;
594				evtf->context = context;
595				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596				free_reply = FALSE;
597				break;
598			}
599			mpt_send_event_ack(mpt, ack_req, msg, context);
600			/*
601			 * Don't check for CONTINUATION_REPLY here
602			 */
603			return (free_reply);
604		}
605		break;
606	}
607	case MPI_FUNCTION_PORT_ENABLE:
608		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609		break;
610	case MPI_FUNCTION_EVENT_ACK:
611		break;
612	default:
613		mpt_prt(mpt, "unknown event function: %x\n",
614			reply_frame->Function);
615		break;
616	}
617
618	/*
619	 * I'm not sure that this continuation stuff works as it should.
620	 *
621	 * I've had FC async events occur that free the frame up because
622	 * the continuation bit isn't set, and then additional async events
623	 * then occur using the same context. As you might imagine, this
624	 * leads to Very Bad Thing.
625	 *
626	 *  Let's just be safe for now and not free them up until we figure
627	 * out what's actually happening here.
628	 */
629#if	0
630	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632		mpt_free_request(mpt, req);
633		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634		    reply_frame->Function, req, req->serno);
635		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636			MSG_EVENT_NOTIFY_REPLY *msg =
637			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639			    msg->Event, msg->AckRequired);
640		}
641	} else {
642		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643		    reply_frame->Function, req, req->serno);
644		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645			MSG_EVENT_NOTIFY_REPLY *msg =
646			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648			    msg->Event, msg->AckRequired);
649		}
650		mpt_prtc(mpt, "\n");
651	}
652#endif
653	return (free_reply);
654}
655
656/*
657 * Process an asynchronous event from the IOC.
658 */
659static int
660mpt_core_event(struct mpt_softc *mpt, request_t *req,
661	       MSG_EVENT_NOTIFY_REPLY *msg)
662{
663
664	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                 msg->Event & 0xFF);
666	switch(msg->Event & 0xFF) {
667	case MPI_EVENT_NONE:
668		break;
669	case MPI_EVENT_LOG_DATA:
670	{
671		int i;
672
673		/* Some error occurred that LSI wants logged */
674		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675			msg->IOCLogInfo);
676		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677		for (i = 0; i < msg->EventDataLength; i++)
678			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679		mpt_prtc(mpt, "\n");
680		break;
681	}
682	case MPI_EVENT_EVENT_CHANGE:
683		/*
684		 * This is just an acknowledgement
685		 * of our mpt_send_event_request.
686		 */
687		break;
688	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689		break;
690	default:
691		return (0);
692		break;
693	}
694	return (1);
695}
696
697static void
698mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700{
701	MSG_EVENT_ACK *ackp;
702
703	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704	memset(ackp, 0, sizeof (*ackp));
705	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706	ackp->Event = htole32(msg->Event);
707	ackp->EventContext = htole32(msg->EventContext);
708	ackp->MsgContext = htole32(context);
709	mpt_check_doorbell(mpt);
710	mpt_send_cmd(mpt, ack_req);
711}
712
713/***************************** Interrupt Handling *****************************/
714void
715mpt_intr(void *arg)
716{
717	struct mpt_softc *mpt;
718	uint32_t reply_desc;
719	int ntrips = 0;
720
721	mpt = (struct mpt_softc *)arg;
722	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723	MPT_LOCK_ASSERT(mpt);
724
725	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726		request_t	  *req;
727		MSG_DEFAULT_REPLY *reply_frame;
728		uint32_t	   reply_baddr;
729		uint32_t           ctxt_idx;
730		u_int		   cb_index;
731		u_int		   req_index;
732		u_int		   offset;
733		int		   free_rf;
734
735		req = NULL;
736		reply_frame = NULL;
737		reply_baddr = 0;
738		offset = 0;
739		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740			/*
741			 * Ensure that the reply frame is coherent.
742			 */
743			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745			bus_dmamap_sync_range(mpt->reply_dmat,
746			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747			    BUS_DMASYNC_POSTREAD);
748			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749			ctxt_idx = le32toh(reply_frame->MsgContext);
750		} else {
751			uint32_t type;
752
753			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754			ctxt_idx = reply_desc;
755			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756				    reply_desc);
757
758			switch (type) {
759			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761				break;
762			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763				ctxt_idx = GET_IO_INDEX(reply_desc);
764				if (mpt->tgt_cmd_ptrs == NULL) {
765					mpt_prt(mpt,
766					    "mpt_intr: no target cmd ptrs\n");
767					reply_desc = MPT_REPLY_EMPTY;
768					break;
769				}
770				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771					mpt_prt(mpt,
772					    "mpt_intr: bad tgt cmd ctxt %u\n",
773					    ctxt_idx);
774					reply_desc = MPT_REPLY_EMPTY;
775					ntrips = 1000;
776					break;
777				}
778				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779				if (req == NULL) {
780					mpt_prt(mpt, "no request backpointer "
781					    "at index %u", ctxt_idx);
782					reply_desc = MPT_REPLY_EMPTY;
783					ntrips = 1000;
784					break;
785				}
786				/*
787				 * Reformulate ctxt_idx to be just as if
788				 * it were another type of context reply
789				 * so the code below will find the request
790				 * via indexing into the pool.
791				 */
792				ctxt_idx =
793				    req->index | mpt->scsi_tgt_handler_id;
794				req = NULL;
795				break;
796			case MPI_CONTEXT_REPLY_TYPE_LAN:
797				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798				    reply_desc);
799				reply_desc = MPT_REPLY_EMPTY;
800				break;
801			default:
802				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803				reply_desc = MPT_REPLY_EMPTY;
804				break;
805			}
806			if (reply_desc == MPT_REPLY_EMPTY) {
807				if (ntrips++ > 1000) {
808					break;
809				}
810				continue;
811			}
812		}
813
814		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817			req = &mpt->request_pool[req_index];
818		} else {
819			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820			    " 0x%x)\n", req_index, reply_desc);
821		}
822
823		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826		    reply_desc, reply_frame);
827
828		if (reply_frame != NULL && free_rf) {
829			bus_dmamap_sync_range(mpt->reply_dmat,
830			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831			    BUS_DMASYNC_PREREAD);
832			mpt_free_reply(mpt, reply_baddr);
833		}
834
835		/*
836		 * If we got ourselves disabled, don't get stuck in a loop
837		 */
838		if (mpt->disabled) {
839			mpt_disable_ints(mpt);
840			break;
841		}
842		if (ntrips++ > 1000) {
843			break;
844		}
845	}
846	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847}
848
849/******************************* Error Recovery *******************************/
850void
851mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852			    u_int iocstatus)
853{
854	MSG_DEFAULT_REPLY  ioc_status_frame;
855	request_t	  *req;
856
857	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859	ioc_status_frame.IOCStatus = iocstatus;
860	while((req = TAILQ_FIRST(chain)) != NULL) {
861		MSG_REQUEST_HEADER *msg_hdr;
862		u_int		    cb_index;
863
864		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867		ioc_status_frame.Function = msg_hdr->Function;
868		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871		    &ioc_status_frame);
872		if (mpt_req_on_pending_list(mpt, req) != 0)
873			TAILQ_REMOVE(chain, req, links);
874	}
875}
876
877/********************************* Diagnostics ********************************/
878/*
879 * Perform a diagnostic dump of a reply frame.
