if_gem.c revision 106937
1/*
2 * Copyright (C) 2001 Eduardo Horvath.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR  ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR  BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 *	from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
27 *
28 * $FreeBSD: head/sys/dev/gem/if_gem.c 106937 2002-11-14 23:54:55Z sam $
29 */
30
31/*
32 * Driver for Sun GEM ethernet controllers.
33 */
34
35#define	GEM_DEBUG
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/bus.h>
40#include <sys/callout.h>
41#include <sys/endian.h>
42#include <sys/mbuf.h>
43#include <sys/malloc.h>
44#include <sys/kernel.h>
45#include <sys/socket.h>
46#include <sys/sockio.h>
47
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_arp.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54
55#include <machine/bus.h>
56
57#include <dev/mii/mii.h>
58#include <dev/mii/miivar.h>
59
60#include <gem/if_gemreg.h>
61#include <gem/if_gemvar.h>
62
63#define TRIES	10000
64
65static void	gem_start(struct ifnet *);
66static void	gem_stop(struct ifnet *, int);
67static int	gem_ioctl(struct ifnet *, u_long, caddr_t);
68static void	gem_cddma_callback(void *, bus_dma_segment_t *, int, int);
69static void	gem_rxdma_callback(void *, bus_dma_segment_t *, int, int);
70static void	gem_txdma_callback(void *, bus_dma_segment_t *, int, int);
71static void	gem_tick(void *);
72static void	gem_watchdog(struct ifnet *);
73static void	gem_init(void *);
74static void	gem_init_regs(struct gem_softc *sc);
75static int	gem_ringsize(int sz);
76static int	gem_meminit(struct gem_softc *);
77static int	gem_dmamap_load_mbuf(struct gem_softc *, struct mbuf *,
78    bus_dmamap_callback_t *,  struct gem_txjob *, int);
79static void	gem_dmamap_unload_mbuf(struct gem_softc *, struct gem_txjob *);
80static void	gem_dmamap_commit_mbuf(struct gem_softc *, struct gem_txjob *);
81static void	gem_mifinit(struct gem_softc *);
82static int	gem_bitwait(struct gem_softc *sc, bus_addr_t r,
83    u_int32_t clr, u_int32_t set);
84static int	gem_reset_rx(struct gem_softc *);
85static int	gem_reset_tx(struct gem_softc *);
86static int	gem_disable_rx(struct gem_softc *);
87static int	gem_disable_tx(struct gem_softc *);
88static void	gem_rxdrain(struct gem_softc *);
89static int	gem_add_rxbuf(struct gem_softc *, int);
90static void	gem_setladrf(struct gem_softc *);
91
92struct mbuf	*gem_get(struct gem_softc *, int, int);
93static void	gem_eint(struct gem_softc *, u_int);
94static void	gem_rint(struct gem_softc *);
95#if 0
96static void	gem_rint_timeout(void *);
97#endif
98static void	gem_tint(struct gem_softc *);
99#ifdef notyet
100static void	gem_power(int, void *);
101#endif
102
103devclass_t gem_devclass;
104DRIVER_MODULE(miibus, gem, miibus_driver, miibus_devclass, 0, 0);
105MODULE_DEPEND(gem, miibus, 1, 1, 1);
106
107#ifdef GEM_DEBUG
108#define	DPRINTF(sc, x)	if ((sc)->sc_arpcom.ac_if.if_flags & IFF_DEBUG) \
109				printf x
110#include <sys/ktr.h>
111#define	KTR_GEM		KTR_CT2
112#else
113#define	DPRINTF(sc, x)	/* nothing */
114#endif
115
116#define	GEM_NSEGS GEM_NTXSEGS
117
118/*
119 * gem_attach:
120 *
121 *	Attach a Gem interface to the system.
122 */
123int
124gem_attach(sc)
125	struct gem_softc *sc;
126{
127	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
128	struct mii_softc *child;
129	int i, error;
130	u_int32_t v;
131
132	/* Make sure the chip is stopped. */
133	ifp->if_softc = sc;
134	gem_reset(sc);
135
136	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
137	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, GEM_NSEGS,
138	    BUS_SPACE_MAXSIZE_32BIT, 0, &sc->sc_pdmatag);
139	if (error)
140		return (error);
141
142	error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
143	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MAXBSIZE,
144	    GEM_NSEGS, BUS_SPACE_MAXSIZE_32BIT, BUS_DMA_ALLOCNOW,
145	    &sc->sc_dmatag);
146	if (error)
147		goto fail_0;
148
149	error = bus_dma_tag_create(sc->sc_pdmatag, PAGE_SIZE, 0,
150	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
151	    sizeof(struct gem_control_data), 1,
152	    sizeof(struct gem_control_data), BUS_DMA_ALLOCNOW,
153	    &sc->sc_cdmatag);
154	if (error)
155		goto fail_1;
156
157	/*
158	 * Allocate the control data structures, and create and load the
159	 * DMA map for it.
160	 */
161	if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
162	    (void **)&sc->sc_control_data, 0, &sc->sc_cddmamap))) {
163		device_printf(sc->sc_dev, "unable to allocate control data,"
164		    " error = %d\n", error);
165		goto fail_2;
166	}
167
168	sc->sc_cddma = 0;
169	if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
170	    sc->sc_control_data, sizeof(struct gem_control_data),
171	    gem_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
172		device_printf(sc->sc_dev, "unable to load control data DMA "
173		    "map, error = %d\n", error);
174		goto fail_3;
175	}
176
177	/*
178	 * Initialize the transmit job descriptors.
179	 */
180	STAILQ_INIT(&sc->sc_txfreeq);
181	STAILQ_INIT(&sc->sc_txdirtyq);
182
183	/*
184	 * Create the transmit buffer DMA maps.
185	 */
186	error = ENOMEM;
187	for (i = 0; i < GEM_TXQUEUELEN; i++) {
188		struct gem_txsoft *txs;
189
190		txs = &sc->sc_txsoft[i];
191		txs->txs_mbuf = NULL;
192		txs->txs_ndescs = 0;
193		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
194		    &txs->txs_dmamap)) != 0) {
195			device_printf(sc->sc_dev, "unable to create tx DMA map "
196			    "%d, error = %d\n", i, error);
197			goto fail_4;
198		}
199		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
200	}
201
202	/*
203	 * Create the receive buffer DMA maps.
204	 */
205	for (i = 0; i < GEM_NRXDESC; i++) {
206		if ((error = bus_dmamap_create(sc->sc_dmatag, 0,
207		    &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
208			device_printf(sc->sc_dev, "unable to create rx DMA map "
209			    "%d, error = %d\n", i, error);
210			goto fail_5;
211		}
212		sc->sc_rxsoft[i].rxs_mbuf = NULL;
213	}
214
215
216	gem_mifinit(sc);
217
218	if ((error = mii_phy_probe(sc->sc_dev, &sc->sc_miibus, gem_mediachange,
219	    gem_mediastatus)) != 0) {
220		device_printf(sc->sc_dev, "phy probe failed: %d\n", error);
221		goto fail_5;
222	}
223	sc->sc_mii = device_get_softc(sc->sc_miibus);
224
225	/*
226	 * From this point forward, the attachment cannot fail.  A failure
227	 * before this point releases all resources that may have been
228	 * allocated.
229	 */
230
231	/* Announce ourselves. */
232	device_printf(sc->sc_dev, "Ethernet address:");
233	for (i = 0; i < 6; i++)
234		printf("%c%02x", i > 0 ? ':' : ' ', sc->sc_arpcom.ac_enaddr[i]);
235
236	/* Get RX FIFO size */
237	sc->sc_rxfifosize = 64 *
238	    bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_FIFO_SIZE);
239	printf(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
240
241	/* Get TX FIFO size */
242	v = bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_FIFO_SIZE);
243	printf(", %uKB TX fifo\n", v / 16);
244
245	/* Initialize ifnet structure. */
246	ifp->if_softc = sc;
247	ifp->if_unit = device_get_unit(sc->sc_dev);
248	ifp->if_name = "gem";
249	ifp->if_mtu = ETHERMTU;
250	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
251	ifp->if_start = gem_start;
252	ifp->if_ioctl = gem_ioctl;
253	ifp->if_watchdog = gem_watchdog;
254	ifp->if_init = gem_init;
255	ifp->if_output = ether_output;
256	ifp->if_snd.ifq_maxlen = GEM_TXQUEUELEN;
257	/*
258	 * Walk along the list of attached MII devices and
259	 * establish an `MII instance' to `phy number'
260	 * mapping. We'll use this mapping in media change
261	 * requests to determine which phy to use to program
262	 * the MIF configuration register.
263	 */
264	for (child = LIST_FIRST(&sc->sc_mii->mii_phys); child != NULL;
265	     child = LIST_NEXT(child, mii_list)) {
266		/*
267		 * Note: we support just two PHYs: the built-in
268		 * internal device and an external on the MII
269		 * connector.
