e1000_82543.c revision 185353
1/******************************************************************************
2
3  Copyright (c) 2001-2008, Intel Corporation
4  All rights reserved.
5
6  Redistribution and use in source and binary forms, with or without
7  modification, are permitted provided that the following conditions are met:
8
9   1. Redistributions of source code must retain the above copyright notice,
10      this list of conditions and the following disclaimer.
11
12   2. Redistributions in binary form must reproduce the above copyright
13      notice, this list of conditions and the following disclaimer in the
14      documentation and/or other materials provided with the distribution.
15
16   3. Neither the name of the Intel Corporation nor the names of its
17      contributors may be used to endorse or promote products derived from
18      this software without specific prior written permission.
19
20  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
24  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30  POSSIBILITY OF SUCH DAMAGE.
31
32******************************************************************************/
33/*$FreeBSD: head/sys/dev/e1000/e1000_82543.c 185353 2008-11-26 23:57:23Z jfv $*/
34
35/*
36 * 82543GC Gigabit Ethernet Controller (Fiber)
37 * 82543GC Gigabit Ethernet Controller (Copper)
38 * 82544EI Gigabit Ethernet Controller (Copper)
39 * 82544EI Gigabit Ethernet Controller (Fiber)
40 * 82544GC Gigabit Ethernet Controller (Copper)
41 * 82544GC Gigabit Ethernet Controller (LOM)
42 */
43
44#include "e1000_api.h"
45
46static s32  e1000_init_phy_params_82543(struct e1000_hw *hw);
47static s32  e1000_init_nvm_params_82543(struct e1000_hw *hw);
48static s32  e1000_init_mac_params_82543(struct e1000_hw *hw);
49static s32  e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset,
50                                     u16 *data);
51static s32  e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset,
52                                      u16 data);
53static s32  e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw);
54static s32  e1000_phy_hw_reset_82543(struct e1000_hw *hw);
55static s32  e1000_reset_hw_82543(struct e1000_hw *hw);
56static s32  e1000_init_hw_82543(struct e1000_hw *hw);
57static s32  e1000_setup_link_82543(struct e1000_hw *hw);
58static s32  e1000_setup_copper_link_82543(struct e1000_hw *hw);
59static s32  e1000_setup_fiber_link_82543(struct e1000_hw *hw);
60static s32  e1000_check_for_copper_link_82543(struct e1000_hw *hw);
61static s32  e1000_check_for_fiber_link_82543(struct e1000_hw *hw);
62static s32  e1000_led_on_82543(struct e1000_hw *hw);
63static s32  e1000_led_off_82543(struct e1000_hw *hw);
64static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset,
65                                   u32 value);
66static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value);
67static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw);
68static s32  e1000_config_mac_to_phy_82543(struct e1000_hw *hw);
69static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw);
70static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
71static s32  e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw);
72static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl);
73static u16  e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw);
74static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
75                                           u16 count);
76static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw);
77static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state);
78
79/**
80 *  e1000_init_phy_params_82543 - Init PHY func ptrs.
81 *  @hw: pointer to the HW structure
82 **/
83static s32 e1000_init_phy_params_82543(struct e1000_hw *hw)
84{
85	struct e1000_phy_info *phy = &hw->phy;
86	s32 ret_val = E1000_SUCCESS;
87
88	DEBUGFUNC("e1000_init_phy_params_82543");
89
90	if (hw->phy.media_type != e1000_media_type_copper) {
91		phy->type               = e1000_phy_none;
92		goto out;
93	} else {
94		phy->ops.power_up       = e1000_power_up_phy_copper;
95		phy->ops.power_down     = e1000_power_down_phy_copper;
96	}
97
98	phy->addr                       = 1;
99	phy->autoneg_mask               = AUTONEG_ADVERTISE_SPEED_DEFAULT;
100	phy->reset_delay_us             = 10000;
101	phy->type                       = e1000_phy_m88;
102
103	/* Function Pointers */
104	phy->ops.check_polarity         = e1000_check_polarity_m88;
105	phy->ops.commit                 = e1000_phy_sw_reset_generic;
106	phy->ops.force_speed_duplex     = e1000_phy_force_speed_duplex_82543;
107	phy->ops.get_cable_length       = e1000_get_cable_length_m88;
108	phy->ops.get_cfg_done           = e1000_get_cfg_done_generic;
109	phy->ops.read_reg               = (hw->mac.type == e1000_82543)
110	                                  ? e1000_read_phy_reg_82543
111	                                  : e1000_read_phy_reg_m88;
112	phy->ops.reset                  = (hw->mac.type == e1000_82543)
113	                                  ? e1000_phy_hw_reset_82543
114	                                  : e1000_phy_hw_reset_generic;
115	phy->ops.write_reg              = (hw->mac.type == e1000_82543)
116	                                  ? e1000_write_phy_reg_82543
117	                                  : e1000_write_phy_reg_m88;
118	phy->ops.get_info               = e1000_get_phy_info_m88;
119
120	/*
121	 * The external PHY of the 82543 can be in a funky state.
122	 * Resetting helps us read the PHY registers for acquiring
123	 * the PHY ID.
124	 */
125	if (!e1000_init_phy_disabled_82543(hw)) {
126		ret_val = phy->ops.reset(hw);
127		if (ret_val) {
128			DEBUGOUT("Resetting PHY during init failed.\n");
129			goto out;
130		}
131		msec_delay(20);
132	}
133
134	ret_val = e1000_get_phy_id(hw);
135	if (ret_val)
136		goto out;
137
138	/* Verify phy id */
139	switch (hw->mac.type) {
140	case e1000_82543:
141		if (phy->id != M88E1000_E_PHY_ID) {
142			ret_val = -E1000_ERR_PHY;
143			goto out;
144		}
145		break;
146	case e1000_82544:
147		if (phy->id != M88E1000_I_PHY_ID) {
148			ret_val = -E1000_ERR_PHY;
149			goto out;
150		}
151		break;
152	default:
153		ret_val = -E1000_ERR_PHY;
154		goto out;
155		break;
156	}
157
158out:
159	return ret_val;
160}
161
162/**
163 *  e1000_init_nvm_params_82543 - Init NVM func ptrs.
164 *  @hw: pointer to the HW structure
165 **/
166static s32 e1000_init_nvm_params_82543(struct e1000_hw *hw)
167{
168	struct e1000_nvm_info *nvm = &hw->nvm;
169
170	DEBUGFUNC("e1000_init_nvm_params_82543");
171
172	nvm->type               = e1000_nvm_eeprom_microwire;
173	nvm->word_size          = 64;
174	nvm->delay_usec         = 50;
175	nvm->address_bits       =  6;
176	nvm->opcode_bits        =  3;
177
178	/* Function Pointers */
179	nvm->ops.read           = e1000_read_nvm_microwire;
180	nvm->ops.update         = e1000_update_nvm_checksum_generic;
181	nvm->ops.valid_led_default = e1000_valid_led_default_generic;
182	nvm->ops.validate       = e1000_validate_nvm_checksum_generic;
183	nvm->ops.write          = e1000_write_nvm_microwire;
184
185	return E1000_SUCCESS;
186}
187
188/**
189 *  e1000_init_mac_params_82543 - Init MAC func ptrs.
