1/*
2 * Copyright �� 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 *	Eric Anholt <eric@anholt.net>
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <dev/drm2/drmP.h>
31#include <dev/drm2/drm.h>
32#include <dev/drm2/i915/i915_drm.h>
33#include <dev/drm2/i915/i915_drv.h>
34#include <dev/drm2/i915/intel_drv.h>
35#include <dev/drm2/drm_edid.h>
36#include <dev/drm2/drm_dp_helper.h>
37#include <dev/drm2/drm_crtc_helper.h>
38#include <sys/kdb.h>
39#include <sys/limits.h>
40
41#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
42
43bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
44static void intel_update_watermarks(struct drm_device *dev);
45static void intel_increase_pllclock(struct drm_crtc *crtc);
46static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
47
48typedef struct {
49	/* given values */
50	int n;
51	int m1, m2;
52	int p1, p2;
53	/* derived values */
54	int	dot;
55	int	vco;
56	int	m;
57	int	p;
58} intel_clock_t;
59
60typedef struct {
61	int	min, max;
62} intel_range_t;
63
64typedef struct {
65	int	dot_limit;
66	int	p2_slow, p2_fast;
67} intel_p2_t;
68
69#define INTEL_P2_NUM		      2
70typedef struct intel_limit intel_limit_t;
71struct intel_limit {
72	intel_range_t   dot, vco, n, m, m1, m2, p, p1;
73	intel_p2_t	    p2;
74	bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
75			int, int, intel_clock_t *, intel_clock_t *);
76};
77
78/* FDI */
79#define IRONLAKE_FDI_FREQ		2700000 /* in kHz for mode->clock */
80
81static bool
82intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
83		    int target, int refclk, intel_clock_t *match_clock,
84		    intel_clock_t *best_clock);
85static bool
86intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87			int target, int refclk, intel_clock_t *match_clock,
88			intel_clock_t *best_clock);
89
90static bool
91intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
92		      int target, int refclk, intel_clock_t *match_clock,
93		      intel_clock_t *best_clock);
94static bool
95intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
96			   int target, int refclk, intel_clock_t *match_clock,
97			   intel_clock_t *best_clock);
98
99static inline u32 /* units of 100MHz */
100intel_fdi_link_freq(struct drm_device *dev)
101{
102	if (IS_GEN5(dev)) {
103		struct drm_i915_private *dev_priv = dev->dev_private;
104		return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
105	} else
106		return 27;
107}
108
109static const intel_limit_t intel_limits_i8xx_dvo = {
110	.dot = { .min = 25000, .max = 350000 },
111	.vco = { .min = 930000, .max = 1400000 },
112	.n = { .min = 3, .max = 16 },
113	.m = { .min = 96, .max = 140 },
114	.m1 = { .min = 18, .max = 26 },
115	.m2 = { .min = 6, .max = 16 },
116	.p = { .min = 4, .max = 128 },
117	.p1 = { .min = 2, .max = 33 },
118	.p2 = { .dot_limit = 165000,
119		.p2_slow = 4, .p2_fast = 2 },
120	.find_pll = intel_find_best_PLL,
121};
122
123static const intel_limit_t intel_limits_i8xx_lvds = {
124	.dot = { .min = 25000, .max = 350000 },
125	.vco = { .min = 930000, .max = 1400000 },
126	.n = { .min = 3, .max = 16 },
127	.m = { .min = 96, .max = 140 },
128	.m1 = { .min = 18, .max = 26 },
129	.m2 = { .min = 6, .max = 16 },
130	.p = { .min = 4, .max = 128 },
131	.p1 = { .min = 1, .max = 6 },
132	.p2 = { .dot_limit = 165000,
133		.p2_slow = 14, .p2_fast = 7 },
134	.find_pll = intel_find_best_PLL,
135};
136
137static const intel_limit_t intel_limits_i9xx_sdvo = {
138	.dot = { .min = 20000, .max = 400000 },
139	.vco = { .min = 1400000, .max = 2800000 },
140	.n = { .min = 1, .max = 6 },
141	.m = { .min = 70, .max = 120 },
142	.m1 = { .min = 10, .max = 22 },
143	.m2 = { .min = 5, .max = 9 },
144	.p = { .min = 5, .max = 80 },
145	.p1 = { .min = 1, .max = 8 },
146	.p2 = { .dot_limit = 200000,
147		.p2_slow = 10, .p2_fast = 5 },
148	.find_pll = intel_find_best_PLL,
149};
150
151static const intel_limit_t intel_limits_i9xx_lvds = {
152	.dot = { .min = 20000, .max = 400000 },
153	.vco = { .min = 1400000, .max = 2800000 },
154	.n = { .min = 1, .max = 6 },
155	.m = { .min = 70, .max = 120 },
156	.m1 = { .min = 10, .max = 22 },
157	.m2 = { .min = 5, .max = 9 },
158	.p = { .min = 7, .max = 98 },
159	.p1 = { .min = 1, .max = 8 },
160	.p2 = { .dot_limit = 112000,
161		.p2_slow = 14, .p2_fast = 7 },
162	.find_pll = intel_find_best_PLL,
163};
164
165
166static const intel_limit_t intel_limits_g4x_sdvo = {
167	.dot = { .min = 25000, .max = 270000 },
168	.vco = { .min = 1750000, .max = 3500000},
169	.n = { .min = 1, .max = 4 },
170	.m = { .min = 104, .max = 138 },
171	.m1 = { .min = 17, .max = 23 },
172	.m2 = { .min = 5, .max = 11 },
173	.p = { .min = 10, .max = 30 },
174	.p1 = { .min = 1, .max = 3},
175	.p2 = { .dot_limit = 270000,
176		.p2_slow = 10,
177		.p2_fast = 10
178	},
179	.find_pll = intel_g4x_find_best_PLL,
180};
181
182static const intel_limit_t intel_limits_g4x_hdmi = {
183	.dot = { .min = 22000, .max = 400000 },
184	.vco = { .min = 1750000, .max = 3500000},
185	.n = { .min = 1, .max = 4 },
186	.m = { .min = 104, .max = 138 },
187	.m1 = { .min = 16, .max = 23 },
188	.m2 = { .min = 5, .max = 11 },
189	.p = { .min = 5, .max = 80 },
190	.p1 = { .min = 1, .max = 8},
191	.p2 = { .dot_limit = 165000,
192		.p2_slow = 10, .p2_fast = 5 },
193	.find_pll = intel_g4x_find_best_PLL,
194};
195
196static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
197	.dot = { .min = 20000, .max = 115000 },
198	.vco = { .min = 1750000, .max = 3500000 },
199	.n = { .min = 1, .max = 3 },
200	.m = { .min = 104, .max = 138 },
201	.m1 = { .min = 17, .max = 23 },
202	.m2 = { .min = 5, .max = 11 },
203	.p = { .min = 28, .max = 112 },
204	.p1 = { .min = 2, .max = 8 },
205	.p2 = { .dot_limit = 0,
206		.p2_slow = 14, .p2_fast = 14
207	},
208	.find_pll = intel_g4x_find_best_PLL,
209};
210
211static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
212	.dot = { .min = 80000, .max = 224000 },
213	.vco = { .min = 1750000, .max = 3500000 },
214	.n = { .min = 1, .max = 3 },
215	.m = { .min = 104, .max = 138 },
216	.m1 = { .min = 17, .max = 23 },
217	.m2 = { .min = 5, .max = 11 },
218	.p = { .min = 14, .max = 42 },
219	.p1 = { .min = 2, .max = 6 },
220	.p2 = { .dot_limit = 0,
221		.p2_slow = 7, .p2_fast = 7
222	},
223	.find_pll = intel_g4x_find_best_PLL,
224};
225
226static const intel_limit_t intel_limits_g4x_display_port = {
227	.dot = { .min = 161670, .max = 227000 },
228	.vco = { .min = 1750000, .max = 3500000},
229	.n = { .min = 1, .max = 2 },
230	.m = { .min = 97, .max = 108 },
231	.m1 = { .min = 0x10, .max = 0x12 },
232	.m2 = { .min = 0x05, .max = 0x06 },
233	.p = { .min = 10, .max = 20 },
234	.p1 = { .min = 1, .max = 2},
235	.p2 = { .dot_limit = 0,
236		.p2_slow = 10, .p2_fast = 10 },
237	.find_pll = intel_find_pll_g4x_dp,
238};
239
240static const intel_limit_t intel_limits_pineview_sdvo = {
241	.dot = { .min = 20000, .max = 400000},
242	.vco = { .min = 1700000, .max = 3500000 },
243	/* Pineview's Ncounter is a ring counter */
244	.n = { .min = 3, .max = 6 },
245	.m = { .min = 2, .max = 256 },
246	/* Pineview only has one combined m divider, which we treat as m2. */
247	.m1 = { .min = 0, .max = 0 },
248	.m2 = { .min = 0, .max = 254 },
249	.p = { .min = 5, .max = 80 },
250	.p1 = { .min = 1, .max = 8 },
251	.p2 = { .dot_limit = 200000,
252		.p2_slow = 10, .p2_fast = 5 },
253	.find_pll = intel_find_best_PLL,
254};
255
256static const intel_limit_t intel_limits_pineview_lvds = {
257	.dot = { .min = 20000, .max = 400000 },
258	.vco = { .min = 1700000, .max = 3500000 },
259	.n = { .min = 3, .max = 6 },
260	.m = { .min = 2, .max = 256 },
261	.m1 = { .min = 0, .max = 0 },
262	.m2 = { .min = 0, .max = 254 },
263	.p = { .min = 7, .max = 112 },
264	.p1 = { .min = 1, .max = 8 },
265	.p2 = { .dot_limit = 112000,
266		.p2_slow = 14, .p2_fast = 14 },
267	.find_pll = intel_find_best_PLL,
268};
269
270/* Ironlake / Sandybridge
271 *
272 * We calculate clock using (register_value + 2) for N/M1/M2, so here
273 * the range value for them is (actual_value - 2).
