mpt.c revision 224493
1/*-
2 * Generic routines for LSI Fusion adapters.
3 * FreeBSD Version.
4 *
5 * Copyright (c) 2000, 2001 by Greg Ansley
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice immediately at the beginning of the file, without modification,
12 *    this list of conditions, and the following disclaimer.
13 * 2. The name of the author may not be used to endorse or promote products
14 *    derived from this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
20 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28/*-
29 * Copyright (c) 2002, 2006 by Matthew Jacob
30 * All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions are
34 * met:
35 * 1. Redistributions of source code must retain the above copyright
36 *    notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
38 *    substantially similar to the "NO WARRANTY" disclaimer below
39 *    ("Disclaimer") and any redistribution must be conditioned upon including
40 *    a substantially similar Disclaimer requirement for further binary
41 *    redistribution.
42 * 3. Neither the names of the above listed copyright holders nor the names
43 *    of any contributors may be used to endorse or promote products derived
44 *    from this software without specific prior written permission.
45 *
46 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
47 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
48 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
49 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
50 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
51 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
52 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
53 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
54 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
55 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
56 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
57 *
58 * Support from Chris Ellsworth in order to make SAS adapters work
59 * is gratefully acknowledged.
60 *
61 *
62 * Support from LSI-Logic has also gone a great deal toward making this a
63 * workable subsystem and is gratefully acknowledged.
64 */
65/*-
66 * Copyright (c) 2004, Avid Technology, Inc. and its contributors.
67 * Copyright (c) 2005, WHEEL Sp. z o.o.
68 * Copyright (c) 2004, 2005 Justin T. Gibbs
69 * All rights reserved.
70 *
71 * Redistribution and use in source and binary forms, with or without
72 * modification, are permitted provided that the following conditions are
73 * met:
74 * 1. Redistributions of source code must retain the above copyright
75 *    notice, this list of conditions and the following disclaimer.
76 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
77 *    substantially similar to the "NO WARRANTY" disclaimer below
78 *    ("Disclaimer") and any redistribution must be conditioned upon including
79 *    a substantially similar Disclaimer requirement for further binary
80 *    redistribution.
81 * 3. Neither the names of the above listed copyright holders nor the names
82 *    of any contributors may be used to endorse or promote products derived
83 *    from this software without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
86 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
89 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
90 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
91 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
92 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
93 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
94 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF THE COPYRIGHT
95 * OWNER OR CONTRIBUTOR IS ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
96 */
97
98#include <sys/cdefs.h>
99__FBSDID("$FreeBSD: head/sys/dev/mpt/mpt.c 224493 2011-07-29 18:35:10Z marius $");
100
101#include <dev/mpt/mpt.h>
102#include <dev/mpt/mpt_cam.h> /* XXX For static handler registration */
103#include <dev/mpt/mpt_raid.h> /* XXX For static handler registration */
104
105#include <dev/mpt/mpilib/mpi.h>
106#include <dev/mpt/mpilib/mpi_ioc.h>
107#include <dev/mpt/mpilib/mpi_fc.h>
108#include <dev/mpt/mpilib/mpi_targ.h>
109
110#include <sys/sysctl.h>
111
112#define MPT_MAX_TRYS 3
113#define MPT_MAX_WAIT 300000
114
115static int maxwait_ack = 0;
116static int maxwait_int = 0;
117static int maxwait_state = 0;
118
119static TAILQ_HEAD(, mpt_softc)	mpt_tailq = TAILQ_HEAD_INITIALIZER(mpt_tailq);
120mpt_reply_handler_t *mpt_reply_handlers[MPT_NUM_REPLY_HANDLERS];
121
122static mpt_reply_handler_t mpt_default_reply_handler;
123static mpt_reply_handler_t mpt_config_reply_handler;
124static mpt_reply_handler_t mpt_handshake_reply_handler;
125static mpt_reply_handler_t mpt_event_reply_handler;
126static void mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
127			       MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context);
128static int mpt_send_event_request(struct mpt_softc *mpt, int onoff);
129static int mpt_soft_reset(struct mpt_softc *mpt);
130static void mpt_hard_reset(struct mpt_softc *mpt);
131static int mpt_dma_buf_alloc(struct mpt_softc *mpt);
132static void mpt_dma_buf_free(struct mpt_softc *mpt);
133static int mpt_configure_ioc(struct mpt_softc *mpt, int, int);
134static int mpt_enable_ioc(struct mpt_softc *mpt, int);
135
136/************************* Personality Module Support *************************/
137/*
138 * We include one extra entry that is guaranteed to be NULL
139 * to simplify our itterator.
140 */
141static struct mpt_personality *mpt_personalities[MPT_MAX_PERSONALITIES + 1];
142static __inline struct mpt_personality*
143	mpt_pers_find(struct mpt_softc *, u_int);
144static __inline struct mpt_personality*
145	mpt_pers_find_reverse(struct mpt_softc *, u_int);
146
147static __inline struct mpt_personality *
148mpt_pers_find(struct mpt_softc *mpt, u_int start_at)
149{
150	KASSERT(start_at <= MPT_MAX_PERSONALITIES,
151		("mpt_pers_find: starting position out of range\n"));
152
153	while (start_at < MPT_MAX_PERSONALITIES
154	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
155		start_at++;
156	}
157	return (mpt_personalities[start_at]);
158}
159
160/*
161 * Used infrequently, so no need to optimize like a forward
162 * traversal where we use the MAX+1 is guaranteed to be NULL
163 * trick.
164 */
165static __inline struct mpt_personality *
166mpt_pers_find_reverse(struct mpt_softc *mpt, u_int start_at)
167{
168	while (start_at < MPT_MAX_PERSONALITIES
169	    && (mpt->mpt_pers_mask & (0x1 << start_at)) == 0) {
170		start_at--;
171	}
172	if (start_at < MPT_MAX_PERSONALITIES)
173		return (mpt_personalities[start_at]);
174	return (NULL);
175}
176
177#define MPT_PERS_FOREACH(mpt, pers)				\
178	for (pers = mpt_pers_find(mpt, /*start_at*/0);		\
179	     pers != NULL;					\
180	     pers = mpt_pers_find(mpt, /*start_at*/pers->id+1))
181
182#define MPT_PERS_FOREACH_REVERSE(mpt, pers)				\
183	for (pers = mpt_pers_find_reverse(mpt, MPT_MAX_PERSONALITIES-1);\
184	     pers != NULL;						\
185	     pers = mpt_pers_find_reverse(mpt, /*start_at*/pers->id-1))
186
187static mpt_load_handler_t      mpt_stdload;
188static mpt_probe_handler_t     mpt_stdprobe;
189static mpt_attach_handler_t    mpt_stdattach;
190static mpt_enable_handler_t    mpt_stdenable;
191static mpt_ready_handler_t     mpt_stdready;
192static mpt_event_handler_t     mpt_stdevent;
193static mpt_reset_handler_t     mpt_stdreset;
194static mpt_shutdown_handler_t  mpt_stdshutdown;
195static mpt_detach_handler_t    mpt_stddetach;
196static mpt_unload_handler_t    mpt_stdunload;
197static struct mpt_personality mpt_default_personality =
198{
199	.load		= mpt_stdload,
200	.probe		= mpt_stdprobe,
201	.attach		= mpt_stdattach,
202	.enable		= mpt_stdenable,
203	.ready		= mpt_stdready,
204	.event		= mpt_stdevent,
205	.reset		= mpt_stdreset,
206	.shutdown	= mpt_stdshutdown,
207	.detach		= mpt_stddetach,
208	.unload		= mpt_stdunload
209};
210
211static mpt_load_handler_t      mpt_core_load;
212static mpt_attach_handler_t    mpt_core_attach;
213static mpt_enable_handler_t    mpt_core_enable;
214static mpt_reset_handler_t     mpt_core_ioc_reset;
215static mpt_event_handler_t     mpt_core_event;
216static mpt_shutdown_handler_t  mpt_core_shutdown;
217static mpt_shutdown_handler_t  mpt_core_detach;
218static mpt_unload_handler_t    mpt_core_unload;
219static struct mpt_personality mpt_core_personality =
220{
221	.name		= "mpt_core",
222	.load		= mpt_core_load,
223//	.attach		= mpt_core_attach,
224//	.enable		= mpt_core_enable,
225	.event		= mpt_core_event,
226	.reset		= mpt_core_ioc_reset,
227	.shutdown	= mpt_core_shutdown,
228	.detach		= mpt_core_detach,
229	.unload		= mpt_core_unload,
230};
231
232/*
233 * Manual declaration so that DECLARE_MPT_PERSONALITY doesn't need
234 * ordering information.  We want the core to always register FIRST.
235 * other modules are set to SI_ORDER_SECOND.
236 */
237static moduledata_t mpt_core_mod = {
238	"mpt_core", mpt_modevent, &mpt_core_personality
239};
240DECLARE_MODULE(mpt_core, mpt_core_mod, SI_SUB_DRIVERS, SI_ORDER_FIRST);
241MODULE_VERSION(mpt_core, 1);
242
243#define MPT_PERS_ATTACHED(pers, mpt) ((mpt)->mpt_pers_mask & (0x1 << pers->id))
244
245int
246mpt_modevent(module_t mod, int type, void *data)
247{
248	struct mpt_personality *pers;
249	int error;
250
251	pers = (struct mpt_personality *)data;
252
253	error = 0;
254	switch (type) {
255	case MOD_LOAD:
256	{
257		mpt_load_handler_t **def_handler;
258		mpt_load_handler_t **pers_handler;
259		int i;
260
261		for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
262			if (mpt_personalities[i] == NULL)
263				break;
264		}
265		if (i >= MPT_MAX_PERSONALITIES) {
266			error = ENOMEM;
267			break;
268		}
269		pers->id = i;
270		mpt_personalities[i] = pers;
271
272		/* Install standard/noop handlers for any NULL entries. */
273		def_handler = MPT_PERS_FIRST_HANDLER(&mpt_default_personality);
274		pers_handler = MPT_PERS_FIRST_HANDLER(pers);
275		while (pers_handler <= MPT_PERS_LAST_HANDLER(pers)) {
276			if (*pers_handler == NULL)
277				*pers_handler = *def_handler;
278			pers_handler++;
279			def_handler++;
280		}
281
282		error = (pers->load(pers));
283		if (error != 0)
284			mpt_personalities[i] = NULL;
285		break;
286	}
287	case MOD_SHUTDOWN:
288		break;
289#if __FreeBSD_version >= 500000
290	case MOD_QUIESCE:
291		break;
292#endif
293	case MOD_UNLOAD:
294		error = pers->unload(pers);
295		mpt_personalities[pers->id] = NULL;
296		break;
297	default:
298		error = EINVAL;
299		break;
300	}
301	return (error);
302}
303
304static int
305mpt_stdload(struct mpt_personality *pers)
306{
307
308	/* Load is always successful. */
309	return (0);
310}
311
312static int
313mpt_stdprobe(struct mpt_softc *mpt)
314{
315
316	/* Probe is always successful. */
317	return (0);
318}
319
320static int
321mpt_stdattach(struct mpt_softc *mpt)
322{
323
324	/* Attach is always successful. */
325	return (0);
326}
327
328static int
329mpt_stdenable(struct mpt_softc *mpt)
330{
331
332	/* Enable is always successful. */
333	return (0);
334}
335
336static void
337mpt_stdready(struct mpt_softc *mpt)
338{
339
340}
341
342static int
343mpt_stdevent(struct mpt_softc *mpt, request_t *req, MSG_EVENT_NOTIFY_REPLY *msg)
344{
345
346	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_stdevent: 0x%x\n", msg->Event & 0xFF);
347	/* Event was not for us. */
348	return (0);
349}
350
351static void
352mpt_stdreset(struct mpt_softc *mpt, int type)
353{
354
355}
356
357static void
358mpt_stdshutdown(struct mpt_softc *mpt)
359{
360
361}
362
363static void
364mpt_stddetach(struct mpt_softc *mpt)
365{
366
367}
368
369static int
370mpt_stdunload(struct mpt_personality *pers)
371{
372
373	/* Unload is always successful. */
374	return (0);
375}
376
377/*
378 * Post driver attachment, we may want to perform some global actions.
379 * Here is the hook to do so.
380 */
381
382static void
383mpt_postattach(void *unused)
384{
385	struct mpt_softc *mpt;
386	struct mpt_personality *pers;
387
388	TAILQ_FOREACH(mpt, &mpt_tailq, links) {
389		MPT_PERS_FOREACH(mpt, pers)
390			pers->ready(mpt);
391	}
392}
393SYSINIT(mptdev, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE, mpt_postattach, NULL);
394
395/******************************* Bus DMA Support ******************************/
396void
397mpt_map_rquest(void *arg, bus_dma_segment_t *segs, int nseg, int error)
398{
399	struct mpt_map_info *map_info;
400
401	map_info = (struct mpt_map_info *)arg;
402	map_info->error = error;
403	map_info->phys = segs->ds_addr;
404}
405
406/**************************** Reply/Event Handling ****************************/
407int
408mpt_register_handler(struct mpt_softc *mpt, mpt_handler_type type,
409		     mpt_handler_t handler, uint32_t *phandler_id)
410{
411
412	switch (type) {
413	case MPT_HANDLER_REPLY:
414	{
415		u_int cbi;
416		u_int free_cbi;
417
418		if (phandler_id == NULL)
419			return (EINVAL);
420
421		free_cbi = MPT_HANDLER_ID_NONE;
422		for (cbi = 0; cbi < MPT_NUM_REPLY_HANDLERS; cbi++) {
423			/*
424			 * If the same handler is registered multiple
425			 * times, don't error out.  Just return the
426			 * index of the original registration.
427			 */
428			if (mpt_reply_handlers[cbi] == handler.reply_handler) {
429				*phandler_id = MPT_CBI_TO_HID(cbi);
430				return (0);
431			}
432
433			/*
434			 * Fill from the front in the hope that
435			 * all registered handlers consume only a
436			 * single cache line.
437			 *
438			 * We don't break on the first empty slot so
439			 * that the full table is checked to see if
440			 * this handler was previously registered.