880 */
881void
882mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883{
884
885	mpt_prt(mpt, "Address Reply:\n");
886	mpt_print_reply(reply_frame);
887}
888
889/******************************* Doorbell Access ******************************/
890static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893static __inline uint32_t
894mpt_rd_db(struct mpt_softc *mpt)
895{
896
897	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898}
899
900static __inline uint32_t
901mpt_rd_intr(struct mpt_softc *mpt)
902{
903
904	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905}
906
907/* Busy wait for a door bell to be read by IOC */
908static int
909mpt_wait_db_ack(struct mpt_softc *mpt)
910{
911	int i;
912
913	for (i=0; i < MPT_MAX_WAIT; i++) {
914		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916			return (MPT_OK);
917		}
918		DELAY(200);
919	}
920	return (MPT_FAIL);
921}
922
923/* Busy wait for a door bell interrupt */
924static int
925mpt_wait_db_int(struct mpt_softc *mpt)
926{
927	int i;
928
929	for (i = 0; i < MPT_MAX_WAIT; i++) {
930		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931			maxwait_int = i > maxwait_int ? i : maxwait_int;
932			return MPT_OK;
933		}
934		DELAY(100);
935	}
936	return (MPT_FAIL);
937}
938
939/* Wait for IOC to transition to a give state */
940void
941mpt_check_doorbell(struct mpt_softc *mpt)
942{
943	uint32_t db = mpt_rd_db(mpt);
944
945	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946		mpt_prt(mpt, "Device not running\n");
947		mpt_print_db(db);
948	}
949}
950
951/* Wait for IOC to transition to a give state */
952static int
953mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954{
955	int i;
956
957	for (i = 0; i < MPT_MAX_WAIT; i++) {
958		uint32_t db = mpt_rd_db(mpt);
959		if (MPT_STATE(db) == state) {
960			maxwait_state = i > maxwait_state ? i : maxwait_state;
961			return (MPT_OK);
962		}
963		DELAY(100);
964	}
965	return (MPT_FAIL);
966}
967
968
969/************************* Intialization/Configuration ************************/
970static int mpt_download_fw(struct mpt_softc *mpt);
971
972/* Issue the reset COMMAND to the IOC */
973static int
974mpt_soft_reset(struct mpt_softc *mpt)
975{
976
977	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978
979	/* Have to use hard reset if we are not in Running state */
980	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981		mpt_prt(mpt, "soft reset failed: device not running\n");
982		return (MPT_FAIL);
983	}
984
985	/* If door bell is in use we don't have a chance of getting
986	 * a word in since the IOC probably crashed in message
987	 * processing. So don't waste our time.
988	 */
989	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991		return (MPT_FAIL);
992	}
993
994	/* Send the reset request to the IOC */
995	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999		return (MPT_FAIL);
1000	}
1001
1002	/* Wait for the IOC to reload and come out of reset state */
1003	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005		return (MPT_FAIL);
1006	}
1007
1008	return MPT_OK;
1009}
1010
1011static int
1012mpt_enable_diag_mode(struct mpt_softc *mpt)
1013{
1014	int try;
1015
1016	try = 20;
1017	while (--try) {
1018
1019		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020			break;
1021
1022		/* Enable diagnostic registers */
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029
1030		DELAY(100000);
1031	}
1032	if (try == 0)
1033		return (EIO);
1034	return (0);
1035}
1036
1037static void
1038mpt_disable_diag_mode(struct mpt_softc *mpt)
1039{
1040
1041	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042}
1043
1044/* This is a magic diagnostic reset that resets all the ARM
1045 * processors in the chip.
1046 */
1047static void
1048mpt_hard_reset(struct mpt_softc *mpt)
1049{
1050	int error;
1051	int wait;
1052	uint32_t diagreg;
1053
1054	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055
1056	if (mpt->is_1078) {
1057		mpt_write(mpt, MPT_OFFSET_RESET_1078, 0x07);
1058		DELAY(1000);
1059		return;
1060	}
1061
1062	error = mpt_enable_diag_mode(mpt);
1063	if (error) {
1064		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1065		mpt_prt(mpt, "Trying to reset anyway.\n");
1066	}
1067
1068	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1069
1070	/*
1071	 * This appears to be a workaround required for some
1072	 * firmware or hardware revs.
1073	 */
1074	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1075	DELAY(1000);
1076
1077	/* Diag. port is now active so we can now hit the reset bit */
1078	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1079
1080        /*
1081         * Ensure that the reset has finished.  We delay 1ms
1082         * prior to reading the register to make sure the chip
1083         * has sufficiently completed its reset to handle register
1084         * accesses.
1085         */
1086	wait = 5000;
1087	do {
1088		DELAY(1000);
1089		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1090	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1091
1092	if (wait == 0) {
1093		mpt_prt(mpt, "WARNING - Failed hard reset! "
1094			"Trying to initialize anyway.\n");
1095	}
1096
1097	/*
1098	 * If we have firmware to download, it must be loaded before
1099	 * the controller will become operational.  Do so now.
1100	 */
1101	if (mpt->fw_image != NULL) {
1102
1103		error = mpt_download_fw(mpt);
1104
1105		if (error) {
1106			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1107			mpt_prt(mpt, "Trying to initialize anyway.\n");
1108		}
1109	}
1110
1111	/*
1112	 * Reseting the controller should have disabled write
1113	 * access to the diagnostic registers, but disable
1114	 * manually to be sure.
1115	 */
1116	mpt_disable_diag_mode(mpt);
1117}
1118
1119static void
1120mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1121{
1122
1123	/*
1124	 * Complete all pending requests with a status
1125	 * appropriate for an IOC reset.
1126	 */
1127	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1128				   MPI_IOCSTATUS_INVALID_STATE);
1129}
1130
1131/*
1132 * Reset the IOC when needed. Try software command first then if needed
1133 * poke at the magic diagnostic reset. Note that a hard reset resets
1134 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1135 * fouls up the PCI configuration registers.
1136 */
1137int
1138mpt_reset(struct mpt_softc *mpt, int reinit)
1139{
1140	struct	mpt_personality *pers;
1141	int	ret;
1142	int	retry_cnt = 0;
1143
1144	/*
1145	 * Try a soft reset. If that fails, get out the big hammer.
1146	 */
1147 again:
1148	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1149		int	cnt;
1150		for (cnt = 0; cnt < 5; cnt++) {
1151			/* Failed; do a hard reset */
1152			mpt_hard_reset(mpt);
1153
1154			/*
1155			 * Wait for the IOC to reload
1156			 * and come out of reset state
1157			 */
1158			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1159			if (ret == MPT_OK) {
1160				break;
1161			}
1162			/*
1163			 * Okay- try to check again...
1164			 */
1165			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1166			if (ret == MPT_OK) {
1167				break;
1168			}
1169			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1170			    retry_cnt, cnt);
1171		}
1172	}
1173
1174	if (retry_cnt == 0) {
1175		/*
1176		 * Invoke reset handlers.  We bump the reset count so
1177		 * that mpt_wait_req() understands that regardless of
1178		 * the specified wait condition, it should stop its wait.
1179		 */
1180		mpt->reset_cnt++;
1181		MPT_PERS_FOREACH(mpt, pers)
1182			pers->reset(mpt, ret);
1183	}
1184
1185	if (reinit) {
1186		ret = mpt_enable_ioc(mpt, 1);
1187		if (ret == MPT_OK) {
1188			mpt_enable_ints(mpt);
1189		}
1190	}
1191	if (ret != MPT_OK && retry_cnt++ < 2) {
1192		goto again;
1193	}
1194	return ret;
1195}
1196
1197/* Return a command buffer to the free queue */
1198void
1199mpt_free_request(struct mpt_softc *mpt, request_t *req)
1200{
1201	request_t *nxt;
1202	struct mpt_evtf_record *record;
1203	uint32_t offset, reply_baddr;
1204
1205	if (req == NULL || req != &mpt->request_pool[req->index]) {
1206		panic("mpt_free_request: bad req ptr");
1207	}
1208	if ((nxt = req->chain) != NULL) {
1209		req->chain = NULL;
1210		mpt_free_request(mpt, nxt);	/* NB: recursion */
1211	}
1212	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1213	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1214	MPT_LOCK_ASSERT(mpt);
1215	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1216	    ("mpt_free_request: req %p:%u func %x already on freelist",
1217	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1218	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1219	    ("mpt_free_request: req %p:%u func %x on pending list",
1220	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1221#ifdef	INVARIANTS
1222	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1223#endif
1224
1225	req->ccb = NULL;
1226	if (LIST_EMPTY(&mpt->ack_frames)) {
1227		/*
1228		 * Insert free ones at the tail
1229		 */
1230		req->serno = 0;
1231		req->state = REQ_STATE_FREE;
1232#ifdef	INVARIANTS
1233		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1234#endif
1235		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1236		if (mpt->getreqwaiter != 0) {
1237			mpt->getreqwaiter = 0;
1238			wakeup(&mpt->request_free_list);
1239		}
1240		return;
1241	}
1242
1243	/*
1244	 * Process an ack frame deferred due to resource shortage.