274 */
275static const intel_limit_t intel_limits_ironlake_dac = {
276	.dot = { .min = 25000, .max = 350000 },
277	.vco = { .min = 1760000, .max = 3510000 },
278	.n = { .min = 1, .max = 5 },
279	.m = { .min = 79, .max = 127 },
280	.m1 = { .min = 12, .max = 22 },
281	.m2 = { .min = 5, .max = 9 },
282	.p = { .min = 5, .max = 80 },
283	.p1 = { .min = 1, .max = 8 },
284	.p2 = { .dot_limit = 225000,
285		.p2_slow = 10, .p2_fast = 5 },
286	.find_pll = intel_g4x_find_best_PLL,
287};
288
289static const intel_limit_t intel_limits_ironlake_single_lvds = {
290	.dot = { .min = 25000, .max = 350000 },
291	.vco = { .min = 1760000, .max = 3510000 },
292	.n = { .min = 1, .max = 3 },
293	.m = { .min = 79, .max = 118 },
294	.m1 = { .min = 12, .max = 22 },
295	.m2 = { .min = 5, .max = 9 },
296	.p = { .min = 28, .max = 112 },
297	.p1 = { .min = 2, .max = 8 },
298	.p2 = { .dot_limit = 225000,
299		.p2_slow = 14, .p2_fast = 14 },
300	.find_pll = intel_g4x_find_best_PLL,
301};
302
303static const intel_limit_t intel_limits_ironlake_dual_lvds = {
304	.dot = { .min = 25000, .max = 350000 },
305	.vco = { .min = 1760000, .max = 3510000 },
306	.n = { .min = 1, .max = 3 },
307	.m = { .min = 79, .max = 127 },
308	.m1 = { .min = 12, .max = 22 },
309	.m2 = { .min = 5, .max = 9 },
310	.p = { .min = 14, .max = 56 },
311	.p1 = { .min = 2, .max = 8 },
312	.p2 = { .dot_limit = 225000,
313		.p2_slow = 7, .p2_fast = 7 },
314	.find_pll = intel_g4x_find_best_PLL,
315};
316
317/* LVDS 100mhz refclk limits. */
318static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
319	.dot = { .min = 25000, .max = 350000 },
320	.vco = { .min = 1760000, .max = 3510000 },
321	.n = { .min = 1, .max = 2 },
322	.m = { .min = 79, .max = 126 },
323	.m1 = { .min = 12, .max = 22 },
324	.m2 = { .min = 5, .max = 9 },
325	.p = { .min = 28, .max = 112 },
326	.p1 = { .min = 2, .max = 8 },
327	.p2 = { .dot_limit = 225000,
328		.p2_slow = 14, .p2_fast = 14 },
329	.find_pll = intel_g4x_find_best_PLL,
330};
331
332static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
333	.dot = { .min = 25000, .max = 350000 },
334	.vco = { .min = 1760000, .max = 3510000 },
335	.n = { .min = 1, .max = 3 },
336	.m = { .min = 79, .max = 126 },
337	.m1 = { .min = 12, .max = 22 },
338	.m2 = { .min = 5, .max = 9 },
339	.p = { .min = 14, .max = 42 },
340	.p1 = { .min = 2, .max = 6 },
341	.p2 = { .dot_limit = 225000,
342		.p2_slow = 7, .p2_fast = 7 },
343	.find_pll = intel_g4x_find_best_PLL,
344};
345
346static const intel_limit_t intel_limits_ironlake_display_port = {
347	.dot = { .min = 25000, .max = 350000 },
348	.vco = { .min = 1760000, .max = 3510000},
349	.n = { .min = 1, .max = 2 },
350	.m = { .min = 81, .max = 90 },
351	.m1 = { .min = 12, .max = 22 },
352	.m2 = { .min = 5, .max = 9 },
353	.p = { .min = 10, .max = 20 },
354	.p1 = { .min = 1, .max = 2},
355	.p2 = { .dot_limit = 0,
356		.p2_slow = 10, .p2_fast = 10 },
357	.find_pll = intel_find_pll_ironlake_dp,
358};
359
360static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
361						int refclk)
362{
363	struct drm_device *dev = crtc->dev;
364	struct drm_i915_private *dev_priv = dev->dev_private;
365	const intel_limit_t *limit;
366
367	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
368		if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
369		    LVDS_CLKB_POWER_UP) {
370			/* LVDS dual channel */
371			if (refclk == 100000)
372				limit = &intel_limits_ironlake_dual_lvds_100m;
373			else
374				limit = &intel_limits_ironlake_dual_lvds;
375		} else {
376			if (refclk == 100000)
377				limit = &intel_limits_ironlake_single_lvds_100m;
378			else
379				limit = &intel_limits_ironlake_single_lvds;
380		}
381	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
382			HAS_eDP)
383		limit = &intel_limits_ironlake_display_port;
384	else
385		limit = &intel_limits_ironlake_dac;
386
387	return limit;
388}
389
390static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
391{
392	struct drm_device *dev = crtc->dev;
393	struct drm_i915_private *dev_priv = dev->dev_private;
394	const intel_limit_t *limit;
395
396	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
397		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
398		    LVDS_CLKB_POWER_UP)
399			/* LVDS with dual channel */
400			limit = &intel_limits_g4x_dual_channel_lvds;
401		else
402			/* LVDS with dual channel */
403			limit = &intel_limits_g4x_single_channel_lvds;
404	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
405		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
406		limit = &intel_limits_g4x_hdmi;
407	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
408		limit = &intel_limits_g4x_sdvo;
409	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
410		limit = &intel_limits_g4x_display_port;
411	} else /* The option is for other outputs */
412		limit = &intel_limits_i9xx_sdvo;
413
414	return limit;
415}
416
417static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
418{
419	struct drm_device *dev = crtc->dev;
420	const intel_limit_t *limit;
421
422	if (HAS_PCH_SPLIT(dev))
423		limit = intel_ironlake_limit(crtc, refclk);
424	else if (IS_G4X(dev)) {
425		limit = intel_g4x_limit(crtc);
426	} else if (IS_PINEVIEW(dev)) {
427		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
428			limit = &intel_limits_pineview_lvds;
429		else
430			limit = &intel_limits_pineview_sdvo;
431	} else if (!IS_GEN2(dev)) {
432		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
433			limit = &intel_limits_i9xx_lvds;
434		else
435			limit = &intel_limits_i9xx_sdvo;
436	} else {
437		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
438			limit = &intel_limits_i8xx_lvds;
439		else
440			limit = &intel_limits_i8xx_dvo;
441	}
442	return limit;
443}
444
445/* m1 is reserved as 0 in Pineview, n is a ring counter */
446static void pineview_clock(int refclk, intel_clock_t *clock)
447{
448	clock->m = clock->m2 + 2;
449	clock->p = clock->p1 * clock->p2;
450	clock->vco = refclk * clock->m / clock->n;
451	clock->dot = clock->vco / clock->p;
452}
453
454static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
455{
456	if (IS_PINEVIEW(dev)) {
457		pineview_clock(refclk, clock);
458		return;
459	}
460	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
461	clock->p = clock->p1 * clock->p2;
462	clock->vco = refclk * clock->m / (clock->n + 2);
463	clock->dot = clock->vco / clock->p;
464}
465
466/**
467 * Returns whether any output on the specified pipe is of the specified type
468 */
469bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
470{
471	struct drm_device *dev = crtc->dev;
472	struct drm_mode_config *mode_config = &dev->mode_config;
473	struct intel_encoder *encoder;
474
475	list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
476		if (encoder->base.crtc == crtc && encoder->type == type)
477			return true;
478
479	return false;
480}
481
482#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
483/**
484 * Returns whether the given set of divisors are valid for a given refclk with
485 * the given connectors.
486 */
487
488static bool intel_PLL_is_valid(struct drm_device *dev,
489			       const intel_limit_t *limit,
490			       const intel_clock_t *clock)
491{
492	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
493		INTELPllInvalid("p1 out of range\n");
494	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
495		INTELPllInvalid("p out of range\n");
496	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
497		INTELPllInvalid("m2 out of range\n");
498	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
499		INTELPllInvalid("m1 out of range\n");
500	if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
501		INTELPllInvalid("m1 <= m2\n");
502	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
503		INTELPllInvalid("m out of range\n");
504	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
505		INTELPllInvalid("n out of range\n");
506	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
507		INTELPllInvalid("vco out of range\n");
508	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
509	 * connector, etc., rather than just a single range.
510	 */
511	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
512		INTELPllInvalid("dot out of range\n");
513
514	return true;
515}
516
517static bool
518intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
519		    int target, int refclk, intel_clock_t *match_clock,
520		    intel_clock_t *best_clock)
521
522{
523	struct drm_device *dev = crtc->dev;
524	struct drm_i915_private *dev_priv = dev->dev_private;
525	intel_clock_t clock;
526	int err = target;
527
528	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
529	    (I915_READ(LVDS)) != 0) {
530		/*
531		 * For LVDS, if the panel is on, just rely on its current
532		 * settings for dual-channel.  We haven't figured out how to
533		 * reliably set up different single/dual channel state, if we
534		 * even can.
535		 */
536		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
537		    LVDS_CLKB_POWER_UP)
538			clock.p2 = limit->p2.p2_fast;
539		else
540			clock.p2 = limit->p2.p2_slow;
541	} else {
542		if (target < limit->p2.dot_limit)
543			clock.p2 = limit->p2.p2_slow;
544		else
545			clock.p2 = limit->p2.p2_fast;
546	}
547
548	memset(best_clock, 0, sizeof(*best_clock));
549
550	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
551	     clock.m1++) {
552		for (clock.m2 = limit->m2.min;
553		     clock.m2 <= limit->m2.max; clock.m2++) {
554			/* m1 is always 0 in Pineview */
555			if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
556				break;
557			for (clock.n = limit->n.min;
558			     clock.n <= limit->n.max; clock.n++) {
559				for (clock.p1 = limit->p1.min;
560					clock.p1 <= limit->p1.max; clock.p1++) {
561					int this_err;
562
563					intel_clock(dev, refclk, &clock);
564					if (!intel_PLL_is_valid(dev, limit,
565								&clock))
566						continue;
567					if (match_clock &&
568					    clock.p != match_clock->p)
569						continue;
570
571					this_err = abs(clock.dot - target);
572					if (this_err < err) {
573						*best_clock = clock;
574						err = this_err;
575					}
576				}
577			}
578		}
579	}
580
581	return (err != target);
582}
583
584static bool
585intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
586			int target, int refclk, intel_clock_t *match_clock,
587			intel_clock_t *best_clock)
588{
589	struct drm_device *dev = crtc->dev;
590	struct drm_i915_private *dev_priv = dev->dev_private;
591	intel_clock_t clock;
592	int max_n;
593	bool found;
594	/* approximately equals target * 0.00585 */
595	int err_most = (target >> 8) + (target >> 9);
596	found = false;
597
598	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
599		int lvds_reg;
600
601		if (HAS_PCH_SPLIT(dev))
602			lvds_reg = PCH_LVDS;
603		else
604			lvds_reg = LVDS;
605		if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
606		    LVDS_CLKB_POWER_UP)
607			clock.p2 = limit->p2.p2_fast;
608		else
609			clock.p2 = limit->p2.p2_slow;
610	} else {
611		if (target < limit->p2.dot_limit)
612			clock.p2 = limit->p2.p2_slow;
613		else
614			clock.p2 = limit->p2.p2_fast;
615	}
616
617	memset(best_clock, 0, sizeof(*best_clock));
618	max_n = limit->n.max;
619	/* based on hardware requirement, prefer smaller n to precision */
620	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
621		/* based on hardware requirement, prefere larger m1,m2 */
622		for (clock.m1 = limit->m1.max;
623		     clock.m1 >= limit->m1.min; clock.m1--) {
624			for (clock.m2 = limit->m2.max;
625			     clock.m2 >= limit->m2.min; clock.m2--) {
626				for (clock.p1 = limit->p1.max;
627				     clock.p1 >= limit->p1.min; clock.p1--) {
628					int this_err;
629
630					intel_clock(dev, refclk, &clock);
631					if (!intel_PLL_is_valid(dev, limit,
632								&clock))
633						continue;
634					if (match_clock &&
635					    clock.p != match_clock->p)
636						continue;
637
638					this_err = abs(clock.dot - target);
639					if (this_err < err_most) {
640						*best_clock = clock;
641						err_most = this_err;
642						max_n = clock.n;
643						found = true;
644					}
645				}
646			}
647		}
648	}
649	return found;
650}
651
652static bool
653intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
654			   int target, int refclk, intel_clock_t *match_clock,
655			   intel_clock_t *best_clock)
656{
657	struct drm_device *dev = crtc->dev;
658	intel_clock_t clock;
659
660	if (target < 200000) {
661		clock.n = 1;
662		clock.p1 = 2;
663		clock.p2 = 10;
664		clock.m1 = 12;
665		clock.m2 = 9;
666	} else {
667		clock.n = 2;
668		clock.p1 = 1;
669		clock.p2 = 10;
670		clock.m1 = 14;
671		clock.m2 = 8;
672	}
673	intel_clock(dev, refclk, &clock);
674	memcpy(best_clock, &clock, sizeof(intel_clock_t));
675	return true;
676}
677
678/* DisplayPort has only two frequencies, 162MHz and 270MHz */
679static bool
680intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
681		      int target, int refclk, intel_clock_t *match_clock,
682		      intel_clock_t *best_clock)
683{
684	intel_clock_t clock;
685	if (target < 200000) {
686		clock.p1 = 2;
687		clock.p2 = 10;
688		clock.n = 2;
689		clock.m1 = 23;
690		clock.m2 = 8;
691	} else {
692		clock.p1 = 1;
693		clock.p2 = 10;
694		clock.n = 1;
695		clock.m1 = 14;
696		clock.m2 = 2;
697	}
698	clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
699	clock.p = (clock.p1 * clock.p2);
700	clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
701	clock.vco = 0;
702	memcpy(best_clock, &clock, sizeof(intel_clock_t));
703	return true;
704}
705
706/**
707 * intel_wait_for_vblank - wait for vblank on a given pipe
708 * @dev: drm device
709 * @pipe: pipe to wait for
710 *
711 * Wait for vblank to occur on a given pipe.  Needed for various bits of
712 * mode setting code.