441			 */
442			if (free_cbi == MPT_HANDLER_ID_NONE &&
443			    (mpt_reply_handlers[cbi]
444			  == mpt_default_reply_handler))
445				free_cbi = cbi;
446		}
447		if (free_cbi == MPT_HANDLER_ID_NONE) {
448			return (ENOMEM);
449		}
450		mpt_reply_handlers[free_cbi] = handler.reply_handler;
451		*phandler_id = MPT_CBI_TO_HID(free_cbi);
452		break;
453	}
454	default:
455		mpt_prt(mpt, "mpt_register_handler unknown type %d\n", type);
456		return (EINVAL);
457	}
458	return (0);
459}
460
461int
462mpt_deregister_handler(struct mpt_softc *mpt, mpt_handler_type type,
463		       mpt_handler_t handler, uint32_t handler_id)
464{
465
466	switch (type) {
467	case MPT_HANDLER_REPLY:
468	{
469		u_int cbi;
470
471		cbi = MPT_CBI(handler_id);
472		if (cbi >= MPT_NUM_REPLY_HANDLERS
473		 || mpt_reply_handlers[cbi] != handler.reply_handler)
474			return (ENOENT);
475		mpt_reply_handlers[cbi] = mpt_default_reply_handler;
476		break;
477	}
478	default:
479		mpt_prt(mpt, "mpt_deregister_handler unknown type %d\n", type);
480		return (EINVAL);
481	}
482	return (0);
483}
484
485static int
486mpt_default_reply_handler(struct mpt_softc *mpt, request_t *req,
487	uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
488{
489
490	mpt_prt(mpt,
491	    "Default Handler Called: req=%p:%u reply_descriptor=%x frame=%p\n",
492	    req, req->serno, reply_desc, reply_frame);
493
494	if (reply_frame != NULL)
495		mpt_dump_reply_frame(mpt, reply_frame);
496
497	mpt_prt(mpt, "Reply Frame Ignored\n");
498
499	return (/*free_reply*/TRUE);
500}
501
502static int
503mpt_config_reply_handler(struct mpt_softc *mpt, request_t *req,
504 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
505{
506
507	if (req != NULL) {
508		if (reply_frame != NULL) {
509			MSG_CONFIG *cfgp;
510			MSG_CONFIG_REPLY *reply;
511
512			cfgp = (MSG_CONFIG *)req->req_vbuf;
513			reply = (MSG_CONFIG_REPLY *)reply_frame;
514			req->IOCStatus = le16toh(reply_frame->IOCStatus);
515			bcopy(&reply->Header, &cfgp->Header,
516			      sizeof(cfgp->Header));
517			cfgp->ExtPageLength = reply->ExtPageLength;
518			cfgp->ExtPageType = reply->ExtPageType;
519		}
520		req->state &= ~REQ_STATE_QUEUED;
521		req->state |= REQ_STATE_DONE;
522		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
523		if ((req->state & REQ_STATE_NEED_WAKEUP) != 0) {
524			wakeup(req);
525		} else if ((req->state & REQ_STATE_TIMEDOUT) != 0) {
526			/*
527			 * Whew- we can free this request (late completion)
528			 */
529			mpt_free_request(mpt, req);
530		}
531	}
532
533	return (TRUE);
534}
535
536static int
537mpt_handshake_reply_handler(struct mpt_softc *mpt, request_t *req,
538 uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
539{
540
541	/* Nothing to be done. */
542	return (TRUE);
543}
544
545static int
546mpt_event_reply_handler(struct mpt_softc *mpt, request_t *req,
547    uint32_t reply_desc, MSG_DEFAULT_REPLY *reply_frame)
548{
549	int free_reply;
550
551	KASSERT(reply_frame != NULL, ("null reply in mpt_event_reply_handler"));
552	KASSERT(req != NULL, ("null request in mpt_event_reply_handler"));
553
554	free_reply = TRUE;
555	switch (reply_frame->Function) {
556	case MPI_FUNCTION_EVENT_NOTIFICATION:
557	{
558		MSG_EVENT_NOTIFY_REPLY *msg;
559		struct mpt_personality *pers;
560		u_int handled;
561
562		handled = 0;
563		msg = (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
564		msg->EventDataLength = le16toh(msg->EventDataLength);
565		msg->IOCStatus = le16toh(msg->IOCStatus);
566		msg->IOCLogInfo = le32toh(msg->IOCLogInfo);
567		msg->Event = le32toh(msg->Event);
568		MPT_PERS_FOREACH(mpt, pers)
569			handled += pers->event(mpt, req, msg);
570
571		if (handled == 0 && mpt->mpt_pers_mask == 0) {
572			mpt_lprt(mpt, MPT_PRT_INFO,
573				"No Handlers For Any Event Notify Frames. "
574				"Event %#x (ACK %sequired).\n",
575				msg->Event, msg->AckRequired? "r" : "not r");
576		} else if (handled == 0) {
577			mpt_lprt(mpt,
578				msg->AckRequired? MPT_PRT_WARN : MPT_PRT_INFO,
579				"Unhandled Event Notify Frame. Event %#x "
580				"(ACK %sequired).\n",
581				msg->Event, msg->AckRequired? "r" : "not r");
582		}
583
584		if (msg->AckRequired) {
585			request_t *ack_req;
586			uint32_t context;
587
588			context = req->index | MPT_REPLY_HANDLER_EVENTS;
589			ack_req = mpt_get_request(mpt, FALSE);
590			if (ack_req == NULL) {
591				struct mpt_evtf_record *evtf;
592
593				evtf = (struct mpt_evtf_record *)reply_frame;
594				evtf->context = context;
595				LIST_INSERT_HEAD(&mpt->ack_frames, evtf, links);
596				free_reply = FALSE;
597				break;
598			}
599			mpt_send_event_ack(mpt, ack_req, msg, context);
600			/*
601			 * Don't check for CONTINUATION_REPLY here
602			 */
603			return (free_reply);
604		}
605		break;
606	}
607	case MPI_FUNCTION_PORT_ENABLE:
608		mpt_lprt(mpt, MPT_PRT_DEBUG , "enable port reply\n");
609		break;
610	case MPI_FUNCTION_EVENT_ACK:
611		break;
612	default:
613		mpt_prt(mpt, "unknown event function: %x\n",
614			reply_frame->Function);
615		break;
616	}
617
618	/*
619	 * I'm not sure that this continuation stuff works as it should.
620	 *
621	 * I've had FC async events occur that free the frame up because
622	 * the continuation bit isn't set, and then additional async events
623	 * then occur using the same context. As you might imagine, this
624	 * leads to Very Bad Thing.
625	 *
626	 *  Let's just be safe for now and not free them up until we figure
627	 * out what's actually happening here.
628	 */
629#if	0
630	if ((reply_frame->MsgFlags & MPI_MSGFLAGS_CONTINUATION_REPLY) == 0) {
631		TAILQ_REMOVE(&mpt->request_pending_list, req, links);
632		mpt_free_request(mpt, req);
633		mpt_prt(mpt, "event_reply %x for req %p:%u NOT a continuation",
634		    reply_frame->Function, req, req->serno);
635		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
636			MSG_EVENT_NOTIFY_REPLY *msg =
637			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
638			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
639			    msg->Event, msg->AckRequired);
640		}
641	} else {
642		mpt_prt(mpt, "event_reply %x for %p:%u IS a continuation",
643		    reply_frame->Function, req, req->serno);
644		if (reply_frame->Function == MPI_FUNCTION_EVENT_NOTIFICATION) {
645			MSG_EVENT_NOTIFY_REPLY *msg =
646			    (MSG_EVENT_NOTIFY_REPLY *)reply_frame;
647			mpt_prtc(mpt, " Event=0x%x AckReq=%d",
648			    msg->Event, msg->AckRequired);
649		}
650		mpt_prtc(mpt, "\n");
651	}
652#endif
653	return (free_reply);
654}
655
656/*
657 * Process an asynchronous event from the IOC.
658 */
659static int
660mpt_core_event(struct mpt_softc *mpt, request_t *req,
661	       MSG_EVENT_NOTIFY_REPLY *msg)
662{
663
664	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_core_event: 0x%x\n",
665                 msg->Event & 0xFF);
666	switch(msg->Event & 0xFF) {
667	case MPI_EVENT_NONE:
668		break;
669	case MPI_EVENT_LOG_DATA:
670	{
671		int i;
672
673		/* Some error occurred that LSI wants logged */
674		mpt_prt(mpt, "EvtLogData: IOCLogInfo: 0x%08x\n",
675			msg->IOCLogInfo);
676		mpt_prt(mpt, "\tEvtLogData: Event Data:");
677		for (i = 0; i < msg->EventDataLength; i++)
678			mpt_prtc(mpt, "  %08x", msg->Data[i]);
679		mpt_prtc(mpt, "\n");
680		break;
681	}
682	case MPI_EVENT_EVENT_CHANGE:
683		/*
684		 * This is just an acknowledgement
685		 * of our mpt_send_event_request.
686		 */
687		break;
688	case MPI_EVENT_SAS_DEVICE_STATUS_CHANGE:
689		break;
690	default:
691		return (0);
692		break;
693	}
694	return (1);
695}
696
697static void
698mpt_send_event_ack(struct mpt_softc *mpt, request_t *ack_req,
699		   MSG_EVENT_NOTIFY_REPLY *msg, uint32_t context)
700{
701	MSG_EVENT_ACK *ackp;
702
703	ackp = (MSG_EVENT_ACK *)ack_req->req_vbuf;
704	memset(ackp, 0, sizeof (*ackp));
705	ackp->Function = MPI_FUNCTION_EVENT_ACK;
706	ackp->Event = htole32(msg->Event);
707	ackp->EventContext = htole32(msg->EventContext);
708	ackp->MsgContext = htole32(context);
709	mpt_check_doorbell(mpt);
710	mpt_send_cmd(mpt, ack_req);
711}
712
713/***************************** Interrupt Handling *****************************/
714void
715mpt_intr(void *arg)
716{
717	struct mpt_softc *mpt;
718	uint32_t reply_desc;
719	int ntrips = 0;
720
721	mpt = (struct mpt_softc *)arg;
722	mpt_lprt(mpt, MPT_PRT_DEBUG2, "enter mpt_intr\n");
723	MPT_LOCK_ASSERT(mpt);
724
725	while ((reply_desc = mpt_pop_reply_queue(mpt)) != MPT_REPLY_EMPTY) {
726		request_t	  *req;
727		MSG_DEFAULT_REPLY *reply_frame;
728		uint32_t	   reply_baddr;
729		uint32_t           ctxt_idx;
730		u_int		   cb_index;
731		u_int		   req_index;
732		u_int		   offset;
733		int		   free_rf;
734
735		req = NULL;
736		reply_frame = NULL;
737		reply_baddr = 0;
738		offset = 0;
739		if ((reply_desc & MPI_ADDRESS_REPLY_A_BIT) != 0) {
740			/*
741			 * Ensure that the reply frame is coherent.
742			 */
743			reply_baddr = MPT_REPLY_BADDR(reply_desc);
744			offset = reply_baddr - (mpt->reply_phys & 0xFFFFFFFF);
745			bus_dmamap_sync_range(mpt->reply_dmat,
746			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
747			    BUS_DMASYNC_POSTREAD);
748			reply_frame = MPT_REPLY_OTOV(mpt, offset);
749			ctxt_idx = le32toh(reply_frame->MsgContext);
750		} else {
751			uint32_t type;
752
753			type = MPI_GET_CONTEXT_REPLY_TYPE(reply_desc);
754			ctxt_idx = reply_desc;
755			mpt_lprt(mpt, MPT_PRT_DEBUG1, "Context Reply: 0x%08x\n",
756				    reply_desc);
757
758			switch (type) {
759			case MPI_CONTEXT_REPLY_TYPE_SCSI_INIT:
760				ctxt_idx &= MPI_CONTEXT_REPLY_CONTEXT_MASK;
761				break;
762			case MPI_CONTEXT_REPLY_TYPE_SCSI_TARGET:
763				ctxt_idx = GET_IO_INDEX(reply_desc);
764				if (mpt->tgt_cmd_ptrs == NULL) {
765					mpt_prt(mpt,
766					    "mpt_intr: no target cmd ptrs\n");
767					reply_desc = MPT_REPLY_EMPTY;
768					break;
769				}
770				if (ctxt_idx >= mpt->tgt_cmds_allocated) {
771					mpt_prt(mpt,
772					    "mpt_intr: bad tgt cmd ctxt %u\n",
773					    ctxt_idx);
774					reply_desc = MPT_REPLY_EMPTY;
775					ntrips = 1000;
776					break;
777				}
778				req = mpt->tgt_cmd_ptrs[ctxt_idx];
779				if (req == NULL) {
780					mpt_prt(mpt, "no request backpointer "
781					    "at index %u", ctxt_idx);
782					reply_desc = MPT_REPLY_EMPTY;
783					ntrips = 1000;
784					break;
785				}
786				/*
787				 * Reformulate ctxt_idx to be just as if
788				 * it were another type of context reply
789				 * so the code below will find the request
790				 * via indexing into the pool.
791				 */
792				ctxt_idx =
793				    req->index | mpt->scsi_tgt_handler_id;
794				req = NULL;
795				break;
796			case MPI_CONTEXT_REPLY_TYPE_LAN:
797				mpt_prt(mpt, "LAN CONTEXT REPLY: 0x%08x\n",
798				    reply_desc);
799				reply_desc = MPT_REPLY_EMPTY;
800				break;
801			default:
802				mpt_prt(mpt, "Context Reply 0x%08x?\n", type);
803				reply_desc = MPT_REPLY_EMPTY;
804				break;
805			}
806			if (reply_desc == MPT_REPLY_EMPTY) {
807				if (ntrips++ > 1000) {
808					break;
809				}
810				continue;
811			}
812		}
813
814		cb_index = MPT_CONTEXT_TO_CBI(ctxt_idx);
815		req_index = MPT_CONTEXT_TO_REQI(ctxt_idx);
816		if (req_index < MPT_MAX_REQUESTS(mpt)) {
817			req = &mpt->request_pool[req_index];
818		} else {
819			mpt_prt(mpt, "WARN: mpt_intr index == %d (reply_desc =="
820			    " 0x%x)\n", req_index, reply_desc);
821		}
822
823		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
824		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
825		free_rf = mpt_reply_handlers[cb_index](mpt, req,
826		    reply_desc, reply_frame);
827
828		if (reply_frame != NULL && free_rf) {
829			bus_dmamap_sync_range(mpt->reply_dmat,
830			    mpt->reply_dmap, offset, MPT_REPLY_SIZE,
831			    BUS_DMASYNC_PREREAD);
832			mpt_free_reply(mpt, reply_baddr);
833		}
834
835		/*
836		 * If we got ourselves disabled, don't get stuck in a loop
837		 */
838		if (mpt->disabled) {
839			mpt_disable_ints(mpt);
840			break;
841		}
842		if (ntrips++ > 1000) {
843			break;
844		}
845	}
846	mpt_lprt(mpt, MPT_PRT_DEBUG2, "exit mpt_intr\n");
847}
848
849/******************************* Error Recovery *******************************/
850void
851mpt_complete_request_chain(struct mpt_softc *mpt, struct req_queue *chain,
852			    u_int iocstatus)
853{
854	MSG_DEFAULT_REPLY  ioc_status_frame;
855	request_t	  *req;
856
857	memset(&ioc_status_frame, 0, sizeof(ioc_status_frame));
858	ioc_status_frame.MsgLength = roundup2(sizeof(ioc_status_frame), 4);
859	ioc_status_frame.IOCStatus = iocstatus;
860	while((req = TAILQ_FIRST(chain)) != NULL) {
861		MSG_REQUEST_HEADER *msg_hdr;
862		u_int		    cb_index;
863
864		bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
865		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
866		msg_hdr = (MSG_REQUEST_HEADER *)req->req_vbuf;
867		ioc_status_frame.Function = msg_hdr->Function;
868		ioc_status_frame.MsgContext = msg_hdr->MsgContext;
869		cb_index = MPT_CONTEXT_TO_CBI(le32toh(msg_hdr->MsgContext));
870		mpt_reply_handlers[cb_index](mpt, req, msg_hdr->MsgContext,
871		    &ioc_status_frame);
872		if (mpt_req_on_pending_list(mpt, req) != 0)
873			TAILQ_REMOVE(chain, req, links);
874	}
875}
876
877/********************************* Diagnostics ********************************/
878/*
879 * Perform a diagnostic dump of a reply frame.