270		 */
271		if (child->mii_phy > 1 || child->mii_inst > 1) {
272			device_printf(sc->sc_dev, "cannot accomodate "
273			    "MII device %s at phy %d, instance %d\n",
274			    device_get_name(child->mii_dev),
275			    child->mii_phy, child->mii_inst);
276			continue;
277		}
278
279		sc->sc_phys[child->mii_inst] = child->mii_phy;
280	}
281
282	/*
283	 * Now select and activate the PHY we will use.
284	 *
285	 * The order of preference is External (MDI1),
286	 * Internal (MDI0), Serial Link (no MII).
287	 */
288	if (sc->sc_phys[1]) {
289#ifdef GEM_DEBUG
290		printf("using external phy\n");
291#endif
292		sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
293	} else {
294#ifdef GEM_DEBUG
295		printf("using internal phy\n");
296#endif
297		sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
298	}
299	bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_MIF_CONFIG,
300	    sc->sc_mif_config);
301	/* Attach the interface. */
302	ether_ifattach(ifp, sc->sc_arpcom.ac_enaddr);
303
304#if notyet
305	/*
306	 * Add a suspend hook to make sure we come back up after a
307	 * resume.
308	 */
309	sc->sc_powerhook = powerhook_establish(gem_power, sc);
310	if (sc->sc_powerhook == NULL)
311		device_printf(sc->sc_dev, "WARNING: unable to establish power "
312		    "hook\n");
313#endif
314
315	callout_init(&sc->sc_tick_ch, 0);
316	callout_init(&sc->sc_rx_ch, 0);
317	return (0);
318
319	/*
320	 * Free any resources we've allocated during the failed attach
321	 * attempt.  Do this in reverse order and fall through.
322	 */
323fail_5:
324	for (i = 0; i < GEM_NRXDESC; i++) {
325		if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
326			bus_dmamap_destroy(sc->sc_dmatag,
327			    sc->sc_rxsoft[i].rxs_dmamap);
328	}
329fail_4:
330	for (i = 0; i < GEM_TXQUEUELEN; i++) {
331		if (sc->sc_txsoft[i].txs_dmamap != NULL)
332			bus_dmamap_destroy(sc->sc_dmatag,
333			    sc->sc_txsoft[i].txs_dmamap);
334	}
335	bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
336fail_3:
337	bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
338	    sc->sc_cddmamap);
339fail_2:
340	bus_dma_tag_destroy(sc->sc_cdmatag);
341fail_1:
342	bus_dma_tag_destroy(sc->sc_dmatag);
343fail_0:
344	bus_dma_tag_destroy(sc->sc_pdmatag);
345	return (error);
346}
347
348static void
349gem_cddma_callback(xsc, segs, nsegs, error)
350	void *xsc;
351	bus_dma_segment_t *segs;
352	int nsegs;
353	int error;
354{
355	struct gem_softc *sc = (struct gem_softc *)xsc;
356
357	if (error != 0)
358		return;
359	if (nsegs != 1) {
360		/* can't happen... */
361		panic("gem_cddma_callback: bad control buffer segment count");
362	}
363	sc->sc_cddma = segs[0].ds_addr;
364}
365
366static void
367gem_rxdma_callback(xsc, segs, nsegs, error)
368	void *xsc;
369	bus_dma_segment_t *segs;
370	int nsegs;
371	int error;
372{
373	struct gem_rxsoft *rxs = (struct gem_rxsoft *)xsc;
374
375	if (error != 0)
376		return;
377	if (nsegs != 1) {
378		/* can't happen... */
379		panic("gem_rxdma_callback: bad control buffer segment count");
380	}
381	rxs->rxs_paddr = segs[0].ds_addr;
382}
383
384/*
385 * This is called multiple times in our version of dmamap_load_mbuf, but should
386 * be fit for a generic version that only calls it once.
387 */
388static void
389gem_txdma_callback(xsc, segs, nsegs, error)
390	void *xsc;
391	bus_dma_segment_t *segs;
392	int nsegs;
393	int error;
394{
395	struct gem_txdma *tx = (struct gem_txdma *)xsc;
396	int seg;
397
398	tx->txd_error = error;
399	if (error != 0)
400		return;
401	tx->txd_nsegs = nsegs;
402
403	/*
404	 * Initialize the transmit descriptors.
405	 */
406	for (seg = 0; seg < nsegs;
407	     seg++, tx->txd_nexttx = GEM_NEXTTX(tx->txd_nexttx)) {
408		uint64_t flags;
409
410		DPRINTF(tx->txd_sc, ("txdma_cb: mapping seg %d (txd %d), len "
411		    "%lx, addr %#lx (%#lx)\n",  seg, tx->txd_nexttx,
412		    segs[seg].ds_len, segs[seg].ds_addr,
413		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr)));
414		CTR5(KTR_GEM, "txdma_cb: mapping seg %d (txd %d), len "
415		    "%lx, addr %#lx (%#lx)",  seg, tx->txd_nexttx,
416		    segs[seg].ds_len, segs[seg].ds_addr,
417		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr));
418		/*
419		 * If this is the first descriptor we're
420		 * enqueueing, set the start of packet flag,
421		 * and the checksum stuff if we want the hardware
422		 * to do it.
423		 */
424		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_addr =
425		    GEM_DMA_WRITE(tx->txd_sc, segs[seg].ds_addr);
426		flags = segs[seg].ds_len & GEM_TD_BUFSIZE;
427		if ((tx->txd_flags & GTXD_FIRST) != 0 && seg == 0) {
428			CTR2(KTR_GEM, "txdma_cb: start of packet at seg %d, "
429			    "tx %d", seg, tx->txd_nexttx);
430			flags |= GEM_TD_START_OF_PACKET;
431			if (++tx->txd_sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
432				tx->txd_sc->sc_txwin = 0;
433				flags |= GEM_TD_INTERRUPT_ME;
434			}
435		}
436		if ((tx->txd_flags & GTXD_LAST) != 0 && seg == nsegs - 1) {
437			CTR2(KTR_GEM, "txdma_cb: end of packet at seg %d, "
438			    "tx %d", seg, tx->txd_nexttx);
439			flags |= GEM_TD_END_OF_PACKET;
440		}
441		tx->txd_sc->sc_txdescs[tx->txd_nexttx].gd_flags =
442		    GEM_DMA_WRITE(tx->txd_sc, flags);
443		tx->txd_lasttx = tx->txd_nexttx;
444	}
445}
446
447static void
448gem_tick(arg)
449	void *arg;
450{
451	struct gem_softc *sc = arg;
452	int s;
453
454	s = splnet();
455	mii_tick(sc->sc_mii);
456	splx(s);
457
458	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
459}
460
461static int
462gem_bitwait(sc, r, clr, set)
463	struct gem_softc *sc;
464	bus_addr_t r;
465	u_int32_t clr;
466	u_int32_t set;
467{
468	int i;
469	u_int32_t reg;
470
471	for (i = TRIES; i--; DELAY(100)) {
472		reg = bus_space_read_4(sc->sc_bustag, sc->sc_h, r);
473		if ((r & clr) == 0 && (r & set) == set)
474			return (1);
475	}
476	return (0);
477}
478
479void
480gem_reset(sc)
481	struct gem_softc *sc;
482{
483	bus_space_tag_t t = sc->sc_bustag;
484	bus_space_handle_t h = sc->sc_h;
485	int s;
486
487	s = splnet();
488	DPRINTF(sc, ("%s: gem_reset\n", device_get_name(sc->sc_dev)));
489	CTR1(KTR_GEM, "%s: gem_reset", device_get_name(sc->sc_dev));
490	gem_reset_rx(sc);
491	gem_reset_tx(sc);
492
493	/* Do a full reset */
494	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
495	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
496		device_printf(sc->sc_dev, "cannot reset device\n");
497	splx(s);
498}
499
500
501/*
502 * gem_rxdrain:
503 *
504 *	Drain the receive queue.
505 */
506static void
507gem_rxdrain(sc)
508	struct gem_softc *sc;
509{
510	struct gem_rxsoft *rxs;
511	int i;
512
513	for (i = 0; i < GEM_NRXDESC; i++) {
514		rxs = &sc->sc_rxsoft[i];
515		if (rxs->rxs_mbuf != NULL) {
516			bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
517			m_freem(rxs->rxs_mbuf);
518			rxs->rxs_mbuf = NULL;
519		}
520	}
521}
522
523/*
524 * Reset the whole thing.
525 */
526static void
527gem_stop(ifp, disable)
528	struct ifnet *ifp;
529	int disable;
530{
531	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
532	struct gem_txsoft *txs;
533
534	DPRINTF(sc, ("%s: gem_stop\n", device_get_name(sc->sc_dev)));
535	CTR1(KTR_GEM, "%s: gem_stop", device_get_name(sc->sc_dev));
536
537	callout_stop(&sc->sc_tick_ch);
538
539	/* XXX - Should we reset these instead? */
540	gem_disable_tx(sc);
541	gem_disable_rx(sc);
542
543	/*
544	 * Release any queued transmit buffers.