190 *  @hw: pointer to the HW structure
191 **/
192static s32 e1000_init_mac_params_82543(struct e1000_hw *hw)
193{
194	struct e1000_mac_info *mac = &hw->mac;
195
196	DEBUGFUNC("e1000_init_mac_params_82543");
197
198	/* Set media type */
199	switch (hw->device_id) {
200	case E1000_DEV_ID_82543GC_FIBER:
201	case E1000_DEV_ID_82544EI_FIBER:
202		hw->phy.media_type = e1000_media_type_fiber;
203		break;
204	default:
205		hw->phy.media_type = e1000_media_type_copper;
206		break;
207	}
208
209	/* Set mta register count */
210	mac->mta_reg_count = 128;
211	/* Set rar entry count */
212	mac->rar_entry_count = E1000_RAR_ENTRIES;
213
214	/* Function pointers */
215
216	/* bus type/speed/width */
217	mac->ops.get_bus_info = e1000_get_bus_info_pci_generic;
218	/* function id */
219	mac->ops.set_lan_id = e1000_set_lan_id_multi_port_pci;
220	/* reset */
221	mac->ops.reset_hw = e1000_reset_hw_82543;
222	/* hw initialization */
223	mac->ops.init_hw = e1000_init_hw_82543;
224	/* link setup */
225	mac->ops.setup_link = e1000_setup_link_82543;
226	/* physical interface setup */
227	mac->ops.setup_physical_interface =
228	        (hw->phy.media_type == e1000_media_type_copper)
229	                ? e1000_setup_copper_link_82543
230	                : e1000_setup_fiber_link_82543;
231	/* check for link */
232	mac->ops.check_for_link =
233	        (hw->phy.media_type == e1000_media_type_copper)
234	                ? e1000_check_for_copper_link_82543
235	                : e1000_check_for_fiber_link_82543;
236	/* link info */
237	mac->ops.get_link_up_info =
238	        (hw->phy.media_type == e1000_media_type_copper)
239	                ? e1000_get_speed_and_duplex_copper_generic
240	                : e1000_get_speed_and_duplex_fiber_serdes_generic;
241	/* multicast address update */
242	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_generic;
243	/* writing VFTA */
244	mac->ops.write_vfta = e1000_write_vfta_82543;
245	/* clearing VFTA */
246	mac->ops.clear_vfta = e1000_clear_vfta_generic;
247	/* setting MTA */
248	mac->ops.mta_set = e1000_mta_set_82543;
249	/* turn on/off LED */
250	mac->ops.led_on = e1000_led_on_82543;
251	mac->ops.led_off = e1000_led_off_82543;
252	/* clear hardware counters */
253	mac->ops.clear_hw_cntrs = e1000_clear_hw_cntrs_82543;
254
255	/* Set tbi compatibility */
256	if ((hw->mac.type != e1000_82543) ||
257	    (hw->phy.media_type == e1000_media_type_fiber))
258		e1000_set_tbi_compatibility_82543(hw, FALSE);
259
260	return E1000_SUCCESS;
261}
262
263/**
264 *  e1000_init_function_pointers_82543 - Init func ptrs.
265 *  @hw: pointer to the HW structure
266 *
267 *  Called to initialize all function pointers and parameters.
268 **/
269void e1000_init_function_pointers_82543(struct e1000_hw *hw)
270{
271	DEBUGFUNC("e1000_init_function_pointers_82543");
272
273	hw->mac.ops.init_params = e1000_init_mac_params_82543;
274	hw->nvm.ops.init_params = e1000_init_nvm_params_82543;
275	hw->phy.ops.init_params = e1000_init_phy_params_82543;
276}
277
278/**
279 *  e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
280 *  @hw: pointer to the HW structure
281 *
282 *  Returns the current status of 10-bit Interface (TBI) compatibility
283 *  (enabled/disabled).
284 **/
285static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw *hw)
286{
287	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
288	bool state = FALSE;
289
290	DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
291
292	if (hw->mac.type != e1000_82543) {
293		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
294		goto out;
295	}
296
297	state = (dev_spec->tbi_compatibility & TBI_COMPAT_ENABLED)
298	        ? TRUE : FALSE;
299
300out:
301	return state;
302}
303
304/**
305 *  e1000_set_tbi_compatibility_82543 - Set TBI compatibility
306 *  @hw: pointer to the HW structure
307 *  @state: enable/disable TBI compatibility
308 *
309 *  Enables or disabled 10-bit Interface (TBI) compatibility.
310 **/
311void e1000_set_tbi_compatibility_82543(struct e1000_hw *hw, bool state)
312{
313	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
314
315	DEBUGFUNC("e1000_set_tbi_compatibility_82543");
316
317	if (hw->mac.type != e1000_82543) {
318		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
319		goto out;
320	}
321
322	if (state)
323		dev_spec->tbi_compatibility |= TBI_COMPAT_ENABLED;
324	else
325		dev_spec->tbi_compatibility &= ~TBI_COMPAT_ENABLED;
326
327out:
328	return;
329}
330
331/**
332 *  e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
333 *  @hw: pointer to the HW structure
334 *
335 *  Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
336 *  (enabled/disabled).
337 **/
338bool e1000_tbi_sbp_enabled_82543(struct e1000_hw *hw)
339{
340	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
341	bool state = FALSE;
342
343	DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
344
345	if (hw->mac.type != e1000_82543) {
346		DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
347		goto out;
348	}
349
350	state = (dev_spec->tbi_compatibility & TBI_SBP_ENABLED)
351	        ? TRUE : FALSE;
352
353out:
354	return state;
355}
356
357/**
358 *  e1000_set_tbi_sbp_82543 - Set TBI SBP
359 *  @hw: pointer to the HW structure
360 *  @state: enable/disable TBI store bad packet
361 *
362 *  Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
363 **/
364static void e1000_set_tbi_sbp_82543(struct e1000_hw *hw, bool state)
365{
366	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
367
368	DEBUGFUNC("e1000_set_tbi_sbp_82543");
369
370	if (state && e1000_tbi_compatibility_enabled_82543(hw))
371		dev_spec->tbi_compatibility |= TBI_SBP_ENABLED;
372	else
373		dev_spec->tbi_compatibility &= ~TBI_SBP_ENABLED;
374
375	return;
376}
377
378/**
379 *  e1000_init_phy_disabled_82543 - Returns init PHY status
380 *  @hw: pointer to the HW structure
381 *
382 *  Returns the current status of whether PHY initialization is disabled.
383 *  True if PHY initialization is disabled else FALSE.