713 */
714void intel_wait_for_vblank(struct drm_device *dev, int pipe)
715{
716	struct drm_i915_private *dev_priv = dev->dev_private;
717	int pipestat_reg = PIPESTAT(pipe);
718
719	/* Clear existing vblank status. Note this will clear any other
720	 * sticky status fields as well.
721	 *
722	 * This races with i915_driver_irq_handler() with the result
723	 * that either function could miss a vblank event.  Here it is not
724	 * fatal, as we will either wait upon the next vblank interrupt or
725	 * timeout.  Generally speaking intel_wait_for_vblank() is only
726	 * called during modeset at which time the GPU should be idle and
727	 * should *not* be performing page flips and thus not waiting on
728	 * vblanks...
729	 * Currently, the result of us stealing a vblank from the irq
730	 * handler is that a single frame will be skipped during swapbuffers.
731	 */
732	I915_WRITE(pipestat_reg,
733		   I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
734
735	/* Wait for vblank interrupt bit to set */
736	if (_intel_wait_for(dev,
737	    I915_READ(pipestat_reg) & PIPE_VBLANK_INTERRUPT_STATUS,
738	    50, 1, "915vbl"))
739		DRM_DEBUG_KMS("vblank wait timed out\n");
740}
741
742/*
743 * intel_wait_for_pipe_off - wait for pipe to turn off
744 * @dev: drm device
745 * @pipe: pipe to wait for
746 *
747 * After disabling a pipe, we can't wait for vblank in the usual way,
748 * spinning on the vblank interrupt status bit, since we won't actually
749 * see an interrupt when the pipe is disabled.
750 *
751 * On Gen4 and above:
752 *   wait for the pipe register state bit to turn off
753 *
754 * Otherwise:
755 *   wait for the display line value to settle (it usually
756 *   ends up stopping at the start of the next frame).
757 *
758 */
759void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
760{
761	struct drm_i915_private *dev_priv = dev->dev_private;
762
763	if (INTEL_INFO(dev)->gen >= 4) {
764		int reg = PIPECONF(pipe);
765
766		/* Wait for the Pipe State to go off */
767		if (_intel_wait_for(dev,
768		    (I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 100,
769		    1, "915pip"))
770			DRM_DEBUG_KMS("pipe_off wait timed out\n");
771	} else {
772		u32 last_line;
773		int reg = PIPEDSL(pipe);
774		unsigned long timeout = jiffies + msecs_to_jiffies(100);
775
776		/* Wait for the display line to settle */
777		do {
778			last_line = I915_READ(reg) & DSL_LINEMASK;
779			DELAY(5000);
780		} while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
781			 time_after(timeout, jiffies));
782		if (time_after(jiffies, timeout))
783			DRM_DEBUG_KMS("pipe_off wait timed out\n");
784	}
785}
786
787static const char *state_string(bool enabled)
788{
789	return enabled ? "on" : "off";
790}
791
792/* Only for pre-ILK configs */
793static void assert_pll(struct drm_i915_private *dev_priv,
794		       enum pipe pipe, bool state)
795{
796	int reg;
797	u32 val;
798	bool cur_state;
799
800	reg = DPLL(pipe);
801	val = I915_READ(reg);
802	cur_state = !!(val & DPLL_VCO_ENABLE);
803	if (cur_state != state)
804		printf("PLL state assertion failure (expected %s, current %s)\n",
805		    state_string(state), state_string(cur_state));
806}
807#define assert_pll_enabled(d, p) assert_pll(d, p, true)
808#define assert_pll_disabled(d, p) assert_pll(d, p, false)
809
810/* For ILK+ */
811static void assert_pch_pll(struct drm_i915_private *dev_priv,
812			   enum pipe pipe, bool state)
813{
814	int reg;
815	u32 val;
816	bool cur_state;
817
818	if (HAS_PCH_CPT(dev_priv->dev)) {
819		u32 pch_dpll;
820
821		pch_dpll = I915_READ(PCH_DPLL_SEL);
822
823		/* Make sure the selected PLL is enabled to the transcoder */
824		KASSERT(((pch_dpll >> (4 * pipe)) & 8) != 0,
825		    ("transcoder %d PLL not enabled\n", pipe));
826
827		/* Convert the transcoder pipe number to a pll pipe number */
828		pipe = (pch_dpll >> (4 * pipe)) & 1;
829	}
830
831	reg = PCH_DPLL(pipe);
832	val = I915_READ(reg);
833	cur_state = !!(val & DPLL_VCO_ENABLE);
834	if (cur_state != state)
835		printf("PCH PLL state assertion failure (expected %s, current %s)\n",
836		    state_string(state), state_string(cur_state));
837}
838#define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
839#define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
840
841static void assert_fdi_tx(struct drm_i915_private *dev_priv,
842			  enum pipe pipe, bool state)
843{
844	int reg;
845	u32 val;
846	bool cur_state;
847
848	reg = FDI_TX_CTL(pipe);
849	val = I915_READ(reg);
850	cur_state = !!(val & FDI_TX_ENABLE);
851	if (cur_state != state)
852		printf("FDI TX state assertion failure (expected %s, current %s)\n",
853		    state_string(state), state_string(cur_state));
854}
855#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
856#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
857
858static void assert_fdi_rx(struct drm_i915_private *dev_priv,
859			  enum pipe pipe, bool state)
860{
861	int reg;
862	u32 val;
863	bool cur_state;
864
865	reg = FDI_RX_CTL(pipe);
866	val = I915_READ(reg);
867	cur_state = !!(val & FDI_RX_ENABLE);
868	if (cur_state != state)
869		printf("FDI RX state assertion failure (expected %s, current %s)\n",
870		    state_string(state), state_string(cur_state));
871}
872#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
873#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
874
875static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
876				      enum pipe pipe)
877{
878	int reg;
879	u32 val;
880
881	/* ILK FDI PLL is always enabled */
882	if (dev_priv->info->gen == 5)
883		return;
884
885	reg = FDI_TX_CTL(pipe);
886	val = I915_READ(reg);
887	if (!(val & FDI_TX_PLL_ENABLE))
888		printf("FDI TX PLL assertion failure, should be active but is disabled\n");
889}
890
891static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
892				      enum pipe pipe)
893{
894	int reg;
895	u32 val;
896
897	reg = FDI_RX_CTL(pipe);
898	val = I915_READ(reg);
899	if (!(val & FDI_RX_PLL_ENABLE))
900		printf("FDI RX PLL assertion failure, should be active but is disabled\n");
901}
902
903static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
904				  enum pipe pipe)
905{
906	int pp_reg, lvds_reg;
907	u32 val;
908	enum pipe panel_pipe = PIPE_A;
909	bool locked = true;
910
911	if (HAS_PCH_SPLIT(dev_priv->dev)) {
912		pp_reg = PCH_PP_CONTROL;
913		lvds_reg = PCH_LVDS;
914	} else {
915		pp_reg = PP_CONTROL;
916		lvds_reg = LVDS;
917	}
918
919	val = I915_READ(pp_reg);
920	if (!(val & PANEL_POWER_ON) ||
921	    ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
922		locked = false;
923
924	if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
925		panel_pipe = PIPE_B;
926
927	if (panel_pipe == pipe && locked)
928		printf("panel assertion failure, pipe %c regs locked\n",
929	     pipe_name(pipe));
930}
931
932void assert_pipe(struct drm_i915_private *dev_priv,
933		 enum pipe pipe, bool state)
934{
935	int reg;
936	u32 val;
937	bool cur_state;
938
939	/* if we need the pipe A quirk it must be always on */
940	if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
941		state = true;
942
943	reg = PIPECONF(pipe);
944	val = I915_READ(reg);
945	cur_state = !!(val & PIPECONF_ENABLE);
946	if (cur_state != state)
947		printf("pipe %c assertion failure (expected %s, current %s)\n",
948		    pipe_name(pipe), state_string(state), state_string(cur_state));
949}
950
951static void assert_plane(struct drm_i915_private *dev_priv,
952			 enum plane plane, bool state)
953{
954	int reg;
955	u32 val;
956	bool cur_state;
957
958	reg = DSPCNTR(plane);
959	val = I915_READ(reg);
960	cur_state = !!(val & DISPLAY_PLANE_ENABLE);
961	if (cur_state != state)
962		printf("plane %c assertion failure, (expected %s, current %s)\n",
963		       plane_name(plane), state_string(state), state_string(cur_state));
964}
965
966#define assert_plane_enabled(d, p) assert_plane(d, p, true)
967#define assert_plane_disabled(d, p) assert_plane(d, p, false)
968
969static void assert_planes_disabled(struct drm_i915_private *dev_priv,
970				   enum pipe pipe)
971{
972	int reg, i;
973	u32 val;
974	int cur_pipe;
975
976	/* Planes are fixed to pipes on ILK+ */
977	if (HAS_PCH_SPLIT(dev_priv->dev)) {
978		reg = DSPCNTR(pipe);
979		val = I915_READ(reg);
980		if ((val & DISPLAY_PLANE_ENABLE) != 0)
981			printf("plane %c assertion failure, should be disabled but not\n",
982			       plane_name(pipe));
983		return;
984	}
985
986	/* Need to check both planes against the pipe */
987	for (i = 0; i < 2; i++) {
988		reg = DSPCNTR(i);
989		val = I915_READ(reg);
990		cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
991			DISPPLANE_SEL_PIPE_SHIFT;
992		if ((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe)
993			printf("plane %c assertion failure, should be off on pipe %c but is still active\n",
994		     plane_name(i), pipe_name(pipe));
995	}
996}
997
998static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
999{
1000	u32 val;
1001	bool enabled;
1002
1003	val = I915_READ(PCH_DREF_CONTROL);
1004	enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1005			    DREF_SUPERSPREAD_SOURCE_MASK));
1006	if (!enabled)
1007		printf("PCH refclk assertion failure, should be active but is disabled\n");
1008}
1009
1010static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
1011				       enum pipe pipe)
1012{
1013	int reg;
1014	u32 val;
1015	bool enabled;
1016
1017	reg = TRANSCONF(pipe);
1018	val = I915_READ(reg);
1019	enabled = !!(val & TRANS_ENABLE);
1020	if (enabled)
1021		printf("transcoder assertion failed, should be off on pipe %c but is still active\n",
1022	     pipe_name(pipe));
1023}
1024
1025static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1026			      enum pipe pipe, u32 val)
1027{
1028	if ((val & PORT_ENABLE) == 0)
1029		return false;
1030
1031	if (HAS_PCH_CPT(dev_priv->dev)) {
1032		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1033			return false;
1034	} else {
1035		if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
1036			return false;
1037	}
1038	return true;
1039}
1040
1041static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1042			      enum pipe pipe, u32 val)
1043{
1044	if ((val & LVDS_PORT_EN) == 0)
1045		return false;
1046
1047	if (HAS_PCH_CPT(dev_priv->dev)) {
1048		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1049			return false;
1050	} else {
1051		if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1052			return false;
1053	}
1054	return true;
1055}
1056
1057static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1058			      enum pipe pipe, u32 val)
1059{
1060	if ((val & ADPA_DAC_ENABLE) == 0)
1061		return false;
1062	if (HAS_PCH_CPT(dev_priv->dev)) {
1063		if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1064			return false;
1065	} else {
1066		if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1067			return false;
1068	}
1069	return true;
1070}
1071
1072static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1073			    enum pipe pipe, u32 port_sel, u32 val)
1074{
1075	if ((val & DP_PORT_EN) == 0)
1076		return false;
1077
1078	if (HAS_PCH_CPT(dev_priv->dev)) {
1079		u32	trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1080		u32	trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1081		if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1082			return false;
1083	} else {
1084		if ((val & DP_PIPE_MASK) != (pipe << 30))
1085			return false;
1086	}
1087	return true;
1088}
1089
1090static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1091				   enum pipe pipe, int reg, u32 port_sel)
1092{
1093	u32 val = I915_READ(reg);
1094	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val))
1095		printf("PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1096	     reg, pipe_name(pipe));
1097}
1098
1099static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1100				     enum pipe pipe, int reg)
1101{
1102	u32 val = I915_READ(reg);
1103	if (hdmi_pipe_enabled(dev_priv, val, pipe))
1104		printf("PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1105	     reg, pipe_name(pipe));
1106}
1107
1108static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1109				      enum pipe pipe)
1110{
1111	int reg;
1112	u32 val;
1113
1114	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1115	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1116	assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1117
1118	reg = PCH_ADPA;
1119	val = I915_READ(reg);
1120	if (adpa_pipe_enabled(dev_priv, val, pipe))
1121		printf("PCH VGA enabled on transcoder %c, should be disabled\n",
1122	     pipe_name(pipe));
1123
1124	reg = PCH_LVDS;
1125	val = I915_READ(reg);
1126	if (lvds_pipe_enabled(dev_priv, val, pipe))
1127		printf("PCH LVDS enabled on transcoder %c, should be disabled\n",
1128	     pipe_name(pipe));
1129
1130	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1131	assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1132	assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1133}
1134
1135/**
1136 * intel_enable_pll - enable a PLL
1137 * @dev_priv: i915 private structure
1138 * @pipe: pipe PLL to enable
1139 *
1140 * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1141 * make sure the PLL reg is writable first though, since the panel write
1142 * protect mechanism may be enabled.