880 */
881void
882mpt_dump_reply_frame(struct mpt_softc *mpt, MSG_DEFAULT_REPLY *reply_frame)
883{
884
885	mpt_prt(mpt, "Address Reply:\n");
886	mpt_print_reply(reply_frame);
887}
888
889/******************************* Doorbell Access ******************************/
890static __inline uint32_t mpt_rd_db(struct mpt_softc *mpt);
891static __inline  uint32_t mpt_rd_intr(struct mpt_softc *mpt);
892
893static __inline uint32_t
894mpt_rd_db(struct mpt_softc *mpt)
895{
896
897	return mpt_read(mpt, MPT_OFFSET_DOORBELL);
898}
899
900static __inline uint32_t
901mpt_rd_intr(struct mpt_softc *mpt)
902{
903
904	return mpt_read(mpt, MPT_OFFSET_INTR_STATUS);
905}
906
907/* Busy wait for a door bell to be read by IOC */
908static int
909mpt_wait_db_ack(struct mpt_softc *mpt)
910{
911	int i;
912
913	for (i=0; i < MPT_MAX_WAIT; i++) {
914		if (!MPT_DB_IS_BUSY(mpt_rd_intr(mpt))) {
915			maxwait_ack = i > maxwait_ack ? i : maxwait_ack;
916			return (MPT_OK);
917		}
918		DELAY(200);
919	}
920	return (MPT_FAIL);
921}
922
923/* Busy wait for a door bell interrupt */
924static int
925mpt_wait_db_int(struct mpt_softc *mpt)
926{
927	int i;
928
929	for (i = 0; i < MPT_MAX_WAIT; i++) {
930		if (MPT_DB_INTR(mpt_rd_intr(mpt))) {
931			maxwait_int = i > maxwait_int ? i : maxwait_int;
932			return MPT_OK;
933		}
934		DELAY(100);
935	}
936	return (MPT_FAIL);
937}
938
939/* Wait for IOC to transition to a give state */
940void
941mpt_check_doorbell(struct mpt_softc *mpt)
942{
943	uint32_t db = mpt_rd_db(mpt);
944
945	if (MPT_STATE(db) != MPT_DB_STATE_RUNNING) {
946		mpt_prt(mpt, "Device not running\n");
947		mpt_print_db(db);
948	}
949}
950
951/* Wait for IOC to transition to a give state */
952static int
953mpt_wait_state(struct mpt_softc *mpt, enum DB_STATE_BITS state)
954{
955	int i;
956
957	for (i = 0; i < MPT_MAX_WAIT; i++) {
958		uint32_t db = mpt_rd_db(mpt);
959		if (MPT_STATE(db) == state) {
960			maxwait_state = i > maxwait_state ? i : maxwait_state;
961			return (MPT_OK);
962		}
963		DELAY(100);
964	}
965	return (MPT_FAIL);
966}
967
968
969/************************* Intialization/Configuration ************************/
970static int mpt_download_fw(struct mpt_softc *mpt);
971
972/* Issue the reset COMMAND to the IOC */
973static int
974mpt_soft_reset(struct mpt_softc *mpt)
975{
976
977	mpt_lprt(mpt, MPT_PRT_DEBUG, "soft reset\n");
978
979	/* Have to use hard reset if we are not in Running state */
980	if (MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_RUNNING) {
981		mpt_prt(mpt, "soft reset failed: device not running\n");
982		return (MPT_FAIL);
983	}
984
985	/* If door bell is in use we don't have a chance of getting
986	 * a word in since the IOC probably crashed in message
987	 * processing. So don't waste our time.
988	 */
989	if (MPT_DB_IS_IN_USE(mpt_rd_db(mpt))) {
990		mpt_prt(mpt, "soft reset failed: doorbell wedged\n");
991		return (MPT_FAIL);
992	}
993
994	/* Send the reset request to the IOC */
995	mpt_write(mpt, MPT_OFFSET_DOORBELL,
996	    MPI_FUNCTION_IOC_MESSAGE_UNIT_RESET << MPI_DOORBELL_FUNCTION_SHIFT);
997	if (mpt_wait_db_ack(mpt) != MPT_OK) {
998		mpt_prt(mpt, "soft reset failed: ack timeout\n");
999		return (MPT_FAIL);
1000	}
1001
1002	/* Wait for the IOC to reload and come out of reset state */
1003	if (mpt_wait_state(mpt, MPT_DB_STATE_READY) != MPT_OK) {
1004		mpt_prt(mpt, "soft reset failed: device did not restart\n");
1005		return (MPT_FAIL);
1006	}
1007
1008	return MPT_OK;
1009}
1010
1011static int
1012mpt_enable_diag_mode(struct mpt_softc *mpt)
1013{
1014	int try;
1015
1016	try = 20;
1017	while (--try) {
1018
1019		if ((mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC) & MPI_DIAG_DRWE) != 0)
1020			break;
1021
1022		/* Enable diagnostic registers */
1023		mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFF);
1024		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_1ST_KEY_VALUE);
1025		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_2ND_KEY_VALUE);
1026		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_3RD_KEY_VALUE);
1027		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_4TH_KEY_VALUE);
1028		mpt_write(mpt, MPT_OFFSET_SEQUENCE, MPI_WRSEQ_5TH_KEY_VALUE);
1029
1030		DELAY(100000);
1031	}
1032	if (try == 0)
1033		return (EIO);
1034	return (0);
1035}
1036
1037static void
1038mpt_disable_diag_mode(struct mpt_softc *mpt)
1039{
1040
1041	mpt_write(mpt, MPT_OFFSET_SEQUENCE, 0xFFFFFFFF);
1042}
1043
1044/* This is a magic diagnostic reset that resets all the ARM
1045 * processors in the chip.
1046 */
1047static void
1048mpt_hard_reset(struct mpt_softc *mpt)
1049{
1050	int error;
1051	int wait;
1052	uint32_t diagreg;
1053
1054	mpt_lprt(mpt, MPT_PRT_DEBUG, "hard reset\n");
1055
1056	error = mpt_enable_diag_mode(mpt);
1057	if (error) {
1058		mpt_prt(mpt, "WARNING - Could not enter diagnostic mode !\n");
1059		mpt_prt(mpt, "Trying to reset anyway.\n");
1060	}
1061
1062	diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1063
1064	/*
1065	 * This appears to be a workaround required for some
1066	 * firmware or hardware revs.
1067	 */
1068	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_DISABLE_ARM);
1069	DELAY(1000);
1070
1071	/* Diag. port is now active so we can now hit the reset bit */
1072	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, diagreg | MPI_DIAG_RESET_ADAPTER);
1073
1074        /*
1075         * Ensure that the reset has finished.  We delay 1ms
1076         * prior to reading the register to make sure the chip
1077         * has sufficiently completed its reset to handle register
1078         * accesses.
1079         */
1080	wait = 5000;
1081	do {
1082		DELAY(1000);
1083		diagreg = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
1084	} while (--wait && (diagreg & MPI_DIAG_RESET_ADAPTER) == 0);
1085
1086	if (wait == 0) {
1087		mpt_prt(mpt, "WARNING - Failed hard reset! "
1088			"Trying to initialize anyway.\n");
1089	}
1090
1091	/*
1092	 * If we have firmware to download, it must be loaded before
1093	 * the controller will become operational.  Do so now.
1094	 */
1095	if (mpt->fw_image != NULL) {
1096
1097		error = mpt_download_fw(mpt);
1098
1099		if (error) {
1100			mpt_prt(mpt, "WARNING - Firmware Download Failed!\n");
1101			mpt_prt(mpt, "Trying to initialize anyway.\n");
1102		}
1103	}
1104
1105	/*
1106	 * Reseting the controller should have disabled write
1107	 * access to the diagnostic registers, but disable
1108	 * manually to be sure.
1109	 */
1110	mpt_disable_diag_mode(mpt);
1111}
1112
1113static void
1114mpt_core_ioc_reset(struct mpt_softc *mpt, int type)
1115{
1116
1117	/*
1118	 * Complete all pending requests with a status
1119	 * appropriate for an IOC reset.
1120	 */
1121	mpt_complete_request_chain(mpt, &mpt->request_pending_list,
1122				   MPI_IOCSTATUS_INVALID_STATE);
1123}
1124
1125/*
1126 * Reset the IOC when needed. Try software command first then if needed
1127 * poke at the magic diagnostic reset. Note that a hard reset resets
1128 * *both* IOCs on dual function chips (FC929 && LSI1030) as well as
1129 * fouls up the PCI configuration registers.
1130 */
1131int
1132mpt_reset(struct mpt_softc *mpt, int reinit)
1133{
1134	struct	mpt_personality *pers;
1135	int	ret;
1136	int	retry_cnt = 0;
1137
1138	/*
1139	 * Try a soft reset. If that fails, get out the big hammer.
1140	 */
1141 again:
1142	if ((ret = mpt_soft_reset(mpt)) != MPT_OK) {
1143		int	cnt;
1144		for (cnt = 0; cnt < 5; cnt++) {
1145			/* Failed; do a hard reset */
1146			mpt_hard_reset(mpt);
1147
1148			/*
1149			 * Wait for the IOC to reload
1150			 * and come out of reset state
1151			 */
1152			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1153			if (ret == MPT_OK) {
1154				break;
1155			}
1156			/*
1157			 * Okay- try to check again...
1158			 */
1159			ret = mpt_wait_state(mpt, MPT_DB_STATE_READY);
1160			if (ret == MPT_OK) {
1161				break;
1162			}
1163			mpt_prt(mpt, "mpt_reset: failed hard reset (%d:%d)\n",
1164			    retry_cnt, cnt);
1165		}
1166	}
1167
1168	if (retry_cnt == 0) {
1169		/*
1170		 * Invoke reset handlers.  We bump the reset count so
1171		 * that mpt_wait_req() understands that regardless of
1172		 * the specified wait condition, it should stop its wait.
1173		 */
1174		mpt->reset_cnt++;
1175		MPT_PERS_FOREACH(mpt, pers)
1176			pers->reset(mpt, ret);
1177	}
1178
1179	if (reinit) {
1180		ret = mpt_enable_ioc(mpt, 1);
1181		if (ret == MPT_OK) {
1182			mpt_enable_ints(mpt);
1183		}
1184	}
1185	if (ret != MPT_OK && retry_cnt++ < 2) {
1186		goto again;
1187	}
1188	return ret;
1189}
1190
1191/* Return a command buffer to the free queue */
1192void
1193mpt_free_request(struct mpt_softc *mpt, request_t *req)
1194{
1195	request_t *nxt;
1196	struct mpt_evtf_record *record;
1197	uint32_t offset, reply_baddr;
1198
1199	if (req == NULL || req != &mpt->request_pool[req->index]) {
1200		panic("mpt_free_request bad req ptr\n");
1201		return;
1202	}
1203	if ((nxt = req->chain) != NULL) {
1204		req->chain = NULL;
1205		mpt_free_request(mpt, nxt);	/* NB: recursion */
1206	}
1207	KASSERT(req->state != REQ_STATE_FREE, ("freeing free request"));
1208	KASSERT(!(req->state & REQ_STATE_LOCKED), ("freeing locked request"));
1209	MPT_LOCK_ASSERT(mpt);
1210	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1211	    ("mpt_free_request: req %p:%u func %x already on freelist",
1212	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1213	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1214	    ("mpt_free_request: req %p:%u func %x on pending list",
1215	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1216#ifdef	INVARIANTS
1217	mpt_req_not_spcl(mpt, req, "mpt_free_request", __LINE__);
1218#endif
1219
1220	req->ccb = NULL;
1221	if (LIST_EMPTY(&mpt->ack_frames)) {
1222		/*
1223		 * Insert free ones at the tail
1224		 */
1225		req->serno = 0;
1226		req->state = REQ_STATE_FREE;
1227#ifdef	INVARIANTS
1228		memset(req->req_vbuf, 0xff, sizeof (MSG_REQUEST_HEADER));
1229#endif
1230		TAILQ_INSERT_TAIL(&mpt->request_free_list, req, links);
1231		if (mpt->getreqwaiter != 0) {
1232			mpt->getreqwaiter = 0;
1233			wakeup(&mpt->request_free_list);
1234		}
1235		return;
1236	}
1237
1238	/*
1239	 * Process an ack frame deferred due to resource shortage.
1240	 */
1241	record = LIST_FIRST(&mpt->ack_frames);
1242	LIST_REMOVE(record, links);
1243	req->state = REQ_STATE_ALLOCATED;
1244	mpt_assign_serno(mpt, req);
1245	mpt_send_event_ack(mpt, req, &record->reply, record->context);
1246	offset = (uint32_t)((uint8_t *)record - mpt->reply);
1247	reply_baddr = offset + (mpt->reply_phys & 0xFFFFFFFF);
1248	bus_dmamap_sync_range(mpt->reply_dmat, mpt->reply_dmap, offset,
1249	    MPT_REPLY_SIZE, BUS_DMASYNC_PREREAD);
1250	mpt_free_reply(mpt, reply_baddr);
1251}
1252
1253/* Get a command buffer from the free queue */
1254request_t *
1255mpt_get_request(struct mpt_softc *mpt, int sleep_ok)
1256{
1257	request_t *req;
1258
1259retry:
1260	MPT_LOCK_ASSERT(mpt);
1261	req = TAILQ_FIRST(&mpt->request_free_list);
1262	if (req != NULL) {
1263		KASSERT(req == &mpt->request_pool[req->index],
1264		    ("mpt_get_request: corrupted request free list\n"));
1265		KASSERT(req->state == REQ_STATE_FREE,
1266		    ("req %p:%u not free on free list %x index %d function %x",
1267		    req, req->serno, req->state, req->index,
1268		    ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1269		TAILQ_REMOVE(&mpt->request_free_list, req, links);
1270		req->state = REQ_STATE_ALLOCATED;
1271		req->chain = NULL;
1272		mpt_assign_serno(mpt, req);
1273	} else if (sleep_ok != 0) {
1274		mpt->getreqwaiter = 1;
1275		mpt_sleep(mpt, &mpt->request_free_list, PUSER, "mptgreq", 0);
1276		goto retry;
1277	}
1278	return (req);
1279}
1280
1281/* Pass the command to the IOC */
1282void
1283mpt_send_cmd(struct mpt_softc *mpt, request_t *req)
1284{
1285
1286	if (mpt->verbose > MPT_PRT_DEBUG2) {
1287		mpt_dump_request(mpt, req);
1288	}
1289	bus_dmamap_sync(mpt->request_dmat, mpt->request_dmap,
1290	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1291	req->state |= REQ_STATE_QUEUED;
1292	KASSERT(mpt_req_on_free_list(mpt, req) == 0,
1293	    ("req %p:%u func %x on freelist list in mpt_send_cmd",
1294	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1295	KASSERT(mpt_req_on_pending_list(mpt, req) == 0,
1296	    ("req %p:%u func %x already on pending list in mpt_send_cmd",
1297	    req, req->serno, ((MSG_REQUEST_HEADER *)req->req_vbuf)->Function));
1298	TAILQ_INSERT_HEAD(&mpt->request_pending_list, req, links);
1299	mpt_write(mpt, MPT_OFFSET_REQUEST_Q, (uint32_t) req->req_pbuf);
1300}
1301
1302/*
1303 * Wait for a request to complete.