384 **/
385static bool e1000_init_phy_disabled_82543(struct e1000_hw *hw)
386{
387	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
388	bool ret_val;
389
390	DEBUGFUNC("e1000_init_phy_disabled_82543");
391
392	if (hw->mac.type != e1000_82543) {
393		ret_val = FALSE;
394		goto out;
395	}
396
397	ret_val = dev_spec->init_phy_disabled;
398
399out:
400	return ret_val;
401}
402
403/**
404 *  e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
405 *  @hw: pointer to the HW structure
406 *  @stats: Struct containing statistic register values
407 *  @frame_len: The length of the frame in question
408 *  @mac_addr: The Ethernet destination address of the frame in question
409 *  @max_frame_size: The maximum frame size
410 *
411 *  Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
412 **/
413void e1000_tbi_adjust_stats_82543(struct e1000_hw *hw,
414                                  struct e1000_hw_stats *stats, u32 frame_len,
415                                  u8 *mac_addr, u32 max_frame_size)
416{
417	if (!(e1000_tbi_sbp_enabled_82543(hw)))
418		goto out;
419
420	/* First adjust the frame length. */
421	frame_len--;
422	/*
423	 * We need to adjust the statistics counters, since the hardware
424	 * counters overcount this packet as a CRC error and undercount
425	 * the packet as a good packet
426	 */
427	/* This packet should not be counted as a CRC error.    */
428	stats->crcerrs--;
429	/* This packet does count as a Good Packet Received.    */
430	stats->gprc++;
431
432	/* Adjust the Good Octets received counters             */
433	stats->gorc += frame_len;
434
435	/*
436	 * Is this a broadcast or multicast?  Check broadcast first,
437	 * since the test for a multicast frame will test positive on
438	 * a broadcast frame.
439	 */
440	if ((mac_addr[0] == 0xff) && (mac_addr[1] == 0xff))
441		/* Broadcast packet */
442		stats->bprc++;
443	else if (*mac_addr & 0x01)
444		/* Multicast packet */
445		stats->mprc++;
446
447	/*
448	 * In this case, the hardware has overcounted the number of
449	 * oversize frames.
450	 */
451	if ((frame_len == max_frame_size) && (stats->roc > 0))
452		stats->roc--;
453
454	/*
455	 * Adjust the bin counters when the extra byte put the frame in the
456	 * wrong bin. Remember that the frame_len was adjusted above.
457	 */
458	if (frame_len == 64) {
459		stats->prc64++;
460		stats->prc127--;
461	} else if (frame_len == 127) {
462		stats->prc127++;
463		stats->prc255--;
464	} else if (frame_len == 255) {
465		stats->prc255++;
466		stats->prc511--;
467	} else if (frame_len == 511) {
468		stats->prc511++;
469		stats->prc1023--;
470	} else if (frame_len == 1023) {
471		stats->prc1023++;
472		stats->prc1522--;
473	} else if (frame_len == 1522) {
474		stats->prc1522++;
475	}
476
477out:
478	return;
479}
480
481/**
482 *  e1000_read_phy_reg_82543 - Read PHY register
483 *  @hw: pointer to the HW structure
484 *  @offset: register offset to be read
485 *  @data: pointer to the read data
486 *
487 *  Reads the PHY at offset and stores the information read to data.
488 **/
489static s32 e1000_read_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 *data)
490{
491	u32 mdic;
492	s32 ret_val = E1000_SUCCESS;
493
494	DEBUGFUNC("e1000_read_phy_reg_82543");
495
496	if (offset > MAX_PHY_REG_ADDRESS) {
497		DEBUGOUT1("PHY Address %d is out of range\n", offset);
498		ret_val = -E1000_ERR_PARAM;
499		goto out;
500	}
501
502	/*
503	 * We must first send a preamble through the MDIO pin to signal the
504	 * beginning of an MII instruction.  This is done by sending 32
505	 * consecutive "1" bits.
506	 */
507	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
508
509	/*
510	 * Now combine the next few fields that are required for a read
511	 * operation.  We use this method instead of calling the
512	 * e1000_shift_out_mdi_bits routine five different times.  The format
513	 * of an MII read instruction consists of a shift out of 14 bits and
514	 * is defined as follows:
515	 * 	<Preamble><SOF><Op Code><Phy Addr><Offset>
516	 * followed by a shift in of 18 bits.  This first two bits shifted in
517	 * are TurnAround bits used to avoid contention on the MDIO pin when a
518	 * READ operation is performed.  These two bits are thrown away
519	 * followed by a shift in of 16 bits which contains the desired data.
520	 */
521	mdic = (offset | (hw->phy.addr << 5) |
522		(PHY_OP_READ << 10) | (PHY_SOF << 12));
523
524	e1000_shift_out_mdi_bits_82543(hw, mdic, 14);
525
526	/*
527	 * Now that we've shifted out the read command to the MII, we need to
528	 * "shift in" the 16-bit value (18 total bits) of the requested PHY
529	 * register address.
530	 */
531	*data = e1000_shift_in_mdi_bits_82543(hw);
532
533out:
534	return ret_val;
535}
536
537/**
538 *  e1000_write_phy_reg_82543 - Write PHY register
539 *  @hw: pointer to the HW structure
540 *  @offset: register offset to be written
541 *  @data: pointer to the data to be written at offset
542 *
543 *  Writes data to the PHY at offset.
544 **/
545static s32 e1000_write_phy_reg_82543(struct e1000_hw *hw, u32 offset, u16 data)
546{
547	u32 mdic;
548	s32 ret_val = E1000_SUCCESS;
549
550	DEBUGFUNC("e1000_write_phy_reg_82543");
551
552	if (offset > MAX_PHY_REG_ADDRESS) {
553		DEBUGOUT1("PHY Address %d is out of range\n", offset);
554		ret_val = -E1000_ERR_PARAM;
555		goto out;
556	}
557
558	/*
559	 * We'll need to use the SW defined pins to shift the write command
560	 * out to the PHY. We first send a preamble to the PHY to signal the
561	 * beginning of the MII instruction.  This is done by sending 32
562	 * consecutive "1" bits.
563	 */
564	e1000_shift_out_mdi_bits_82543(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
565
566	/*
567	 * Now combine the remaining required fields that will indicate a
568	 * write operation. We use this method instead of calling the
569	 * e1000_shift_out_mdi_bits routine for each field in the command. The
570	 * format of a MII write instruction is as follows:
571	 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
572	 */
573	mdic = ((PHY_TURNAROUND) | (offset << 2) | (hw->phy.addr << 7) |
574	        (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
575	mdic <<= 16;
576	mdic |= (u32) data;
577
578	e1000_shift_out_mdi_bits_82543(hw, mdic, 32);
579
580out:
581	return ret_val;
582}
583
584/**
585 *  e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
586 *  @hw: pointer to the HW structure
587 *  @ctrl: pointer to the control register
588 *
589 *  Raise the management data input clock by setting the MDC bit in the control
590 *  register.
591 **/
592static void e1000_raise_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
593{
594	/*
595	 * Raise the clock input to the Management Data Clock (by setting the
596	 * MDC bit), and then delay a sufficient amount of time.
597	 */
598	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl | E1000_CTRL_MDC));
599	E1000_WRITE_FLUSH(hw);
600	usec_delay(10);
601}
602
603/**
604 *  e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
605 *  @hw: pointer to the HW structure
606 *  @ctrl: pointer to the control register
607 *
608 *  Lower the management data input clock by clearing the MDC bit in the
609 *  control register.