1143 *
1144 * Note!  This is for pre-ILK only.
1145 */
1146static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1147{
1148	int reg;
1149	u32 val;
1150
1151	/* No really, not for ILK+ */
1152	KASSERT(dev_priv->info->gen < 5, ("Wrong device gen"));
1153
1154	/* PLL is protected by panel, make sure we can write it */
1155	if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1156		assert_panel_unlocked(dev_priv, pipe);
1157
1158	reg = DPLL(pipe);
1159	val = I915_READ(reg);
1160	val |= DPLL_VCO_ENABLE;
1161
1162	/* We do this three times for luck */
1163	I915_WRITE(reg, val);
1164	POSTING_READ(reg);
1165	DELAY(150); /* wait for warmup */
1166	I915_WRITE(reg, val);
1167	POSTING_READ(reg);
1168	DELAY(150); /* wait for warmup */
1169	I915_WRITE(reg, val);
1170	POSTING_READ(reg);
1171	DELAY(150); /* wait for warmup */
1172}
1173
1174/**
1175 * intel_disable_pll - disable a PLL
1176 * @dev_priv: i915 private structure
1177 * @pipe: pipe PLL to disable
1178 *
1179 * Disable the PLL for @pipe, making sure the pipe is off first.
1180 *
1181 * Note!  This is for pre-ILK only.
1182 */
1183static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1184{
1185	int reg;
1186	u32 val;
1187
1188	/* Don't disable pipe A or pipe A PLLs if needed */
1189	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1190		return;
1191
1192	/* Make sure the pipe isn't still relying on us */
1193	assert_pipe_disabled(dev_priv, pipe);
1194
1195	reg = DPLL(pipe);
1196	val = I915_READ(reg);
1197	val &= ~DPLL_VCO_ENABLE;
1198	I915_WRITE(reg, val);
1199	POSTING_READ(reg);
1200}
1201
1202/**
1203 * intel_enable_pch_pll - enable PCH PLL
1204 * @dev_priv: i915 private structure
1205 * @pipe: pipe PLL to enable
1206 *
1207 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1208 * drives the transcoder clock.
1209 */
1210static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1211				 enum pipe pipe)
1212{
1213	int reg;
1214	u32 val;
1215
1216	if (pipe > 1)
1217		return;
1218
1219	/* PCH only available on ILK+ */
1220	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1221
1222	/* PCH refclock must be enabled first */
1223	assert_pch_refclk_enabled(dev_priv);
1224
1225	reg = PCH_DPLL(pipe);
1226	val = I915_READ(reg);
1227	val |= DPLL_VCO_ENABLE;
1228	I915_WRITE(reg, val);
1229	POSTING_READ(reg);
1230	DELAY(200);
1231}
1232
1233static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1234				  enum pipe pipe)
1235{
1236	int reg;
1237	u32 val, pll_mask = TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL,
1238		pll_sel = TRANSC_DPLL_ENABLE;
1239
1240	if (pipe > 1)
1241		return;
1242
1243	/* PCH only available on ILK+ */
1244	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1245
1246	/* Make sure transcoder isn't still depending on us */
1247	assert_transcoder_disabled(dev_priv, pipe);
1248
1249	if (pipe == 0)
1250		pll_sel |= TRANSC_DPLLA_SEL;
1251	else if (pipe == 1)
1252		pll_sel |= TRANSC_DPLLB_SEL;
1253
1254
1255	if ((I915_READ(PCH_DPLL_SEL) & pll_mask) == pll_sel)
1256		return;
1257
1258	reg = PCH_DPLL(pipe);
1259	val = I915_READ(reg);
1260	val &= ~DPLL_VCO_ENABLE;
1261	I915_WRITE(reg, val);
1262	POSTING_READ(reg);
1263	DELAY(200);
1264}
1265
1266static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1267				    enum pipe pipe)
1268{
1269	int reg;
1270	u32 val, pipeconf_val;
1271	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1272
1273	/* PCH only available on ILK+ */
1274	KASSERT(dev_priv->info->gen >= 5, ("Wrong device gen"));
1275
1276	/* Make sure PCH DPLL is enabled */
1277	assert_pch_pll_enabled(dev_priv, pipe);
1278
1279	/* FDI must be feeding us bits for PCH ports */
1280	assert_fdi_tx_enabled(dev_priv, pipe);
1281	assert_fdi_rx_enabled(dev_priv, pipe);
1282
1283
1284	reg = TRANSCONF(pipe);
1285	val = I915_READ(reg);
1286	pipeconf_val = I915_READ(PIPECONF(pipe));
1287
1288	if (HAS_PCH_IBX(dev_priv->dev)) {
1289		/*
1290		 * make the BPC in transcoder be consistent with
1291		 * that in pipeconf reg.
1292		 */
1293		val &= ~PIPE_BPC_MASK;
1294		val |= pipeconf_val & PIPE_BPC_MASK;
1295	}
1296
1297	val &= ~TRANS_INTERLACE_MASK;
1298	if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
1299		if (HAS_PCH_IBX(dev_priv->dev) &&
1300		    intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
1301			val |= TRANS_LEGACY_INTERLACED_ILK;
1302		else
1303			val |= TRANS_INTERLACED;
1304	else
1305		val |= TRANS_PROGRESSIVE;
1306
1307	I915_WRITE(reg, val | TRANS_ENABLE);
1308	if (_intel_wait_for(dev_priv->dev, I915_READ(reg) & TRANS_STATE_ENABLE,
1309	    100, 1, "915trc"))
1310		DRM_ERROR("failed to enable transcoder %d\n", pipe);
1311}
1312
1313static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1314				     enum pipe pipe)
1315{
1316	int reg;
1317	u32 val;
1318
1319	/* FDI relies on the transcoder */
1320	assert_fdi_tx_disabled(dev_priv, pipe);
1321	assert_fdi_rx_disabled(dev_priv, pipe);
1322
1323	/* Ports must be off as well */
1324	assert_pch_ports_disabled(dev_priv, pipe);
1325
1326	reg = TRANSCONF(pipe);
1327	val = I915_READ(reg);
1328	val &= ~TRANS_ENABLE;
1329	I915_WRITE(reg, val);
1330	/* wait for PCH transcoder off, transcoder state */
1331	if (_intel_wait_for(dev_priv->dev,
1332	    (I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50,
1333	    1, "915trd"))
1334		DRM_ERROR("failed to disable transcoder %d\n", pipe);
1335}
1336
1337/**
1338 * intel_enable_pipe - enable a pipe, asserting requirements
1339 * @dev_priv: i915 private structure
1340 * @pipe: pipe to enable
1341 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1342 *
1343 * Enable @pipe, making sure that various hardware specific requirements
1344 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1345 *
1346 * @pipe should be %PIPE_A or %PIPE_B.
1347 *
1348 * Will wait until the pipe is actually running (i.e. first vblank) before
1349 * returning.
1350 */
1351static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1352			      bool pch_port)
1353{
1354	int reg;
1355	u32 val;
1356
1357	/*
1358	 * A pipe without a PLL won't actually be able to drive bits from
1359	 * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1360	 * need the check.
1361	 */
1362	if (!HAS_PCH_SPLIT(dev_priv->dev))
1363		assert_pll_enabled(dev_priv, pipe);
1364	else {
1365		if (pch_port) {
1366			/* if driving the PCH, we need FDI enabled */
1367			assert_fdi_rx_pll_enabled(dev_priv, pipe);
1368			assert_fdi_tx_pll_enabled(dev_priv, pipe);
1369		}
1370		/* FIXME: assert CPU port conditions for SNB+ */
1371	}
1372
1373	reg = PIPECONF(pipe);
1374	val = I915_READ(reg);
1375	if (val & PIPECONF_ENABLE)
1376		return;
1377
1378	I915_WRITE(reg, val | PIPECONF_ENABLE);
1379	intel_wait_for_vblank(dev_priv->dev, pipe);
1380}
1381
1382/**
1383 * intel_disable_pipe - disable a pipe, asserting requirements
1384 * @dev_priv: i915 private structure
1385 * @pipe: pipe to disable
1386 *
1387 * Disable @pipe, making sure that various hardware specific requirements
1388 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1389 *
1390 * @pipe should be %PIPE_A or %PIPE_B.
1391 *
1392 * Will wait until the pipe has shut down before returning.
1393 */
1394static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1395			       enum pipe pipe)
1396{
1397	int reg;
1398	u32 val;
1399
1400	/*
1401	 * Make sure planes won't keep trying to pump pixels to us,
1402	 * or we might hang the display.
1403	 */
1404	assert_planes_disabled(dev_priv, pipe);
1405
1406	/* Don't disable pipe A or pipe A PLLs if needed */
1407	if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1408		return;
1409
1410	reg = PIPECONF(pipe);
1411	val = I915_READ(reg);
1412	if ((val & PIPECONF_ENABLE) == 0)
1413		return;
1414
1415	I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1416	intel_wait_for_pipe_off(dev_priv->dev, pipe);
1417}
1418
1419/*
1420 * Plane regs are double buffered, going from enabled->disabled needs a
1421 * trigger in order to latch.  The display address reg provides this.
1422 */
1423static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1424				      enum plane plane)
1425{
1426	I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
1427	I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
1428}
1429
1430/**
1431 * intel_enable_plane - enable a display plane on a given pipe
1432 * @dev_priv: i915 private structure
1433 * @plane: plane to enable
1434 * @pipe: pipe being fed
1435 *
1436 * Enable @plane on @pipe, making sure that @pipe is running first.
1437 */
1438static void intel_enable_plane(struct drm_i915_private *dev_priv,
1439			       enum plane plane, enum pipe pipe)
1440{
1441	int reg;
1442	u32 val;
1443
1444	/* If the pipe isn't enabled, we can't pump pixels and may hang */
1445	assert_pipe_enabled(dev_priv, pipe);
1446
1447	reg = DSPCNTR(plane);
1448	val = I915_READ(reg);
1449	if (val & DISPLAY_PLANE_ENABLE)
1450		return;
1451
1452	I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1453	intel_flush_display_plane(dev_priv, plane);
1454	intel_wait_for_vblank(dev_priv->dev, pipe);
1455}
1456
1457/**
1458 * intel_disable_plane - disable a display plane
1459 * @dev_priv: i915 private structure
1460 * @plane: plane to disable
1461 * @pipe: pipe consuming the data
1462 *
1463 * Disable @plane; should be an independent operation.