1304 *
1305 * Inputs:
1306 *	mpt		softc of controller executing request
1307 *	req		request to wait for
1308 *	sleep_ok	nonzero implies may sleep in this context
1309 *	time_ms		timeout in ms.  0 implies no timeout.
1310 *
1311 * Return Values:
1312 *	0		Request completed
1313 *	non-0		Timeout fired before request completion.
1314 */
1315int
1316mpt_wait_req(struct mpt_softc *mpt, request_t *req,
1317	     mpt_req_state_t state, mpt_req_state_t mask,
1318	     int sleep_ok, int time_ms)
1319{
1320	int   error;
1321	int   timeout;
1322	u_int saved_cnt;
1323
1324	/*
1325	 * timeout is in ms.  0 indicates infinite wait.
1326	 * Convert to ticks or 500us units depending on
1327	 * our sleep mode.
1328	 */
1329	if (sleep_ok != 0) {
1330		timeout = (time_ms * hz) / 1000;
1331	} else {
1332		timeout = time_ms * 2;
1333	}
1334	req->state |= REQ_STATE_NEED_WAKEUP;
1335	mask &= ~REQ_STATE_NEED_WAKEUP;
1336	saved_cnt = mpt->reset_cnt;
1337	while ((req->state & mask) != state && mpt->reset_cnt == saved_cnt) {
1338		if (sleep_ok != 0) {
1339			error = mpt_sleep(mpt, req, PUSER, "mptreq", timeout);
1340			if (error == EWOULDBLOCK) {
1341				timeout = 0;
1342				break;
1343			}
1344		} else {
1345			if (time_ms != 0 && --timeout == 0) {
1346				break;
1347			}
1348			DELAY(500);
1349			mpt_intr(mpt);
1350		}
1351	}
1352	req->state &= ~REQ_STATE_NEED_WAKEUP;
1353	if (mpt->reset_cnt != saved_cnt) {
1354		return (EIO);
1355	}
1356	if (time_ms && timeout <= 0) {
1357		MSG_REQUEST_HEADER *msg_hdr = req->req_vbuf;
1358		req->state |= REQ_STATE_TIMEDOUT;
1359		mpt_prt(mpt, "mpt_wait_req(%x) timed out\n", msg_hdr->Function);
1360		return (ETIMEDOUT);
1361	}
1362	return (0);
1363}
1364
1365/*
1366 * Send a command to the IOC via the handshake register.
1367 *
1368 * Only done at initialization time and for certain unusual
1369 * commands such as device/bus reset as specified by LSI.
1370 */
1371int
1372mpt_send_handshake_cmd(struct mpt_softc *mpt, size_t len, void *cmd)
1373{
1374	int i;
1375	uint32_t data, *data32;
1376
1377	/* Check condition of the IOC */
1378	data = mpt_rd_db(mpt);
1379	if ((MPT_STATE(data) != MPT_DB_STATE_READY
1380	  && MPT_STATE(data) != MPT_DB_STATE_RUNNING
1381	  && MPT_STATE(data) != MPT_DB_STATE_FAULT)
1382	 || MPT_DB_IS_IN_USE(data)) {
1383		mpt_prt(mpt, "handshake aborted - invalid doorbell state\n");
1384		mpt_print_db(data);
1385		return (EBUSY);
1386	}
1387
1388	/* We move things in 32 bit chunks */
1389	len = (len + 3) >> 2;
1390	data32 = cmd;
1391
1392	/* Clear any left over pending doorbell interrupts */
1393	if (MPT_DB_INTR(mpt_rd_intr(mpt)))
1394		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1395
1396	/*
1397	 * Tell the handshake reg. we are going to send a command
1398         * and how long it is going to be.
1399	 */
1400	data = (MPI_FUNCTION_HANDSHAKE << MPI_DOORBELL_FUNCTION_SHIFT) |
1401	    (len << MPI_DOORBELL_ADD_DWORDS_SHIFT);
1402	mpt_write(mpt, MPT_OFFSET_DOORBELL, data);
1403
1404	/* Wait for the chip to notice */
1405	if (mpt_wait_db_int(mpt) != MPT_OK) {
1406		mpt_prt(mpt, "mpt_send_handshake_cmd: db ignored\n");
1407		return (ETIMEDOUT);
1408	}
1409
1410	/* Clear the interrupt */
1411	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1412
1413	if (mpt_wait_db_ack(mpt) != MPT_OK) {
1414		mpt_prt(mpt, "mpt_send_handshake_cmd: db ack timed out\n");
1415		return (ETIMEDOUT);
1416	}
1417
1418	/* Send the command */
1419	for (i = 0; i < len; i++) {
1420		mpt_write(mpt, MPT_OFFSET_DOORBELL, htole32(*data32++));
1421		if (mpt_wait_db_ack(mpt) != MPT_OK) {
1422			mpt_prt(mpt,
1423			    "mpt_send_handshake_cmd: timeout @ index %d\n", i);
1424			return (ETIMEDOUT);
1425		}
1426	}
1427	return MPT_OK;
1428}
1429
1430/* Get the response from the handshake register */
1431int
1432mpt_recv_handshake_reply(struct mpt_softc *mpt, size_t reply_len, void *reply)
1433{
1434	int left, reply_left;
1435	u_int16_t *data16;
1436	uint32_t data;
1437	MSG_DEFAULT_REPLY *hdr;
1438
1439	/* We move things out in 16 bit chunks */
1440	reply_len >>= 1;
1441	data16 = (u_int16_t *)reply;
1442
1443	hdr = (MSG_DEFAULT_REPLY *)reply;
1444
1445	/* Get first word */
1446	if (mpt_wait_db_int(mpt) != MPT_OK) {
1447		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout1\n");
1448		return ETIMEDOUT;
1449	}
1450	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1451	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1452	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1453
1454	/* Get Second Word */
1455	if (mpt_wait_db_int(mpt) != MPT_OK) {
1456		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout2\n");
1457		return ETIMEDOUT;
1458	}
1459	data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1460	*data16++ = le16toh(data & MPT_DB_DATA_MASK);
1461	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1462
1463	/*
1464	 * With the second word, we can now look at the length.
1465	 * Warn about a reply that's too short (except for IOC FACTS REPLY)
1466	 */
1467	if ((reply_len >> 1) != hdr->MsgLength &&
1468	    (hdr->Function != MPI_FUNCTION_IOC_FACTS)){
1469#if __FreeBSD_version >= 500000
1470		mpt_prt(mpt, "reply length does not match message length: "
1471			"got %x; expected %zx for function %x\n",
1472			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1473#else
1474		mpt_prt(mpt, "reply length does not match message length: "
1475			"got %x; expected %x for function %x\n",
1476			hdr->MsgLength << 2, reply_len << 1, hdr->Function);
1477#endif
1478	}
1479
1480	/* Get rest of the reply; but don't overflow the provided buffer */
1481	left = (hdr->MsgLength << 1) - 2;
1482	reply_left =  reply_len - 2;
1483	while (left--) {
1484		u_int16_t datum;
1485
1486		if (mpt_wait_db_int(mpt) != MPT_OK) {
1487			mpt_prt(mpt, "mpt_recv_handshake_cmd timeout3\n");
1488			return ETIMEDOUT;
1489		}
1490		data = mpt_read(mpt, MPT_OFFSET_DOORBELL);
1491		datum = le16toh(data & MPT_DB_DATA_MASK);
1492
1493		if (reply_left-- > 0)
1494			*data16++ = datum;
1495
1496		mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1497	}
1498
1499	/* One more wait & clear at the end */
1500	if (mpt_wait_db_int(mpt) != MPT_OK) {
1501		mpt_prt(mpt, "mpt_recv_handshake_cmd timeout4\n");
1502		return ETIMEDOUT;
1503	}
1504	mpt_write(mpt, MPT_OFFSET_INTR_STATUS, 0);
1505
1506	if ((hdr->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1507		if (mpt->verbose >= MPT_PRT_TRACE)
1508			mpt_print_reply(hdr);
1509		return (MPT_FAIL | hdr->IOCStatus);
1510	}
1511
1512	return (0);
1513}
1514
1515static int
1516mpt_get_iocfacts(struct mpt_softc *mpt, MSG_IOC_FACTS_REPLY *freplp)
1517{
1518	MSG_IOC_FACTS f_req;
1519	int error;
1520
1521	memset(&f_req, 0, sizeof f_req);
1522	f_req.Function = MPI_FUNCTION_IOC_FACTS;
1523	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1524	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1525	if (error) {
1526		return(error);
1527	}
1528	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1529	return (error);
1530}
1531
1532static int
1533mpt_get_portfacts(struct mpt_softc *mpt, U8 port, MSG_PORT_FACTS_REPLY *freplp)
1534{
1535	MSG_PORT_FACTS f_req;
1536	int error;
1537
1538	memset(&f_req, 0, sizeof f_req);
1539	f_req.Function = MPI_FUNCTION_PORT_FACTS;
1540	f_req.PortNumber = port;
1541	f_req.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1542	error = mpt_send_handshake_cmd(mpt, sizeof f_req, &f_req);
1543	if (error) {
1544		return(error);
1545	}
1546	error = mpt_recv_handshake_reply(mpt, sizeof (*freplp), freplp);
1547	return (error);
1548}
1549
1550/*
1551 * Send the initialization request. This is where we specify how many
1552 * SCSI busses and how many devices per bus we wish to emulate.
1553 * This is also the command that specifies the max size of the reply
1554 * frames from the IOC that we will be allocating.
1555 */
1556static int
1557mpt_send_ioc_init(struct mpt_softc *mpt, uint32_t who)
1558{
1559	int error = 0;
1560	MSG_IOC_INIT init;
1561	MSG_IOC_INIT_REPLY reply;
1562
1563	memset(&init, 0, sizeof init);
1564	init.WhoInit = who;
1565	init.Function = MPI_FUNCTION_IOC_INIT;
1566	init.MaxDevices = 0;	/* at least 256 devices per bus */
1567	init.MaxBuses = 16;	/* at least 16 busses */
1568
1569	init.MsgVersion = htole16(MPI_VERSION);
1570	init.HeaderVersion = htole16(MPI_HEADER_VERSION);
1571	init.ReplyFrameSize = htole16(MPT_REPLY_SIZE);
1572	init.MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
1573
1574	if ((error = mpt_send_handshake_cmd(mpt, sizeof init, &init)) != 0) {
1575		return(error);
1576	}
1577
1578	error = mpt_recv_handshake_reply(mpt, sizeof reply, &reply);
1579	return (error);
1580}
1581
1582
1583/*
1584 * Utiltity routine to read configuration headers and pages
1585 */
1586int
1587mpt_issue_cfg_req(struct mpt_softc *mpt, request_t *req, cfgparms_t *params,
1588		  bus_addr_t addr, bus_size_t len, int sleep_ok, int timeout_ms)
1589{
1590	MSG_CONFIG *cfgp;
1591	SGE_SIMPLE32 *se;
1592
1593	cfgp = req->req_vbuf;
1594	memset(cfgp, 0, sizeof *cfgp);
1595	cfgp->Action = params->Action;
1596	cfgp->Function = MPI_FUNCTION_CONFIG;
1597	cfgp->Header.PageVersion = params->PageVersion;
1598	cfgp->Header.PageNumber = params->PageNumber;
1599	cfgp->PageAddress = htole32(params->PageAddress);
1600	if ((params->PageType & MPI_CONFIG_PAGETYPE_MASK) ==
1601	    MPI_CONFIG_PAGETYPE_EXTENDED) {
1602		cfgp->Header.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1603		cfgp->Header.PageLength = 0;
1604		cfgp->ExtPageLength = htole16(params->ExtPageLength);
1605		cfgp->ExtPageType = params->ExtPageType;
1606	} else {
1607		cfgp->Header.PageType = params->PageType;
1608		cfgp->Header.PageLength = params->PageLength;
1609	}
1610	se = (SGE_SIMPLE32 *)&cfgp->PageBufferSGE;
1611	se->Address = htole32(addr);
1612	MPI_pSGE_SET_LENGTH(se, len);
1613	MPI_pSGE_SET_FLAGS(se, (MPI_SGE_FLAGS_SIMPLE_ELEMENT |
1614	    MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER |
1615	    MPI_SGE_FLAGS_END_OF_LIST |
1616	    ((params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_CURRENT
1617	  || params->Action == MPI_CONFIG_ACTION_PAGE_WRITE_NVRAM)
1618	   ? MPI_SGE_FLAGS_HOST_TO_IOC : MPI_SGE_FLAGS_IOC_TO_HOST)));
1619	se->FlagsLength = htole32(se->FlagsLength);
1620	cfgp->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
1621
1622	mpt_check_doorbell(mpt);
1623	mpt_send_cmd(mpt, req);
1624	return (mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
1625			     sleep_ok, timeout_ms));
1626}
1627
1628int
1629mpt_read_extcfg_header(struct mpt_softc *mpt, int PageVersion, int PageNumber,
1630		       uint32_t PageAddress, int ExtPageType,
1631		       CONFIG_EXTENDED_PAGE_HEADER *rslt,
1632		       int sleep_ok, int timeout_ms)
1633{
1634	request_t  *req;
1635	cfgparms_t params;
1636	MSG_CONFIG_REPLY *cfgp;
1637	int	    error;
1638
1639	req = mpt_get_request(mpt, sleep_ok);
1640	if (req == NULL) {
1641		mpt_prt(mpt, "mpt_extread_cfg_header: Get request failed!\n");
1642		return (ENOMEM);
1643	}
1644
1645	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1646	params.PageVersion = PageVersion;
1647	params.PageLength = 0;
1648	params.PageNumber = PageNumber;
1649	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1650	params.PageAddress = PageAddress;
1651	params.ExtPageType = ExtPageType;
1652	params.ExtPageLength = 0;
1653	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1654				  sleep_ok, timeout_ms);
1655	if (error != 0) {
1656		/*
1657		 * Leave the request. Without resetting the chip, it's
1658		 * still owned by it and we'll just get into trouble
1659		 * freeing it now. Mark it as abandoned so that if it
1660		 * shows up later it can be freed.