610 **/
611static void e1000_lower_mdi_clk_82543(struct e1000_hw *hw, u32 *ctrl)
612{
613	/*
614	 * Lower the clock input to the Management Data Clock (by clearing the
615	 * MDC bit), and then delay a sufficient amount of time.
616	 */
617	E1000_WRITE_REG(hw, E1000_CTRL, (*ctrl & ~E1000_CTRL_MDC));
618	E1000_WRITE_FLUSH(hw);
619	usec_delay(10);
620}
621
622/**
623 *  e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
624 *  @hw: pointer to the HW structure
625 *  @data: data to send to the PHY
626 *  @count: number of bits to shift out
627 *
628 *  We need to shift 'count' bits out to the PHY.  So, the value in the
629 *  "data" parameter will be shifted out to the PHY one bit at a time.
630 *  In order to do this, "data" must be broken down into bits.
631 **/
632static void e1000_shift_out_mdi_bits_82543(struct e1000_hw *hw, u32 data,
633                                           u16 count)
634{
635	u32 ctrl, mask;
636
637	/*
638	 * We need to shift "count" number of bits out to the PHY.  So, the
639	 * value in the "data" parameter will be shifted out to the PHY one
640	 * bit at a time.  In order to do this, "data" must be broken down
641	 * into bits.
642	 */
643	mask = 0x01;
644	mask <<= (count -1);
645
646	ctrl = E1000_READ_REG(hw, E1000_CTRL);
647
648	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
649	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
650
651	while (mask) {
652		/*
653		 * A "1" is shifted out to the PHY by setting the MDIO bit to
654		 * "1" and then raising and lowering the Management Data Clock.
655		 * A "0" is shifted out to the PHY by setting the MDIO bit to
656		 * "0" and then raising and lowering the clock.
657		 */
658		if (data & mask) ctrl |= E1000_CTRL_MDIO;
659		else ctrl &= ~E1000_CTRL_MDIO;
660
661		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
662		E1000_WRITE_FLUSH(hw);
663
664		usec_delay(10);
665
666		e1000_raise_mdi_clk_82543(hw, &ctrl);
667		e1000_lower_mdi_clk_82543(hw, &ctrl);
668
669		mask >>= 1;
670	}
671}
672
673/**
674 *  e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
675 *  @hw: pointer to the HW structure
676 *
677 *  In order to read a register from the PHY, we need to shift 18 bits
678 *  in from the PHY.  Bits are "shifted in" by raising the clock input to
679 *  the PHY (setting the MDC bit), and then reading the value of the data out
680 *  MDIO bit.
681 **/
682static u16 e1000_shift_in_mdi_bits_82543(struct e1000_hw *hw)
683{
684	u32 ctrl;
685	u16 data = 0;
686	u8 i;
687
688	/*
689	 * In order to read a register from the PHY, we need to shift in a
690	 * total of 18 bits from the PHY.  The first two bit (turnaround)
691	 * times are used to avoid contention on the MDIO pin when a read
692	 * operation is performed.  These two bits are ignored by us and
693	 * thrown away.  Bits are "shifted in" by raising the input to the
694	 * Management Data Clock (setting the MDC bit) and then reading the
695	 * value of the MDIO bit.
696	 */
697	ctrl = E1000_READ_REG(hw, E1000_CTRL);
698
699	/*
700	 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
701	 * input.
702	 */
703	ctrl &= ~E1000_CTRL_MDIO_DIR;
704	ctrl &= ~E1000_CTRL_MDIO;
705
706	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
707	E1000_WRITE_FLUSH(hw);
708
709	/*
710	 * Raise and lower the clock before reading in the data.  This accounts
711	 * for the turnaround bits.  The first clock occurred when we clocked
712	 * out the last bit of the Register Address.
713	 */
714	e1000_raise_mdi_clk_82543(hw, &ctrl);
715	e1000_lower_mdi_clk_82543(hw, &ctrl);
716
717	for (data = 0, i = 0; i < 16; i++) {
718		data <<= 1;
719		e1000_raise_mdi_clk_82543(hw, &ctrl);
720		ctrl = E1000_READ_REG(hw, E1000_CTRL);
721		/* Check to see if we shifted in a "1". */
722		if (ctrl & E1000_CTRL_MDIO)
723			data |= 1;
724		e1000_lower_mdi_clk_82543(hw, &ctrl);
725	}
726
727	e1000_raise_mdi_clk_82543(hw, &ctrl);
728	e1000_lower_mdi_clk_82543(hw, &ctrl);
729
730	return data;
731}
732
733/**
734 *  e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
735 *  @hw: pointer to the HW structure
736 *
737 *  Calls the function to force speed and duplex for the m88 PHY, and
738 *  if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
739 *  then call the function for polarity reversal workaround.
740 **/
741static s32 e1000_phy_force_speed_duplex_82543(struct e1000_hw *hw)
742{
743	s32 ret_val;
744
745	DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
746
747	ret_val = e1000_phy_force_speed_duplex_m88(hw);
748	if (ret_val)
749		goto out;
750
751	if (!hw->mac.autoneg &&
752	    (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED))
753		ret_val = e1000_polarity_reversal_workaround_82543(hw);
754
755out:
756	return ret_val;
757}
758
759/**
760 *  e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
761 *  @hw: pointer to the HW structure
762 *
763 *  When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
764 *  inadvertently.  To workaround the issue, we disable the transmitter on
765 *  the PHY until we have established the link partner's link parameters.
766 **/
767static s32 e1000_polarity_reversal_workaround_82543(struct e1000_hw *hw)
768{
769	s32 ret_val = E1000_SUCCESS;
770	u16 mii_status_reg;
771	u16 i;
772	bool link;
773
774	if (!(hw->phy.ops.write_reg))
775		goto out;
776
777	/* Polarity reversal workaround for forced 10F/10H links. */
778
779	/* Disable the transmitter on the PHY */
780
781	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
782	if (ret_val)
783		goto out;
784	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
785	if (ret_val)
786		goto out;
787
788	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
789	if (ret_val)
790		goto out;
791
792	/*
793	 * This loop will early-out if the NO link condition has been met.
794	 * In other words, DO NOT use e1000_phy_has_link_generic() here.
795	 */
796	for (i = PHY_FORCE_TIME; i > 0; i--) {
797		/*
798		 * Read the MII Status Register and wait for Link Status bit
799		 * to be clear.
800		 */
801
802		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
803		if (ret_val)
804			goto out;
805
806		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
807		if (ret_val)
808			goto out;
809
810		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
811			break;
812		msec_delay_irq(100);
813	}
814
815	/* Recommended delay time after link has been lost */
816	msec_delay_irq(1000);
817
818	/* Now we will re-enable the transmitter on the PHY */
819
820	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
821	if (ret_val)
822		goto out;
823	msec_delay_irq(50);
824	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
825	if (ret_val)
826		goto out;
827	msec_delay_irq(50);
828	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
829	if (ret_val)
830		goto out;
831	msec_delay_irq(50);
832	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
833	if (ret_val)
834		goto out;
835
836	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
837	if (ret_val)
838		goto out;
839
840	/*
841	 * Read the MII Status Register and wait for Link Status bit
842	 * to be set.