545	 */
546	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
547		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
548		if (txs->txs_ndescs != 0) {
549			bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
550			if (txs->txs_mbuf != NULL) {
551				m_freem(txs->txs_mbuf);
552				txs->txs_mbuf = NULL;
553			}
554		}
555		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
556	}
557
558	if (disable)
559		gem_rxdrain(sc);
560
561	/*
562	 * Mark the interface down and cancel the watchdog timer.
563	 */
564	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
565	ifp->if_timer = 0;
566}
567
568/*
569 * Reset the receiver
570 */
571int
572gem_reset_rx(sc)
573	struct gem_softc *sc;
574{
575	bus_space_tag_t t = sc->sc_bustag;
576	bus_space_handle_t h = sc->sc_h;
577
578	/*
579	 * Resetting while DMA is in progress can cause a bus hang, so we
580	 * disable DMA first.
581	 */
582	gem_disable_rx(sc);
583	bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
584	/* Wait till it finishes */
585	if (!gem_bitwait(sc, GEM_RX_CONFIG, 1, 0))
586		device_printf(sc->sc_dev, "cannot disable read dma\n");
587
588	/* Wait 5ms extra. */
589	DELAY(5000);
590
591	/* Finally, reset the ERX */
592	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX);
593	/* Wait till it finishes */
594	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
595		device_printf(sc->sc_dev, "cannot reset receiver\n");
596		return (1);
597	}
598	return (0);
599}
600
601
602/*
603 * Reset the transmitter
604 */
605static int
606gem_reset_tx(sc)
607	struct gem_softc *sc;
608{
609	bus_space_tag_t t = sc->sc_bustag;
610	bus_space_handle_t h = sc->sc_h;
611	int i;
612
613	/*
614	 * Resetting while DMA is in progress can cause a bus hang, so we
615	 * disable DMA first.
616	 */
617	gem_disable_tx(sc);
618	bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
619	/* Wait till it finishes */
620	if (!gem_bitwait(sc, GEM_TX_CONFIG, 1, 0))
621		device_printf(sc->sc_dev, "cannot disable read dma\n");
622
623	/* Wait 5ms extra. */
624	DELAY(5000);
625
626	/* Finally, reset the ETX */
627	bus_space_write_4(t, h, GEM_RESET, GEM_RESET_TX);
628	/* Wait till it finishes */
629	for (i = TRIES; i--; DELAY(100))
630		if ((bus_space_read_4(t, h, GEM_RESET) & GEM_RESET_TX) == 0)
631			break;
632	if (!gem_bitwait(sc, GEM_RESET, GEM_RESET_TX, 0)) {
633		device_printf(sc->sc_dev, "cannot reset receiver\n");
634		return (1);
635	}
636	return (0);
637}
638
639/*
640 * disable receiver.
641 */
642static int
643gem_disable_rx(sc)
644	struct gem_softc *sc;
645{
646	bus_space_tag_t t = sc->sc_bustag;
647	bus_space_handle_t h = sc->sc_h;
648	u_int32_t cfg;
649
650	/* Flip the enable bit */
651	cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
652	cfg &= ~GEM_MAC_RX_ENABLE;
653	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
654
655	/* Wait for it to finish */
656	return (gem_bitwait(sc, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
657}
658
659/*
660 * disable transmitter.
661 */
662static int
663gem_disable_tx(sc)
664	struct gem_softc *sc;
665{
666	bus_space_tag_t t = sc->sc_bustag;
667	bus_space_handle_t h = sc->sc_h;
668	u_int32_t cfg;
669
670	/* Flip the enable bit */
671	cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
672	cfg &= ~GEM_MAC_TX_ENABLE;
673	bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
674
675	/* Wait for it to finish */
676	return (gem_bitwait(sc, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
677}
678
679/*
680 * Initialize interface.
681 */
682static int
683gem_meminit(sc)
684	struct gem_softc *sc;
685{
686	struct gem_rxsoft *rxs;
687	int i, error;
688
689	/*
690	 * Initialize the transmit descriptor ring.
691	 */
692	memset((void *)sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
693	for (i = 0; i < GEM_NTXDESC; i++) {
694		sc->sc_txdescs[i].gd_flags = 0;
695		sc->sc_txdescs[i].gd_addr = 0;
696	}
697	GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
698	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
699	sc->sc_txfree = GEM_NTXDESC-1;
700	sc->sc_txnext = 0;
701	sc->sc_txwin = 0;
702
703	/*
704	 * Initialize the receive descriptor and receive job
705	 * descriptor rings.
706	 */
707	for (i = 0; i < GEM_NRXDESC; i++) {
708		rxs = &sc->sc_rxsoft[i];
709		if (rxs->rxs_mbuf == NULL) {
710			if ((error = gem_add_rxbuf(sc, i)) != 0) {
711				device_printf(sc->sc_dev, "unable to "
712				    "allocate or map rx buffer %d, error = "
713				    "%d\n", i, error);
714				/*
715				 * XXX Should attempt to run with fewer receive
716				 * XXX buffers instead of just failing.
717				 */
718				gem_rxdrain(sc);
719				return (1);
720			}
721		} else
722			GEM_INIT_RXDESC(sc, i);
723	}
724	sc->sc_rxptr = 0;
725
726	return (0);
727}
728
729static int
730gem_ringsize(sz)
731	int sz;
732{
733	int v = 0;
734
735	switch (sz) {
736	case 32:
737		v = GEM_RING_SZ_32;
738		break;
739	case 64:
740		v = GEM_RING_SZ_64;
741		break;
742	case 128:
743		v = GEM_RING_SZ_128;
744		break;
745	case 256:
746		v = GEM_RING_SZ_256;
747		break;
748	case 512:
749		v = GEM_RING_SZ_512;
750		break;
751	case 1024:
752		v = GEM_RING_SZ_1024;
753		break;
754	case 2048:
755		v = GEM_RING_SZ_2048;
756		break;
757	case 4096:
758		v = GEM_RING_SZ_4096;
759		break;
760	case 8192:
761		v = GEM_RING_SZ_8192;
762		break;
763	default:
764		printf("gem: invalid Receive Descriptor ring size\n");
765		break;
766	}
767	return (v);
768}
769
770/*
771 * Initialization of interface; set up initialization block
772 * and transmit/receive descriptor rings.
773 */
774static void
775gem_init(xsc)
776	void *xsc;
777{
778	struct gem_softc *sc = (struct gem_softc *)xsc;
779	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
780	bus_space_tag_t t = sc->sc_bustag;
781	bus_space_handle_t h = sc->sc_h;
782	int s;
783	u_int32_t v;
784
785	s = splnet();
786
787	DPRINTF(sc, ("%s: gem_init: calling stop\n", device_get_name(sc->sc_dev)));
788	CTR1(KTR_GEM, "%s: gem_init: calling stop", device_get_name(sc->sc_dev));
789	/*
790	 * Initialization sequence. The numbered steps below correspond
791	 * to the sequence outlined in section 6.3.5.1 in the Ethernet
792	 * Channel Engine manual (part of the PCIO manual).
793	 * See also the STP2002-STQ document from Sun Microsystems.
794	 */
795
796	/* step 1 & 2. Reset the Ethernet Channel */
797	gem_stop(&sc->sc_arpcom.ac_if, 0);
798	gem_reset(sc);
799	DPRINTF(sc, ("%s: gem_init: restarting\n", device_get_name(sc->sc_dev)));
800	CTR1(KTR_GEM, "%s: gem_init: restarting", device_get_name(sc->sc_dev));
801
802	/* Re-initialize the MIF */
803	gem_mifinit(sc);
804
805	/* Call MI reset function if any */
806	if (sc->sc_hwreset)
807		(*sc->sc_hwreset)(sc);
808
809	/* step 3. Setup data structures in host memory */
810	gem_meminit(sc);
811
812	/* step 4. TX MAC registers & counters */
813	gem_init_regs(sc);
814	/* XXX: VLAN code from NetBSD temporarily removed. */
815	bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
816            (ETHER_MAX_LEN + sizeof(struct ether_header)) | (0x2000<<16));
817
818	/* step 5. RX MAC registers & counters */
819	gem_setladrf(sc);
820
821	/* step 6 & 7. Program Descriptor Ring Base Addresses */
822	/* NOTE: we use only 32-bit DMA addresses here. */
823	bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
824	bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
825
826	bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
827	bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
828	DPRINTF(sc, ("loading rx ring %lx, tx ring %lx, cddma %lx\n",
829	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma));
830	CTR3(KTR_GEM, "loading rx ring %lx, tx ring %lx, cddma %lx",
831	    GEM_CDRXADDR(sc, 0), GEM_CDTXADDR(sc, 0), sc->sc_cddma);
832
833	/* step 8. Global Configuration & Interrupt Mask */
834	bus_space_write_4(t, h, GEM_INTMASK,
835		      ~(GEM_INTR_TX_INTME|
836			GEM_INTR_TX_EMPTY|
837			GEM_INTR_RX_DONE|GEM_INTR_RX_NOBUF|
838			GEM_INTR_RX_TAG_ERR|GEM_INTR_PCS|
839			GEM_INTR_MAC_CONTROL|GEM_INTR_MIF|
840			GEM_INTR_BERR));
841	bus_space_write_4(t, h, GEM_MAC_RX_MASK,
842			GEM_MAC_RX_DONE|GEM_MAC_RX_FRAME_CNT);
843	bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXXX */
844	bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK, 0); /* XXXX */
845
846	/* step 9. ETX Configuration: use mostly default values */
847
848	/* Enable DMA */
849	v = gem_ringsize(GEM_NTXDESC /*XXX*/);
850	bus_space_write_4(t, h, GEM_TX_CONFIG,
851		v|GEM_TX_CONFIG_TXDMA_EN|
852		((0x400<<10)&GEM_TX_CONFIG_TXFIFO_TH));
853
854	/* step 10. ERX Configuration */
855
856	/* Encode Receive Descriptor ring size: four possible values */
857	v = gem_ringsize(GEM_NRXDESC /*XXX*/);
858
859	/* Enable DMA */
860	bus_space_write_4(t, h, GEM_RX_CONFIG,
861		v|(GEM_THRSH_1024<<GEM_RX_CONFIG_FIFO_THRS_SHIFT)|
862		(2<<GEM_RX_CONFIG_FBOFF_SHFT)|GEM_RX_CONFIG_RXDMA_EN|
863		(0<<GEM_RX_CONFIG_CXM_START_SHFT));
864	/*
865	 * The following value is for an OFF Threshold of about 3/4 full
866	 * and an ON Threshold of 1/4 full.