1661		 */
1662		mpt_prt(mpt, "read_extcfg_header timed out\n");
1663		return (ETIMEDOUT);
1664	}
1665
1666        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1667	case MPI_IOCSTATUS_SUCCESS:
1668		cfgp = req->req_vbuf;
1669		rslt->PageVersion = cfgp->Header.PageVersion;
1670		rslt->PageNumber = cfgp->Header.PageNumber;
1671		rslt->PageType = cfgp->Header.PageType;
1672		rslt->ExtPageLength = le16toh(cfgp->ExtPageLength);
1673		rslt->ExtPageType = cfgp->ExtPageType;
1674		error = 0;
1675		break;
1676	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1677		mpt_lprt(mpt, MPT_PRT_DEBUG,
1678		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1679		    MPI_CONFIG_PAGETYPE_EXTENDED, PageNumber, PageAddress);
1680		error = EINVAL;
1681		break;
1682	default:
1683		mpt_prt(mpt, "mpt_read_extcfg_header: Config Info Status %x\n",
1684			req->IOCStatus);
1685		error = EIO;
1686		break;
1687	}
1688	mpt_free_request(mpt, req);
1689	return (error);
1690}
1691
1692int
1693mpt_read_extcfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1694		     CONFIG_EXTENDED_PAGE_HEADER *hdr, void *buf, size_t len,
1695		     int sleep_ok, int timeout_ms)
1696{
1697	request_t    *req;
1698	cfgparms_t    params;
1699	int	      error;
1700
1701	req = mpt_get_request(mpt, sleep_ok);
1702	if (req == NULL) {
1703		mpt_prt(mpt, "mpt_read_extcfg_page: Get request failed!\n");
1704		return (-1);
1705	}
1706
1707	params.Action = Action;
1708	params.PageVersion = hdr->PageVersion;
1709	params.PageLength = 0;
1710	params.PageNumber = hdr->PageNumber;
1711	params.PageType = MPI_CONFIG_PAGETYPE_EXTENDED;
1712	params.PageAddress = PageAddress;
1713	params.ExtPageType = hdr->ExtPageType;
1714	params.ExtPageLength = hdr->ExtPageLength;
1715	error = mpt_issue_cfg_req(mpt, req, &params,
1716				  req->req_pbuf + MPT_RQSL(mpt),
1717				  len, sleep_ok, timeout_ms);
1718	if (error != 0) {
1719		mpt_prt(mpt, "read_extcfg_page(%d) timed out\n", Action);
1720		return (-1);
1721	}
1722
1723	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1724		mpt_prt(mpt, "mpt_read_extcfg_page: Config Info Status %x\n",
1725			req->IOCStatus);
1726		mpt_free_request(mpt, req);
1727		return (-1);
1728	}
1729	memcpy(buf, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1730	mpt_free_request(mpt, req);
1731	return (0);
1732}
1733
1734int
1735mpt_read_cfg_header(struct mpt_softc *mpt, int PageType, int PageNumber,
1736		    uint32_t PageAddress, CONFIG_PAGE_HEADER *rslt,
1737		    int sleep_ok, int timeout_ms)
1738{
1739	request_t  *req;
1740	cfgparms_t params;
1741	MSG_CONFIG *cfgp;
1742	int	    error;
1743
1744	req = mpt_get_request(mpt, sleep_ok);
1745	if (req == NULL) {
1746		mpt_prt(mpt, "mpt_read_cfg_header: Get request failed!\n");
1747		return (ENOMEM);
1748	}
1749
1750	params.Action = MPI_CONFIG_ACTION_PAGE_HEADER;
1751	params.PageVersion = 0;
1752	params.PageLength = 0;
1753	params.PageNumber = PageNumber;
1754	params.PageType = PageType;
1755	params.PageAddress = PageAddress;
1756	error = mpt_issue_cfg_req(mpt, req, &params, /*addr*/0, /*len*/0,
1757				  sleep_ok, timeout_ms);
1758	if (error != 0) {
1759		/*
1760		 * Leave the request. Without resetting the chip, it's
1761		 * still owned by it and we'll just get into trouble
1762		 * freeing it now. Mark it as abandoned so that if it
1763		 * shows up later it can be freed.
1764		 */
1765		mpt_prt(mpt, "read_cfg_header timed out\n");
1766		return (ETIMEDOUT);
1767	}
1768
1769        switch (req->IOCStatus & MPI_IOCSTATUS_MASK) {
1770	case MPI_IOCSTATUS_SUCCESS:
1771		cfgp = req->req_vbuf;
1772		bcopy(&cfgp->Header, rslt, sizeof(*rslt));
1773		error = 0;
1774		break;
1775	case MPI_IOCSTATUS_CONFIG_INVALID_PAGE:
1776		mpt_lprt(mpt, MPT_PRT_DEBUG,
1777		    "Invalid Page Type %d Number %d Addr 0x%0x\n",
1778		    PageType, PageNumber, PageAddress);
1779		error = EINVAL;
1780		break;
1781	default:
1782		mpt_prt(mpt, "mpt_read_cfg_header: Config Info Status %x\n",
1783			req->IOCStatus);
1784		error = EIO;
1785		break;
1786	}
1787	mpt_free_request(mpt, req);
1788	return (error);
1789}
1790
1791int
1792mpt_read_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1793		  CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1794		  int timeout_ms)
1795{
1796	request_t    *req;
1797	cfgparms_t    params;
1798	int	      error;
1799
1800	req = mpt_get_request(mpt, sleep_ok);
1801	if (req == NULL) {
1802		mpt_prt(mpt, "mpt_read_cfg_page: Get request failed!\n");
1803		return (-1);
1804	}
1805
1806	params.Action = Action;
1807	params.PageVersion = hdr->PageVersion;
1808	params.PageLength = hdr->PageLength;
1809	params.PageNumber = hdr->PageNumber;
1810	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1811	params.PageAddress = PageAddress;
1812	error = mpt_issue_cfg_req(mpt, req, &params,
1813				  req->req_pbuf + MPT_RQSL(mpt),
1814				  len, sleep_ok, timeout_ms);
1815	if (error != 0) {
1816		mpt_prt(mpt, "read_cfg_page(%d) timed out\n", Action);
1817		return (-1);
1818	}
1819
1820	if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1821		mpt_prt(mpt, "mpt_read_cfg_page: Config Info Status %x\n",
1822			req->IOCStatus);
1823		mpt_free_request(mpt, req);
1824		return (-1);
1825	}
1826	memcpy(hdr, ((uint8_t *)req->req_vbuf)+MPT_RQSL(mpt), len);
1827	mpt_free_request(mpt, req);
1828	return (0);
1829}
1830
1831int
1832mpt_write_cfg_page(struct mpt_softc *mpt, int Action, uint32_t PageAddress,
1833		   CONFIG_PAGE_HEADER *hdr, size_t len, int sleep_ok,
1834		   int timeout_ms)
1835{
1836	request_t    *req;
1837	cfgparms_t    params;
1838	u_int	      hdr_attr;
1839	int	      error;
1840
1841	hdr_attr = hdr->PageType & MPI_CONFIG_PAGEATTR_MASK;
1842	if (hdr_attr != MPI_CONFIG_PAGEATTR_CHANGEABLE &&
1843	    hdr_attr != MPI_CONFIG_PAGEATTR_PERSISTENT) {
1844		mpt_prt(mpt, "page type 0x%x not changeable\n",
1845			hdr->PageType & MPI_CONFIG_PAGETYPE_MASK);
1846		return (-1);
1847	}
1848
1849#if	0
1850	/*
1851	 * We shouldn't mask off other bits here.
1852	 */
1853	hdr->PageType &= MPI_CONFIG_PAGETYPE_MASK;
1854#endif
1855
1856	req = mpt_get_request(mpt, sleep_ok);
1857	if (req == NULL)
1858		return (-1);
1859
1860	memcpy(((caddr_t)req->req_vbuf) + MPT_RQSL(mpt), hdr, len);
1861
1862	/*
1863	 * There isn't any point in restoring stripped out attributes
1864	 * if you then mask them going down to issue the request.
1865	 */
1866
1867	params.Action = Action;
1868	params.PageVersion = hdr->PageVersion;
1869	params.PageLength = hdr->PageLength;
1870	params.PageNumber = hdr->PageNumber;
1871	params.PageAddress = PageAddress;
1872#if	0
1873	/* Restore stripped out attributes */
1874	hdr->PageType |= hdr_attr;
1875	params.PageType = hdr->PageType & MPI_CONFIG_PAGETYPE_MASK;
1876#else
1877	params.PageType = hdr->PageType;
1878#endif
1879	error = mpt_issue_cfg_req(mpt, req, &params,
1880				  req->req_pbuf + MPT_RQSL(mpt),
1881				  len, sleep_ok, timeout_ms);
1882	if (error != 0) {
1883		mpt_prt(mpt, "mpt_write_cfg_page timed out\n");
1884		return (-1);
1885	}
1886
1887        if ((req->IOCStatus & MPI_IOCSTATUS_MASK) != MPI_IOCSTATUS_SUCCESS) {
1888		mpt_prt(mpt, "mpt_write_cfg_page: Config Info Status %x\n",
1889			req->IOCStatus);
1890		mpt_free_request(mpt, req);
1891		return (-1);
1892	}
1893	mpt_free_request(mpt, req);
1894	return (0);
1895}
1896
1897/*
1898 * Read IOC configuration information
1899 */
1900static int
1901mpt_read_config_info_ioc(struct mpt_softc *mpt)
1902{
1903	CONFIG_PAGE_HEADER hdr;
1904	struct mpt_raid_volume *mpt_raid;
1905	int rv;
1906	int i;
1907	size_t len;
1908
1909	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
1910		2, 0, &hdr, FALSE, 5000);
1911	/*
1912	 * If it's an invalid page, so what? Not a supported function....
1913	 */
1914	if (rv == EINVAL) {
1915		return (0);
1916	}
1917	if (rv) {
1918		return (rv);
1919	}
1920
1921	mpt_lprt(mpt, MPT_PRT_DEBUG,
1922	    "IOC Page 2 Header: Version %x len %x PageNumber %x PageType %x\n",
1923	    hdr.PageVersion, hdr.PageLength << 2,
1924	    hdr.PageNumber, hdr.PageType);
1925
1926	len = hdr.PageLength * sizeof(uint32_t);
1927	mpt->ioc_page2 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1928	if (mpt->ioc_page2 == NULL) {
1929		mpt_prt(mpt, "unable to allocate memory for IOC page 2\n");
1930		mpt_raid_free_mem(mpt);
1931		return (ENOMEM);
1932	}
1933	memcpy(&mpt->ioc_page2->Header, &hdr, sizeof(hdr));
1934	rv = mpt_read_cur_cfg_page(mpt, 0,
1935	    &mpt->ioc_page2->Header, len, FALSE, 5000);
1936	if (rv) {
1937		mpt_prt(mpt, "failed to read IOC Page 2\n");
1938		mpt_raid_free_mem(mpt);
1939		return (EIO);
1940	}
1941	mpt2host_config_page_ioc2(mpt->ioc_page2);
1942
1943	if (mpt->ioc_page2->CapabilitiesFlags != 0) {
1944		uint32_t mask;
1945
1946		mpt_prt(mpt, "Capabilities: (");
1947		for (mask = 1; mask != 0; mask <<= 1) {
1948			if ((mpt->ioc_page2->CapabilitiesFlags & mask) == 0) {
1949				continue;
1950			}
1951			switch (mask) {
1952			case MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT:
1953				mpt_prtc(mpt, " RAID-0");
1954				break;
1955			case MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT:
1956				mpt_prtc(mpt, " RAID-1E");
1957				break;
1958			case MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT:
1959				mpt_prtc(mpt, " RAID-1");
1960				break;
1961			case MPI_IOCPAGE2_CAP_FLAGS_SES_SUPPORT:
1962				mpt_prtc(mpt, " SES");
1963				break;
1964			case MPI_IOCPAGE2_CAP_FLAGS_SAFTE_SUPPORT:
1965				mpt_prtc(mpt, " SAFTE");
1966				break;
1967			case MPI_IOCPAGE2_CAP_FLAGS_CROSS_CHANNEL_SUPPORT:
1968				mpt_prtc(mpt, " Multi-Channel-Arrays");
1969			default:
1970				break;
1971			}
1972		}
1973		mpt_prtc(mpt, " )\n");
1974		if ((mpt->ioc_page2->CapabilitiesFlags
1975		   & (MPI_IOCPAGE2_CAP_FLAGS_IS_SUPPORT
1976		    | MPI_IOCPAGE2_CAP_FLAGS_IME_SUPPORT
1977		    | MPI_IOCPAGE2_CAP_FLAGS_IM_SUPPORT)) != 0) {
1978			mpt_prt(mpt, "%d Active Volume%s(%d Max)\n",
1979				mpt->ioc_page2->NumActiveVolumes,
1980				mpt->ioc_page2->NumActiveVolumes != 1
1981			      ? "s " : " ",
1982				mpt->ioc_page2->MaxVolumes);
1983			mpt_prt(mpt, "%d Hidden Drive Member%s(%d Max)\n",
1984				mpt->ioc_page2->NumActivePhysDisks,
1985				mpt->ioc_page2->NumActivePhysDisks != 1
1986			      ? "s " : " ",
1987				mpt->ioc_page2->MaxPhysDisks);
1988		}
1989	}
1990
1991	len = mpt->ioc_page2->MaxVolumes * sizeof(struct mpt_raid_volume);
1992	mpt->raid_volumes = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
1993	if (mpt->raid_volumes == NULL) {
1994		mpt_prt(mpt, "Could not allocate RAID volume data\n");
1995		mpt_raid_free_mem(mpt);
1996		return (ENOMEM);
1997	}
1998
1999	/*
2000	 * Copy critical data out of ioc_page2 so that we can
2001	 * safely refresh the page without windows of unreliable
2002	 * data.
2003	 */
2004	mpt->raid_max_volumes =  mpt->ioc_page2->MaxVolumes;
2005
2006	len = sizeof(*mpt->raid_volumes->config_page) +
2007	    (sizeof (RAID_VOL0_PHYS_DISK) * (mpt->ioc_page2->MaxPhysDisks - 1));
2008	for (i = 0; i < mpt->ioc_page2->MaxVolumes; i++) {
2009		mpt_raid = &mpt->raid_volumes[i];
2010		mpt_raid->config_page =
2011		    malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2012		if (mpt_raid->config_page == NULL) {
2013			mpt_prt(mpt, "Could not allocate RAID page data\n");
2014			mpt_raid_free_mem(mpt);
2015			return (ENOMEM);
2016		}
2017	}
2018	mpt->raid_page0_len = len;
2019
2020	len = mpt->ioc_page2->MaxPhysDisks * sizeof(struct mpt_raid_disk);
2021	mpt->raid_disks = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2022	if (mpt->raid_disks == NULL) {
2023		mpt_prt(mpt, "Could not allocate RAID disk data\n");
2024		mpt_raid_free_mem(mpt);
2025		return (ENOMEM);
2026	}
2027	mpt->raid_max_disks =  mpt->ioc_page2->MaxPhysDisks;
2028
2029	/*
2030	 * Load page 3.