1245	 */
1246	record = LIST_FIRST(&mpt->ack_frames);
1247	LIST_REMOVE(record, links);
1248	req->state = REQ_STATE_ALLOCATED;
1249	mpt_assign_serno(mpt, req);
1250	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1251	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1252	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1253	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1254	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1255	mpt_free_reply(mpt, reply_baddr);
1256}
1257
1258/* Get a command buffer from the free queue */
1259request_t *
1260mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1261{
1262	request_t *req;
1263
1264retry:
1265	MPT_LOCK_ASSERT(mpt);
1266	req = TAILQ_FIRST(&mpt->request_free_list);
1267	if (req != NULL) {
1268		KASSERT(req == &mpt->request_pool[req->index],
1269		    ("mpt_get_request: corrupted request free list"));
1270		KASSERT(req->state == REQ_STATE_FREE,
1271		    ("req %p:%u not free on free list %x index %d function %x",
1272		    req, req->serno, req->state, req->index,
1273		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1274		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1275		req->state = REQ_STATE_ALLOCATED;
1276		req->chain = NULL;
1277		mpt_assign_serno(mpt, req);
1278	} else if (sleep_ok != 0) {
1279		mpt->getreqwaiter = 1;
1280		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1281		goto retry;
1282	}
1283	return (req);
1284}
1285
1286/* Pass the command to the IOC */
1287void
1288mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1289{
1290
1291	if (mpt->verbose > MPT_PRT_DEBUG2) {
1292		mpt_dump_request(mpt, req);
1293	}
1294	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1295	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1296	req->state |= REQ_STATE_QUEUED;
1297	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1298	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1299	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1300	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1301	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1302	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1303	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1304	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1305}
1306
1307/*
1308 * Wait for a request to complete.
1309 *
1310 * Inputs:
1311 *	mpt		softc of controller executing request
1312 *	req		request to wait for
1313 *	sleep_ok	nonzero implies may sleep in this context
1314 *	time_ms		timeout in ms.  0 implies no timeout.
1315 *
1316 * Return Values:
1317 *	0		Request completed
1318 *	non-0		Timeout fired before request completion.
1319 */
1320int
1321mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1322	     mpt_req_state_t state, mpt_req_state_t mask,
1323	     int sleep_ok, int time_ms)
1324{
1325	int   error;
1326	int   timeout;
1327	u_int saved_cnt;
1328
1329	/*
1330	 * timeout is in ms.  0 indicates infinite wait.
1331	 * Convert to ticks or 500us units depending on
1332	 * our sleep mode.
1333	 */
1334	if (sleep_ok != 0) {
1335		timeout = (time_ms * hz) / 1000;
1336	} else {
1337		timeout = time_ms * 2;
1338	}
1339	req->state |= REQ_STATE_NEED_WAKEUP;
1340	mask &= ~REQ_STATE_NEED_WAKEUP;
1341	saved_cnt = mpt->reset_cnt;
1342	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1343		if (sleep_ok != 0) {
1344			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1345			if (error == EWOULDBLOCK) {
1346				timeout = 0;
1347				break;
1348			}
1349		} else {
1350			if (time_ms != 0 && --timeout == 0) {
1351				break;
1352			}
1353			DELAY(500);
1354			mpt_intr(mpt);
1355		}
1356	}
1357	req->state &= ~REQ_STATE_NEED_WAKEUP;
1358	if (mpt->reset_cnt != saved_cnt) {
1359		return (EIO);
1360	}
1361	if (time_ms && timeout <= 0) {
1362		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1363		req->state |= REQ_STATE_TIMEDOUT;
1364		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1365		return (ETIMEDOUT);
1366	}
1367	return (0);
1368}
1369
1370/*
1371 * Send a command to the IOC via the handshake register.
1372 *
1373 * Only done at initialization time and for certain unusual
1374 * commands such as device/bus reset as specified by LSI.
1375 */
1376int
1377mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1378{
1379	int i;
1380	uint32_t data, *data32;
1381
1382	/* Check condition of the IOC */
1383	data = mpt_rd_db(mpt);
1384	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1385	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1386	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1387	 || MPT_DB_IS_IN_USE(data)) {
1388		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1389		mpt_print_db(data);
1390		return (EBUSY);
1391	}
1392
1393	/* We move things in 32 bit chunks */
1394	len = (len + 3) >> 2;
1395	data32 = cmd;
1396
1397	/* Clear any left over pending doorbell interrupts */
1398	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1399		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1400
1401	/*
1402	 * Tell the handshake reg. we are going to send a command
1403         * and how long it is going to be.
1404	 */
1405	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1406	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1407	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1408
1409	/* Wait for the chip to notice */
1410	if (mpt_wait_db_int(mpt) != MPT_OK) {
1411		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1412		return (ETIMEDOUT);
1413	}
1414
1415	/* Clear the interrupt */
1416	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1417
1418	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1419		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1420		return (ETIMEDOUT);
1421	}
1422
1423	/* Send the command */
1424	for (i = 0; i < len; i++) {
1425		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1426		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1427			mpt_prt(mpt,
1428			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1429			return (ETIMEDOUT);
1430		}
1431	}
1432	return MPT_OK;
1433}
1434
1435/* Get the response from the handshake register */
1436int
1437mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1438{
1439	int left, reply_left;
1440	u_int16_t *data16;
1441	uint32_t data;
1442	MSG_DEFAULT_REPLY *hdr;
1443
1444	/* We move things out in 16 bit chunks */
1445	reply_len >>= 1;
1446	data16 = (u_int16_t *)reply;
1447
1448	hdr = (MSG_DEFAULT_REPLY *)reply;
1449
1450	/* Get first word */
1451	if (mpt_wait_db_int(mpt) != MPT_OK) {
1452		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1453		return ETIMEDOUT;
1454	}
1455	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1456	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1457	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1458
1459	/* Get Second Word */
1460	if (mpt_wait_db_int(mpt) != MPT_OK) {
1461		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1462		return ETIMEDOUT;
1463	}
1464	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1465	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1466	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1467
1468	/*
1469	 * With the second word, we can now look at the length.
1470	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1471	 */
1472	if ((reply_len >> 1) != hdr->MsgLength &&
1473	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1474#if __FreeBSD_version >= 500000
1475		mpt_prt(mpt, "reply length does not match message length: "
1476			"got %x; expected %zx for function %x\n",
1477			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1478#else
1479		mpt_prt(mpt, "reply length does not match message length: "
1480			"got %x; expected %x for function %x\n",
1481			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1482#endif
1483	}
1484
1485	/* Get rest of the reply; but don't overflow the provided buffer */
1486	left = (hdr->MsgLength << 1) - 2;
1487	reply_left =  reply_len - 2;
1488	while (left--) {
1489		u_int16_t datum;
1490
1491		if (mpt_wait_db_int(mpt) != MPT_OK) {
1492			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1493			return ETIMEDOUT;
1494		}
1495		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1496		datum = le16toh(data & MPT_DB_DATA_MASK);
1497
1498		if (reply_left-- > 0)
1499			*data16++ = datum;
1500
1501		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1502	}
1503
1504	/* One more wait & clear at the end */
1505	if (mpt_wait_db_int(mpt) != MPT_OK) {
1506		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1507		return ETIMEDOUT;
1508	}
1509	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1510
1511	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1512		if (mpt->verbose >= MPT_PRT_TRACE)
1513			mpt_print_reply(hdr);
1514		return (MPT_FAIL | hdr->IOCStatus);
1515	}
1516
1517	return (0);
1518}
1519
1520static int
1521mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1522{
1523	MSG_IOC_FACTS f_req;
1524	int error;
1525
1526	memset(&f_req, 0, sizeof f_req);
1527	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1528	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1529	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1530	if (error) {
1531		return(error);
1532	}
1533	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1534	return (error);
1535}
1536
1537static int
1538mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1539{
1540	MSG_PORT_FACTS f_req;
1541	int error;
1542
1543	memset(&f_req, 0, sizeof f_req);
1544	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1545	f_req.PortNumber = port;
1546	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1547	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1548	if (error) {
1549		return(error);
1550	}
1551	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1552	return (error);
1553}
1554
1555/*
1556 * Send the initialization request. This is where we specify how many
1557 * SCSI busses and how many devices per bus we wish to emulate.
1558 * This is also the command that specifies the max size of the reply
1559 * frames from the IOC that we will be allocating.