843	 */
844	ret_val = e1000_phy_has_link_generic(hw, PHY_FORCE_TIME, 100000, &link);
845	if (ret_val)
846		goto out;
847
848out:
849	return ret_val;
850}
851
852/**
853 *  e1000_phy_hw_reset_82543 - PHY hardware reset
854 *  @hw: pointer to the HW structure
855 *
856 *  Sets the PHY_RESET_DIR bit in the extended device control register
857 *  to put the PHY into a reset and waits for completion.  Once the reset
858 *  has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
859 *  of reset.
860 **/
861static s32 e1000_phy_hw_reset_82543(struct e1000_hw *hw)
862{
863	u32 ctrl_ext;
864	s32 ret_val;
865
866	DEBUGFUNC("e1000_phy_hw_reset_82543");
867
868	/*
869	 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
870	 * bit to put the PHY into reset...
871	 */
872	ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
873	ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
874	ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
875	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
876	E1000_WRITE_FLUSH(hw);
877
878	msec_delay(10);
879
880	/* ...then take it out of reset. */
881	ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
882	E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
883	E1000_WRITE_FLUSH(hw);
884
885	usec_delay(150);
886
887	if (!(hw->phy.ops.get_cfg_done))
888		return E1000_SUCCESS;
889
890	ret_val = hw->phy.ops.get_cfg_done(hw);
891
892	return ret_val;
893}
894
895/**
896 *  e1000_reset_hw_82543 - Reset hardware
897 *  @hw: pointer to the HW structure
898 *
899 *  This resets the hardware into a known state.
900 **/
901static s32 e1000_reset_hw_82543(struct e1000_hw *hw)
902{
903	u32 ctrl, icr;
904	s32 ret_val = E1000_SUCCESS;
905
906	DEBUGFUNC("e1000_reset_hw_82543");
907
908	DEBUGOUT("Masking off all interrupts\n");
909	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
910
911	E1000_WRITE_REG(hw, E1000_RCTL, 0);
912	E1000_WRITE_REG(hw, E1000_TCTL, E1000_TCTL_PSP);
913	E1000_WRITE_FLUSH(hw);
914
915	e1000_set_tbi_sbp_82543(hw, FALSE);
916
917	/*
918	 * Delay to allow any outstanding PCI transactions to complete before
919	 * resetting the device
920	 */
921	msec_delay(10);
922
923	ctrl = E1000_READ_REG(hw, E1000_CTRL);
924
925	DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
926	if (hw->mac.type == e1000_82543) {
927		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
928	} else {
929		/*
930		 * The 82544 can't ACK the 64-bit write when issuing the
931		 * reset, so use IO-mapping as a workaround.
932		 */
933		E1000_WRITE_REG_IO(hw, E1000_CTRL, ctrl | E1000_CTRL_RST);
934	}
935
936	/*
937	 * After MAC reset, force reload of NVM to restore power-on
938	 * settings to device.
939	 */
940	hw->nvm.ops.reload(hw);
941	msec_delay(2);
942
943	/* Masking off and clearing any pending interrupts */
944	E1000_WRITE_REG(hw, E1000_IMC, 0xffffffff);
945	icr = E1000_READ_REG(hw, E1000_ICR);
946
947	return ret_val;
948}
949
950/**
951 *  e1000_init_hw_82543 - Initialize hardware
952 *  @hw: pointer to the HW structure
953 *
954 *  This inits the hardware readying it for operation.
955 **/
956static s32 e1000_init_hw_82543(struct e1000_hw *hw)
957{
958	struct e1000_mac_info *mac = &hw->mac;
959	struct e1000_dev_spec_82543 *dev_spec = &hw->dev_spec._82543;
960	u32 ctrl;
961	s32 ret_val;
962	u16 i;
963
964	DEBUGFUNC("e1000_init_hw_82543");
965
966	/* Disabling VLAN filtering */
967	E1000_WRITE_REG(hw, E1000_VET, 0);
968	mac->ops.clear_vfta(hw);
969
970	/* Setup the receive address. */
971	e1000_init_rx_addrs_generic(hw, mac->rar_entry_count);
972
973	/* Zero out the Multicast HASH table */
974	DEBUGOUT("Zeroing the MTA\n");
975	for (i = 0; i < mac->mta_reg_count; i++) {
976		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
977		E1000_WRITE_FLUSH(hw);
978	}
979
980	/*
981	 * Set the PCI priority bit correctly in the CTRL register.  This
982	 * determines if the adapter gives priority to receives, or if it
983	 * gives equal priority to transmits and receives.
984	 */
985	if (hw->mac.type == e1000_82543 && dev_spec->dma_fairness) {
986		ctrl = E1000_READ_REG(hw, E1000_CTRL);
987		E1000_WRITE_REG(hw, E1000_CTRL, ctrl | E1000_CTRL_PRIOR);
988	}
989
990	e1000_pcix_mmrbc_workaround_generic(hw);
991
992	/* Setup link and flow control */
993	ret_val = mac->ops.setup_link(hw);
994
995	/*
996	 * Clear all of the statistics registers (clear on read).  It is
997	 * important that we do this after we have tried to establish link
998	 * because the symbol error count will increment wildly if there
999	 * is no link.
1000	 */
1001	e1000_clear_hw_cntrs_82543(hw);
1002
1003	return ret_val;
1004}
1005
1006/**
1007 *  e1000_setup_link_82543 - Setup flow control and link settings
1008 *  @hw: pointer to the HW structure
1009 *
1010 *  Read the EEPROM to determine the initial polarity value and write the
1011 *  extended device control register with the information before calling
1012 *  the generic setup link function, which does the following:
1013 *  Determines which flow control settings to use, then configures flow
1014 *  control.  Calls the appropriate media-specific link configuration
1015 *  function.  Assuming the adapter has a valid link partner, a valid link
1016 *  should be established.  Assumes the hardware has previously been reset
1017 *  and the transmitter and receiver are not enabled.
1018 **/
1019static s32 e1000_setup_link_82543(struct e1000_hw *hw)
1020{
1021	u32 ctrl_ext;
1022	s32  ret_val;
1023	u16 data;
1024
1025	DEBUGFUNC("e1000_setup_link_82543");
1026
1027	/*
1028	 * Take the 4 bits from NVM word 0xF that determine the initial
1029	 * polarity value for the SW controlled pins, and setup the
1030	 * Extended Device Control reg with that info.
1031	 * This is needed because one of the SW controlled pins is used for
1032	 * signal detection.  So this should be done before phy setup.