867	 */
868	bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
869	    (3 * sc->sc_rxfifosize / 256) |
870	    (   (sc->sc_rxfifosize / 256) << 12));
871	bus_space_write_4(t, h, GEM_RX_BLANKING, (6<<12)|6);
872
873	/* step 11. Configure Media */
874	mii_mediachg(sc->sc_mii);
875
876	/* step 12. RX_MAC Configuration Register */
877	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
878	v |= GEM_MAC_RX_ENABLE;
879	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
880
881	/* step 14. Issue Transmit Pending command */
882
883	/* Call MI initialization function if any */
884	if (sc->sc_hwinit)
885		(*sc->sc_hwinit)(sc);
886
887	/* step 15.  Give the reciever a swift kick */
888	bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
889
890	/* Start the one second timer. */
891	callout_reset(&sc->sc_tick_ch, hz, gem_tick, sc);
892
893	ifp->if_flags |= IFF_RUNNING;
894	ifp->if_flags &= ~IFF_OACTIVE;
895	ifp->if_timer = 0;
896	sc->sc_ifflags = ifp->if_flags;
897	splx(s);
898}
899
900/*
901 * XXX: This is really a substitute for bus_dmamap_load_mbuf(), which FreeBSD
902 * does not yet have, with some adaptions for this driver.
903 * Some changes are mandated by the fact that multiple maps may needed to map
904 * a single mbuf.
905 * It should be removed once generic support is available.
906 *
907 * This is derived from NetBSD (syssrc/sys/arch/sparc64/sparc64/machdep.c), for
908 * a copyright notice see sparc64/sparc64/bus_machdep.c.
909 *
910 * Not every error condition is passed to the callback in this version, and the
911 * callback may be called more than once.
912 * It also gropes in the entails of the callback arg...
913 */
914static int
915gem_dmamap_load_mbuf(sc, m0, cb, txj, flags)
916	struct gem_softc *sc;
917	struct mbuf *m0;
918	bus_dmamap_callback_t *cb;
919	struct gem_txjob *txj;
920	int flags;
921{
922	struct gem_txdma txd;
923	struct gem_txsoft *txs;
924	struct mbuf *m;
925	void  *vaddr;
926	int error, first = 1, len, totlen;
927
928	if ((m0->m_flags & M_PKTHDR) == 0)
929		panic("gem_dmamap_load_mbuf: no packet header");
930	totlen = m0->m_pkthdr.len;
931	len = 0;
932	txd.txd_sc = sc;
933	txd.txd_nexttx = txj->txj_nexttx;
934	txj->txj_nsegs = 0;
935	STAILQ_INIT(&txj->txj_txsq);
936	m = m0;
937	while (m != NULL && len < totlen) {
938		if (m->m_len == 0)
939			continue;
940		/* Get a work queue entry. */
941		if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
942			/*
943			 * Ran out of descriptors, return a value that
944			 * cannot be returned by bus_dmamap_load to notify
945			 * the caller.
946			 */
947			error = -1;
948			goto fail;
949		}
950		len += m->m_len;
951		txd.txd_flags = first ? GTXD_FIRST : 0;
952		if (m->m_next == NULL || len >= totlen)
953			txd.txd_flags |= GTXD_LAST;
954		vaddr = mtod(m, void *);
955		error = bus_dmamap_load(sc->sc_dmatag, txs->txs_dmamap, vaddr,
956		    m->m_len, cb, &txd, flags);
957		if (error != 0 || txd.txd_error != 0)
958			goto fail;
959		/* Sync the DMA map. */
960		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
961		    BUS_DMASYNC_PREWRITE);
962		m = m->m_next;
963		/*
964		 * Store a pointer to the packet so we can free it later,
965		 * and remember what txdirty will be once the packet is
966		 * done.
967		 */
968		txs->txs_mbuf = first ? m0 : NULL;
969		txs->txs_firstdesc = txj->txj_nexttx;
970		txs->txs_lastdesc = txd.txd_lasttx;
971		txs->txs_ndescs = txd.txd_nsegs;
972		CTR3(KTR_GEM, "load_mbuf: setting firstdesc=%d, lastdesc=%d, "
973		    "ndescs=%d", txs->txs_firstdesc, txs->txs_lastdesc,
974		    txs->txs_ndescs);
975		STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
976		STAILQ_INSERT_TAIL(&txj->txj_txsq, txs, txs_q);
977		txj->txj_nexttx = txd.txd_nexttx;
978		txj->txj_nsegs += txd.txd_nsegs;
979		first = 0;
980	}
981	txj->txj_lasttx = txd.txd_lasttx;
982	return (0);
983
984fail:
985	CTR1(KTR_GEM, "gem_dmamap_load_mbuf failed (%d)", error);
986	gem_dmamap_unload_mbuf(sc, txj);
987	return (error);
988}
989
990/*
991 * Unload an mbuf using the txd the information was placed in.
992 * The tx interrupt code frees the tx segments one by one, because the txd is
993 * not available any more.
994 */
995static void
996gem_dmamap_unload_mbuf(sc, txj)
997	struct gem_softc *sc;
998	struct gem_txjob *txj;
999{
1000	struct gem_txsoft *txs;
1001
1002	/* Readd the removed descriptors and unload the segments. */
1003	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1004		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1005		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1006		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1007	}
1008}
1009
1010static void
1011gem_dmamap_commit_mbuf(sc, txj)
1012	struct gem_softc *sc;
1013	struct gem_txjob *txj;
1014{
1015	struct gem_txsoft *txs;
1016
1017	/* Commit the txjob by transfering the txsoft's to the txdirtyq. */
1018	while ((txs = STAILQ_FIRST(&txj->txj_txsq)) != NULL) {
1019		STAILQ_REMOVE_HEAD(&txj->txj_txsq, txs_q);
1020		STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
1021	}
1022}
1023
1024static void
1025gem_init_regs(sc)
1026	struct gem_softc *sc;
1027{
1028	bus_space_tag_t t = sc->sc_bustag;
1029	bus_space_handle_t h = sc->sc_h;
1030	const u_char *laddr = sc->sc_arpcom.ac_enaddr;
1031	u_int32_t v;
1032
1033	/* These regs are not cleared on reset */
1034	if (!sc->sc_inited) {
1035
1036		/* Wooo.  Magic values. */
1037		bus_space_write_4(t, h, GEM_MAC_IPG0, 0);
1038		bus_space_write_4(t, h, GEM_MAC_IPG1, 8);
1039		bus_space_write_4(t, h, GEM_MAC_IPG2, 4);
1040
1041		bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
1042		/* Max frame and max burst size */
1043		bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
1044		    ETHER_MAX_LEN | (0x2000<<16));
1045
1046		bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x7);
1047		bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x4);
1048		bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
1049		/* Dunno.... */
1050		bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
1051		bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
1052		    ((laddr[5]<<8)|laddr[4])&0x3ff);
1053
1054		/* Secondary MAC addr set to 0:0:0:0:0:0 */
1055		bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
1056		bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
1057		bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
1058
1059		/* MAC control addr set to 01:80:c2:00:00:01 */
1060		bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
1061		bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
1062		bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
1063
1064		/* MAC filter addr set to 0:0:0:0:0:0 */
1065		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
1066		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
1067		bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
1068
1069		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
1070		bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
1071
1072		sc->sc_inited = 1;
1073	}
1074
1075	/* Counters need to be zeroed */
1076	bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
1077	bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
1078	bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
1079	bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
1080	bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
1081	bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
1082	bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
1083	bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
1084	bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
1085	bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
1086	bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
1087
1088	/* Un-pause stuff */
1089#if 0
1090	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
1091#else
1092	bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0);
1093#endif
1094
1095	/*
1096	 * Set the station address.