1560 */
1561static int
1562mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1563{
1564	int error = 0;
1565	MSG_IOC_INIT init;
1566	MSG_IOC_INIT_REPLY reply;
1567
1568	memset(&init, 0, sizeof init);
1569	init.WhoInit = who;
1570	init.Function = MPI_FUNCTION_IOC_INIT;
1571	init.MaxDevices = 0;	/* at least 256 devices per bus */
1572	init.MaxBuses = 16;	/* at least 16 busses */
1573
1574	init.MsgVersion = htole16(MPI_VERSION);
1575	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1576	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1577	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1578
1579	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1580		return(error);
1581	}
1582
1583	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1584	return (error);
1585}
1586
1587
1588/*
1589 * Utiltity routine to read configuration headers and pages
1590 */
1591int
1592mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1593		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1594{
1595	MSG_CONFIG *cfgp;
1596	SGE_SIMPLE32 *se;
1597
1598	cfgp = req->req_vbuf;
1599	memset(cfgp, 0, sizeof *cfgp);
1600	cfgp->Action = params->Action;
1601	cfgp->Function = MPI_FUNCTION_CONFIG;
1602	cfgp->Header.PageVersion = params->PageVersion;
1603	cfgp->Header.PageNumber = params->PageNumber;
1604	cfgp->PageAddress = htole32(params->PageAddress);
1605	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1606	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1607		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1608		cfgp->Header.PageLength = 0;
1609		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1610		cfgp->ExtPageType = params->ExtPageType;
1611	} else {
1612		cfgp->Header.PageType = params->PageType;
1613		cfgp->Header.PageLength = params->PageLength;
1614	}
1615	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1616	se->Address = htole32(addr);
1617	MPI_pSGE_SET_LENGTH(se, len);
1618	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1619	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1620	    MPI_SGE_FLAGS_END_OF_LIST |
1621	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1622	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1623	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1624	se->FlagsLength = htole32(se->FlagsLength);
1625	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1626
1627	mpt_check_doorbell(mpt);
1628	mpt_send_cmd(mpt, req);
1629	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1630			     sleep_ok, timeout_ms));
1631}
1632
1633int
1634mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1635		       uint32_t PageAddress, int ExtPageType,
1636		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1637		       int sleep_ok, int timeout_ms)
1638{
1639	request_t  *req;
1640	cfgparms_t params;
1641	MSG_CONFIG_REPLY *cfgp;
1642	int	    error;
1643
1644	req = mpt_get_request(mpt, sleep_ok);
1645	if (req == NULL) {
1646		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1647		return (ENOMEM);
1648	}
1649
1650	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1651	params.PageVersion = PageVersion;
1652	params.PageLength = 0;
1653	params.PageNumber = PageNumber;
1654	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1655	params.PageAddress = PageAddress;
1656	params.ExtPageType = ExtPageType;
1657	params.ExtPageLength = 0;
1658	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1659				  sleep_ok, timeout_ms);
1660	if (error != 0) {
1661		/*
1662		 * Leave the request. Without resetting the chip, it's
1663		 * still owned by it and we'll just get into trouble
1664		 * freeing it now. Mark it as abandoned so that if it
1665		 * shows up later it can be freed.
1666		 */
1667		mpt_prt(mpt, "read_extcfg_header timed out\n");
1668		return (ETIMEDOUT);
1669	}
1670
1671        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1672	case MPI_IOCSTATUS_SUCCESS:
1673		cfgp = req->req_vbuf;
1674		rslt->PageVersion = cfgp->Header.PageVersion;
1675		rslt->PageNumber = cfgp->Header.PageNumber;
1676		rslt->PageType = cfgp->Header.PageType;
1677		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1678		rslt->ExtPageType = cfgp->ExtPageType;
1679		error = 0;
1680		break;
1681	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1682		mpt_lprt(mpt, MPT_PRT_DEBUG,
1683		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1684		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1685		error = EINVAL;
1686		break;
1687	default:
1688		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1689			req->IOCStatus);
1690		error = EIO;
1691		break;
1692	}
1693	mpt_free_request(mpt, req);
1694	return (error);
1695}
1696
1697int
1698mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1699		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1700		     int sleep_ok, int timeout_ms)
1701{
1702	request_t    *req;
1703	cfgparms_t    params;
1704	int	      error;
1705
1706	req = mpt_get_request(mpt, sleep_ok);
1707	if (req == NULL) {
1708		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1709		return (-1);
1710	}
1711
1712	params.Action = Action;
1713	params.PageVersion = hdr->PageVersion;
1714	params.PageLength = 0;
1715	params.PageNumber = hdr->PageNumber;
1716	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1717	params.PageAddress = PageAddress;
1718	params.ExtPageType = hdr->ExtPageType;
1719	params.ExtPageLength = hdr->ExtPageLength;
1720	error = mpt_issue_cfg_req(mpt, req, &params,
1721				  req->req_pbuf + MPT_RQSL(mpt),
1722				  len, sleep_ok, timeout_ms);
1723	if (error != 0) {
1724		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1725		return (-1);
1726	}
1727
1728	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1729		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1730			req->IOCStatus);
1731		mpt_free_request(mpt, req);
1732		return (-1);
1733	}
1734	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1735	mpt_free_request(mpt, req);
1736	return (0);
1737}
1738
1739int
1740mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1741		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1742		    int sleep_ok, int timeout_ms)
1743{
1744	request_t  *req;
1745	cfgparms_t params;
1746	MSG_CONFIG *cfgp;
1747	int	    error;
1748
1749	req = mpt_get_request(mpt, sleep_ok);
1750	if (req == NULL) {
1751		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1752		return (ENOMEM);
1753	}
1754
1755	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1756	params.PageVersion = 0;
1757	params.PageLength = 0;
1758	params.PageNumber = PageNumber;
1759	params.PageType = PageType;
1760	params.PageAddress = PageAddress;
1761	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1762				  sleep_ok, timeout_ms);
1763	if (error != 0) {
1764		/*
1765		 * Leave the request. Without resetting the chip, it's
1766		 * still owned by it and we'll just get into trouble
1767		 * freeing it now. Mark it as abandoned so that if it
1768		 * shows up later it can be freed.
1769		 */
1770		mpt_prt(mpt, "read_cfg_header timed out\n");
1771		return (ETIMEDOUT);
1772	}
1773
1774        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1775	case MPI_IOCSTATUS_SUCCESS:
1776		cfgp = req->req_vbuf;
1777		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1778		error = 0;
1779		break;
1780	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1781		mpt_lprt(mpt, MPT_PRT_DEBUG,
1782		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1783		    PageType, PageNumber, PageAddress);
1784		error = EINVAL;
1785		break;
1786	default:
1787		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1788			req->IOCStatus);
1789		error = EIO;
1790		break;
1791	}
1792	mpt_free_request(mpt, req);
1793	return (error);
1794}
1795
1796int
1797mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1798		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1799		  int timeout_ms)
1800{
1801	request_t    *req;
1802	cfgparms_t    params;
1803	int	      error;
1804
1805	req = mpt_get_request(mpt, sleep_ok);
1806	if (req == NULL) {
1807		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1808		return (-1);
1809	}
1810
1811	params.Action = Action;
1812	params.PageVersion = hdr->PageVersion;
1813	params.PageLength = hdr->PageLength;
1814	params.PageNumber = hdr->PageNumber;
1815	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1816	params.PageAddress = PageAddress;
1817	error = mpt_issue_cfg_req(mpt, req, &params,
1818				  req->req_pbuf + MPT_RQSL(mpt),
1819				  len, sleep_ok, timeout_ms);
1820	if (error != 0) {
1821		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1822		return (-1);
1823	}
1824
1825	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1826		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1827			req->IOCStatus);
1828		mpt_free_request(mpt, req);
1829		return (-1);
1830	}
1831	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1832	mpt_free_request(mpt, req);
1833	return (0);
1834}
1835
1836int
1837mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1838		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1839		   int timeout_ms)
1840{
1841	request_t    *req;
1842	cfgparms_t    params;
1843	u_int	      hdr_attr;
1844	int	      error;
1845
1846	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1847	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1848	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1849		mpt_prt(mpt, "page type 0x%x not changeable\n",
1850			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1851		return (-1);
1852	}
1853
1854#if	0
1855	/*
1856	 * We shouldn't mask off other bits here.
1857	 */
1858	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1859#endif
1860
1861	req = mpt_get_request(mpt, sleep_ok);
1862	if (req == NULL)
1863		return (-1);
1864
1865	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1866
1867	/*
1868	 * There isn't any point in restoring stripped out attributes
1869	 * if you then mask them going down to issue the request.
1870	 */
1871
1872	params.Action = Action;
1873	params.PageVersion = hdr->PageVersion;
1874	params.PageLength = hdr->PageLength;
1875	params.PageNumber = hdr->PageNumber;
1876	params.PageAddress = PageAddress;
1877#if	0
1878	/* Restore stripped out attributes */
1879	hdr->PageType |= hdr_attr;
1880	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1881#else
1882	params.PageType = hdr->PageType;
1883#endif
1884	error = mpt_issue_cfg_req(mpt, req, &params,
1885				  req->req_pbuf + MPT_RQSL(mpt),
1886				  len, sleep_ok, timeout_ms);
1887	if (error != 0) {
1888		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1889		return (-1);
1890	}
1891
1892        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1893		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1894			req->IOCStatus);
1895		mpt_free_request(mpt, req);
1896		return (-1);
1897	}
1898	mpt_free_request(mpt, req);
1899	return (0);
1900}
1901
1902/*
1903 * Read IOC configuration information
1904 */
1905static int
1906mpt_read_config_info_ioc(struct mpt_softc *mpt)
1907{
1908	CONFIG_PAGE_HEADER hdr;
1909	struct mpt_raid_volume *mpt_raid;
1910	int rv;
1911	int i;
1912	size_t len;
1913
1914	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1915		2, 0, &hdr, FALSE, 5000);
1916	/*
1917	 * If it's an invalid page, so what? Not a supported function....