1033	 */
1034	if (hw->mac.type == e1000_82543) {
1035		ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1036		if (ret_val) {
1037			DEBUGOUT("NVM Read Error\n");
1038			ret_val = -E1000_ERR_NVM;
1039			goto out;
1040		}
1041		ctrl_ext = ((data & NVM_WORD0F_SWPDIO_EXT_MASK) <<
1042		            NVM_SWDPIO_EXT_SHIFT);
1043		E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
1044	}
1045
1046	ret_val = e1000_setup_link_generic(hw);
1047
1048out:
1049	return ret_val;
1050}
1051
1052/**
1053 *  e1000_setup_copper_link_82543 - Configure copper link settings
1054 *  @hw: pointer to the HW structure
1055 *
1056 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1057 *  for link, once link is established calls to configure collision distance
1058 *  and flow control are called.
1059 **/
1060static s32 e1000_setup_copper_link_82543(struct e1000_hw *hw)
1061{
1062	u32 ctrl;
1063	s32 ret_val;
1064	bool link;
1065
1066	DEBUGFUNC("e1000_setup_copper_link_82543");
1067
1068	ctrl = E1000_READ_REG(hw, E1000_CTRL) | E1000_CTRL_SLU;
1069	/*
1070	 * With 82543, we need to force speed and duplex on the MAC
1071	 * equal to what the PHY speed and duplex configuration is.
1072	 * In addition, we need to perform a hardware reset on the
1073	 * PHY to take it out of reset.
1074	 */
1075	if (hw->mac.type == e1000_82543) {
1076		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1077		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1078		ret_val = hw->phy.ops.reset(hw);
1079		if (ret_val)
1080			goto out;
1081		hw->phy.reset_disable = FALSE;
1082	} else {
1083		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1084		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1085	}
1086
1087	/* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1088	ret_val = e1000_copper_link_setup_m88(hw);
1089	if (ret_val)
1090		goto out;
1091
1092	if (hw->mac.autoneg) {
1093		/*
1094		 * Setup autoneg and flow control advertisement and perform
1095		 * autonegotiation.
1096		 */
1097		ret_val = e1000_copper_link_autoneg(hw);
1098		if (ret_val)
1099			goto out;
1100	} else {
1101		/*
1102		 * PHY will be set to 10H, 10F, 100H or 100F
1103		 * depending on user settings.
1104		 */
1105		DEBUGOUT("Forcing Speed and Duplex\n");
1106		ret_val = e1000_phy_force_speed_duplex_82543(hw);
1107		if (ret_val) {
1108			DEBUGOUT("Error Forcing Speed and Duplex\n");
1109			goto out;
1110		}
1111	}
1112
1113	/*
1114	 * Check link status. Wait up to 100 microseconds for link to become
1115	 * valid.
1116	 */
1117	ret_val = e1000_phy_has_link_generic(hw,
1118	                                     COPPER_LINK_UP_LIMIT,
1119	                                     10,
1120	                                     &link);
1121	if (ret_val)
1122		goto out;
1123
1124
1125	if (link) {
1126		DEBUGOUT("Valid link established!!!\n");
1127		/* Config the MAC and PHY after link is up */
1128		if (hw->mac.type == e1000_82544) {
1129			e1000_config_collision_dist_generic(hw);
1130		} else {
1131			ret_val = e1000_config_mac_to_phy_82543(hw);
1132			if (ret_val)
1133				goto out;
1134		}
1135		ret_val = e1000_config_fc_after_link_up_generic(hw);
1136	} else {
1137		DEBUGOUT("Unable to establish link!!!\n");
1138	}
1139
1140out:
1141	return ret_val;
1142}
1143
1144/**
1145 *  e1000_setup_fiber_link_82543 - Setup link for fiber
1146 *  @hw: pointer to the HW structure
1147 *
1148 *  Configures collision distance and flow control for fiber links.  Upon
1149 *  successful setup, poll for link.
1150 **/
1151static s32 e1000_setup_fiber_link_82543(struct e1000_hw *hw)
1152{
1153	u32 ctrl;
1154	s32 ret_val;
1155
1156	DEBUGFUNC("e1000_setup_fiber_link_82543");
1157
1158	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1159
1160	/* Take the link out of reset */
1161	ctrl &= ~E1000_CTRL_LRST;
1162
1163	e1000_config_collision_dist_generic(hw);
1164
1165	ret_val = e1000_commit_fc_settings_generic(hw);
1166	if (ret_val)
1167		goto out;
1168
1169	DEBUGOUT("Auto-negotiation enabled\n");
1170
1171	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1172	E1000_WRITE_FLUSH(hw);
1173	msec_delay(1);
1174
1175	/*
1176	 * For these adapters, the SW definable pin 1 is cleared when the
1177	 * optics detect a signal.  If we have a signal, then poll for a
1178	 * "Link-Up" indication.
1179	 */
1180	if (!(E1000_READ_REG(hw, E1000_CTRL) & E1000_CTRL_SWDPIN1)) {
1181		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
1182	} else {
1183		DEBUGOUT("No signal detected\n");
1184	}
1185
1186out:
1187	return ret_val;
1188}
1189
1190/**
1191 *  e1000_check_for_copper_link_82543 - Check for link (Copper)
1192 *  @hw: pointer to the HW structure
1193 *
1194 *  Checks the phy for link, if link exists, do the following:
1195 *   - check for downshift
1196 *   - do polarity workaround (if necessary)
1197 *   - configure collision distance
1198 *   - configure flow control after link up
1199 *   - configure tbi compatibility
1200 **/
1201static s32 e1000_check_for_copper_link_82543(struct e1000_hw *hw)
1202{
1203	struct e1000_mac_info *mac = &hw->mac;
1204	u32 icr, rctl;
1205	s32 ret_val;
1206	u16 speed, duplex;
1207	bool link;
1208
1209	DEBUGFUNC("e1000_check_for_copper_link_82543");
1210
1211	if (!mac->get_link_status) {
1212		ret_val = E1000_SUCCESS;
1213		goto out;
1214	}
1215
1216	ret_val = e1000_phy_has_link_generic(hw, 1, 0, &link);
1217	if (ret_val)
1218		goto out;
1219
1220	if (!link)
1221		goto out; /* No link detected */
1222
1223	mac->get_link_status = FALSE;
1224
1225	e1000_check_downshift_generic(hw);
1226
1227	/*
1228	 * If we are forcing speed/duplex, then we can return since
1229	 * we have already determined whether we have link or not.
1230	 */
1231	if (!mac->autoneg) {
1232		/*
1233		 * If speed and duplex are forced to 10H or 10F, then we will
1234		 * implement the polarity reversal workaround.  We disable
1235		 * interrupts first, and upon returning, place the devices
1236		 * interrupt state to its previous value except for the link
1237		 * status change interrupt which will happened due to the
1238		 * execution of this workaround.