1097	 */
1098	bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
1099	bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
1100	bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
1101
1102	/*
1103	 * Enable MII outputs.  Enable GMII if there is a gigabit PHY.
1104	 */
1105	sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
1106	v = GEM_MAC_XIF_TX_MII_ENA;
1107	if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
1108		v |= GEM_MAC_XIF_FDPLX_LED;
1109		if (sc->sc_flags & GEM_GIGABIT)
1110			v |= GEM_MAC_XIF_GMII_MODE;
1111	}
1112	bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
1113}
1114
1115static void
1116gem_start(ifp)
1117	struct ifnet *ifp;
1118{
1119	struct gem_softc *sc = (struct gem_softc *)ifp->if_softc;
1120	struct mbuf *m0 = NULL, *m;
1121	struct gem_txjob txj;
1122	int firsttx, ofree, seg, ntx, txmfail;
1123
1124	if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1125		return;
1126
1127	/*
1128	 * Remember the previous number of free descriptors and
1129	 * the first descriptor we'll use.
1130	 */
1131	ofree = sc->sc_txfree;
1132	firsttx = sc->sc_txnext;
1133
1134	DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
1135	    device_get_name(sc->sc_dev), ofree, firsttx));
1136	CTR3(KTR_GEM, "%s: gem_start: txfree %d, txnext %d",
1137	    device_get_name(sc->sc_dev), ofree, firsttx);
1138
1139	txj.txj_nexttx = firsttx;
1140	txj.txj_lasttx = 0;
1141	/*
1142	 * Loop through the send queue, setting up transmit descriptors
1143	 * until we drain the queue, or use up all available transmit
1144	 * descriptors.
1145	 */
1146	txmfail = 0;
1147	for (ntx = 0;; ntx++) {
1148		/*
1149		 * Grab a packet off the queue.
1150		 */
1151		IF_DEQUEUE(&ifp->if_snd, m0);
1152		if (m0 == NULL)
1153			break;
1154		m = NULL;
1155
1156		/*
1157		 * Load the DMA map.  If this fails, the packet either
1158		 * didn't fit in the alloted number of segments, or we were
1159		 * short on resources.  In this case, we'll copy and try
1160		 * again.
1161		 */
1162		txmfail = gem_dmamap_load_mbuf(sc, m0,
1163		    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1164		if (txmfail == -1) {
1165			IF_PREPEND(&ifp->if_snd, m0);
1166			break;
1167		}
1168		if (txmfail > 0) {
1169			MGETHDR(m, M_DONTWAIT, MT_DATA);
1170			if (m == NULL) {
1171				device_printf(sc->sc_dev, "unable to "
1172				    "allocate Tx mbuf\n");
1173				/* Failed; requeue. */
1174				IF_PREPEND(&ifp->if_snd, m0);
1175				break;
1176			}
1177			if (m0->m_pkthdr.len > MHLEN) {
1178				MCLGET(m, M_DONTWAIT);
1179				if ((m->m_flags & M_EXT) == 0) {
1180					device_printf(sc->sc_dev, "unable to "
1181					    "allocate Tx cluster\n");
1182					IF_PREPEND(&ifp->if_snd, m0);
1183					m_freem(m);
1184					break;
1185				}
1186			}
1187			m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1188			m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
1189			txmfail = gem_dmamap_load_mbuf(sc, m,
1190			    gem_txdma_callback, &txj, BUS_DMA_NOWAIT);
1191			if (txmfail != 0) {
1192				if (txmfail > 0) {
1193					device_printf(sc->sc_dev, "unable to "
1194					    "load Tx buffer, error = %d\n",
1195					    txmfail);
1196				}
1197				m_freem(m);
1198				IF_PREPEND(&ifp->if_snd, m0);
1199				break;
1200			}
1201		}
1202
1203		/*
1204		 * Ensure we have enough descriptors free to describe
1205		 * the packet.  Note, we always reserve one descriptor
1206		 * at the end of the ring as a termination point, to
1207		 * prevent wrap-around.
1208		 */
1209		if (txj.txj_nsegs > (sc->sc_txfree - 1)) {
1210			/*
1211			 * Not enough free descriptors to transmit this
1212			 * packet.  We haven't committed to anything yet,
1213			 * so just unload the DMA map, put the packet
1214			 * back on the queue, and punt.  Notify the upper
1215			 * layer that there are no more slots left.
1216			 *
1217			 * XXX We could allocate an mbuf and copy, but
1218			 * XXX it is worth it?
1219			 */
1220			ifp->if_flags |= IFF_OACTIVE;
1221			gem_dmamap_unload_mbuf(sc, &txj);
1222			if (m != NULL)
1223				m_freem(m);
1224			IF_PREPEND(&ifp->if_snd, m0);
1225			break;
1226		}
1227
1228		/*
1229		 * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
1230		 */
1231		if (ifp->if_bpf != NULL)
1232			bpf_mtap(ifp, m0);
1233
1234		if (m != NULL)
1235			m_freem(m0);
1236
1237#ifdef GEM_DEBUG
1238		if (ifp->if_flags & IFF_DEBUG) {
1239			printf("     gem_start %p transmit chain:\n",
1240			    STAILQ_FIRST(&txj.txj_txsq));
1241			for (seg = sc->sc_txnext;; seg = GEM_NEXTTX(seg)) {
1242				printf("descriptor %d:\t", seg);
1243				printf("gd_flags:   0x%016llx\t", (long long)
1244					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_flags));
1245				printf("gd_addr: 0x%016llx\n", (long long)
1246					GEM_DMA_READ(sc, sc->sc_txdescs[seg].gd_addr));
1247				if (seg == txj.txj_lasttx)
1248					break;
1249			}
1250		}
1251#endif
1252
1253		/* Sync the descriptors we're using. */
1254		GEM_CDTXSYNC(sc, sc->sc_txnext, txj.txj_nsegs,
1255		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
1256
1257		/* Advance the tx pointer. */
1258		sc->sc_txfree -= txj.txj_nsegs;
1259		sc->sc_txnext = txj.txj_nexttx;
1260
1261		gem_dmamap_commit_mbuf(sc, &txj);
1262	}
1263
1264	if (txmfail == -1 || sc->sc_txfree == 0) {
1265		ifp->if_flags |= IFF_OACTIVE;
1266		/* No more slots left; notify upper layer. */
1267	}
1268
1269	if (ntx > 0) {
1270		DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
1271		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx));
1272		CTR3(KTR_GEM, "%s: packets enqueued, IC on %d, OWN on %d",
1273		    device_get_name(sc->sc_dev), txj.txj_lasttx, firsttx);
1274		/*
1275		 * The entire packet chain is set up.
1276		 * Kick the transmitter.
1277		 */
1278		DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
1279			device_get_name(sc->sc_dev), txj.txj_nexttx));
1280		CTR3(KTR_GEM, "%s: gem_start: kicking tx %d=%d",
1281		    device_get_name(sc->sc_dev), txj.txj_nexttx,
1282		    sc->sc_txnext);
1283		bus_space_write_4(sc->sc_bustag, sc->sc_h, GEM_TX_KICK,
1284			sc->sc_txnext);
1285
1286		/* Set a watchdog timer in case the chip flakes out. */
1287		ifp->if_timer = 5;
1288		DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
1289			device_get_name(sc->sc_dev), ifp->if_timer));
1290		CTR2(KTR_GEM, "%s: gem_start: watchdog %d",
1291			device_get_name(sc->sc_dev), ifp->if_timer);
1292	}
1293}
1294
1295/*
1296 * Transmit interrupt.
1297 */
1298static void
1299gem_tint(sc)
1300	struct gem_softc *sc;
1301{
1302	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1303	bus_space_tag_t t = sc->sc_bustag;
1304	bus_space_handle_t mac = sc->sc_h;
1305	struct gem_txsoft *txs;
1306	int txlast;
1307	int progress = 0;
1308
1309
1310	DPRINTF(sc, ("%s: gem_tint\n", device_get_name(sc->sc_dev)));
1311	CTR1(KTR_GEM, "%s: gem_tint", device_get_name(sc->sc_dev));
1312
1313	/*
1314	 * Unload collision counters
1315	 */
1316	ifp->if_collisions +=
1317		bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
1318		bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT) +
1319		bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
1320		bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
1321
1322	/*
1323	 * then clear the hardware counters.
1324	 */
1325	bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
1326	bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
1327	bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
1328	bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
1329
1330	/*
1331	 * Go through our Tx list and free mbufs for those
1332	 * frames that have been transmitted.