1918	 */
1919	if (rv == EINVAL) {
1920		return (0);
1921	}
1922	if (rv) {
1923		return (rv);
1924	}
1925
1926	mpt_lprt(mpt, MPT_PRT_DEBUG,
1927	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1928	    hdr.PageVersion, hdr.PageLength << 2,
1929	    hdr.PageNumber, hdr.PageType);
1930
1931	len = hdr.PageLength * sizeof(uint32_t);
1932	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1933	if (mpt->ioc_page2 == NULL) {
1934		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1935		mpt_raid_free_mem(mpt);
1936		return (ENOMEM);
1937	}
1938	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1939	rv = mpt_read_cur_cfg_page(mpt, 0,
1940	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1941	if (rv) {
1942		mpt_prt(mpt, "failed to read IOC Page 2\n");
1943		mpt_raid_free_mem(mpt);
1944		return (EIO);
1945	}
1946	mpt2host_config_page_ioc2(mpt->ioc_page2);
1947
1948	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1949		uint32_t mask;
1950
1951		mpt_prt(mpt, "Capabilities: (");
1952		for (mask = 1; mask != 0; mask <<= 1) {
1953			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1954				continue;
1955			}
1956			switch (mask) {
1957			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1958				mpt_prtc(mpt, " RAID-0");
1959				break;
1960			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1961				mpt_prtc(mpt, " RAID-1E");
1962				break;
1963			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1964				mpt_prtc(mpt, " RAID-1");
1965				break;
1966			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1967				mpt_prtc(mpt, " SES");
1968				break;
1969			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1970				mpt_prtc(mpt, " SAFTE");
1971				break;
1972			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1973				mpt_prtc(mpt, " Multi-Channel-Arrays");
1974			default:
1975				break;
1976			}
1977		}
1978		mpt_prtc(mpt, " )\n");
1979		if ((mpt->ioc_page2->CapabilitiesFlags
1980		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1981		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1982		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1983			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1984				mpt->ioc_page2->NumActiveVolumes,
1985				mpt->ioc_page2->NumActiveVolumes != 1
1986			      ? "s " : " ",
1987				mpt->ioc_page2->MaxVolumes);
1988			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1989				mpt->ioc_page2->NumActivePhysDisks,
1990				mpt->ioc_page2->NumActivePhysDisks != 1
1991			      ? "s " : " ",
1992				mpt->ioc_page2->MaxPhysDisks);
1993		}
1994	}
1995
1996	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1997	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1998	if (mpt->raid_volumes == NULL) {
1999		mpt_prt(mpt, "Could not allocate RAID volume data\n");
2000		mpt_raid_free_mem(mpt);
2001		return (ENOMEM);
2002	}
2003
2004	/*
2005	 * Copy critical data out of ioc_page2 so that we can
2006	 * safely refresh the page without windows of unreliable
2007	 * data.
2008	 */
2009	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2010
2011	len = sizeof(*mpt->raid_volumes->config_page) +
2012	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2013	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2014		mpt_raid = &mpt->raid_volumes[i];
2015		mpt_raid->config_page =
2016		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2017		if (mpt_raid->config_page == NULL) {
2018			mpt_prt(mpt, "Could not allocate RAID page data\n");
2019			mpt_raid_free_mem(mpt);
2020			return (ENOMEM);
2021		}
2022	}
2023	mpt->raid_page0_len = len;
2024
2025	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2026	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2027	if (mpt->raid_disks == NULL) {
2028		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2029		mpt_raid_free_mem(mpt);
2030		return (ENOMEM);
2031	}
2032	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2033
2034	/*
2035	 * Load page 3.
2036	 */
2037	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2038	    3, 0, &hdr, FALSE, 5000);
2039	if (rv) {
2040		mpt_raid_free_mem(mpt);
2041		return (EIO);
2042	}
2043
2044	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2045	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2046
2047	len = hdr.PageLength * sizeof(uint32_t);
2048	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2049	if (mpt->ioc_page3 == NULL) {
2050		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2051		mpt_raid_free_mem(mpt);
2052		return (ENOMEM);
2053	}
2054	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2055	rv = mpt_read_cur_cfg_page(mpt, 0,
2056	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2057	if (rv) {
2058		mpt_raid_free_mem(mpt);
2059		return (EIO);
2060	}
2061	mpt2host_config_page_ioc3(mpt->ioc_page3);
2062	mpt_raid_wakeup(mpt);
2063	return (0);
2064}
2065
2066/*
2067 * Enable IOC port
2068 */
2069static int
2070mpt_send_port_enable(struct mpt_softc *mpt, int port)
2071{
2072	request_t	*req;
2073	MSG_PORT_ENABLE *enable_req;
2074	int		 error;
2075
2076	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2077	if (req == NULL)
2078		return (-1);
2079
2080	enable_req = req->req_vbuf;
2081	memset(enable_req, 0,  MPT_RQSL(mpt));
2082
2083	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2084	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2085	enable_req->PortNumber = port;
2086
2087	mpt_check_doorbell(mpt);
2088	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2089
2090	mpt_send_cmd(mpt, req);
2091	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2092	    FALSE, (mpt->is_sas || mpt->is_fc)? 300000 : 30000);
2093	if (error != 0) {
2094		mpt_prt(mpt, "port %d enable timed out\n", port);
2095		return (-1);
2096	}
2097	mpt_free_request(mpt, req);
2098	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2099	return (0);
2100}
2101
2102/*
2103 * Enable/Disable asynchronous event reporting.
2104 */
2105static int
2106mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2107{
2108	request_t *req;
2109	MSG_EVENT_NOTIFY *enable_req;
2110
2111	req = mpt_get_request(mpt, FALSE);
2112	if (req == NULL) {
2113		return (ENOMEM);
2114	}
2115	enable_req = req->req_vbuf;
2116	memset(enable_req, 0, sizeof *enable_req);
2117
2118	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2119	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2120	enable_req->Switch     = onoff;
2121
2122	mpt_check_doorbell(mpt);
2123	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2124	    onoff ? "en" : "dis");
2125	/*
2126	 * Send the command off, but don't wait for it.
2127	 */
2128	mpt_send_cmd(mpt, req);
2129	return (0);
2130}
2131
2132/*
2133 * Un-mask the interrupts on the chip.
2134 */
2135void
2136mpt_enable_ints(struct mpt_softc *mpt)
2137{
2138
2139	/* Unmask every thing except door bell int */
2140	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2141}
2142
2143/*
2144 * Mask the interrupts on the chip.
2145 */
2146void
2147mpt_disable_ints(struct mpt_softc *mpt)
2148{
2149
2150	/* Mask all interrupts */
2151	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2152	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2153}
2154
2155static void
2156mpt_sysctl_attach(struct mpt_softc *mpt)
2157{
2158#if __FreeBSD_version >= 500000
2159	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2160	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2161
2162	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2163		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2164		       "Debugging/Verbose level");
2165	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2166		       "role", CTLFLAG_RD, &mpt->role, 0,
2167		       "HBA role");
2168#ifdef	MPT_TEST_MULTIPATH
2169	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2170		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2171		       "Next Target to Fail");
2172#endif
2173#endif
2174}
2175
2176int
2177mpt_attach(struct mpt_softc *mpt)
2178{
2179	struct mpt_personality *pers;
2180	int i;
2181	int error;
2182
2183	mpt_core_attach(mpt);
2184	mpt_core_enable(mpt);
2185
2186	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2187	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2188		pers = mpt_personalities[i];
2189		if (pers == NULL) {
2190			continue;
2191		}
2192		if (pers->probe(mpt) == 0) {
2193			error = pers->attach(mpt);
2194			if (error != 0) {
2195				mpt_detach(mpt);
2196				return (error);
2197			}
2198			mpt->mpt_pers_mask |= (0x1 << pers->id);
2199			pers->use_count++;
2200		}
2201	}
2202
2203	/*
2204	 * Now that we've attached everything, do the enable function
2205	 * for all of the personalities. This allows the personalities
2206	 * to do setups that are appropriate for them prior to enabling
2207	 * any ports.