1464 */
1465static void intel_disable_plane(struct drm_i915_private *dev_priv,
1466				enum plane plane, enum pipe pipe)
1467{
1468	int reg;
1469	u32 val;
1470
1471	reg = DSPCNTR(plane);
1472	val = I915_READ(reg);
1473	if ((val & DISPLAY_PLANE_ENABLE) == 0)
1474		return;
1475
1476	I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1477	intel_flush_display_plane(dev_priv, plane);
1478	intel_wait_for_vblank(dev_priv->dev, pipe);
1479}
1480
1481static void disable_pch_dp(struct drm_i915_private *dev_priv,
1482			   enum pipe pipe, int reg, u32 port_sel)
1483{
1484	u32 val = I915_READ(reg);
1485	if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
1486		DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
1487		I915_WRITE(reg, val & ~DP_PORT_EN);
1488	}
1489}
1490
1491static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1492			     enum pipe pipe, int reg)
1493{
1494	u32 val = I915_READ(reg);
1495	if (hdmi_pipe_enabled(dev_priv, val, pipe)) {
1496		DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1497			      reg, pipe);
1498		I915_WRITE(reg, val & ~PORT_ENABLE);
1499	}
1500}
1501
1502/* Disable any ports connected to this transcoder */
1503static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1504				    enum pipe pipe)
1505{
1506	u32 reg, val;
1507
1508	val = I915_READ(PCH_PP_CONTROL);
1509	I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1510
1511	disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1512	disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1513	disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1514
1515	reg = PCH_ADPA;
1516	val = I915_READ(reg);
1517	if (adpa_pipe_enabled(dev_priv, val, pipe))
1518		I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1519
1520	reg = PCH_LVDS;
1521	val = I915_READ(reg);
1522	if (lvds_pipe_enabled(dev_priv, val, pipe)) {
1523		DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
1524		I915_WRITE(reg, val & ~LVDS_PORT_EN);
1525		POSTING_READ(reg);
1526		DELAY(100);
1527	}
1528
1529	disable_pch_hdmi(dev_priv, pipe, HDMIB);
1530	disable_pch_hdmi(dev_priv, pipe, HDMIC);
1531	disable_pch_hdmi(dev_priv, pipe, HDMID);
1532}
1533
1534static void i8xx_disable_fbc(struct drm_device *dev)
1535{
1536	struct drm_i915_private *dev_priv = dev->dev_private;
1537	u32 fbc_ctl;
1538
1539	/* Disable compression */
1540	fbc_ctl = I915_READ(FBC_CONTROL);
1541	if ((fbc_ctl & FBC_CTL_EN) == 0)
1542		return;
1543
1544	fbc_ctl &= ~FBC_CTL_EN;
1545	I915_WRITE(FBC_CONTROL, fbc_ctl);
1546
1547	/* Wait for compressing bit to clear */
1548	if (_intel_wait_for(dev,
1549	    (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10,
1550	    1, "915fbd")) {
1551		DRM_DEBUG_KMS("FBC idle timed out\n");
1552		return;
1553	}
1554
1555	DRM_DEBUG_KMS("disabled FBC\n");
1556}
1557
1558static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1559{
1560	struct drm_device *dev = crtc->dev;
1561	struct drm_i915_private *dev_priv = dev->dev_private;
1562	struct drm_framebuffer *fb = crtc->fb;
1563	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1564	struct drm_i915_gem_object *obj = intel_fb->obj;
1565	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1566	int cfb_pitch;
1567	int plane, i;
1568	u32 fbc_ctl, fbc_ctl2;
1569
1570	cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1571	if (fb->pitches[0] < cfb_pitch)
1572		cfb_pitch = fb->pitches[0];
1573
1574	/* FBC_CTL wants 64B units */
1575	cfb_pitch = (cfb_pitch / 64) - 1;
1576	plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1577
1578	/* Clear old tags */
1579	for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1580		I915_WRITE(FBC_TAG + (i * 4), 0);
1581
1582	/* Set it up... */
1583	fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
1584	fbc_ctl2 |= plane;
1585	I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1586	I915_WRITE(FBC_FENCE_OFF, crtc->y);
1587
1588	/* enable it... */
1589	fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1590	if (IS_I945GM(dev))
1591		fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1592	fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1593	fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1594	fbc_ctl |= obj->fence_reg;
1595	I915_WRITE(FBC_CONTROL, fbc_ctl);
1596
1597	DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1598		      cfb_pitch, crtc->y, intel_crtc->plane);
1599}
1600
1601static bool i8xx_fbc_enabled(struct drm_device *dev)
1602{
1603	struct drm_i915_private *dev_priv = dev->dev_private;
1604
1605	return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1606}
1607
1608static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1609{
1610	struct drm_device *dev = crtc->dev;
1611	struct drm_i915_private *dev_priv = dev->dev_private;
1612	struct drm_framebuffer *fb = crtc->fb;
1613	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1614	struct drm_i915_gem_object *obj = intel_fb->obj;
1615	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1616	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1617	unsigned long stall_watermark = 200;
1618	u32 dpfc_ctl;
1619
1620	dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1621	dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
1622	I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1623
1624	I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1625		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1626		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1627	I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1628
1629	/* enable it... */
1630	I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1631
1632	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1633}
1634
1635static void g4x_disable_fbc(struct drm_device *dev)
1636{
1637	struct drm_i915_private *dev_priv = dev->dev_private;
1638	u32 dpfc_ctl;
1639
1640	/* Disable compression */
1641	dpfc_ctl = I915_READ(DPFC_CONTROL);
1642	if (dpfc_ctl & DPFC_CTL_EN) {
1643		dpfc_ctl &= ~DPFC_CTL_EN;
1644		I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1645
1646		DRM_DEBUG_KMS("disabled FBC\n");
1647	}
1648}
1649
1650static bool g4x_fbc_enabled(struct drm_device *dev)
1651{
1652	struct drm_i915_private *dev_priv = dev->dev_private;
1653
1654	return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1655}
1656
1657static void sandybridge_blit_fbc_update(struct drm_device *dev)
1658{
1659	struct drm_i915_private *dev_priv = dev->dev_private;
1660	u32 blt_ecoskpd;
1661
1662	/* Make sure blitter notifies FBC of writes */
1663	gen6_gt_force_wake_get(dev_priv);
1664	blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1665	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1666		GEN6_BLITTER_LOCK_SHIFT;
1667	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1668	blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1669	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1670	blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1671			 GEN6_BLITTER_LOCK_SHIFT);
1672	I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1673	POSTING_READ(GEN6_BLITTER_ECOSKPD);
1674	gen6_gt_force_wake_put(dev_priv);
1675}
1676
1677static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1678{
1679	struct drm_device *dev = crtc->dev;
1680	struct drm_i915_private *dev_priv = dev->dev_private;
1681	struct drm_framebuffer *fb = crtc->fb;
1682	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1683	struct drm_i915_gem_object *obj = intel_fb->obj;
1684	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1685	int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1686	unsigned long stall_watermark = 200;
1687	u32 dpfc_ctl;
1688
1689	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1690	dpfc_ctl &= DPFC_RESERVED;
1691	dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1692	/* Set persistent mode for front-buffer rendering, ala X. */
1693	dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
1694	dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
1695	I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1696
1697	I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1698		   (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1699		   (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1700	I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1701	I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1702	/* enable it... */
1703	I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1704
1705	if (IS_GEN6(dev)) {
1706		I915_WRITE(SNB_DPFC_CTL_SA,
1707			   SNB_CPU_FENCE_ENABLE | obj->fence_reg);
1708		I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1709		sandybridge_blit_fbc_update(dev);
1710	}
1711
1712	DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1713}
1714
1715static void ironlake_disable_fbc(struct drm_device *dev)
1716{
1717	struct drm_i915_private *dev_priv = dev->dev_private;
1718	u32 dpfc_ctl;
1719
1720	/* Disable compression */
1721	dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1722	if (dpfc_ctl & DPFC_CTL_EN) {
1723		dpfc_ctl &= ~DPFC_CTL_EN;
1724		I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1725
1726		DRM_DEBUG_KMS("disabled FBC\n");
1727	}
1728}
1729
1730static bool ironlake_fbc_enabled(struct drm_device *dev)
1731{
1732	struct drm_i915_private *dev_priv = dev->dev_private;
1733
1734	return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1735}
1736
1737bool intel_fbc_enabled(struct drm_device *dev)
1738{
1739	struct drm_i915_private *dev_priv = dev->dev_private;
1740
1741	if (!dev_priv->display.fbc_enabled)
1742		return false;
1743
1744	return dev_priv->display.fbc_enabled(dev);
1745}
1746
1747static void intel_fbc_work_fn(void *arg, int pending)
1748{
1749	struct intel_fbc_work *work = arg;
1750	struct drm_device *dev = work->crtc->dev;
1751	struct drm_i915_private *dev_priv = dev->dev_private;
1752
1753	DRM_LOCK(dev);
1754	if (work == dev_priv->fbc_work) {
1755		/* Double check that we haven't switched fb without cancelling
1756		 * the prior work.
1757		 */
1758		if (work->crtc->fb == work->fb) {
1759			dev_priv->display.enable_fbc(work->crtc,
1760						     work->interval);
1761
1762			dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
1763			dev_priv->cfb_fb = work->crtc->fb->base.id;
1764			dev_priv->cfb_y = work->crtc->y;
1765		}
1766
1767		dev_priv->fbc_work = NULL;
1768	}
1769	DRM_UNLOCK(dev);
1770
1771	free(work, DRM_MEM_KMS);
1772}
1773
1774static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
1775{
1776	u_int pending;
1777
1778	if (dev_priv->fbc_work == NULL)
1779		return;
1780
1781	DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1782
1783	/* Synchronisation is provided by struct_mutex and checking of
1784	 * dev_priv->fbc_work, so we can perform the cancellation
1785	 * entirely asynchronously.
1786	 */
1787	if (taskqueue_cancel_timeout(dev_priv->tq, &dev_priv->fbc_work->task,
1788	    &pending) == 0)
1789		/* tasklet was killed before being run, clean up */
1790		free(dev_priv->fbc_work, DRM_MEM_KMS);
1791
1792	/* Mark the work as no longer wanted so that if it does
1793	 * wake-up (because the work was already running and waiting
1794	 * for our mutex), it will discover that is no longer
1795	 * necessary to run.
1796	 */
1797	dev_priv->fbc_work = NULL;
1798}
1799
1800static void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1801{
1802	struct intel_fbc_work *work;
1803	struct drm_device *dev = crtc->dev;
1804	struct drm_i915_private *dev_priv = dev->dev_private;
1805
1806	if (!dev_priv->display.enable_fbc)
1807		return;
1808
1809	intel_cancel_fbc_work(dev_priv);
1810
1811	work = malloc(sizeof(*work), DRM_MEM_KMS, M_WAITOK | M_ZERO);
1812	work->crtc = crtc;
1813	work->fb = crtc->fb;
1814	work->interval = interval;
1815	TIMEOUT_TASK_INIT(dev_priv->tq, &work->task, 0, intel_fbc_work_fn,
1816	    work);
1817
1818	dev_priv->fbc_work = work;
1819
1820	DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1821
1822	/* Delay the actual enabling to let pageflipping cease and the
1823	 * display to settle before starting the compression. Note that
1824	 * this delay also serves a second purpose: it allows for a
1825	 * vblank to pass after disabling the FBC before we attempt
1826	 * to modify the control registers.
1827	 *
1828	 * A more complicated solution would involve tracking vblanks
1829	 * following the termination of the page-flipping sequence
1830	 * and indeed performing the enable as a co-routine and not
1831	 * waiting synchronously upon the vblank.
1832	 */
1833	taskqueue_enqueue_timeout(dev_priv->tq, &work->task,
1834	    msecs_to_jiffies(50));
1835}
1836
1837void intel_disable_fbc(struct drm_device *dev)
1838{
1839	struct drm_i915_private *dev_priv = dev->dev_private;
1840
1841	intel_cancel_fbc_work(dev_priv);
1842
1843	if (!dev_priv->display.disable_fbc)
1844		return;
1845
1846	dev_priv->display.disable_fbc(dev);
1847	dev_priv->cfb_plane = -1;
1848}
1849
1850/**
1851 * intel_update_fbc - enable/disable FBC as needed
1852 * @dev: the drm_device
1853 *
1854 * Set up the framebuffer compression hardware at mode set time.  We
1855 * enable it if possible:
1856 *   - plane A only (on pre-965)
1857 *   - no pixel mulitply/line duplication
1858 *   - no alpha buffer discard
1859 *   - no dual wide
1860 *   - framebuffer <= 2048 in width, 1536 in height
1861 *
1862 * We can't assume that any compression will take place (worst case),
1863 * so the compressed buffer has to be the same size as the uncompressed
1864 * one.  It also must reside (along with the line length buffer) in
1865 * stolen memory.