1333	 */
1334	while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
1335		GEM_CDTXSYNC(sc, txs->txs_lastdesc,
1336		    txs->txs_ndescs,
1337		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1338
1339#ifdef GEM_DEBUG
1340		if (ifp->if_flags & IFF_DEBUG) {
1341			int i;
1342			printf("    txsoft %p transmit chain:\n", txs);
1343			for (i = txs->txs_firstdesc;; i = GEM_NEXTTX(i)) {
1344				printf("descriptor %d: ", i);
1345				printf("gd_flags: 0x%016llx\t", (long long)
1346					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
1347				printf("gd_addr: 0x%016llx\n", (long long)
1348					GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
1349				if (i == txs->txs_lastdesc)
1350					break;
1351			}
1352		}
1353#endif
1354
1355		/*
1356		 * In theory, we could harveast some descriptors before
1357		 * the ring is empty, but that's a bit complicated.
1358		 *
1359		 * GEM_TX_COMPLETION points to the last descriptor
1360		 * processed +1.
1361		 */
1362		txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
1363		DPRINTF(sc,
1364			("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
1365				txs->txs_lastdesc, txlast));
1366		CTR3(KTR_GEM, "gem_tint: txs->txs_firstdesc = %d, "
1367		    "txs->txs_lastdesc = %d, txlast = %d",
1368		    txs->txs_firstdesc, txs->txs_lastdesc, txlast);
1369		if (txs->txs_firstdesc <= txs->txs_lastdesc) {
1370			if ((txlast >= txs->txs_firstdesc) &&
1371				(txlast <= txs->txs_lastdesc))
1372				break;
1373		} else {
1374			/* Ick -- this command wraps */
1375			if ((txlast >= txs->txs_firstdesc) ||
1376				(txlast <= txs->txs_lastdesc))
1377				break;
1378		}
1379
1380		DPRINTF(sc, ("gem_tint: releasing a desc\n"));
1381		CTR0(KTR_GEM, "gem_tint: releasing a desc");
1382		STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
1383
1384		sc->sc_txfree += txs->txs_ndescs;
1385
1386		bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
1387		    BUS_DMASYNC_POSTWRITE);
1388		bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
1389		if (txs->txs_mbuf != NULL) {
1390			m_freem(txs->txs_mbuf);
1391			txs->txs_mbuf = NULL;
1392		}
1393
1394		STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
1395
1396		ifp->if_opackets++;
1397		progress = 1;
1398	}
1399
1400	DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
1401		"GEM_TX_DATA_PTR %llx "
1402		"GEM_TX_COMPLETION %x\n",
1403		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1404		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1405			GEM_TX_DATA_PTR_HI) << 32) |
1406			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1407			GEM_TX_DATA_PTR_LO),
1408		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION)));
1409	CTR3(KTR_GEM, "gem_tint: GEM_TX_STATE_MACHINE %x "
1410		"GEM_TX_DATA_PTR %llx "
1411		"GEM_TX_COMPLETION %x",
1412		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_STATE_MACHINE),
1413		((long long) bus_space_read_4(sc->sc_bustag, sc->sc_h,
1414			GEM_TX_DATA_PTR_HI) << 32) |
1415			     bus_space_read_4(sc->sc_bustag, sc->sc_h,
1416			GEM_TX_DATA_PTR_LO),
1417		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_COMPLETION));
1418
1419	if (progress) {
1420		if (sc->sc_txfree == GEM_NTXDESC - 1)
1421			sc->sc_txwin = 0;
1422
1423		/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
1424		ifp->if_flags &= ~IFF_OACTIVE;
1425		gem_start(ifp);
1426
1427		if (STAILQ_EMPTY(&sc->sc_txdirtyq))
1428			ifp->if_timer = 0;
1429	}
1430
1431	DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
1432		device_get_name(sc->sc_dev), ifp->if_timer));
1433	CTR2(KTR_GEM, "%s: gem_tint: watchdog %d",
1434		device_get_name(sc->sc_dev), ifp->if_timer);
1435}
1436
1437#if 0
1438static void
1439gem_rint_timeout(arg)
1440	void *arg;
1441{
1442
1443	gem_rint((struct gem_softc *)arg);
1444}
1445#endif
1446
1447/*
1448 * Receive interrupt.
1449 */
1450static void
1451gem_rint(sc)
1452	struct gem_softc *sc;
1453{
1454	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1455	bus_space_tag_t t = sc->sc_bustag;
1456	bus_space_handle_t h = sc->sc_h;
1457	struct ether_header *eh;
1458	struct gem_rxsoft *rxs;
1459	struct mbuf *m;
1460	u_int64_t rxstat;
1461	u_int32_t rxcomp;
1462	int i, len, progress = 0;
1463
1464	callout_stop(&sc->sc_rx_ch);
1465	DPRINTF(sc, ("%s: gem_rint\n", device_get_name(sc->sc_dev)));
1466	CTR1(KTR_GEM, "%s: gem_rint", device_get_name(sc->sc_dev));
1467
1468	/*
1469	 * Read the completion register once.  This limits
1470	 * how long the following loop can execute.
1471	 */
1472	rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
1473
1474	/*
1475	 * XXXX Read the lastrx only once at the top for speed.
1476	 */
1477	DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
1478		sc->sc_rxptr, rxcomp));
1479	CTR2(KTR_GEM, "gem_rint: sc->rxptr %d, complete %d",
1480	    sc->sc_rxptr, rxcomp);
1481	for (i = sc->sc_rxptr; i != rxcomp;
1482	     i = GEM_NEXTRX(i)) {
1483		rxs = &sc->sc_rxsoft[i];
1484
1485		GEM_CDRXSYNC(sc, i,
1486		    BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1487
1488		rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
1489
1490		if (rxstat & GEM_RD_OWN) {
1491#if 0 /* XXX: In case of emergency, re-enable this. */
1492			/*
1493			 * The descriptor is still marked as owned, although
1494			 * it is supposed to have completed. This has been
1495			 * observed on some machines. Just exiting here
1496			 * might leave the packet sitting around until another
1497			 * one arrives to trigger a new interrupt, which is
1498			 * generally undesirable, so set up a timeout.
1499			 */
1500			callout_reset(&sc->sc_rx_ch, GEM_RXOWN_TICKS,
1501			    gem_rint_timeout, sc);
1502#endif
1503			break;
1504		}
1505
1506		progress++;
1507		ifp->if_ipackets++;
1508
1509		if (rxstat & GEM_RD_BAD_CRC) {
1510			ifp->if_ierrors++;
1511			device_printf(sc->sc_dev, "receive error: CRC error\n");
1512			GEM_INIT_RXDESC(sc, i);
1513			continue;
1514		}
1515
1516		bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1517		    BUS_DMASYNC_POSTREAD);
1518#ifdef GEM_DEBUG
1519		if (ifp->if_flags & IFF_DEBUG) {
1520			printf("    rxsoft %p descriptor %d: ", rxs, i);
1521			printf("gd_flags: 0x%016llx\t", (long long)
1522				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
1523			printf("gd_addr: 0x%016llx\n", (long long)
1524				GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
1525		}
1526#endif
1527
1528		/*
1529		 * No errors; receive the packet.  Note the Gem
1530		 * includes the CRC with every packet.
1531		 */
1532		len = GEM_RD_BUFLEN(rxstat);
1533
1534		/*
1535		 * Allocate a new mbuf cluster.  If that fails, we are
1536		 * out of memory, and must drop the packet and recycle
1537		 * the buffer that's already attached to this descriptor.
1538		 */
1539		m = rxs->rxs_mbuf;
1540		if (gem_add_rxbuf(sc, i) != 0) {
1541			ifp->if_ierrors++;
1542			GEM_INIT_RXDESC(sc, i);
1543			bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap,
1544			    BUS_DMASYNC_PREREAD);
1545			continue;
1546		}
1547		m->m_data += 2; /* We're already off by two */
1548
1549		m->m_pkthdr.rcvif = ifp;
1550		m->m_pkthdr.len = m->m_len = len - ETHER_CRC_LEN;
1551
1552		/* Pass it on. */
1553		(*ifp->if_input)(ifp, m);
1554	}
1555
1556	if (progress) {
1557		/* Update the receive pointer. */
1558		if (i == sc->sc_rxptr) {
1559			device_printf(sc->sc_dev, "rint: ring wrap\n");
1560		}
1561		sc->sc_rxptr = i;
1562		bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
1563	}
1564
1565	DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
1566		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
1567	CTR2(KTR_GEM, "gem_rint: done sc->rxptr %d, complete %d",
1568		sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
1569
1570}
1571
1572
1573/*
1574 * gem_add_rxbuf:
1575 *
1576 *	Add a receive buffer to the indicated descriptor.