2208	 */
2209	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2210		pers = mpt_personalities[i];
2211		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2212			error = pers->enable(mpt);
2213			if (error != 0) {
2214				mpt_prt(mpt, "personality %s attached but would"
2215				    " not enable (%d)\n", pers->name, error);
2216				mpt_detach(mpt);
2217				return (error);
2218			}
2219		}
2220	}
2221	return (0);
2222}
2223
2224int
2225mpt_shutdown(struct mpt_softc *mpt)
2226{
2227	struct mpt_personality *pers;
2228
2229	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2230		pers->shutdown(mpt);
2231	}
2232	return (0);
2233}
2234
2235int
2236mpt_detach(struct mpt_softc *mpt)
2237{
2238	struct mpt_personality *pers;
2239
2240	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2241		pers->detach(mpt);
2242		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2243		pers->use_count--;
2244	}
2245	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2246	return (0);
2247}
2248
2249static int
2250mpt_core_load(struct mpt_personality *pers)
2251{
2252	int i;
2253
2254	/*
2255	 * Setup core handlers and insert the default handler
2256	 * into all "empty slots".
2257	 */
2258	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2259		mpt_reply_handlers[i] = mpt_default_reply_handler;
2260	}
2261
2262	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2263	    mpt_event_reply_handler;
2264	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2265	    mpt_config_reply_handler;
2266	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2267	    mpt_handshake_reply_handler;
2268	return (0);
2269}
2270
2271/*
2272 * Initialize per-instance driver data and perform
2273 * initial controller configuration.
2274 */
2275static int
2276mpt_core_attach(struct mpt_softc *mpt)
2277{
2278        int val, error;
2279
2280	LIST_INIT(&mpt->ack_frames);
2281	/* Put all request buffers on the free list */
2282	TAILQ_INIT(&mpt->request_pending_list);
2283	TAILQ_INIT(&mpt->request_free_list);
2284	TAILQ_INIT(&mpt->request_timeout_list);
2285	for (val = 0; val < MPT_MAX_LUNS; val++) {
2286		STAILQ_INIT(&mpt->trt[val].atios);
2287		STAILQ_INIT(&mpt->trt[val].inots);
2288	}
2289	STAILQ_INIT(&mpt->trt_wildcard.atios);
2290	STAILQ_INIT(&mpt->trt_wildcard.inots);
2291#ifdef	MPT_TEST_MULTIPATH
2292	mpt->failure_id = -1;
2293#endif
2294	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2295	mpt_sysctl_attach(mpt);
2296	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2297	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2298
2299	MPT_LOCK(mpt);
2300	error = mpt_configure_ioc(mpt, 0, 0);
2301	MPT_UNLOCK(mpt);
2302
2303	return (error);
2304}
2305
2306static int
2307mpt_core_enable(struct mpt_softc *mpt)
2308{
2309
2310	/*
2311	 * We enter with the IOC enabled, but async events
2312	 * not enabled, ports not enabled and interrupts
2313	 * not enabled.
2314	 */
2315	MPT_LOCK(mpt);
2316
2317	/*
2318	 * Enable asynchronous event reporting- all personalities
2319	 * have attached so that they should be able to now field
2320	 * async events.
2321	 */
2322	mpt_send_event_request(mpt, 1);
2323
2324	/*
2325	 * Catch any pending interrupts
2326	 *
2327	 * This seems to be crucial- otherwise
2328	 * the portenable below times out.
2329	 */
2330	mpt_intr(mpt);
2331
2332	/*
2333	 * Enable Interrupts
2334	 */
2335	mpt_enable_ints(mpt);
2336
2337	/*
2338	 * Catch any pending interrupts
2339	 *
2340	 * This seems to be crucial- otherwise
2341	 * the portenable below times out.
2342	 */
2343	mpt_intr(mpt);
2344
2345	/*
2346	 * Enable the port.
2347	 */
2348	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2349		mpt_prt(mpt, "failed to enable port 0\n");
2350		MPT_UNLOCK(mpt);
2351		return (ENXIO);
2352	}
2353	MPT_UNLOCK(mpt);
2354	return (0);
2355}
2356
2357static void
2358mpt_core_shutdown(struct mpt_softc *mpt)
2359{
2360
2361	mpt_disable_ints(mpt);
2362}
2363
2364static void
2365mpt_core_detach(struct mpt_softc *mpt)
2366{
2367	int val;
2368
2369	/*
2370	 * XXX: FREE MEMORY
2371	 */
2372	mpt_disable_ints(mpt);
2373
2374	/* Make sure no request has pending timeouts. */
2375	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2376		request_t *req = &mpt->request_pool[val];
2377		mpt_callout_drain(mpt, &req->callout);
2378	}
2379
2380	mpt_dma_buf_free(mpt);
2381}
2382
2383static int
2384mpt_core_unload(struct mpt_personality *pers)
2385{
2386
2387	/* Unload is always successful. */
2388	return (0);
2389}
2390
2391#define FW_UPLOAD_REQ_SIZE				\
2392	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2393       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2394
2395static int
2396mpt_upload_fw(struct mpt_softc *mpt)
2397{
2398	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2399	MSG_FW_UPLOAD_REPLY fw_reply;
2400	MSG_FW_UPLOAD *fw_req;
2401	FW_UPLOAD_TCSGE *tsge;
2402	SGE_SIMPLE32 *sge;
2403	uint32_t flags;
2404	int error;
2405
2406	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2407	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2408	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2409	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2410	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2411	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2412	tsge->DetailsLength = 12;
2413	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2414	tsge->ImageSize = htole32(mpt->fw_image_size);
2415	sge = (SGE_SIMPLE32 *)(tsge + 1);
2416	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2417	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2418	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2419	flags <<= MPI_SGE_FLAGS_SHIFT;
2420	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2421	sge->Address = htole32(mpt->fw_phys);
2422	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2423	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2424	if (error)
2425		return(error);
2426	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2427	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2428	return (error);
2429}
2430
2431static void
2432mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2433	       uint32_t *data, bus_size_t len)
2434{
2435	uint32_t *data_end;
2436
2437	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2438	if (mpt->is_sas) {
2439		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2440	}
2441	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2442	while (data != data_end) {
2443		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2444		data++;
2445	}
2446	if (mpt->is_sas) {
2447		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2448	}
2449}
2450
2451static int
2452mpt_download_fw(struct mpt_softc *mpt)
2453{
2454	MpiFwHeader_t *fw_hdr;
2455	int error;
2456	uint32_t ext_offset;
2457	uint32_t data;
2458
2459	if (mpt->pci_pio_reg == NULL) {
2460		mpt_prt(mpt, "No PIO resource!\n");
2461		return (ENXIO);
2462	}
2463
2464	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2465		mpt->fw_image_size);
2466
2467	error = mpt_enable_diag_mode(mpt);
2468	if (error != 0) {
2469		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2470		return (EIO);
2471	}
2472
2473	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2474		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2475
2476	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2477	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2478	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2479		       fw_hdr->ImageSize);
2480	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2481
2482	ext_offset = fw_hdr->NextImageHeaderOffset;
2483	while (ext_offset != 0) {
2484		MpiExtImageHeader_t *ext;
2485
2486		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2487		ext_offset = ext->NextImageHeaderOffset;
2488		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2489		    BUS_DMASYNC_PREWRITE);
2490		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2491			       ext->ImageSize);
2492		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2493		    BUS_DMASYNC_POSTWRITE);
2494	}
2495
2496	if (mpt->is_sas) {
2497		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2498	}
2499	/* Setup the address to jump to on reset. */
2500	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2501	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2502
2503	/*
2504	 * The controller sets the "flash bad" status after attempting
2505	 * to auto-boot from flash.  Clear the status so that the controller
2506	 * will continue the boot process with our newly installed firmware.
2507	 */
2508	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2509	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2510	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2511	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2512
2513	if (mpt->is_sas) {
2514		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2515	}
2516
2517	/*
2518	 * Re-enable the processor and clear the boot halt flag.