1866 *
1867 * We need to enable/disable FBC on a global basis.
1868 */
1869static void intel_update_fbc(struct drm_device *dev)
1870{
1871	struct drm_i915_private *dev_priv = dev->dev_private;
1872	struct drm_crtc *crtc = NULL, *tmp_crtc;
1873	struct intel_crtc *intel_crtc;
1874	struct drm_framebuffer *fb;
1875	struct intel_framebuffer *intel_fb;
1876	struct drm_i915_gem_object *obj;
1877	int enable_fbc;
1878
1879	DRM_DEBUG_KMS("\n");
1880
1881	if (!i915_powersave)
1882		return;
1883
1884	if (!I915_HAS_FBC(dev))
1885		return;
1886
1887	/*
1888	 * If FBC is already on, we just have to verify that we can
1889	 * keep it that way...
1890	 * Need to disable if:
1891	 *   - more than one pipe is active
1892	 *   - changing FBC params (stride, fence, mode)
1893	 *   - new fb is too large to fit in compressed buffer
1894	 *   - going to an unsupported config (interlace, pixel multiply, etc.)
1895	 */
1896	list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1897		if (tmp_crtc->enabled && tmp_crtc->fb) {
1898			if (crtc) {
1899				DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1900				dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1901				goto out_disable;
1902			}
1903			crtc = tmp_crtc;
1904		}
1905	}
1906
1907	if (!crtc || crtc->fb == NULL) {
1908		DRM_DEBUG_KMS("no output, disabling\n");
1909		dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1910		goto out_disable;
1911	}
1912
1913	intel_crtc = to_intel_crtc(crtc);
1914	fb = crtc->fb;
1915	intel_fb = to_intel_framebuffer(fb);
1916	obj = intel_fb->obj;
1917
1918	enable_fbc = i915_enable_fbc;
1919	if (enable_fbc < 0) {
1920		DRM_DEBUG_KMS("fbc set to per-chip default\n");
1921		enable_fbc = 1;
1922		if (INTEL_INFO(dev)->gen <= 6)
1923			enable_fbc = 0;
1924	}
1925	if (!enable_fbc) {
1926		DRM_DEBUG_KMS("fbc disabled per module param\n");
1927		dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
1928		goto out_disable;
1929	}
1930	if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1931		DRM_DEBUG_KMS("framebuffer too large, disabling "
1932			      "compression\n");
1933		dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1934		goto out_disable;
1935	}
1936	if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1937	    (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1938		DRM_DEBUG_KMS("mode incompatible with compression, "
1939			      "disabling\n");
1940		dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1941		goto out_disable;
1942	}
1943	if ((crtc->mode.hdisplay > 2048) ||
1944	    (crtc->mode.vdisplay > 1536)) {
1945		DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1946		dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1947		goto out_disable;
1948	}
1949	if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1950		DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1951		dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1952		goto out_disable;
1953	}
1954	if (obj->tiling_mode != I915_TILING_X ||
1955	    obj->fence_reg == I915_FENCE_REG_NONE) {
1956		DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1957		dev_priv->no_fbc_reason = FBC_NOT_TILED;
1958		goto out_disable;
1959	}
1960
1961	/* If the kernel debugger is active, always disable compression */
1962	if (kdb_active)
1963		goto out_disable;
1964
1965	/* If the scanout has not changed, don't modify the FBC settings.
1966	 * Note that we make the fundamental assumption that the fb->obj
1967	 * cannot be unpinned (and have its GTT offset and fence revoked)
1968	 * without first being decoupled from the scanout and FBC disabled.
1969	 */
1970	if (dev_priv->cfb_plane == intel_crtc->plane &&
1971	    dev_priv->cfb_fb == fb->base.id &&
1972	    dev_priv->cfb_y == crtc->y)
1973		return;
1974
1975	if (intel_fbc_enabled(dev)) {
1976		/* We update FBC along two paths, after changing fb/crtc
1977		 * configuration (modeswitching) and after page-flipping
1978		 * finishes. For the latter, we know that not only did
1979		 * we disable the FBC at the start of the page-flip
1980		 * sequence, but also more than one vblank has passed.
1981		 *
1982		 * For the former case of modeswitching, it is possible
1983		 * to switch between two FBC valid configurations
1984		 * instantaneously so we do need to disable the FBC
1985		 * before we can modify its control registers. We also
1986		 * have to wait for the next vblank for that to take
1987		 * effect. However, since we delay enabling FBC we can
1988		 * assume that a vblank has passed since disabling and
1989		 * that we can safely alter the registers in the deferred
1990		 * callback.
1991		 *
1992		 * In the scenario that we go from a valid to invalid
1993		 * and then back to valid FBC configuration we have
1994		 * no strict enforcement that a vblank occurred since
1995		 * disabling the FBC. However, along all current pipe
1996		 * disabling paths we do need to wait for a vblank at
1997		 * some point. And we wait before enabling FBC anyway.
1998		 */
1999		DRM_DEBUG_KMS("disabling active FBC for update\n");
2000		intel_disable_fbc(dev);
2001	}
2002
2003	intel_enable_fbc(crtc, 500);
2004	return;
2005
2006out_disable:
2007	/* Multiple disables should be harmless */
2008	if (intel_fbc_enabled(dev)) {
2009		DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
2010		intel_disable_fbc(dev);
2011	}
2012}
2013
2014int
2015intel_pin_and_fence_fb_obj(struct drm_device *dev,
2016			   struct drm_i915_gem_object *obj,
2017			   struct intel_ring_buffer *pipelined)
2018{
2019	struct drm_i915_private *dev_priv = dev->dev_private;
2020	u32 alignment;
2021	int ret;
2022
2023	alignment = 0; /* shut gcc */
2024	switch (obj->tiling_mode) {
2025	case I915_TILING_NONE:
2026		if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2027			alignment = 128 * 1024;
2028		else if (INTEL_INFO(dev)->gen >= 4)
2029			alignment = 4 * 1024;
2030		else
2031			alignment = 64 * 1024;
2032		break;
2033	case I915_TILING_X:
2034		/* pin() will align the object as required by fence */
2035		alignment = 0;
2036		break;
2037	case I915_TILING_Y:
2038		/* FIXME: Is this true? */
2039		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
2040		return -EINVAL;
2041	default:
2042		KASSERT(0, ("Wrong tiling for fb obj"));
2043	}
2044
2045	dev_priv->mm.interruptible = false;
2046	ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
2047	if (ret)
2048		goto err_interruptible;
2049
2050	/* Install a fence for tiled scan-out. Pre-i965 always needs a
2051	 * fence, whereas 965+ only requires a fence if using
2052	 * framebuffer compression.  For simplicity, we always install
2053	 * a fence as the cost is not that onerous.
2054	 */
2055	if (obj->tiling_mode != I915_TILING_NONE) {
2056		ret = i915_gem_object_get_fence(obj, pipelined);
2057		if (ret)
2058			goto err_unpin;
2059
2060		i915_gem_object_pin_fence(obj);
2061	}
2062
2063	dev_priv->mm.interruptible = true;
2064	return 0;
2065
2066err_unpin:
2067	i915_gem_object_unpin(obj);
2068err_interruptible:
2069	dev_priv->mm.interruptible = true;
2070	return ret;
2071}
2072
2073void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
2074{
2075	i915_gem_object_unpin_fence(obj);
2076	i915_gem_object_unpin(obj);
2077}
2078
2079static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2080			     int x, int y)
2081{
2082	struct drm_device *dev = crtc->dev;
2083	struct drm_i915_private *dev_priv = dev->dev_private;
2084	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2085	struct intel_framebuffer *intel_fb;
2086	struct drm_i915_gem_object *obj;
2087	int plane = intel_crtc->plane;
2088	unsigned long Start, Offset;
2089	u32 dspcntr;
2090	u32 reg;
2091
2092	switch (plane) {
2093	case 0:
2094	case 1:
2095		break;
2096	default:
2097		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2098		return -EINVAL;
2099	}
2100
2101	intel_fb = to_intel_framebuffer(fb);
2102	obj = intel_fb->obj;
2103
2104	reg = DSPCNTR(plane);
2105	dspcntr = I915_READ(reg);
2106	/* Mask out pixel format bits in case we change it */
2107	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2108	switch (fb->bits_per_pixel) {
2109	case 8:
2110		dspcntr |= DISPPLANE_8BPP;
2111		break;
2112	case 16:
2113		if (fb->depth == 15)
2114			dspcntr |= DISPPLANE_15_16BPP;
2115		else
2116			dspcntr |= DISPPLANE_16BPP;
2117		break;
2118	case 24:
2119	case 32:
2120		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2121		break;
2122	default:
2123		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2124		return -EINVAL;
2125	}
2126	if (INTEL_INFO(dev)->gen >= 4) {
2127		if (obj->tiling_mode != I915_TILING_NONE)
2128			dspcntr |= DISPPLANE_TILED;
2129		else
2130			dspcntr &= ~DISPPLANE_TILED;
2131	}
2132
2133	I915_WRITE(reg, dspcntr);
2134
2135	Start = obj->gtt_offset;
2136	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2137
2138	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2139		      Start, Offset, x, y, fb->pitches[0]);
2140	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2141	if (INTEL_INFO(dev)->gen >= 4) {
2142		I915_WRITE(DSPSURF(plane), Start);
2143		I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2144		I915_WRITE(DSPADDR(plane), Offset);
2145	} else
2146		I915_WRITE(DSPADDR(plane), Start + Offset);
2147	POSTING_READ(reg);
2148
2149	return (0);
2150}
2151
2152static int ironlake_update_plane(struct drm_crtc *crtc,
2153				 struct drm_framebuffer *fb, int x, int y)
2154{
2155	struct drm_device *dev = crtc->dev;
2156	struct drm_i915_private *dev_priv = dev->dev_private;
2157	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2158	struct intel_framebuffer *intel_fb;
2159	struct drm_i915_gem_object *obj;
2160	int plane = intel_crtc->plane;
2161	unsigned long Start, Offset;
2162	u32 dspcntr;
2163	u32 reg;
2164
2165	switch (plane) {
2166	case 0:
2167	case 1:
2168	case 2:
2169		break;
2170	default:
2171		DRM_ERROR("Can't update plane %d in SAREA\n", plane);
2172		return -EINVAL;
2173	}
2174
2175	intel_fb = to_intel_framebuffer(fb);
2176	obj = intel_fb->obj;
2177
2178	reg = DSPCNTR(plane);
2179	dspcntr = I915_READ(reg);
2180	/* Mask out pixel format bits in case we change it */
2181	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
2182	switch (fb->bits_per_pixel) {
2183	case 8:
2184		dspcntr |= DISPPLANE_8BPP;
2185		break;
2186	case 16:
2187		if (fb->depth != 16) {
2188			DRM_ERROR("bpp 16, depth %d\n", fb->depth);
2189			return -EINVAL;
2190		}
2191
2192		dspcntr |= DISPPLANE_16BPP;
2193		break;
2194	case 24:
2195	case 32:
2196		if (fb->depth == 24)
2197			dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
2198		else if (fb->depth == 30)
2199			dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
2200		else {
2201			DRM_ERROR("bpp %d depth %d\n", fb->bits_per_pixel,
2202			    fb->depth);
2203			return -EINVAL;
2204		}
2205		break;
2206	default:
2207		DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
2208		return -EINVAL;
2209	}
2210
2211	if (obj->tiling_mode != I915_TILING_NONE)
2212		dspcntr |= DISPPLANE_TILED;
2213	else
2214		dspcntr &= ~DISPPLANE_TILED;
2215
2216	/* must disable */
2217	dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2218
2219	I915_WRITE(reg, dspcntr);
2220
2221	Start = obj->gtt_offset;
2222	Offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
2223
2224	DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2225		      Start, Offset, x, y, fb->pitches[0]);
2226	I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2227	I915_WRITE(DSPSURF(plane), Start);
2228	I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2229	I915_WRITE(DSPADDR(plane), Offset);
2230	POSTING_READ(reg);
2231
2232	return 0;
2233}
2234
2235/* Assume fb object is pinned & idle & fenced and just update base pointers */
2236static int
2237intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
2238			   int x, int y, enum mode_set_atomic state)
2239{
2240	struct drm_device *dev = crtc->dev;
2241	struct drm_i915_private *dev_priv = dev->dev_private;
2242	int ret;
2243
2244	ret = dev_priv->display.update_plane(crtc, fb, x, y);
2245	if (ret)
2246		return ret;
2247
2248	intel_update_fbc(dev);
2249	intel_increase_pllclock(crtc);
2250
2251	return 0;
2252}
2253
2254static int
2255intel_finish_fb(struct drm_framebuffer *old_fb)
2256{
2257	struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
2258	struct drm_device *dev = obj->base.dev;
2259	struct drm_i915_private *dev_priv = dev->dev_private;
2260	bool was_interruptible = dev_priv->mm.interruptible;
2261	int ret;
2262
2263	mtx_lock(&dev->event_lock);
2264	while (!atomic_load_acq_int(&dev_priv->mm.wedged) &&
2265	    atomic_load_acq_int(&obj->pending_flip) != 0) {
2266		msleep(&obj->pending_flip, &dev->event_lock,
2267		    0, "915flp", 0);
2268	}
2269	mtx_unlock(&dev->event_lock);
2270
2271	/* Big Hammer, we also need to ensure that any pending
2272	 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2273	 * current scanout is retired before unpinning the old
2274	 * framebuffer.