2031	 */
2032	rv = mpt_read_cfg_header(mpt, MPI_CONFIG_PAGETYPE_IOC,
2033	    3, 0, &hdr, FALSE, 5000);
2034	if (rv) {
2035		mpt_raid_free_mem(mpt);
2036		return (EIO);
2037	}
2038
2039	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC Page 3 Header: %x %x %x %x\n",
2040	    hdr.PageVersion, hdr.PageLength, hdr.PageNumber, hdr.PageType);
2041
2042	len = hdr.PageLength * sizeof(uint32_t);
2043	mpt->ioc_page3 = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2044	if (mpt->ioc_page3 == NULL) {
2045		mpt_prt(mpt, "unable to allocate memory for IOC page 3\n");
2046		mpt_raid_free_mem(mpt);
2047		return (ENOMEM);
2048	}
2049	memcpy(&mpt->ioc_page3->Header, &hdr, sizeof(hdr));
2050	rv = mpt_read_cur_cfg_page(mpt, 0,
2051	    &mpt->ioc_page3->Header, len, FALSE, 5000);
2052	if (rv) {
2053		mpt_raid_free_mem(mpt);
2054		return (EIO);
2055	}
2056	mpt2host_config_page_ioc3(mpt->ioc_page3);
2057	mpt_raid_wakeup(mpt);
2058	return (0);
2059}
2060
2061/*
2062 * Enable IOC port
2063 */
2064static int
2065mpt_send_port_enable(struct mpt_softc *mpt, int port)
2066{
2067	request_t	*req;
2068	MSG_PORT_ENABLE *enable_req;
2069	int		 error;
2070
2071	req = mpt_get_request(mpt, /*sleep_ok*/FALSE);
2072	if (req == NULL)
2073		return (-1);
2074
2075	enable_req = req->req_vbuf;
2076	memset(enable_req, 0,  MPT_RQSL(mpt));
2077
2078	enable_req->Function   = MPI_FUNCTION_PORT_ENABLE;
2079	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_CONFIG);
2080	enable_req->PortNumber = port;
2081
2082	mpt_check_doorbell(mpt);
2083	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabling port %d\n", port);
2084
2085	mpt_send_cmd(mpt, req);
2086	error = mpt_wait_req(mpt, req, REQ_STATE_DONE, REQ_STATE_DONE,
2087	    FALSE, (mpt->is_sas || mpt->is_fc)? 30000 : 3000);
2088	if (error != 0) {
2089		mpt_prt(mpt, "port %d enable timed out\n", port);
2090		return (-1);
2091	}
2092	mpt_free_request(mpt, req);
2093	mpt_lprt(mpt, MPT_PRT_DEBUG, "enabled port %d\n", port);
2094	return (0);
2095}
2096
2097/*
2098 * Enable/Disable asynchronous event reporting.
2099 */
2100static int
2101mpt_send_event_request(struct mpt_softc *mpt, int onoff)
2102{
2103	request_t *req;
2104	MSG_EVENT_NOTIFY *enable_req;
2105
2106	req = mpt_get_request(mpt, FALSE);
2107	if (req == NULL) {
2108		return (ENOMEM);
2109	}
2110	enable_req = req->req_vbuf;
2111	memset(enable_req, 0, sizeof *enable_req);
2112
2113	enable_req->Function   = MPI_FUNCTION_EVENT_NOTIFICATION;
2114	enable_req->MsgContext = htole32(req->index | MPT_REPLY_HANDLER_EVENTS);
2115	enable_req->Switch     = onoff;
2116
2117	mpt_check_doorbell(mpt);
2118	mpt_lprt(mpt, MPT_PRT_DEBUG, "%sabling async events\n",
2119	    onoff ? "en" : "dis");
2120	/*
2121	 * Send the command off, but don't wait for it.
2122	 */
2123	mpt_send_cmd(mpt, req);
2124	return (0);
2125}
2126
2127/*
2128 * Un-mask the interrupts on the chip.
2129 */
2130void
2131mpt_enable_ints(struct mpt_softc *mpt)
2132{
2133
2134	/* Unmask every thing except door bell int */
2135	mpt_write(mpt, MPT_OFFSET_INTR_MASK, MPT_INTR_DB_MASK);
2136}
2137
2138/*
2139 * Mask the interrupts on the chip.
2140 */
2141void
2142mpt_disable_ints(struct mpt_softc *mpt)
2143{
2144
2145	/* Mask all interrupts */
2146	mpt_write(mpt, MPT_OFFSET_INTR_MASK,
2147	    MPT_INTR_REPLY_MASK | MPT_INTR_DB_MASK);
2148}
2149
2150static void
2151mpt_sysctl_attach(struct mpt_softc *mpt)
2152{
2153#if __FreeBSD_version >= 500000
2154	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(mpt->dev);
2155	struct sysctl_oid *tree = device_get_sysctl_tree(mpt->dev);
2156
2157	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2158		       "debug", CTLFLAG_RW, &mpt->verbose, 0,
2159		       "Debugging/Verbose level");
2160	SYSCTL_ADD_UINT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2161		       "role", CTLFLAG_RD, &mpt->role, 0,
2162		       "HBA role");
2163#ifdef	MPT_TEST_MULTIPATH
2164	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
2165		       "failure_id", CTLFLAG_RW, &mpt->failure_id, -1,
2166		       "Next Target to Fail");
2167#endif
2168#endif
2169}
2170
2171int
2172mpt_attach(struct mpt_softc *mpt)
2173{
2174	struct mpt_personality *pers;
2175	int i;
2176	int error;
2177
2178	mpt_core_attach(mpt);
2179	mpt_core_enable(mpt);
2180
2181	TAILQ_INSERT_TAIL(&mpt_tailq, mpt, links);
2182	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2183		pers = mpt_personalities[i];
2184		if (pers == NULL) {
2185			continue;
2186		}
2187		if (pers->probe(mpt) == 0) {
2188			error = pers->attach(mpt);
2189			if (error != 0) {
2190				mpt_detach(mpt);
2191				return (error);
2192			}
2193			mpt->mpt_pers_mask |= (0x1 << pers->id);
2194			pers->use_count++;
2195		}
2196	}
2197
2198	/*
2199	 * Now that we've attached everything, do the enable function
2200	 * for all of the personalities. This allows the personalities
2201	 * to do setups that are appropriate for them prior to enabling
2202	 * any ports.
2203	 */
2204	for (i = 0; i < MPT_MAX_PERSONALITIES; i++) {
2205		pers = mpt_personalities[i];
2206		if (pers != NULL  && MPT_PERS_ATTACHED(pers, mpt) != 0) {
2207			error = pers->enable(mpt);
2208			if (error != 0) {
2209				mpt_prt(mpt, "personality %s attached but would"
2210				    " not enable (%d)\n", pers->name, error);
2211				mpt_detach(mpt);
2212				return (error);
2213			}
2214		}
2215	}
2216	return (0);
2217}
2218
2219int
2220mpt_shutdown(struct mpt_softc *mpt)
2221{
2222	struct mpt_personality *pers;
2223
2224	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2225		pers->shutdown(mpt);
2226	}
2227	return (0);
2228}
2229
2230int
2231mpt_detach(struct mpt_softc *mpt)
2232{
2233	struct mpt_personality *pers;
2234
2235	MPT_PERS_FOREACH_REVERSE(mpt, pers) {
2236		pers->detach(mpt);
2237		mpt->mpt_pers_mask &= ~(0x1 << pers->id);
2238		pers->use_count--;
2239	}
2240	TAILQ_REMOVE(&mpt_tailq, mpt, links);
2241	return (0);
2242}
2243
2244static int
2245mpt_core_load(struct mpt_personality *pers)
2246{
2247	int i;
2248
2249	/*
2250	 * Setup core handlers and insert the default handler
2251	 * into all "empty slots".
2252	 */
2253	for (i = 0; i < MPT_NUM_REPLY_HANDLERS; i++) {
2254		mpt_reply_handlers[i] = mpt_default_reply_handler;
2255	}
2256
2257	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_EVENTS)] =
2258	    mpt_event_reply_handler;
2259	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_CONFIG)] =
2260	    mpt_config_reply_handler;
2261	mpt_reply_handlers[MPT_CBI(MPT_REPLY_HANDLER_HANDSHAKE)] =
2262	    mpt_handshake_reply_handler;
2263	return (0);
2264}
2265
2266/*
2267 * Initialize per-instance driver data and perform
2268 * initial controller configuration.
2269 */
2270static int
2271mpt_core_attach(struct mpt_softc *mpt)
2272{
2273        int val, error;
2274
2275	LIST_INIT(&mpt->ack_frames);
2276	/* Put all request buffers on the free list */
2277	TAILQ_INIT(&mpt->request_pending_list);
2278	TAILQ_INIT(&mpt->request_free_list);
2279	TAILQ_INIT(&mpt->request_timeout_list);
2280	for (val = 0; val < MPT_MAX_LUNS; val++) {
2281		STAILQ_INIT(&mpt->trt[val].atios);
2282		STAILQ_INIT(&mpt->trt[val].inots);
2283	}
2284	STAILQ_INIT(&mpt->trt_wildcard.atios);
2285	STAILQ_INIT(&mpt->trt_wildcard.inots);
2286#ifdef	MPT_TEST_MULTIPATH
2287	mpt->failure_id = -1;
2288#endif
2289	mpt->scsi_tgt_handler_id = MPT_HANDLER_ID_NONE;
2290	mpt_sysctl_attach(mpt);
2291	mpt_lprt(mpt, MPT_PRT_DEBUG, "doorbell req = %s\n",
2292	    mpt_ioc_diag(mpt_read(mpt, MPT_OFFSET_DOORBELL)));
2293
2294	MPT_LOCK(mpt);
2295	error = mpt_configure_ioc(mpt, 0, 0);
2296	MPT_UNLOCK(mpt);
2297
2298	return (error);
2299}
2300
2301static int
2302mpt_core_enable(struct mpt_softc *mpt)
2303{
2304
2305	/*
2306	 * We enter with the IOC enabled, but async events
2307	 * not enabled, ports not enabled and interrupts
2308	 * not enabled.
2309	 */
2310	MPT_LOCK(mpt);
2311
2312	/*
2313	 * Enable asynchronous event reporting- all personalities
2314	 * have attached so that they should be able to now field
2315	 * async events.
2316	 */
2317	mpt_send_event_request(mpt, 1);
2318
2319	/*
2320	 * Catch any pending interrupts
2321	 *
2322	 * This seems to be crucial- otherwise
2323	 * the portenable below times out.
2324	 */
2325	mpt_intr(mpt);
2326
2327	/*
2328	 * Enable Interrupts
2329	 */
2330	mpt_enable_ints(mpt);
2331
2332	/*
2333	 * Catch any pending interrupts
2334	 *
2335	 * This seems to be crucial- otherwise
2336	 * the portenable below times out.
2337	 */
2338	mpt_intr(mpt);
2339
2340	/*
2341	 * Enable the port.
2342	 */
2343	if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2344		mpt_prt(mpt, "failed to enable port 0\n");
2345		MPT_UNLOCK(mpt);
2346		return (ENXIO);
2347	}
2348	MPT_UNLOCK(mpt);
2349	return (0);
2350}
2351
2352static void
2353mpt_core_shutdown(struct mpt_softc *mpt)
2354{
2355
2356	mpt_disable_ints(mpt);
2357}
2358
2359static void
2360mpt_core_detach(struct mpt_softc *mpt)
2361{
2362	int val;
2363
2364	/*
2365	 * XXX: FREE MEMORY
2366	 */
2367	mpt_disable_ints(mpt);
2368
2369	/* Make sure no request has pending timeouts. */
2370	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2371		request_t *req = &mpt->request_pool[val];
2372		mpt_callout_drain(mpt, &req->callout);
2373	}
2374
2375	mpt_dma_buf_free(mpt);
2376}
2377
2378static int
2379mpt_core_unload(struct mpt_personality *pers)
2380{
2381
2382	/* Unload is always successful. */
2383	return (0);
2384}
2385
2386#define FW_UPLOAD_REQ_SIZE				\
2387	(sizeof(MSG_FW_UPLOAD) - sizeof(SGE_MPI_UNION)	\
2388       + sizeof(FW_UPLOAD_TCSGE) + sizeof(SGE_SIMPLE32))
2389
2390static int
2391mpt_upload_fw(struct mpt_softc *mpt)
2392{
2393	uint8_t fw_req_buf[FW_UPLOAD_REQ_SIZE];
2394	MSG_FW_UPLOAD_REPLY fw_reply;
2395	MSG_FW_UPLOAD *fw_req;
2396	FW_UPLOAD_TCSGE *tsge;
2397	SGE_SIMPLE32 *sge;
2398	uint32_t flags;
2399	int error;
2400
2401	memset(&fw_req_buf, 0, sizeof(fw_req_buf));
2402	fw_req = (MSG_FW_UPLOAD *)fw_req_buf;
2403	fw_req->ImageType = MPI_FW_UPLOAD_ITYPE_FW_IOC_MEM;
2404	fw_req->Function = MPI_FUNCTION_FW_UPLOAD;
2405	fw_req->MsgContext = htole32(MPT_REPLY_HANDLER_HANDSHAKE);
2406	tsge = (FW_UPLOAD_TCSGE *)&fw_req->SGL;
2407	tsge->DetailsLength = 12;
2408	tsge->Flags = MPI_SGE_FLAGS_TRANSACTION_ELEMENT;
2409	tsge->ImageSize = htole32(mpt->fw_image_size);
2410	sge = (SGE_SIMPLE32 *)(tsge + 1);
2411	flags = (MPI_SGE_FLAGS_LAST_ELEMENT | MPI_SGE_FLAGS_END_OF_BUFFER
2412	      | MPI_SGE_FLAGS_END_OF_LIST | MPI_SGE_FLAGS_SIMPLE_ELEMENT
2413	      | MPI_SGE_FLAGS_32_BIT_ADDRESSING | MPI_SGE_FLAGS_IOC_TO_HOST);
2414	flags <<= MPI_SGE_FLAGS_SHIFT;
2415	sge->FlagsLength = htole32(flags | mpt->fw_image_size);
2416	sge->Address = htole32(mpt->fw_phys);
2417	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREREAD);
2418	error = mpt_send_handshake_cmd(mpt, sizeof(fw_req_buf), &fw_req_buf);
2419	if (error)
2420		return(error);
2421	error = mpt_recv_handshake_reply(mpt, sizeof(fw_reply), &fw_reply);
2422	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTREAD);
2423	return (error);
2424}
2425
2426static void
2427mpt_diag_outsl(struct mpt_softc *mpt, uint32_t addr,
2428	       uint32_t *data, bus_size_t len)
2429{
2430	uint32_t *data_end;
2431
2432	data_end = data + (roundup2(len, sizeof(uint32_t)) / 4);
2433	if (mpt->is_sas) {
2434		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2435	}
2436	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, addr);
2437	while (data != data_end) {
2438		mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, *data);
2439		data++;
2440	}
2441	if (mpt->is_sas) {
2442		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2443	}
2444}
2445
2446static int
2447mpt_download_fw(struct mpt_softc *mpt)
2448{
2449	MpiFwHeader_t *fw_hdr;
2450	int error;
2451	uint32_t ext_offset;
2452	uint32_t data;
2453
2454	mpt_prt(mpt, "Downloading Firmware - Image Size %d\n",
2455		mpt->fw_image_size);
2456
2457	error = mpt_enable_diag_mode(mpt);
2458	if (error != 0) {
2459		mpt_prt(mpt, "Could not enter diagnostic mode!\n");
2460		return (EIO);
2461	}
2462
2463	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC,
2464		  MPI_DIAG_RW_ENABLE|MPI_DIAG_DISABLE_ARM);
2465
2466	fw_hdr = (MpiFwHeader_t *)mpt->fw_image;
2467	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_PREWRITE);
2468	mpt_diag_outsl(mpt, fw_hdr->LoadStartAddress, (uint32_t*)fw_hdr,
2469		       fw_hdr->ImageSize);
2470	bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap, BUS_DMASYNC_POSTWRITE);
2471
2472	ext_offset = fw_hdr->NextImageHeaderOffset;
2473	while (ext_offset != 0) {
2474		MpiExtImageHeader_t *ext;
2475
2476		ext = (MpiExtImageHeader_t *)((uintptr_t)fw_hdr + ext_offset);
2477		ext_offset = ext->NextImageHeaderOffset;
2478		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2479		    BUS_DMASYNC_PREWRITE);
2480		mpt_diag_outsl(mpt, ext->LoadStartAddress, (uint32_t*)ext,
2481			       ext->ImageSize);
2482		bus_dmamap_sync(mpt->fw_dmat, mpt->fw_dmap,
2483		    BUS_DMASYNC_POSTWRITE);
2484	}
2485
2486	if (mpt->is_sas) {
2487		pci_enable_io(mpt->dev, SYS_RES_IOPORT);
2488	}
2489	/* Setup the address to jump to on reset. */
2490	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, fw_hdr->IopResetRegAddr);
2491	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, fw_hdr->IopResetVectorValue);
2492
2493	/*
2494	 * The controller sets the "flash bad" status after attempting
2495	 * to auto-boot from flash.  Clear the status so that the controller
2496	 * will continue the boot process with our newly installed firmware.