2519	 */
2520	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2521	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2522	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2523
2524	mpt_disable_diag_mode(mpt);
2525	return (0);
2526}
2527
2528static int
2529mpt_dma_buf_alloc(struct mpt_softc *mpt)
2530{
2531	struct mpt_map_info mi;
2532	uint8_t *vptr;
2533	uint32_t pptr, end;
2534	int i, error;
2535
2536	/* Create a child tag for data buffers */
2537	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2538	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2539	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2540	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2541	    &mpt->buffer_dmat) != 0) {
2542		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2543		return (1);
2544	}
2545
2546	/* Create a child tag for request buffers */
2547	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2548	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2549	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2550	    &mpt->request_dmat) != 0) {
2551		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2552		return (1);
2553	}
2554
2555	/* Allocate some DMA accessible memory for requests */
2556	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2557	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2558		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2559		    MPT_REQ_MEM_SIZE(mpt));
2560		return (1);
2561	}
2562
2563	mi.mpt = mpt;
2564	mi.error = 0;
2565
2566	/* Load and lock it into "bus space" */
2567	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2568	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2569
2570	if (mi.error) {
2571		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2572		    mi.error);
2573		return (1);
2574	}
2575	mpt->request_phys = mi.phys;
2576
2577	/*
2578	 * Now create per-request dma maps
2579	 */
2580	i = 0;
2581	pptr =  mpt->request_phys;
2582	vptr =  mpt->request;
2583	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2584	while(pptr < end) {
2585		request_t *req = &mpt->request_pool[i];
2586		req->index = i++;
2587
2588		/* Store location of Request Data */
2589		req->req_pbuf = pptr;
2590		req->req_vbuf = vptr;
2591
2592		pptr += MPT_REQUEST_AREA;
2593		vptr += MPT_REQUEST_AREA;
2594
2595		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2596		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2597
2598		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2599		if (error) {
2600			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2601			    error);
2602			return (1);
2603		}
2604	}
2605
2606	return (0);
2607}
2608
2609static void
2610mpt_dma_buf_free(struct mpt_softc *mpt)
2611{
2612	int i;
2613
2614	if (mpt->request_dmat == 0) {
2615		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2616		return;
2617	}
2618	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2619		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2620	}
2621	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2622	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2623	bus_dma_tag_destroy(mpt->request_dmat);
2624	mpt->request_dmat = 0;
2625	bus_dma_tag_destroy(mpt->buffer_dmat);
2626}
2627
2628/*
2629 * Allocate/Initialize data structures for the controller.  Called
2630 * once at instance startup.
2631 */
2632static int
2633mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2634{
2635	PTR_MSG_PORT_FACTS_REPLY pfp;
2636	int error, port, val;
2637	size_t len;
2638
2639	if (tn == MPT_MAX_TRYS) {
2640		return (-1);
2641	}
2642
2643	/*
2644	 * No need to reset if the IOC is already in the READY state.
2645	 *
2646	 * Force reset if initialization failed previously.
2647	 * Note that a hard_reset of the second channel of a '929
2648	 * will stop operation of the first channel.  Hopefully, if the
2649	 * first channel is ok, the second will not require a hard
2650	 * reset.
2651	 */
2652	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2653		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2654			return (mpt_configure_ioc(mpt, tn++, 1));
2655		}
2656		needreset = 0;
2657	}
2658
2659	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2660		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2661		return (mpt_configure_ioc(mpt, tn++, 1));
2662	}
2663	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2664
2665	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2666	    mpt->ioc_facts.MsgVersion >> 8,
2667	    mpt->ioc_facts.MsgVersion & 0xFF,
2668	    mpt->ioc_facts.HeaderVersion >> 8,
2669	    mpt->ioc_facts.HeaderVersion & 0xFF);
2670
2671	/*
2672	 * Now that we know request frame size, we can calculate
2673	 * the actual (reasonable) segment limit for read/write I/O.
2674	 *
2675	 * This limit is constrained by:
2676	 *
2677	 *  + The size of each area we allocate per command (and how
2678	 *    many chain segments we can fit into it).
2679	 *  + The total number of areas we've set up.
2680	 *  + The actual chain depth the card will allow.
2681	 *
2682	 * The first area's segment count is limited by the I/O request
2683	 * at the head of it. We cannot allocate realistically more
2684	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2685	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2686	 *
2687	 */
2688	/* total number of request areas we (can) allocate */
2689	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2690
2691	/* converted to the number of chain areas possible */
2692	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2693
2694	/* limited by the number of chain areas the card will support */
2695	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2696		mpt_lprt(mpt, MPT_PRT_INFO,
2697		    "chain depth limited to %u (from %u)\n",
2698		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2699		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2700	}
2701
2702	/* converted to the number of simple sges in chain segments. */
2703	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2704
2705	/*
2706	 * Use this as the basis for reporting the maximum I/O size to CAM.
2707	 */
2708	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2709
2710	error = mpt_dma_buf_alloc(mpt);
2711	if (error != 0) {
2712		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2713		return (EIO);
2714	}
2715
2716	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2717		request_t *req = &mpt->request_pool[val];
2718		req->state = REQ_STATE_ALLOCATED;
2719		mpt_callout_init(mpt, &req->callout);
2720		mpt_free_request(mpt, req);
2721	}
2722
2723	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2724		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2725		 mpt->max_cam_seg_cnt);
2726
2727	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2728	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2729	mpt_lprt(mpt, MPT_PRT_INFO,
2730	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2731	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2732	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2733	    mpt->ioc_facts.RequestFrameSize << 2,
2734	    mpt->ioc_facts.MaxChainDepth);
2735	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2736	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2737	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2738
2739	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2740	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2741	if (mpt->port_facts == NULL) {
2742		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2743		return (ENOMEM);
2744	}
2745
2746
2747	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2748	    (mpt->fw_uploaded == 0)) {
2749		struct mpt_map_info mi;
2750
2751		/*
2752		 * In some configurations, the IOC's firmware is
2753		 * stored in a shared piece of system NVRAM that
2754		 * is only accessible via the BIOS.  In this
2755		 * case, the firmware keeps a copy of firmware in
2756		 * RAM until the OS driver retrieves it.  Once
2757		 * retrieved, we are responsible for re-downloading
2758		 * the firmware after any hard-reset.
2759		 */
2760		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2761		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2762		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2763		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2764		    &mpt->fw_dmat);
2765		if (error != 0) {
2766			mpt_prt(mpt, "cannot create firmware dma tag\n");
2767			return (ENOMEM);
2768		}
2769		error = bus_dmamem_alloc(mpt->fw_dmat,
2770		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2771		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2772		if (error != 0) {
2773			mpt_prt(mpt, "cannot allocate firmware memory\n");
2774			bus_dma_tag_destroy(mpt->fw_dmat);
2775			return (ENOMEM);
2776		}
2777		mi.mpt = mpt;
2778		mi.error = 0;
2779		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2780		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2781		mpt->fw_phys = mi.phys;
2782
2783		error = mpt_upload_fw(mpt);
2784		if (error != 0) {
2785			mpt_prt(mpt, "firmware upload failed.\n");
2786			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2787			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2788			    mpt->fw_dmap);
2789			bus_dma_tag_destroy(mpt->fw_dmat);
2790			mpt->fw_image = NULL;
2791			return (EIO);
2792		}
2793		mpt->fw_uploaded = 1;
2794	}
2795
2796	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2797		pfp = &mpt->port_facts[port];
2798		error = mpt_get_portfacts(mpt, 0, pfp);
2799		if (error != MPT_OK) {
2800			mpt_prt(mpt,
2801			    "mpt_get_portfacts on port %d failed\n", port);
2802			free(mpt->port_facts, M_DEVBUF);
2803			mpt->port_facts = NULL;
2804			return (mpt_configure_ioc(mpt, tn++, 1));
2805		}
2806		mpt2host_portfacts_reply(pfp);
2807
2808		if (port > 0) {
2809			error = MPT_PRT_INFO;
2810		} else {
2811			error = MPT_PRT_DEBUG;
2812		}
2813		mpt_lprt(mpt, error,
2814		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2815		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2816		    pfp->MaxDevices);
2817
2818	}
2819
2820	/*
2821	 * XXX: Not yet supporting more than port 0
2822	 */
2823	pfp = &mpt->port_facts[0];
2824	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2825		mpt->is_fc = 1;
2826		mpt->is_sas = 0;
2827		mpt->is_spi = 0;
2828	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2829		mpt->is_fc = 0;
2830		mpt->is_sas = 1;
2831		mpt->is_spi = 0;
2832	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2833		mpt->is_fc = 0;
2834		mpt->is_sas = 0;
2835		mpt->is_spi = 1;
2836		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2837			mpt->mpt_ini_id = pfp->PortSCSIID;
2838	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2839		mpt_prt(mpt, "iSCSI not supported yet\n");
2840		return (ENXIO);
2841	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2842		mpt_prt(mpt, "Inactive Port\n");
2843		return (ENXIO);
2844	} else {
2845		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2846		return (ENXIO);
2847	}
2848
2849	/*
2850	 * Set our role with what this port supports.
2851	 *
2852	 * Note this might be changed later in different modules
2853	 * if this is different from what is wanted.