2275	 *
2276	 * This should only fail upon a hung GPU, in which case we
2277	 * can safely continue.
2278	 */
2279	dev_priv->mm.interruptible = false;
2280	ret = i915_gem_object_finish_gpu(obj);
2281	dev_priv->mm.interruptible = was_interruptible;
2282	return ret;
2283}
2284
2285static int
2286intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
2287		    struct drm_framebuffer *old_fb)
2288{
2289	struct drm_device *dev = crtc->dev;
2290#if 0
2291	struct drm_i915_master_private *master_priv;
2292#else
2293	drm_i915_private_t *dev_priv = dev->dev_private;
2294#endif
2295	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2296	int ret;
2297
2298	/* no fb bound */
2299	if (!crtc->fb) {
2300		DRM_ERROR("No FB bound\n");
2301		return 0;
2302	}
2303
2304	switch (intel_crtc->plane) {
2305	case 0:
2306	case 1:
2307		break;
2308	case 2:
2309		if (IS_IVYBRIDGE(dev))
2310			break;
2311		/* fall through otherwise */
2312	default:
2313		DRM_ERROR("no plane for crtc\n");
2314		return -EINVAL;
2315	}
2316
2317	DRM_LOCK(dev);
2318	ret = intel_pin_and_fence_fb_obj(dev,
2319					 to_intel_framebuffer(crtc->fb)->obj,
2320					 NULL);
2321	if (ret != 0) {
2322		DRM_UNLOCK(dev);
2323		DRM_ERROR("pin & fence failed\n");
2324		return ret;
2325	}
2326
2327	if (old_fb)
2328		intel_finish_fb(old_fb);
2329
2330	ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
2331					 LEAVE_ATOMIC_MODE_SET);
2332	if (ret) {
2333		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
2334		DRM_UNLOCK(dev);
2335		DRM_ERROR("failed to update base address\n");
2336		return ret;
2337	}
2338
2339	if (old_fb) {
2340		intel_wait_for_vblank(dev, intel_crtc->pipe);
2341		intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
2342	}
2343
2344	DRM_UNLOCK(dev);
2345
2346#if 0
2347	if (!dev->primary->master)
2348		return 0;
2349
2350	master_priv = dev->primary->master->driver_priv;
2351	if (!master_priv->sarea_priv)
2352		return 0;
2353
2354	if (intel_crtc->pipe) {
2355		master_priv->sarea_priv->pipeB_x = x;
2356		master_priv->sarea_priv->pipeB_y = y;
2357	} else {
2358		master_priv->sarea_priv->pipeA_x = x;
2359		master_priv->sarea_priv->pipeA_y = y;
2360	}
2361#else
2362
2363	if (!dev_priv->sarea_priv)
2364		return 0;
2365
2366	if (intel_crtc->pipe) {
2367		dev_priv->sarea_priv->planeB_x = x;
2368		dev_priv->sarea_priv->planeB_y = y;
2369	} else {
2370		dev_priv->sarea_priv->planeA_x = x;
2371		dev_priv->sarea_priv->planeA_y = y;
2372	}
2373#endif
2374
2375	return 0;
2376}
2377
2378static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2379{
2380	struct drm_device *dev = crtc->dev;
2381	struct drm_i915_private *dev_priv = dev->dev_private;
2382	u32 dpa_ctl;
2383
2384	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2385	dpa_ctl = I915_READ(DP_A);
2386	dpa_ctl &= ~DP_PLL_FREQ_MASK;
2387
2388	if (clock < 200000) {
2389		u32 temp;
2390		dpa_ctl |= DP_PLL_FREQ_160MHZ;
2391		/* workaround for 160Mhz:
2392		   1) program 0x4600c bits 15:0 = 0x8124
2393		   2) program 0x46010 bit 0 = 1
2394		   3) program 0x46034 bit 24 = 1
2395		   4) program 0x64000 bit 14 = 1
2396		   */
2397		temp = I915_READ(0x4600c);
2398		temp &= 0xffff0000;
2399		I915_WRITE(0x4600c, temp | 0x8124);
2400
2401		temp = I915_READ(0x46010);
2402		I915_WRITE(0x46010, temp | 1);
2403
2404		temp = I915_READ(0x46034);
2405		I915_WRITE(0x46034, temp | (1 << 24));
2406	} else {
2407		dpa_ctl |= DP_PLL_FREQ_270MHZ;
2408	}
2409	I915_WRITE(DP_A, dpa_ctl);
2410
2411	POSTING_READ(DP_A);
2412	DELAY(500);
2413}
2414
2415static void intel_fdi_normal_train(struct drm_crtc *crtc)
2416{
2417	struct drm_device *dev = crtc->dev;
2418	struct drm_i915_private *dev_priv = dev->dev_private;
2419	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2420	int pipe = intel_crtc->pipe;
2421	u32 reg, temp;
2422
2423	/* enable normal train */
2424	reg = FDI_TX_CTL(pipe);
2425	temp = I915_READ(reg);
2426	if (IS_IVYBRIDGE(dev)) {
2427		temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2428		temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
2429	} else {
2430		temp &= ~FDI_LINK_TRAIN_NONE;
2431		temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2432	}
2433	I915_WRITE(reg, temp);
2434
2435	reg = FDI_RX_CTL(pipe);
2436	temp = I915_READ(reg);
2437	if (HAS_PCH_CPT(dev)) {
2438		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2439		temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2440	} else {
2441		temp &= ~FDI_LINK_TRAIN_NONE;
2442		temp |= FDI_LINK_TRAIN_NONE;
2443	}
2444	I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2445
2446	/* wait one idle pattern time */
2447	POSTING_READ(reg);
2448	DELAY(1000);
2449
2450	/* IVB wants error correction enabled */
2451	if (IS_IVYBRIDGE(dev))
2452		I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
2453			   FDI_FE_ERRC_ENABLE);
2454}
2455
2456static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
2457{
2458	struct drm_i915_private *dev_priv = dev->dev_private;
2459	u32 flags = I915_READ(SOUTH_CHICKEN1);
2460
2461	flags |= FDI_PHASE_SYNC_OVR(pipe);
2462	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
2463	flags |= FDI_PHASE_SYNC_EN(pipe);
2464	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
2465	POSTING_READ(SOUTH_CHICKEN1);
2466}
2467
2468/* The FDI link training functions for ILK/Ibexpeak. */
2469static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2470{
2471	struct drm_device *dev = crtc->dev;
2472	struct drm_i915_private *dev_priv = dev->dev_private;
2473	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2474	int pipe = intel_crtc->pipe;
2475	int plane = intel_crtc->plane;
2476	u32 reg, temp, tries;
2477
2478	/* FDI needs bits from pipe & plane first */
2479	assert_pipe_enabled(dev_priv, pipe);
2480	assert_plane_enabled(dev_priv, plane);
2481
2482	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2483	   for train result */
2484	reg = FDI_RX_IMR(pipe);
2485	temp = I915_READ(reg);
2486	temp &= ~FDI_RX_SYMBOL_LOCK;
2487	temp &= ~FDI_RX_BIT_LOCK;
2488	I915_WRITE(reg, temp);
2489	I915_READ(reg);
2490	DELAY(150);
2491
2492	/* enable CPU FDI TX and PCH FDI RX */
2493	reg = FDI_TX_CTL(pipe);
2494	temp = I915_READ(reg);
2495	temp &= ~(7 << 19);
2496	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2497	temp &= ~FDI_LINK_TRAIN_NONE;
2498	temp |= FDI_LINK_TRAIN_PATTERN_1;
2499	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2500
2501	reg = FDI_RX_CTL(pipe);
2502	temp = I915_READ(reg);
2503	temp &= ~FDI_LINK_TRAIN_NONE;
2504	temp |= FDI_LINK_TRAIN_PATTERN_1;
2505	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2506
2507	POSTING_READ(reg);
2508	DELAY(150);
2509
2510	/* Ironlake workaround, enable clock pointer after FDI enable*/
2511	if (HAS_PCH_IBX(dev)) {
2512		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2513		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2514			   FDI_RX_PHASE_SYNC_POINTER_EN);
2515	}
2516
2517	reg = FDI_RX_IIR(pipe);
2518	for (tries = 0; tries < 5; tries++) {
2519		temp = I915_READ(reg);
2520		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2521
2522		if ((temp & FDI_RX_BIT_LOCK)) {
2523			DRM_DEBUG_KMS("FDI train 1 done.\n");
2524			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2525			break;
2526		}
2527	}
2528	if (tries == 5)
2529		DRM_ERROR("FDI train 1 fail!\n");
2530
2531	/* Train 2 */
2532	reg = FDI_TX_CTL(pipe);
2533	temp = I915_READ(reg);
2534	temp &= ~FDI_LINK_TRAIN_NONE;
2535	temp |= FDI_LINK_TRAIN_PATTERN_2;
2536	I915_WRITE(reg, temp);
2537
2538	reg = FDI_RX_CTL(pipe);
2539	temp = I915_READ(reg);
2540	temp &= ~FDI_LINK_TRAIN_NONE;
2541	temp |= FDI_LINK_TRAIN_PATTERN_2;
2542	I915_WRITE(reg, temp);
2543
2544	POSTING_READ(reg);
2545	DELAY(150);
2546
2547	reg = FDI_RX_IIR(pipe);
2548	for (tries = 0; tries < 5; tries++) {
2549		temp = I915_READ(reg);
2550		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2551
2552		if (temp & FDI_RX_SYMBOL_LOCK) {
2553			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2554			DRM_DEBUG_KMS("FDI train 2 done.\n");
2555			break;
2556		}
2557	}
2558	if (tries == 5)
2559		DRM_ERROR("FDI train 2 fail!\n");
2560
2561	DRM_DEBUG_KMS("FDI train done\n");
2562
2563}
2564
2565static const int snb_b_fdi_train_param[] = {
2566	FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2567	FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2568	FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2569	FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2570};
2571
2572/* The FDI link training functions for SNB/Cougarpoint. */
2573static void gen6_fdi_link_train(struct drm_crtc *crtc)
2574{
2575	struct drm_device *dev = crtc->dev;
2576	struct drm_i915_private *dev_priv = dev->dev_private;
2577	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2578	int pipe = intel_crtc->pipe;
2579	u32 reg, temp, i;
2580
2581	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2582	   for train result */
2583	reg = FDI_RX_IMR(pipe);
2584	temp = I915_READ(reg);
2585	temp &= ~FDI_RX_SYMBOL_LOCK;
2586	temp &= ~FDI_RX_BIT_LOCK;
2587	I915_WRITE(reg, temp);
2588
2589	POSTING_READ(reg);
2590	DELAY(150);
2591
2592	/* enable CPU FDI TX and PCH FDI RX */
2593	reg = FDI_TX_CTL(pipe);
2594	temp = I915_READ(reg);
2595	temp &= ~(7 << 19);
2596	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2597	temp &= ~FDI_LINK_TRAIN_NONE;
2598	temp |= FDI_LINK_TRAIN_PATTERN_1;
2599	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2600	/* SNB-B */
2601	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2602	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2603
2604	reg = FDI_RX_CTL(pipe);
2605	temp = I915_READ(reg);
2606	if (HAS_PCH_CPT(dev)) {
2607		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2608		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2609	} else {
2610		temp &= ~FDI_LINK_TRAIN_NONE;
2611		temp |= FDI_LINK_TRAIN_PATTERN_1;
2612	}
2613	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2614
2615	POSTING_READ(reg);
2616	DELAY(150);
2617
2618	if (HAS_PCH_CPT(dev))
2619		cpt_phase_pointer_enable(dev, pipe);
2620
2621	for (i = 0; i < 4; i++) {
2622		reg = FDI_TX_CTL(pipe);