2497	 */
2498	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2499	data = mpt_pio_read(mpt, MPT_OFFSET_DIAG_DATA) | MPT_DIAG_MEM_CFG_BADFL;
2500	mpt_pio_write(mpt, MPT_OFFSET_DIAG_ADDR, MPT_DIAG_MEM_CFG_BASE);
2501	mpt_pio_write(mpt, MPT_OFFSET_DIAG_DATA, data);
2502
2503	if (mpt->is_sas) {
2504		pci_disable_io(mpt->dev, SYS_RES_IOPORT);
2505	}
2506
2507	/*
2508	 * Re-enable the processor and clear the boot halt flag.
2509	 */
2510	data = mpt_read(mpt, MPT_OFFSET_DIAGNOSTIC);
2511	data &= ~(MPI_DIAG_PREVENT_IOC_BOOT|MPI_DIAG_DISABLE_ARM);
2512	mpt_write(mpt, MPT_OFFSET_DIAGNOSTIC, data);
2513
2514	mpt_disable_diag_mode(mpt);
2515	return (0);
2516}
2517
2518static int
2519mpt_dma_buf_alloc(struct mpt_softc *mpt)
2520{
2521	struct mpt_map_info mi;
2522	uint8_t *vptr;
2523	uint32_t pptr, end;
2524	int i, error;
2525
2526	/* Create a child tag for data buffers */
2527	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, 1,
2528	    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR,
2529	    NULL, NULL, (mpt->max_cam_seg_cnt - 1) * PAGE_SIZE,
2530	    mpt->max_cam_seg_cnt, BUS_SPACE_MAXSIZE_32BIT, 0,
2531	    &mpt->buffer_dmat) != 0) {
2532		mpt_prt(mpt, "cannot create a dma tag for data buffers\n");
2533		return (1);
2534	}
2535
2536	/* Create a child tag for request buffers */
2537	if (mpt_dma_tag_create(mpt, mpt->parent_dmat, PAGE_SIZE, 0,
2538	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR,
2539	    NULL, NULL, MPT_REQ_MEM_SIZE(mpt), 1, BUS_SPACE_MAXSIZE_32BIT, 0,
2540	    &mpt->request_dmat) != 0) {
2541		mpt_prt(mpt, "cannot create a dma tag for requests\n");
2542		return (1);
2543	}
2544
2545	/* Allocate some DMA accessible memory for requests */
2546	if (bus_dmamem_alloc(mpt->request_dmat, (void **)&mpt->request,
2547	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT, &mpt->request_dmap) != 0) {
2548		mpt_prt(mpt, "cannot allocate %d bytes of request memory\n",
2549		    MPT_REQ_MEM_SIZE(mpt));
2550		return (1);
2551	}
2552
2553	mi.mpt = mpt;
2554	mi.error = 0;
2555
2556	/* Load and lock it into "bus space" */
2557	bus_dmamap_load(mpt->request_dmat, mpt->request_dmap, mpt->request,
2558	    MPT_REQ_MEM_SIZE(mpt), mpt_map_rquest, &mi, 0);
2559
2560	if (mi.error) {
2561		mpt_prt(mpt, "error %d loading dma map for DMA request queue\n",
2562		    mi.error);
2563		return (1);
2564	}
2565	mpt->request_phys = mi.phys;
2566
2567	/*
2568	 * Now create per-request dma maps
2569	 */
2570	i = 0;
2571	pptr =  mpt->request_phys;
2572	vptr =  mpt->request;
2573	end = pptr + MPT_REQ_MEM_SIZE(mpt);
2574	while(pptr < end) {
2575		request_t *req = &mpt->request_pool[i];
2576		req->index = i++;
2577
2578		/* Store location of Request Data */
2579		req->req_pbuf = pptr;
2580		req->req_vbuf = vptr;
2581
2582		pptr += MPT_REQUEST_AREA;
2583		vptr += MPT_REQUEST_AREA;
2584
2585		req->sense_pbuf = (pptr - MPT_SENSE_SIZE);
2586		req->sense_vbuf = (vptr - MPT_SENSE_SIZE);
2587
2588		error = bus_dmamap_create(mpt->buffer_dmat, 0, &req->dmap);
2589		if (error) {
2590			mpt_prt(mpt, "error %d creating per-cmd DMA maps\n",
2591			    error);
2592			return (1);
2593		}
2594	}
2595
2596	return (0);
2597}
2598
2599static void
2600mpt_dma_buf_free(struct mpt_softc *mpt)
2601{
2602	int i;
2603
2604	if (mpt->request_dmat == 0) {
2605		mpt_lprt(mpt, MPT_PRT_DEBUG, "already released dma memory\n");
2606		return;
2607	}
2608	for (i = 0; i < MPT_MAX_REQUESTS(mpt); i++) {
2609		bus_dmamap_destroy(mpt->buffer_dmat, mpt->request_pool[i].dmap);
2610	}
2611	bus_dmamap_unload(mpt->request_dmat, mpt->request_dmap);
2612	bus_dmamem_free(mpt->request_dmat, mpt->request, mpt->request_dmap);
2613	bus_dma_tag_destroy(mpt->request_dmat);
2614	mpt->request_dmat = 0;
2615	bus_dma_tag_destroy(mpt->buffer_dmat);
2616}
2617
2618/*
2619 * Allocate/Initialize data structures for the controller.  Called
2620 * once at instance startup.
2621 */
2622static int
2623mpt_configure_ioc(struct mpt_softc *mpt, int tn, int needreset)
2624{
2625	PTR_MSG_PORT_FACTS_REPLY pfp;
2626	int error, port, val;
2627	size_t len;
2628
2629	if (tn == MPT_MAX_TRYS) {
2630		return (-1);
2631	}
2632
2633	/*
2634	 * No need to reset if the IOC is already in the READY state.
2635	 *
2636	 * Force reset if initialization failed previously.
2637	 * Note that a hard_reset of the second channel of a '929
2638	 * will stop operation of the first channel.  Hopefully, if the
2639	 * first channel is ok, the second will not require a hard
2640	 * reset.
2641	 */
2642	if (needreset || MPT_STATE(mpt_rd_db(mpt)) != MPT_DB_STATE_READY) {
2643		if (mpt_reset(mpt, FALSE) != MPT_OK) {
2644			return (mpt_configure_ioc(mpt, tn++, 1));
2645		}
2646		needreset = 0;
2647	}
2648
2649	if (mpt_get_iocfacts(mpt, &mpt->ioc_facts) != MPT_OK) {
2650		mpt_prt(mpt, "mpt_get_iocfacts failed\n");
2651		return (mpt_configure_ioc(mpt, tn++, 1));
2652	}
2653	mpt2host_iocfacts_reply(&mpt->ioc_facts);
2654
2655	mpt_prt(mpt, "MPI Version=%d.%d.%d.%d\n",
2656	    mpt->ioc_facts.MsgVersion >> 8,
2657	    mpt->ioc_facts.MsgVersion & 0xFF,
2658	    mpt->ioc_facts.HeaderVersion >> 8,
2659	    mpt->ioc_facts.HeaderVersion & 0xFF);
2660
2661	/*
2662	 * Now that we know request frame size, we can calculate
2663	 * the actual (reasonable) segment limit for read/write I/O.
2664	 *
2665	 * This limit is constrained by:
2666	 *
2667	 *  + The size of each area we allocate per command (and how
2668	 *    many chain segments we can fit into it).
2669	 *  + The total number of areas we've set up.
2670	 *  + The actual chain depth the card will allow.
2671	 *
2672	 * The first area's segment count is limited by the I/O request
2673	 * at the head of it. We cannot allocate realistically more
2674	 * than MPT_MAX_REQUESTS areas. Therefore, to account for both
2675	 * conditions, we'll just start out with MPT_MAX_REQUESTS-2.
2676	 *
2677	 */
2678	/* total number of request areas we (can) allocate */
2679	mpt->max_seg_cnt = MPT_MAX_REQUESTS(mpt) - 2;
2680
2681	/* converted to the number of chain areas possible */
2682	mpt->max_seg_cnt *= MPT_NRFM(mpt);
2683
2684	/* limited by the number of chain areas the card will support */
2685	if (mpt->max_seg_cnt > mpt->ioc_facts.MaxChainDepth) {
2686		mpt_lprt(mpt, MPT_PRT_INFO,
2687		    "chain depth limited to %u (from %u)\n",
2688		    mpt->ioc_facts.MaxChainDepth, mpt->max_seg_cnt);
2689		mpt->max_seg_cnt = mpt->ioc_facts.MaxChainDepth;
2690	}
2691
2692	/* converted to the number of simple sges in chain segments. */
2693	mpt->max_seg_cnt *= (MPT_NSGL(mpt) - 1);
2694
2695	/*
2696	 * Use this as the basis for reporting the maximum I/O size to CAM.
2697	 */
2698	mpt->max_cam_seg_cnt = min(mpt->max_seg_cnt, (MAXPHYS / PAGE_SIZE) + 1);
2699
2700	error = mpt_dma_buf_alloc(mpt);
2701	if (error != 0) {
2702		mpt_prt(mpt, "mpt_dma_buf_alloc() failed!\n");
2703		return (EIO);
2704	}
2705
2706	for (val = 0; val < MPT_MAX_REQUESTS(mpt); val++) {
2707		request_t *req = &mpt->request_pool[val];
2708		req->state = REQ_STATE_ALLOCATED;
2709		mpt_callout_init(mpt, &req->callout);
2710		mpt_free_request(mpt, req);
2711	}
2712
2713	mpt_lprt(mpt, MPT_PRT_INFO, "Maximum Segment Count: %u, Maximum "
2714		 "CAM Segment Count: %u\n", mpt->max_seg_cnt,
2715		 mpt->max_cam_seg_cnt);
2716
2717	mpt_lprt(mpt, MPT_PRT_INFO, "MsgLength=%u IOCNumber = %d\n",
2718	    mpt->ioc_facts.MsgLength, mpt->ioc_facts.IOCNumber);
2719	mpt_lprt(mpt, MPT_PRT_INFO,
2720	    "IOCFACTS: GlobalCredits=%d BlockSize=%u bytes "
2721	    "Request Frame Size %u bytes Max Chain Depth %u\n",
2722	    mpt->ioc_facts.GlobalCredits, mpt->ioc_facts.BlockSize,
2723	    mpt->ioc_facts.RequestFrameSize << 2,
2724	    mpt->ioc_facts.MaxChainDepth);
2725	mpt_lprt(mpt, MPT_PRT_INFO, "IOCFACTS: Num Ports %d, FWImageSize %d, "
2726	    "Flags=%#x\n", mpt->ioc_facts.NumberOfPorts,
2727	    mpt->ioc_facts.FWImageSize, mpt->ioc_facts.Flags);
2728
2729	len = mpt->ioc_facts.NumberOfPorts * sizeof (MSG_PORT_FACTS_REPLY);
2730	mpt->port_facts = malloc(len, M_DEVBUF, M_NOWAIT | M_ZERO);
2731	if (mpt->port_facts == NULL) {
2732		mpt_prt(mpt, "unable to allocate memory for port facts\n");
2733		return (ENOMEM);
2734	}
2735
2736
2737	if ((mpt->ioc_facts.Flags & MPI_IOCFACTS_FLAGS_FW_DOWNLOAD_BOOT) &&
2738	    (mpt->fw_uploaded == 0)) {
2739		struct mpt_map_info mi;
2740
2741		/*
2742		 * In some configurations, the IOC's firmware is
2743		 * stored in a shared piece of system NVRAM that
2744		 * is only accessible via the BIOS.  In this
2745		 * case, the firmware keeps a copy of firmware in
2746		 * RAM until the OS driver retrieves it.  Once
2747		 * retrieved, we are responsible for re-downloading
2748		 * the firmware after any hard-reset.
2749		 */
2750		mpt->fw_image_size = mpt->ioc_facts.FWImageSize;
2751		error = mpt_dma_tag_create(mpt, mpt->parent_dmat, 1, 0,
2752		    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
2753		    mpt->fw_image_size, 1, mpt->fw_image_size, 0,
2754		    &mpt->fw_dmat);
2755		if (error != 0) {
2756			mpt_prt(mpt, "cannot create firmware dma tag\n");
2757			return (ENOMEM);
2758		}
2759		error = bus_dmamem_alloc(mpt->fw_dmat,
2760		    (void **)&mpt->fw_image, BUS_DMA_NOWAIT |
2761		    BUS_DMA_COHERENT, &mpt->fw_dmap);
2762		if (error != 0) {
2763			mpt_prt(mpt, "cannot allocate firmware memory\n");
2764			bus_dma_tag_destroy(mpt->fw_dmat);
2765			return (ENOMEM);
2766		}
2767		mi.mpt = mpt;
2768		mi.error = 0;
2769		bus_dmamap_load(mpt->fw_dmat, mpt->fw_dmap,
2770		    mpt->fw_image, mpt->fw_image_size, mpt_map_rquest, &mi, 0);
2771		mpt->fw_phys = mi.phys;
2772
2773		error = mpt_upload_fw(mpt);
2774		if (error != 0) {
2775			mpt_prt(mpt, "firmware upload failed.\n");
2776			bus_dmamap_unload(mpt->fw_dmat, mpt->fw_dmap);
2777			bus_dmamem_free(mpt->fw_dmat, mpt->fw_image,
2778			    mpt->fw_dmap);
2779			bus_dma_tag_destroy(mpt->fw_dmat);
2780			mpt->fw_image = NULL;
2781			return (EIO);
2782		}
2783		mpt->fw_uploaded = 1;
2784	}
2785
2786	for (port = 0; port < mpt->ioc_facts.NumberOfPorts; port++) {
2787		pfp = &mpt->port_facts[port];
2788		error = mpt_get_portfacts(mpt, 0, pfp);
2789		if (error != MPT_OK) {
2790			mpt_prt(mpt,
2791			    "mpt_get_portfacts on port %d failed\n", port);
2792			free(mpt->port_facts, M_DEVBUF);
2793			mpt->port_facts = NULL;
2794			return (mpt_configure_ioc(mpt, tn++, 1));
2795		}
2796		mpt2host_portfacts_reply(pfp);
2797
2798		if (port > 0) {
2799			error = MPT_PRT_INFO;
2800		} else {
2801			error = MPT_PRT_DEBUG;
2802		}
2803		mpt_lprt(mpt, error,
2804		    "PORTFACTS[%d]: Type %x PFlags %x IID %d MaxDev %d\n",
2805		    port, pfp->PortType, pfp->ProtocolFlags, pfp->PortSCSIID,
2806		    pfp->MaxDevices);
2807
2808	}
2809
2810	/*
2811	 * XXX: Not yet supporting more than port 0
2812	 */
2813	pfp = &mpt->port_facts[0];
2814	if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_FC) {
2815		mpt->is_fc = 1;
2816		mpt->is_sas = 0;
2817		mpt->is_spi = 0;
2818	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SAS) {
2819		mpt->is_fc = 0;
2820		mpt->is_sas = 1;
2821		mpt->is_spi = 0;
2822	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_SCSI) {
2823		mpt->is_fc = 0;
2824		mpt->is_sas = 0;
2825		mpt->is_spi = 1;
2826		if (mpt->mpt_ini_id == MPT_INI_ID_NONE)
2827			mpt->mpt_ini_id = pfp->PortSCSIID;
2828	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_ISCSI) {
2829		mpt_prt(mpt, "iSCSI not supported yet\n");
2830		return (ENXIO);
2831	} else if (pfp->PortType == MPI_PORTFACTS_PORTTYPE_INACTIVE) {
2832		mpt_prt(mpt, "Inactive Port\n");
2833		return (ENXIO);
2834	} else {
2835		mpt_prt(mpt, "unknown Port Type %#x\n", pfp->PortType);
2836		return (ENXIO);
2837	}
2838
2839	/*
2840	 * Set our role with what this port supports.