2854	 */
2855	mpt->role = MPT_ROLE_NONE;
2856	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2857		mpt->role |= MPT_ROLE_INITIATOR;
2858	}
2859	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2860		mpt->role |= MPT_ROLE_TARGET;
2861	}
2862
2863	/*
2864	 * Enable the IOC
2865	 */
2866	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2867		mpt_prt(mpt, "unable to initialize IOC\n");
2868		return (ENXIO);
2869	}
2870
2871	/*
2872	 * Read IOC configuration information.
2873	 *
2874	 * We need this to determine whether or not we have certain
2875	 * settings for Integrated Mirroring (e.g.).
2876	 */
2877	mpt_read_config_info_ioc(mpt);
2878
2879	return (0);
2880}
2881
2882static int
2883mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2884{
2885	uint32_t pptr;
2886	int val;
2887
2888	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2889		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2890		return (EIO);
2891	}
2892
2893	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2894
2895	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2896		mpt_prt(mpt, "IOC failed to go to run state\n");
2897		return (ENXIO);
2898	}
2899	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2900
2901	/*
2902	 * Give it reply buffers
2903	 *
2904	 * Do *not* exceed global credits.
2905	 */
2906	for (val = 0, pptr = mpt->reply_phys;
2907	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2908	     pptr += MPT_REPLY_SIZE) {
2909		mpt_free_reply(mpt, pptr);
2910		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2911			break;
2912	}
2913
2914
2915	/*
2916	 * Enable the port if asked. This is only done if we're resetting
2917	 * the IOC after initial startup.
2918	 */
2919	if (portenable) {
2920		/*
2921		 * Enable asynchronous event reporting
2922		 */
2923		mpt_send_event_request(mpt, 1);
2924
2925		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2926			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2927			return (ENXIO);
2928		}
2929	}
2930	return (MPT_OK);
2931}
2932
2933/*
2934 * Endian Conversion Functions- only used on Big Endian machines
2935 */
2936#if	_BYTE_ORDER == _BIG_ENDIAN
2937void
2938mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2939{
2940
2941	MPT_2_HOST32(sge, FlagsLength);
2942	MPT_2_HOST32(sge, u.Address64.Low);
2943	MPT_2_HOST32(sge, u.Address64.High);
2944}
2945
2946void
2947mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2948{
2949
2950	MPT_2_HOST16(rp, MsgVersion);
2951	MPT_2_HOST16(rp, HeaderVersion);
2952	MPT_2_HOST32(rp, MsgContext);
2953	MPT_2_HOST16(rp, IOCExceptions);
2954	MPT_2_HOST16(rp, IOCStatus);
2955	MPT_2_HOST32(rp, IOCLogInfo);
2956	MPT_2_HOST16(rp, ReplyQueueDepth);
2957	MPT_2_HOST16(rp, RequestFrameSize);
2958	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2959	MPT_2_HOST16(rp, ProductID);
2960	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2961	MPT_2_HOST16(rp, GlobalCredits);
2962	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2963	MPT_2_HOST16(rp, CurReplyFrameSize);
2964	MPT_2_HOST32(rp, FWImageSize);
2965	MPT_2_HOST32(rp, IOCCapabilities);
2966	MPT_2_HOST32(rp, FWVersion.Word);
2967	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2968	MPT_2_HOST16(rp, Reserved2);
2969	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2970	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2971}
2972
2973void
2974mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2975{
2976
2977	MPT_2_HOST16(pfp, Reserved);
2978	MPT_2_HOST16(pfp, Reserved1);
2979	MPT_2_HOST32(pfp, MsgContext);
2980	MPT_2_HOST16(pfp, Reserved2);
2981	MPT_2_HOST16(pfp, IOCStatus);
2982	MPT_2_HOST32(pfp, IOCLogInfo);
2983	MPT_2_HOST16(pfp, MaxDevices);
2984	MPT_2_HOST16(pfp, PortSCSIID);
2985	MPT_2_HOST16(pfp, ProtocolFlags);
2986	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2987	MPT_2_HOST16(pfp, MaxPersistentIDs);
2988	MPT_2_HOST16(pfp, MaxLanBuckets);
2989	MPT_2_HOST16(pfp, Reserved4);
2990	MPT_2_HOST32(pfp, Reserved5);
2991}
2992
2993void
2994mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2995{
2996	int i;
2997
2998	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2999	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
3000		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
3001	}
3002}
3003
3004void
3005mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
3006{
3007
3008	MPT_2_HOST16(ioc3, Reserved2);
3009}
3010
3011void
3012mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3013{
3014
3015	MPT_2_HOST32(sp0, Capabilities);
3016	MPT_2_HOST32(sp0, PhysicalInterface);
3017}
3018
3019void
3020mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3021{
3022
3023	MPT_2_HOST32(sp1, Configuration);
3024	MPT_2_HOST32(sp1, OnBusTimerValue);
3025	MPT_2_HOST16(sp1, IDConfig);
3026}
3027
3028void
3029host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3030{
3031
3032	HOST_2_MPT32(sp1, Configuration);
3033	HOST_2_MPT32(sp1, OnBusTimerValue);
3034	HOST_2_MPT16(sp1, IDConfig);
3035}
3036
3037void
3038mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3039{
3040	int i;
3041
3042	MPT_2_HOST32(sp2, PortFlags);
3043	MPT_2_HOST32(sp2, PortSettings);
3044	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3045	    sizeof(*sp2->DeviceSettings); i++) {
3046		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3047	}
3048}
3049
3050void
3051mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3052{
3053
3054	MPT_2_HOST32(sd0, NegotiatedParameters);
3055	MPT_2_HOST32(sd0, Information);
3056}
3057
3058void
3059mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3060{
3061
3062	MPT_2_HOST32(sd1, RequestedParameters);
3063	MPT_2_HOST32(sd1, Reserved);
3064	MPT_2_HOST32(sd1, Configuration);
3065}
3066
3067void
3068host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3069{
3070
3071	HOST_2_MPT32(sd1, RequestedParameters);
3072	HOST_2_MPT32(sd1, Reserved);
3073	HOST_2_MPT32(sd1, Configuration);
3074}
3075
3076void
3077mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3078{
3079
3080	MPT_2_HOST32(fp0, Flags);
3081	MPT_2_HOST32(fp0, PortIdentifier);
3082	MPT_2_HOST32(fp0, WWNN.Low);
3083	MPT_2_HOST32(fp0, WWNN.High);
3084	MPT_2_HOST32(fp0, WWPN.Low);
3085	MPT_2_HOST32(fp0, WWPN.High);
3086	MPT_2_HOST32(fp0, SupportedServiceClass);
3087	MPT_2_HOST32(fp0, SupportedSpeeds);
3088	MPT_2_HOST32(fp0, CurrentSpeed);
3089	MPT_2_HOST32(fp0, MaxFrameSize);
3090	MPT_2_HOST32(fp0, FabricWWNN.Low);
3091	MPT_2_HOST32(fp0, FabricWWNN.High);
3092	MPT_2_HOST32(fp0, FabricWWPN.Low);
3093	MPT_2_HOST32(fp0, FabricWWPN.High);
3094	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3095	MPT_2_HOST32(fp0, MaxInitiators);
3096}
3097
3098void
3099mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3100{
3101
3102	MPT_2_HOST32(fp1, Flags);
3103	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3104	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3105	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3106	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3107}
3108
3109void
3110host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3111{
3112
3113	HOST_2_MPT32(fp1, Flags);
3114	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3115	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3116	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3117	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3118}
3119
3120void
3121mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3122{
3123	int i;
3124
3125	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3126	MPT_2_HOST16(volp, VolumeSettings.Settings);
3127	MPT_2_HOST32(volp, MaxLBA);
3128	MPT_2_HOST32(volp, MaxLBAHigh);
3129	MPT_2_HOST32(volp, StripeSize);
3130	MPT_2_HOST32(volp, Reserved2);
3131	MPT_2_HOST32(volp, Reserved3);
3132	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3133		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3134	}
3135}
3136
3137void
3138mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3139{
3140
3141	MPT_2_HOST32(rpd0, Reserved1);
3142	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3143	MPT_2_HOST32(rpd0, MaxLBA);
3144	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3145	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3146	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3147}
3148
3149void
3150mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3151{
3152
3153	MPT_2_HOST16(vi, TotalBlocks.High);
3154	MPT_2_HOST16(vi, TotalBlocks.Low);
3155	MPT_2_HOST16(vi, BlocksRemaining.High);
3156	MPT_2_HOST16(vi, BlocksRemaining.Low);
3157}
3158#endif
3159