1239		 */
1240		if (mac->forced_speed_duplex & E1000_ALL_10_SPEED) {
1241			E1000_WRITE_REG(hw, E1000_IMC, 0xFFFFFFFF);
1242			ret_val = e1000_polarity_reversal_workaround_82543(hw);
1243			icr = E1000_READ_REG(hw, E1000_ICR);
1244			E1000_WRITE_REG(hw, E1000_ICS, (icr & ~E1000_ICS_LSC));
1245			E1000_WRITE_REG(hw, E1000_IMS, IMS_ENABLE_MASK);
1246		}
1247
1248		ret_val = -E1000_ERR_CONFIG;
1249		goto out;
1250	}
1251
1252	/*
1253	 * We have a M88E1000 PHY and Auto-Neg is enabled.  If we
1254	 * have Si on board that is 82544 or newer, Auto
1255	 * Speed Detection takes care of MAC speed/duplex
1256	 * configuration.  So we only need to configure Collision
1257	 * Distance in the MAC.  Otherwise, we need to force
1258	 * speed/duplex on the MAC to the current PHY speed/duplex
1259	 * settings.
1260	 */
1261	if (mac->type == e1000_82544)
1262		e1000_config_collision_dist_generic(hw);
1263	else {
1264		ret_val = e1000_config_mac_to_phy_82543(hw);
1265		if (ret_val) {
1266			DEBUGOUT("Error configuring MAC to PHY settings\n");
1267			goto out;
1268		}
1269	}
1270
1271	/*
1272	 * Configure Flow Control now that Auto-Neg has completed.
1273	 * First, we need to restore the desired flow control
1274	 * settings because we may have had to re-autoneg with a
1275	 * different link partner.
1276	 */
1277	ret_val = e1000_config_fc_after_link_up_generic(hw);
1278	if (ret_val) {
1279		DEBUGOUT("Error configuring flow control\n");
1280	}
1281
1282	/*
1283	 * At this point we know that we are on copper and we have
1284	 * auto-negotiated link.  These are conditions for checking the link
1285	 * partner capability register.  We use the link speed to determine if
1286	 * TBI compatibility needs to be turned on or off.  If the link is not
1287	 * at gigabit speed, then TBI compatibility is not needed.  If we are
1288	 * at gigabit speed, we turn on TBI compatibility.
1289	 */
1290	if (e1000_tbi_compatibility_enabled_82543(hw)) {
1291		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1292		if (ret_val) {
1293			DEBUGOUT("Error getting link speed and duplex\n");
1294			return ret_val;
1295		}
1296		if (speed != SPEED_1000) {
1297			/*
1298			 * If link speed is not set to gigabit speed,
1299			 * we do not need to enable TBI compatibility.
1300			 */
1301			if (e1000_tbi_sbp_enabled_82543(hw)) {
1302				/*
1303				 * If we previously were in the mode,
1304				 * turn it off.
1305				 */
1306				e1000_set_tbi_sbp_82543(hw, FALSE);
1307				rctl = E1000_READ_REG(hw, E1000_RCTL);
1308				rctl &= ~E1000_RCTL_SBP;
1309				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1310			}
1311		} else {
1312			/*
1313			 * If TBI compatibility is was previously off,
1314			 * turn it on. For compatibility with a TBI link
1315			 * partner, we will store bad packets. Some
1316			 * frames have an additional byte on the end and
1317			 * will look like CRC errors to to the hardware.
1318			 */
1319			if (!e1000_tbi_sbp_enabled_82543(hw)) {
1320				e1000_set_tbi_sbp_82543(hw, TRUE);
1321				rctl = E1000_READ_REG(hw, E1000_RCTL);
1322				rctl |= E1000_RCTL_SBP;
1323				E1000_WRITE_REG(hw, E1000_RCTL, rctl);
1324			}
1325		}
1326	}
1327out:
1328	return ret_val;
1329}
1330
1331/**
1332 *  e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1333 *  @hw: pointer to the HW structure
1334 *
1335 *  Checks for link up on the hardware.  If link is not up and we have
1336 *  a signal, then we need to force link up.
1337 **/
1338static s32 e1000_check_for_fiber_link_82543(struct e1000_hw *hw)
1339{
1340	struct e1000_mac_info *mac = &hw->mac;
1341	u32 rxcw, ctrl, status;
1342	s32 ret_val = E1000_SUCCESS;
1343
1344	DEBUGFUNC("e1000_check_for_fiber_link_82543");
1345
1346	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1347	status = E1000_READ_REG(hw, E1000_STATUS);
1348	rxcw = E1000_READ_REG(hw, E1000_RXCW);
1349
1350	/*
1351	 * If we don't have link (auto-negotiation failed or link partner
1352	 * cannot auto-negotiate), the cable is plugged in (we have signal),
1353	 * and our link partner is not trying to auto-negotiate with us (we
1354	 * are receiving idles or data), we need to force link up. We also
1355	 * need to give auto-negotiation time to complete, in case the cable
1356	 * was just plugged in. The autoneg_failed flag does this.
1357	 */
1358	/* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1359	if ((!(ctrl & E1000_CTRL_SWDPIN1)) &&
1360	    (!(status & E1000_STATUS_LU)) &&
1361	    (!(rxcw & E1000_RXCW_C))) {
1362		if (mac->autoneg_failed == 0) {
1363			mac->autoneg_failed = 1;
1364			ret_val = 0;
1365			goto out;
1366		}
1367		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1368
1369		/* Disable auto-negotiation in the TXCW register */
1370		E1000_WRITE_REG(hw, E1000_TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1371
1372		/* Force link-up and also force full-duplex. */
1373		ctrl = E1000_READ_REG(hw, E1000_CTRL);
1374		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1375		E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1376
1377		/* Configure Flow Control after forcing link up. */
1378		ret_val = e1000_config_fc_after_link_up_generic(hw);
1379		if (ret_val) {
1380			DEBUGOUT("Error configuring flow control\n");
1381			goto out;
1382		}
1383	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
1384		/*
1385		 * If we are forcing link and we are receiving /C/ ordered
1386		 * sets, re-enable auto-negotiation in the TXCW register
1387		 * and disable forced link in the Device Control register
1388		 * in an attempt to auto-negotiate with our link partner.
1389		 */
1390		DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1391		E1000_WRITE_REG(hw, E1000_TXCW, mac->txcw);
1392		E1000_WRITE_REG(hw, E1000_CTRL, (ctrl & ~E1000_CTRL_SLU));
1393
1394		mac->serdes_has_link = TRUE;
1395	}
1396
1397out:
1398	return ret_val;
1399}
1400
1401/**
1402 *  e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1403 *  @hw: pointer to the HW structure
1404 *
1405 *  For the 82543 silicon, we need to set the MAC to match the settings
1406 *  of the PHY, even if the PHY is auto-negotiating.
1407 **/
1408static s32 e1000_config_mac_to_phy_82543(struct e1000_hw *hw)
1409{
1410	u32 ctrl;
1411	s32 ret_val = E1000_SUCCESS;
1412	u16 phy_data;
1413
1414	DEBUGFUNC("e1000_config_mac_to_phy_82543");
1415
1416	if (!(hw->phy.ops.read_reg))
1417		goto out;
1418
1419	/* Set the bits to force speed and duplex */
1420	ctrl = E1000_READ_REG(hw, E1000_CTRL);
1421	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1422	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1423
1424	/*
1425	 * Set up duplex in the Device Control and Transmit Control
1426	 * registers depending on negotiated values.