1577 */
1578static int
1579gem_add_rxbuf(sc, idx)
1580	struct gem_softc *sc;
1581	int idx;
1582{
1583	struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
1584	struct mbuf *m;
1585	int error;
1586
1587	MGETHDR(m, M_DONTWAIT, MT_DATA);
1588	if (m == NULL)
1589		return (ENOBUFS);
1590
1591	MCLGET(m, M_DONTWAIT);
1592	if ((m->m_flags & M_EXT) == 0) {
1593		m_freem(m);
1594		return (ENOBUFS);
1595	}
1596
1597#ifdef GEM_DEBUG
1598	/* bzero the packet to check dma */
1599	memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
1600#endif
1601
1602	if (rxs->rxs_mbuf != NULL)
1603		bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
1604
1605	rxs->rxs_mbuf = m;
1606
1607	error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
1608	    m->m_ext.ext_buf, m->m_ext.ext_size, gem_rxdma_callback, rxs,
1609	    BUS_DMA_NOWAIT);
1610	if (error != 0 || rxs->rxs_paddr == 0) {
1611		device_printf(sc->sc_dev, "can't load rx DMA map %d, error = "
1612		    "%d\n", idx, error);
1613		panic("gem_add_rxbuf");	/* XXX */
1614	}
1615
1616	bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, BUS_DMASYNC_PREREAD);
1617
1618	GEM_INIT_RXDESC(sc, idx);
1619
1620	return (0);
1621}
1622
1623
1624static void
1625gem_eint(sc, status)
1626	struct gem_softc *sc;
1627	u_int status;
1628{
1629
1630	if ((status & GEM_INTR_MIF) != 0) {
1631		device_printf(sc->sc_dev, "XXXlink status changed\n");
1632		return;
1633	}
1634
1635	device_printf(sc->sc_dev, "status=%x\n", status);
1636}
1637
1638
1639void
1640gem_intr(v)
1641	void *v;
1642{
1643	struct gem_softc *sc = (struct gem_softc *)v;
1644	bus_space_tag_t t = sc->sc_bustag;
1645	bus_space_handle_t seb = sc->sc_h;
1646	u_int32_t status;
1647
1648	status = bus_space_read_4(t, seb, GEM_STATUS);
1649	DPRINTF(sc, ("%s: gem_intr: cplt %x, status %x\n",
1650		device_get_name(sc->sc_dev), (status>>19),
1651		(u_int)status));
1652	CTR3(KTR_GEM, "%s: gem_intr: cplt %x, status %x",
1653		device_get_name(sc->sc_dev), (status>>19),
1654		(u_int)status);
1655
1656	if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
1657		gem_eint(sc, status);
1658
1659	if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0)
1660		gem_tint(sc);
1661
1662	if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0)
1663		gem_rint(sc);
1664
1665	/* We should eventually do more than just print out error stats. */
1666	if (status & GEM_INTR_TX_MAC) {
1667		int txstat = bus_space_read_4(t, seb, GEM_MAC_TX_STATUS);
1668		if (txstat & ~GEM_MAC_TX_XMIT_DONE)
1669			device_printf(sc->sc_dev, "MAC tx fault, status %x\n",
1670			    txstat);
1671		if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
1672			gem_init(sc);
1673	}
1674	if (status & GEM_INTR_RX_MAC) {
1675		int rxstat = bus_space_read_4(t, seb, GEM_MAC_RX_STATUS);
1676		if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
1677			device_printf(sc->sc_dev, "MAC rx fault, status %x\n",
1678			    rxstat);
1679		if ((rxstat & GEM_MAC_RX_OVERFLOW) != 0)
1680			gem_init(sc);
1681	}
1682}
1683
1684
1685static void
1686gem_watchdog(ifp)
1687	struct ifnet *ifp;
1688{
1689	struct gem_softc *sc = ifp->if_softc;
1690
1691	DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1692		"GEM_MAC_RX_CONFIG %x\n",
1693		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1694		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1695		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG)));
1696	CTR3(KTR_GEM, "gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
1697		"GEM_MAC_RX_CONFIG %x",
1698		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_RX_CONFIG),
1699		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_STATUS),
1700		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_RX_CONFIG));
1701	CTR3(KTR_GEM, "gem_watchdog: GEM_TX_CONFIG %x GEM_MAC_TX_STATUS %x "
1702		"GEM_MAC_TX_CONFIG %x",
1703		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_TX_CONFIG),
1704		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_STATUS),
1705		bus_space_read_4(sc->sc_bustag, sc->sc_h, GEM_MAC_TX_CONFIG));
1706
1707	device_printf(sc->sc_dev, "device timeout\n");
1708	++ifp->if_oerrors;
1709
1710	/* Try to get more packets going. */
1711	gem_start(ifp);
1712}
1713
1714/*
1715 * Initialize the MII Management Interface
1716 */
1717static void
1718gem_mifinit(sc)
1719	struct gem_softc *sc;
1720{
1721	bus_space_tag_t t = sc->sc_bustag;
1722	bus_space_handle_t mif = sc->sc_h;
1723
1724	/* Configure the MIF in frame mode */
1725	sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1726	sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
1727	bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
1728}
1729
1730/*
1731 * MII interface
1732 *
1733 * The GEM MII interface supports at least three different operating modes:
1734 *
1735 * Bitbang mode is implemented using data, clock and output enable registers.
1736 *
1737 * Frame mode is implemented by loading a complete frame into the frame
1738 * register and polling the valid bit for completion.
1739 *
1740 * Polling mode uses the frame register but completion is indicated by
1741 * an interrupt.
1742 *
1743 */
1744int
1745gem_mii_readreg(dev, phy, reg)
1746	device_t dev;
1747	int phy, reg;
1748{
1749	struct gem_softc *sc = device_get_softc(dev);
1750	bus_space_tag_t t = sc->sc_bustag;
1751	bus_space_handle_t mif = sc->sc_h;
1752	int n;
1753	u_int32_t v;
1754
1755#ifdef GEM_DEBUG_PHY
1756	printf("gem_mii_readreg: phy %d reg %d\n", phy, reg);
1757#endif
1758
1759#if 0
1760	/* Select the desired PHY in the MIF configuration register */
1761	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1762	/* Clear PHY select bit */
1763	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1764	if (phy == GEM_PHYAD_EXTERNAL)
1765		/* Set PHY select bit to get at external device */
1766		v |= GEM_MIF_CONFIG_PHY_SEL;
1767	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1768#endif
1769
1770	/* Construct the frame command */
1771	v = (reg << GEM_MIF_REG_SHIFT)	| (phy << GEM_MIF_PHY_SHIFT) |
1772		GEM_MIF_FRAME_READ;
1773
1774	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1775	for (n = 0; n < 100; n++) {
1776		DELAY(1);
1777		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1778		if (v & GEM_MIF_FRAME_TA0)
1779			return (v & GEM_MIF_FRAME_DATA);
1780	}
1781
1782	device_printf(sc->sc_dev, "mii_read timeout\n");
1783	return (0);
1784}
1785
1786int
1787gem_mii_writereg(dev, phy, reg, val)
1788	device_t dev;
1789	int phy, reg, val;
1790{
1791	struct gem_softc *sc = device_get_softc(dev);
1792	bus_space_tag_t t = sc->sc_bustag;
1793	bus_space_handle_t mif = sc->sc_h;
1794	int n;
1795	u_int32_t v;
1796
1797#ifdef GEM_DEBUG_PHY
1798	printf("gem_mii_writereg: phy %d reg %d val %x\n", phy, reg, val);
1799#endif
1800
1801#if 0
1802	/* Select the desired PHY in the MIF configuration register */
1803	v = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
1804	/* Clear PHY select bit */
1805	v &= ~GEM_MIF_CONFIG_PHY_SEL;
1806	if (phy == GEM_PHYAD_EXTERNAL)
1807		/* Set PHY select bit to get at external device */
1808		v |= GEM_MIF_CONFIG_PHY_SEL;
1809	bus_space_write_4(t, mif, GEM_MIF_CONFIG, v);
1810#endif
1811	/* Construct the frame command */
1812	v = GEM_MIF_FRAME_WRITE			|
1813	    (phy << GEM_MIF_PHY_SHIFT)		|
1814	    (reg << GEM_MIF_REG_SHIFT)		|
1815	    (val & GEM_MIF_FRAME_DATA);
1816
1817	bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
1818	for (n = 0; n < 100; n++) {
1819		DELAY(1);
1820		v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