2841	 *
2842	 * Note this might be changed later in different modules
2843	 * if this is different from what is wanted.
2844	 */
2845	mpt->role = MPT_ROLE_NONE;
2846	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_INITIATOR) {
2847		mpt->role |= MPT_ROLE_INITIATOR;
2848	}
2849	if (pfp->ProtocolFlags & MPI_PORTFACTS_PROTOCOL_TARGET) {
2850		mpt->role |= MPT_ROLE_TARGET;
2851	}
2852
2853	/*
2854	 * Enable the IOC
2855	 */
2856	if (mpt_enable_ioc(mpt, 1) != MPT_OK) {
2857		mpt_prt(mpt, "unable to initialize IOC\n");
2858		return (ENXIO);
2859	}
2860
2861	/*
2862	 * Read IOC configuration information.
2863	 *
2864	 * We need this to determine whether or not we have certain
2865	 * settings for Integrated Mirroring (e.g.).
2866	 */
2867	mpt_read_config_info_ioc(mpt);
2868
2869	return (0);
2870}
2871
2872static int
2873mpt_enable_ioc(struct mpt_softc *mpt, int portenable)
2874{
2875	uint32_t pptr;
2876	int val;
2877
2878	if (mpt_send_ioc_init(mpt, MPI_WHOINIT_HOST_DRIVER) != MPT_OK) {
2879		mpt_prt(mpt, "mpt_send_ioc_init failed\n");
2880		return (EIO);
2881	}
2882
2883	mpt_lprt(mpt, MPT_PRT_DEBUG, "mpt_send_ioc_init ok\n");
2884
2885	if (mpt_wait_state(mpt, MPT_DB_STATE_RUNNING) != MPT_OK) {
2886		mpt_prt(mpt, "IOC failed to go to run state\n");
2887		return (ENXIO);
2888	}
2889	mpt_lprt(mpt, MPT_PRT_DEBUG, "IOC now at RUNSTATE\n");
2890
2891	/*
2892	 * Give it reply buffers
2893	 *
2894	 * Do *not* exceed global credits.
2895	 */
2896	for (val = 0, pptr = mpt->reply_phys;
2897	    (pptr + MPT_REPLY_SIZE) < (mpt->reply_phys + PAGE_SIZE);
2898	     pptr += MPT_REPLY_SIZE) {
2899		mpt_free_reply(mpt, pptr);
2900		if (++val == mpt->ioc_facts.GlobalCredits - 1)
2901			break;
2902	}
2903
2904
2905	/*
2906	 * Enable the port if asked. This is only done if we're resetting
2907	 * the IOC after initial startup.
2908	 */
2909	if (portenable) {
2910		/*
2911		 * Enable asynchronous event reporting
2912		 */
2913		mpt_send_event_request(mpt, 1);
2914
2915		if (mpt_send_port_enable(mpt, 0) != MPT_OK) {
2916			mpt_prt(mpt, "%s: failed to enable port 0\n", __func__);
2917			return (ENXIO);
2918		}
2919	}
2920	return (MPT_OK);
2921}
2922
2923/*
2924 * Endian Conversion Functions- only used on Big Endian machines
2925 */
2926#if	_BYTE_ORDER == _BIG_ENDIAN
2927void
2928mpt2host_sge_simple_union(SGE_SIMPLE_UNION *sge)
2929{
2930
2931	MPT_2_HOST32(sge, FlagsLength);
2932	MPT_2_HOST32(sge, u.Address64.Low);
2933	MPT_2_HOST32(sge, u.Address64.High);
2934}
2935
2936void
2937mpt2host_iocfacts_reply(MSG_IOC_FACTS_REPLY *rp)
2938{
2939
2940	MPT_2_HOST16(rp, MsgVersion);
2941	MPT_2_HOST16(rp, HeaderVersion);
2942	MPT_2_HOST32(rp, MsgContext);
2943	MPT_2_HOST16(rp, IOCExceptions);
2944	MPT_2_HOST16(rp, IOCStatus);
2945	MPT_2_HOST32(rp, IOCLogInfo);
2946	MPT_2_HOST16(rp, ReplyQueueDepth);
2947	MPT_2_HOST16(rp, RequestFrameSize);
2948	MPT_2_HOST16(rp, Reserved_0101_FWVersion);
2949	MPT_2_HOST16(rp, ProductID);
2950	MPT_2_HOST32(rp, CurrentHostMfaHighAddr);
2951	MPT_2_HOST16(rp, GlobalCredits);
2952	MPT_2_HOST32(rp, CurrentSenseBufferHighAddr);
2953	MPT_2_HOST16(rp, CurReplyFrameSize);
2954	MPT_2_HOST32(rp, FWImageSize);
2955	MPT_2_HOST32(rp, IOCCapabilities);
2956	MPT_2_HOST32(rp, FWVersion.Word);
2957	MPT_2_HOST16(rp, HighPriorityQueueDepth);
2958	MPT_2_HOST16(rp, Reserved2);
2959	mpt2host_sge_simple_union(&rp->HostPageBufferSGE);
2960	MPT_2_HOST32(rp, ReplyFifoHostSignalingAddr);
2961}
2962
2963void
2964mpt2host_portfacts_reply(MSG_PORT_FACTS_REPLY *pfp)
2965{
2966
2967	MPT_2_HOST16(pfp, Reserved);
2968	MPT_2_HOST16(pfp, Reserved1);
2969	MPT_2_HOST32(pfp, MsgContext);
2970	MPT_2_HOST16(pfp, Reserved2);
2971	MPT_2_HOST16(pfp, IOCStatus);
2972	MPT_2_HOST32(pfp, IOCLogInfo);
2973	MPT_2_HOST16(pfp, MaxDevices);
2974	MPT_2_HOST16(pfp, PortSCSIID);
2975	MPT_2_HOST16(pfp, ProtocolFlags);
2976	MPT_2_HOST16(pfp, MaxPostedCmdBuffers);
2977	MPT_2_HOST16(pfp, MaxPersistentIDs);
2978	MPT_2_HOST16(pfp, MaxLanBuckets);
2979	MPT_2_HOST16(pfp, Reserved4);
2980	MPT_2_HOST32(pfp, Reserved5);
2981}
2982
2983void
2984mpt2host_config_page_ioc2(CONFIG_PAGE_IOC_2 *ioc2)
2985{
2986	int i;
2987
2988	MPT_2_HOST32(ioc2, CapabilitiesFlags);
2989	for (i = 0; i < MPI_IOC_PAGE_2_RAID_VOLUME_MAX; i++) {
2990		MPT_2_HOST16(ioc2, RaidVolume[i].Reserved3);
2991	}
2992}
2993
2994void
2995mpt2host_config_page_ioc3(CONFIG_PAGE_IOC_3 *ioc3)
2996{
2997
2998	MPT_2_HOST16(ioc3, Reserved2);
2999}
3000
3001void
3002mpt2host_config_page_scsi_port_0(CONFIG_PAGE_SCSI_PORT_0 *sp0)
3003{
3004
3005	MPT_2_HOST32(sp0, Capabilities);
3006	MPT_2_HOST32(sp0, PhysicalInterface);
3007}
3008
3009void
3010mpt2host_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3011{
3012
3013	MPT_2_HOST32(sp1, Configuration);
3014	MPT_2_HOST32(sp1, OnBusTimerValue);
3015	MPT_2_HOST16(sp1, IDConfig);
3016}
3017
3018void
3019host2mpt_config_page_scsi_port_1(CONFIG_PAGE_SCSI_PORT_1 *sp1)
3020{
3021
3022	HOST_2_MPT32(sp1, Configuration);
3023	HOST_2_MPT32(sp1, OnBusTimerValue);
3024	HOST_2_MPT16(sp1, IDConfig);
3025}
3026
3027void
3028mpt2host_config_page_scsi_port_2(CONFIG_PAGE_SCSI_PORT_2 *sp2)
3029{
3030	int i;
3031
3032	MPT_2_HOST32(sp2, PortFlags);
3033	MPT_2_HOST32(sp2, PortSettings);
3034	for (i = 0; i < sizeof(sp2->DeviceSettings) /
3035	    sizeof(*sp2->DeviceSettings); i++) {
3036		MPT_2_HOST16(sp2, DeviceSettings[i].DeviceFlags);
3037	}
3038}
3039
3040void
3041mpt2host_config_page_scsi_device_0(CONFIG_PAGE_SCSI_DEVICE_0 *sd0)
3042{
3043
3044	MPT_2_HOST32(sd0, NegotiatedParameters);
3045	MPT_2_HOST32(sd0, Information);
3046}
3047
3048void
3049mpt2host_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3050{
3051
3052	MPT_2_HOST32(sd1, RequestedParameters);
3053	MPT_2_HOST32(sd1, Reserved);
3054	MPT_2_HOST32(sd1, Configuration);
3055}
3056
3057void
3058host2mpt_config_page_scsi_device_1(CONFIG_PAGE_SCSI_DEVICE_1 *sd1)
3059{
3060
3061	HOST_2_MPT32(sd1, RequestedParameters);
3062	HOST_2_MPT32(sd1, Reserved);
3063	HOST_2_MPT32(sd1, Configuration);
3064}
3065
3066void
3067mpt2host_config_page_fc_port_0(CONFIG_PAGE_FC_PORT_0 *fp0)
3068{
3069
3070	MPT_2_HOST32(fp0, Flags);
3071	MPT_2_HOST32(fp0, PortIdentifier);
3072	MPT_2_HOST32(fp0, WWNN.Low);
3073	MPT_2_HOST32(fp0, WWNN.High);
3074	MPT_2_HOST32(fp0, WWPN.Low);
3075	MPT_2_HOST32(fp0, WWPN.High);
3076	MPT_2_HOST32(fp0, SupportedServiceClass);
3077	MPT_2_HOST32(fp0, SupportedSpeeds);
3078	MPT_2_HOST32(fp0, CurrentSpeed);
3079	MPT_2_HOST32(fp0, MaxFrameSize);
3080	MPT_2_HOST32(fp0, FabricWWNN.Low);
3081	MPT_2_HOST32(fp0, FabricWWNN.High);
3082	MPT_2_HOST32(fp0, FabricWWPN.Low);
3083	MPT_2_HOST32(fp0, FabricWWPN.High);
3084	MPT_2_HOST32(fp0, DiscoveredPortsCount);
3085	MPT_2_HOST32(fp0, MaxInitiators);
3086}
3087
3088void
3089mpt2host_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3090{
3091
3092	MPT_2_HOST32(fp1, Flags);
3093	MPT_2_HOST32(fp1, NoSEEPROMWWNN.Low);
3094	MPT_2_HOST32(fp1, NoSEEPROMWWNN.High);
3095	MPT_2_HOST32(fp1, NoSEEPROMWWPN.Low);
3096	MPT_2_HOST32(fp1, NoSEEPROMWWPN.High);
3097}
3098
3099void
3100host2mpt_config_page_fc_port_1(CONFIG_PAGE_FC_PORT_1 *fp1)
3101{
3102
3103	HOST_2_MPT32(fp1, Flags);
3104	HOST_2_MPT32(fp1, NoSEEPROMWWNN.Low);
3105	HOST_2_MPT32(fp1, NoSEEPROMWWNN.High);
3106	HOST_2_MPT32(fp1, NoSEEPROMWWPN.Low);
3107	HOST_2_MPT32(fp1, NoSEEPROMWWPN.High);
3108}
3109
3110void
3111mpt2host_config_page_raid_vol_0(CONFIG_PAGE_RAID_VOL_0 *volp)
3112{
3113	int i;
3114
3115	MPT_2_HOST16(volp, VolumeStatus.Reserved);
3116	MPT_2_HOST16(volp, VolumeSettings.Settings);
3117	MPT_2_HOST32(volp, MaxLBA);
3118	MPT_2_HOST32(volp, MaxLBAHigh);
3119	MPT_2_HOST32(volp, StripeSize);
3120	MPT_2_HOST32(volp, Reserved2);
3121	MPT_2_HOST32(volp, Reserved3);
3122	for (i = 0; i < MPI_RAID_VOL_PAGE_0_PHYSDISK_MAX; i++) {
3123		MPT_2_HOST16(volp, PhysDisk[i].Reserved);
3124	}
3125}
3126
3127void
3128mpt2host_config_page_raid_phys_disk_0(CONFIG_PAGE_RAID_PHYS_DISK_0 *rpd0)
3129{
3130
3131	MPT_2_HOST32(rpd0, Reserved1);
3132	MPT_2_HOST16(rpd0, PhysDiskStatus.Reserved);
3133	MPT_2_HOST32(rpd0, MaxLBA);
3134	MPT_2_HOST16(rpd0, ErrorData.Reserved);
3135	MPT_2_HOST16(rpd0, ErrorData.ErrorCount);
3136	MPT_2_HOST16(rpd0, ErrorData.SmartCount);
3137}
3138
3139void
3140mpt2host_mpi_raid_vol_indicator(MPI_RAID_VOL_INDICATOR *vi)
3141{
3142
3143	MPT_2_HOST16(vi, TotalBlocks.High);
3144	MPT_2_HOST16(vi, TotalBlocks.Low);
3145	MPT_2_HOST16(vi, BlocksRemaining.High);
3146	MPT_2_HOST16(vi, BlocksRemaining.Low);
3147}
3148#endif
3149