1427	 */
1428	ret_val = hw->phy.ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1429	if (ret_val)
1430		goto out;
1431
1432	ctrl &= ~E1000_CTRL_FD;
1433	if (phy_data & M88E1000_PSSR_DPLX)
1434		ctrl |= E1000_CTRL_FD;
1435
1436	e1000_config_collision_dist_generic(hw);
1437
1438	/*
1439	 * Set up speed in the Device Control register depending on
1440	 * negotiated values.
1441	 */
1442	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1443		ctrl |= E1000_CTRL_SPD_1000;
1444	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
1445		ctrl |= E1000_CTRL_SPD_100;
1446
1447	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1448
1449out:
1450	return ret_val;
1451}
1452
1453/**
1454 *  e1000_write_vfta_82543 - Write value to VLAN filter table
1455 *  @hw: pointer to the HW structure
1456 *  @offset: the 32-bit offset in which to write the value to.
1457 *  @value: the 32-bit value to write at location offset.
1458 *
1459 *  This writes a 32-bit value to a 32-bit offset in the VLAN filter
1460 *  table.
1461 **/
1462static void e1000_write_vfta_82543(struct e1000_hw *hw, u32 offset, u32 value)
1463{
1464	u32 temp;
1465
1466	DEBUGFUNC("e1000_write_vfta_82543");
1467
1468	if ((hw->mac.type == e1000_82544) && (offset & 1)) {
1469		temp = E1000_READ_REG_ARRAY(hw, E1000_VFTA, offset - 1);
1470		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
1471		E1000_WRITE_FLUSH(hw);
1472		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset - 1, temp);
1473		E1000_WRITE_FLUSH(hw);
1474	} else {
1475		e1000_write_vfta_generic(hw, offset, value);
1476	}
1477}
1478
1479/**
1480 *  e1000_mta_set_82543 - Set multicast filter table address
1481 *  @hw: pointer to the HW structure
1482 *  @hash_value: determines the MTA register and bit to set
1483 *
1484 *  The multicast table address is a register array of 32-bit registers.
1485 *  The hash_value is used to determine what register the bit is in, the
1486 *  current value is read, the new bit is OR'd in and the new value is
1487 *  written back into the register.
1488 **/
1489static void e1000_mta_set_82543(struct e1000_hw *hw, u32 hash_value)
1490{
1491	u32 hash_bit, hash_reg, mta, temp;
1492
1493	DEBUGFUNC("e1000_mta_set_82543");
1494
1495	hash_reg = (hash_value >> 5);
1496
1497	/*
1498	 * If we are on an 82544 and we are trying to write an odd offset
1499	 * in the MTA, save off the previous entry before writing and
1500	 * restore the old value after writing.
1501	 */
1502	if ((hw->mac.type == e1000_82544) && (hash_reg & 1)) {
1503		hash_reg &= (hw->mac.mta_reg_count - 1);
1504		hash_bit = hash_value & 0x1F;
1505		mta = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg);
1506		mta |= (1 << hash_bit);
1507		temp = E1000_READ_REG_ARRAY(hw, E1000_MTA, hash_reg - 1);
1508
1509		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg, mta);
1510		E1000_WRITE_FLUSH(hw);
1511		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, hash_reg - 1, temp);
1512		E1000_WRITE_FLUSH(hw);
1513	} else {
1514		e1000_mta_set_generic(hw, hash_value);
1515	}
1516}
1517
1518/**
1519 *  e1000_led_on_82543 - Turn on SW controllable LED
1520 *  @hw: pointer to the HW structure
1521 *
1522 *  Turns the SW defined LED on.
1523 **/
1524static s32 e1000_led_on_82543(struct e1000_hw *hw)
1525{
1526	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1527
1528	DEBUGFUNC("e1000_led_on_82543");
1529
1530	if (hw->mac.type == e1000_82544 &&
1531	    hw->phy.media_type == e1000_media_type_copper) {
1532		/* Clear SW-definable Pin 0 to turn on the LED */
1533		ctrl &= ~E1000_CTRL_SWDPIN0;
1534		ctrl |= E1000_CTRL_SWDPIO0;
1535	} else {
1536		/* Fiber 82544 and all 82543 use this method */
1537		ctrl |= E1000_CTRL_SWDPIN0;
1538		ctrl |= E1000_CTRL_SWDPIO0;
1539	}
1540	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1541
1542	return E1000_SUCCESS;
1543}
1544
1545/**
1546 *  e1000_led_off_82543 - Turn off SW controllable LED
1547 *  @hw: pointer to the HW structure
1548 *
1549 *  Turns the SW defined LED off.
1550 **/
1551static s32 e1000_led_off_82543(struct e1000_hw *hw)
1552{
1553	u32 ctrl = E1000_READ_REG(hw, E1000_CTRL);
1554
1555	DEBUGFUNC("e1000_led_off_82543");
1556
1557	if (hw->mac.type == e1000_82544 &&
1558	    hw->phy.media_type == e1000_media_type_copper) {
1559		/* Set SW-definable Pin 0 to turn off the LED */
1560		ctrl |= E1000_CTRL_SWDPIN0;
1561		ctrl |= E1000_CTRL_SWDPIO0;
1562	} else {
1563		ctrl &= ~E1000_CTRL_SWDPIN0;
1564		ctrl |= E1000_CTRL_SWDPIO0;
1565	}
1566	E1000_WRITE_REG(hw, E1000_CTRL, ctrl);
1567
1568	return E1000_SUCCESS;
1569}
1570
1571/**
1572 *  e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1573 *  @hw: pointer to the HW structure
1574 *
1575 *  Clears the hardware counters by reading the counter registers.
1576 **/
1577static void e1000_clear_hw_cntrs_82543(struct e1000_hw *hw)
1578{
1579	DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1580
1581	e1000_clear_hw_cntrs_base_generic(hw);
1582
1583	E1000_READ_REG(hw, E1000_PRC64);
1584	E1000_READ_REG(hw, E1000_PRC127);
1585	E1000_READ_REG(hw, E1000_PRC255);
1586	E1000_READ_REG(hw, E1000_PRC511);
1587	E1000_READ_REG(hw, E1000_PRC1023);
1588	E1000_READ_REG(hw, E1000_PRC1522);
1589	E1000_READ_REG(hw, E1000_PTC64);
1590	E1000_READ_REG(hw, E1000_PTC127);
1591	E1000_READ_REG(hw, E1000_PTC255);
1592	E1000_READ_REG(hw, E1000_PTC511);
1593	E1000_READ_REG(hw, E1000_PTC1023);
1594	E1000_READ_REG(hw, E1000_PTC1522);
1595
1596	E1000_READ_REG(hw, E1000_ALGNERRC);
1597	E1000_READ_REG(hw, E1000_RXERRC);
1598	E1000_READ_REG(hw, E1000_TNCRS);
1599	E1000_READ_REG(hw, E1000_CEXTERR);
1600	E1000_READ_REG(hw, E1000_TSCTC);
1601	E1000_READ_REG(hw, E1000_TSCTFC);
1602}
1603