1821		if (v & GEM_MIF_FRAME_TA0)
1822			return (1);
1823	}
1824
1825	device_printf(sc->sc_dev, "mii_write timeout\n");
1826	return (0);
1827}
1828
1829void
1830gem_mii_statchg(dev)
1831	device_t dev;
1832{
1833	struct gem_softc *sc = device_get_softc(dev);
1834#ifdef GEM_DEBUG
1835	int instance = IFM_INST(sc->sc_mii->mii_media.ifm_cur->ifm_media);
1836#endif
1837	bus_space_tag_t t = sc->sc_bustag;
1838	bus_space_handle_t mac = sc->sc_h;
1839	u_int32_t v;
1840
1841#ifdef GEM_DEBUG
1842	if (sc->sc_debug)
1843		printf("gem_mii_statchg: status change: phy = %d\n",
1844			sc->sc_phys[instance]);
1845#endif
1846
1847	/* Set tx full duplex options */
1848	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
1849	DELAY(10000); /* reg must be cleared and delay before changing. */
1850	v = GEM_MAC_TX_ENA_IPG0|GEM_MAC_TX_NGU|GEM_MAC_TX_NGU_LIMIT|
1851		GEM_MAC_TX_ENABLE;
1852	if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0) {
1853		v |= GEM_MAC_TX_IGN_CARRIER|GEM_MAC_TX_IGN_COLLIS;
1854	}
1855	bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, v);
1856
1857	/* XIF Configuration */
1858 /* We should really calculate all this rather than rely on defaults */
1859	v = bus_space_read_4(t, mac, GEM_MAC_XIF_CONFIG);
1860	v = GEM_MAC_XIF_LINK_LED;
1861	v |= GEM_MAC_XIF_TX_MII_ENA;
1862
1863	/* If an external transceiver is connected, enable its MII drivers */
1864	sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
1865	if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
1866		/* External MII needs echo disable if half duplex. */
1867		if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
1868			/* turn on full duplex LED */
1869			v |= GEM_MAC_XIF_FDPLX_LED;
1870		else
1871	 		/* half duplex -- disable echo */
1872	 		v |= GEM_MAC_XIF_ECHO_DISABL;
1873
1874		if (IFM_SUBTYPE(sc->sc_mii->mii_media_active) == IFM_1000_T)
1875			v |= GEM_MAC_XIF_GMII_MODE;
1876		else
1877			v &= ~GEM_MAC_XIF_GMII_MODE;
1878	} else {
1879		/* Internal MII needs buf enable */
1880		v |= GEM_MAC_XIF_MII_BUF_ENA;
1881	}
1882	bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
1883}
1884
1885int
1886gem_mediachange(ifp)
1887	struct ifnet *ifp;
1888{
1889	struct gem_softc *sc = ifp->if_softc;
1890
1891	/* XXX Add support for serial media. */
1892
1893	return (mii_mediachg(sc->sc_mii));
1894}
1895
1896void
1897gem_mediastatus(ifp, ifmr)
1898	struct ifnet *ifp;
1899	struct ifmediareq *ifmr;
1900{
1901	struct gem_softc *sc = ifp->if_softc;
1902
1903	if ((ifp->if_flags & IFF_UP) == 0)
1904		return;
1905
1906	mii_pollstat(sc->sc_mii);
1907	ifmr->ifm_active = sc->sc_mii->mii_media_active;
1908	ifmr->ifm_status = sc->sc_mii->mii_media_status;
1909}
1910
1911/*
1912 * Process an ioctl request.
1913 */
1914static int
1915gem_ioctl(ifp, cmd, data)
1916	struct ifnet *ifp;
1917	u_long cmd;
1918	caddr_t data;
1919{
1920	struct gem_softc *sc = ifp->if_softc;
1921	struct ifreq *ifr = (struct ifreq *)data;
1922	int s, error = 0;
1923
1924	switch (cmd) {
1925	case SIOCSIFADDR:
1926	case SIOCGIFADDR:
1927	case SIOCSIFMTU:
1928		error = ether_ioctl(ifp, cmd, data);
1929		break;
1930	case SIOCSIFFLAGS:
1931		if (ifp->if_flags & IFF_UP) {
1932			if ((sc->sc_ifflags ^ ifp->if_flags) == IFF_PROMISC)
1933				gem_setladrf(sc);
1934			else
1935				gem_init(sc);
1936		} else {
1937			if (ifp->if_flags & IFF_RUNNING)
1938				gem_stop(ifp, 0);
1939		}
1940		sc->sc_ifflags = ifp->if_flags;
1941		error = 0;
1942		break;
1943	case SIOCADDMULTI:
1944	case SIOCDELMULTI:
1945		gem_setladrf(sc);
1946		error = 0;
1947		break;
1948	case SIOCGIFMEDIA:
1949	case SIOCSIFMEDIA:
1950		error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
1951		break;
1952	default:
1953		error = ENOTTY;		/* XXX EINVAL??? */
1954		break;
1955	}
1956
1957	/* Try to get things going again */
1958	if (ifp->if_flags & IFF_UP)
1959		gem_start(ifp);
1960	splx(s);
1961	return (error);
1962}
1963
1964/*
1965 * Set up the logical address filter.
1966 */
1967static void
1968gem_setladrf(sc)
1969	struct gem_softc *sc;
1970{
1971	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
1972	struct ifmultiaddr *inm;
1973	struct sockaddr_dl *sdl;
1974	bus_space_tag_t t = sc->sc_bustag;
1975	bus_space_handle_t h = sc->sc_h;
1976	u_char *cp;
1977	u_int32_t crc;
1978	u_int32_t hash[16];
1979	u_int32_t v;
1980	int len;
1981	int i;
1982
1983	/* Get current RX configuration */
1984	v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
1985
1986	/*
1987	 * Turn off promiscuous mode, promiscuous group mode (all multicast),
1988	 * and hash filter.  Depending on the case, the right bit will be
1989	 * enabled.
1990	 */
1991	v &= ~(GEM_MAC_RX_PROMISCUOUS|GEM_MAC_RX_HASH_FILTER|
1992	    GEM_MAC_RX_PROMISC_GRP);
1993
1994	if ((ifp->if_flags & IFF_PROMISC) != 0) {
1995		/* Turn on promiscuous mode */
1996		v |= GEM_MAC_RX_PROMISCUOUS;
1997		goto chipit;
1998	}
1999	if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
2000		hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
2001		ifp->if_flags |= IFF_ALLMULTI;
2002		v |= GEM_MAC_RX_PROMISC_GRP;
2003		goto chipit;
2004	}
2005
2006	/*
2007	 * Set up multicast address filter by passing all multicast addresses
2008	 * through a crc generator, and then using the high order 8 bits as an
2009	 * index into the 256 bit logical address filter.  The high order 4
2010	 * bits selects the word, while the other 4 bits select the bit within
2011	 * the word (where bit 0 is the MSB).
2012	 */
2013
2014	/* Clear hash table */
2015	memset(hash, 0, sizeof(hash));
2016
2017	TAILQ_FOREACH(inm, &sc->sc_arpcom.ac_if.if_multiaddrs, ifma_link) {
2018		if (inm->ifma_addr->sa_family != AF_LINK)
2019			continue;
2020		sdl = (struct sockaddr_dl *)inm->ifma_addr;
2021		cp = LLADDR(sdl);
2022		crc = 0xffffffff;
2023		for (len = sdl->sdl_alen; --len >= 0;) {
2024			int octet = *cp++;
2025			int i;
2026
2027#define MC_POLY_LE	0xedb88320UL	/* mcast crc, little endian */
2028			for (i = 0; i < 8; i++) {
2029				if ((crc & 1) ^ (octet & 1)) {
2030					crc >>= 1;
2031					crc ^= MC_POLY_LE;
2032				} else {
2033					crc >>= 1;
2034				}
2035				octet >>= 1;
2036			}
2037		}
2038		/* Just want the 8 most significant bits. */
2039		crc >>= 24;
2040
2041		/* Set the corresponding bit in the filter. */
2042		hash[crc >> 4] |= 1 << (15 - (crc & 15));
2043	}
2044
2045	v |= GEM_MAC_RX_HASH_FILTER;
2046	ifp->if_flags &= ~IFF_ALLMULTI;
2047
2048	/* Now load the hash table into the chip (if we are using it) */
2049	for (i = 0; i < 16; i++) {
2050		bus_space_write_4(t, h,
2051		    GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
2052		    hash[i]);
2053	}
2054
2055chipit:
2056	bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
2057}
2058
2059#if notyet
2060
2061/*
2062 * gem_power:
2063 *
2064 *	Power management (suspend/resume) hook.
2065 */
2066void
2067static gem_power(why, arg)
2068	int why;
2069	void *arg;
2070{
2071	struct gem_softc *sc = arg;
2072	struct ifnet *ifp = &sc->sc_arpcom.ac_if;
2073	int s;
2074
2075	s = splnet();
2076	switch (why) {
2077	case PWR_SUSPEND:
2078	case PWR_STANDBY:
2079		gem_stop(ifp, 1);
2080		if (sc->sc_power != NULL)
2081			(*sc->sc_power)(sc, why);
2082		break;
2083	case PWR_RESUME:
2084		if (ifp->if_flags & IFF_UP) {
2085			if (sc->sc_power != NULL)
2086				(*sc->sc_power)(sc, why);
2087			gem_init(ifp);
2088		}
2089		break;
2090	case PWR_SOFTSUSPEND:
2091	case PWR_SOFTSTANDBY:
2092	case PWR_SOFTRESUME:
2093		break;
2094	}
2095	splx(s);
2096}
2097#endif
2098