2623		temp = I915_READ(reg);
2624		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2625		temp |= snb_b_fdi_train_param[i];
2626		I915_WRITE(reg, temp);
2627
2628		POSTING_READ(reg);
2629		DELAY(500);
2630
2631		reg = FDI_RX_IIR(pipe);
2632		temp = I915_READ(reg);
2633		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2634
2635		if (temp & FDI_RX_BIT_LOCK) {
2636			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2637			DRM_DEBUG_KMS("FDI train 1 done.\n");
2638			break;
2639		}
2640	}
2641	if (i == 4)
2642		DRM_ERROR("FDI train 1 fail!\n");
2643
2644	/* Train 2 */
2645	reg = FDI_TX_CTL(pipe);
2646	temp = I915_READ(reg);
2647	temp &= ~FDI_LINK_TRAIN_NONE;
2648	temp |= FDI_LINK_TRAIN_PATTERN_2;
2649	if (IS_GEN6(dev)) {
2650		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2651		/* SNB-B */
2652		temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2653	}
2654	I915_WRITE(reg, temp);
2655
2656	reg = FDI_RX_CTL(pipe);
2657	temp = I915_READ(reg);
2658	if (HAS_PCH_CPT(dev)) {
2659		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2660		temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2661	} else {
2662		temp &= ~FDI_LINK_TRAIN_NONE;
2663		temp |= FDI_LINK_TRAIN_PATTERN_2;
2664	}
2665	I915_WRITE(reg, temp);
2666
2667	POSTING_READ(reg);
2668	DELAY(150);
2669
2670	for (i = 0; i < 4; i++) {
2671		reg = FDI_TX_CTL(pipe);
2672		temp = I915_READ(reg);
2673		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2674		temp |= snb_b_fdi_train_param[i];
2675		I915_WRITE(reg, temp);
2676
2677		POSTING_READ(reg);
2678		DELAY(500);
2679
2680		reg = FDI_RX_IIR(pipe);
2681		temp = I915_READ(reg);
2682		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2683
2684		if (temp & FDI_RX_SYMBOL_LOCK) {
2685			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2686			DRM_DEBUG_KMS("FDI train 2 done.\n");
2687			break;
2688		}
2689	}
2690	if (i == 4)
2691		DRM_ERROR("FDI train 2 fail!\n");
2692
2693	DRM_DEBUG_KMS("FDI train done.\n");
2694}
2695
2696/* Manual link training for Ivy Bridge A0 parts */
2697static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
2698{
2699	struct drm_device *dev = crtc->dev;
2700	struct drm_i915_private *dev_priv = dev->dev_private;
2701	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2702	int pipe = intel_crtc->pipe;
2703	u32 reg, temp, i;
2704
2705	/* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2706	   for train result */
2707	reg = FDI_RX_IMR(pipe);
2708	temp = I915_READ(reg);
2709	temp &= ~FDI_RX_SYMBOL_LOCK;
2710	temp &= ~FDI_RX_BIT_LOCK;
2711	I915_WRITE(reg, temp);
2712
2713	POSTING_READ(reg);
2714	DELAY(150);
2715
2716	/* enable CPU FDI TX and PCH FDI RX */
2717	reg = FDI_TX_CTL(pipe);
2718	temp = I915_READ(reg);
2719	temp &= ~(7 << 19);
2720	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2721	temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
2722	temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
2723	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2724	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2725	temp |= FDI_COMPOSITE_SYNC;
2726	I915_WRITE(reg, temp | FDI_TX_ENABLE);
2727
2728	reg = FDI_RX_CTL(pipe);
2729	temp = I915_READ(reg);
2730	temp &= ~FDI_LINK_TRAIN_AUTO;
2731	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2732	temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2733	temp |= FDI_COMPOSITE_SYNC;
2734	I915_WRITE(reg, temp | FDI_RX_ENABLE);
2735
2736	POSTING_READ(reg);
2737	DELAY(150);
2738
2739	for (i = 0; i < 4; i++) {
2740		reg = FDI_TX_CTL(pipe);
2741		temp = I915_READ(reg);
2742		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2743		temp |= snb_b_fdi_train_param[i];
2744		I915_WRITE(reg, temp);
2745
2746		POSTING_READ(reg);
2747		DELAY(500);
2748
2749		reg = FDI_RX_IIR(pipe);
2750		temp = I915_READ(reg);
2751		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2752
2753		if (temp & FDI_RX_BIT_LOCK ||
2754		    (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
2755			I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2756			DRM_DEBUG_KMS("FDI train 1 done.\n");
2757			break;
2758		}
2759	}
2760	if (i == 4)
2761		DRM_ERROR("FDI train 1 fail!\n");
2762
2763	/* Train 2 */
2764	reg = FDI_TX_CTL(pipe);
2765	temp = I915_READ(reg);
2766	temp &= ~FDI_LINK_TRAIN_NONE_IVB;
2767	temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
2768	temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2769	temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2770	I915_WRITE(reg, temp);
2771
2772	reg = FDI_RX_CTL(pipe);
2773	temp = I915_READ(reg);
2774	temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2775	temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2776	I915_WRITE(reg, temp);
2777
2778	POSTING_READ(reg);
2779	DELAY(150);
2780
2781	for (i = 0; i < 4; i++ ) {
2782		reg = FDI_TX_CTL(pipe);
2783		temp = I915_READ(reg);
2784		temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2785		temp |= snb_b_fdi_train_param[i];
2786		I915_WRITE(reg, temp);
2787
2788		POSTING_READ(reg);
2789		DELAY(500);
2790
2791		reg = FDI_RX_IIR(pipe);
2792		temp = I915_READ(reg);
2793		DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2794
2795		if (temp & FDI_RX_SYMBOL_LOCK) {
2796			I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2797			DRM_DEBUG_KMS("FDI train 2 done.\n");
2798			break;
2799		}
2800	}
2801	if (i == 4)
2802		DRM_ERROR("FDI train 2 fail!\n");
2803
2804	DRM_DEBUG_KMS("FDI train done.\n");
2805}
2806
2807static void ironlake_fdi_pll_enable(struct drm_crtc *crtc)
2808{
2809	struct drm_device *dev = crtc->dev;
2810	struct drm_i915_private *dev_priv = dev->dev_private;
2811	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2812	int pipe = intel_crtc->pipe;
2813	u32 reg, temp;
2814
2815	/* Write the TU size bits so error detection works */
2816	I915_WRITE(FDI_RX_TUSIZE1(pipe),
2817		   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2818
2819	/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2820	reg = FDI_RX_CTL(pipe);
2821	temp = I915_READ(reg);
2822	temp &= ~((0x7 << 19) | (0x7 << 16));
2823	temp |= (intel_crtc->fdi_lanes - 1) << 19;
2824	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2825	I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2826
2827	POSTING_READ(reg);
2828	DELAY(200);
2829
2830	/* Switch from Rawclk to PCDclk */
2831	temp = I915_READ(reg);
2832	I915_WRITE(reg, temp | FDI_PCDCLK);
2833
2834	POSTING_READ(reg);
2835	DELAY(200);
2836
2837	/* Enable CPU FDI TX PLL, always on for Ironlake */
2838	reg = FDI_TX_CTL(pipe);
2839	temp = I915_READ(reg);
2840	if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2841		I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2842
2843		POSTING_READ(reg);
2844		DELAY(100);
2845	}
2846}
2847
2848static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
2849{
2850	struct drm_i915_private *dev_priv = dev->dev_private;
2851	u32 flags = I915_READ(SOUTH_CHICKEN1);
2852
2853	flags &= ~(FDI_PHASE_SYNC_EN(pipe));
2854	I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
2855	flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
2856	I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
2857	POSTING_READ(SOUTH_CHICKEN1);
2858}
2859
2860static void ironlake_fdi_disable(struct drm_crtc *crtc)
2861{
2862	struct drm_device *dev = crtc->dev;
2863	struct drm_i915_private *dev_priv = dev->dev_private;
2864	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2865	int pipe = intel_crtc->pipe;
2866	u32 reg, temp;
2867
2868	/* disable CPU FDI tx and PCH FDI rx */
2869	reg = FDI_TX_CTL(pipe);
2870	temp = I915_READ(reg);
2871	I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2872	POSTING_READ(reg);
2873
2874	reg = FDI_RX_CTL(pipe);
2875	temp = I915_READ(reg);
2876	temp &= ~(0x7 << 16);
2877	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2878	I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2879
2880	POSTING_READ(reg);
2881	DELAY(100);
2882
2883	/* Ironlake workaround, disable clock pointer after downing FDI */
2884	if (HAS_PCH_IBX(dev)) {
2885		I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2886		I915_WRITE(FDI_RX_CHICKEN(pipe),
2887			   I915_READ(FDI_RX_CHICKEN(pipe) &
2888				     ~FDI_RX_PHASE_SYNC_POINTER_EN));
2889	} else if (HAS_PCH_CPT(dev)) {
2890		cpt_phase_pointer_disable(dev, pipe);
2891	}
2892
2893	/* still set train pattern 1 */
2894	reg = FDI_TX_CTL(pipe);
2895	temp = I915_READ(reg);
2896	temp &= ~FDI_LINK_TRAIN_NONE;
2897	temp |= FDI_LINK_TRAIN_PATTERN_1;
2898	I915_WRITE(reg, temp);
2899
2900	reg = FDI_RX_CTL(pipe);
2901	temp = I915_READ(reg);
2902	if (HAS_PCH_CPT(dev)) {
2903		temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2904		temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2905	} else {
2906		temp &= ~FDI_LINK_TRAIN_NONE;
2907		temp |= FDI_LINK_TRAIN_PATTERN_1;
2908	}
2909	/* BPC in FDI rx is consistent with that in PIPECONF */
2910	temp &= ~(0x07 << 16);
2911	temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2912	I915_WRITE(reg, temp);
2913
2914	POSTING_READ(reg);
2915	DELAY(100);
2916}
2917
2918/*
2919 * When we disable a pipe, we need to clear any pending scanline wait events
2920 * to avoid hanging the ring, which we assume we are waiting on.
2921 */
2922static void intel_clear_scanline_wait(struct drm_device *dev)
2923{
2924	struct drm_i915_private *dev_priv = dev->dev_private;
2925	struct intel_ring_buffer *ring;
2926	u32 tmp;
2927
2928	if (IS_GEN2(dev))
2929		/* Can't break the hang on i8xx */
2930		return;
2931
2932	ring = LP_RING(dev_priv);
2933	tmp = I915_READ_CTL(ring);
2934	if (tmp & RING_WAIT)
2935		I915_WRITE_CTL(ring, tmp);
2936}
2937
2938static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2939{
2940	struct drm_i915_gem_object *obj;
2941	struct drm_i915_private *dev_priv;
2942	struct drm_device *dev;
2943
2944	if (crtc->fb == NULL)
2945		return;
2946
2947	obj = to_intel_framebuffer(crtc->fb)->obj;
2948	dev = crtc->dev;
2949	dev_priv = dev->dev_private;
2950	mtx_lock(&dev->event_lock);
2951	while (atomic_load_acq_int(&obj->pending_flip) != 0)
2952		msleep(&obj->pending_flip, &dev->event_lock, 0, "915wfl", 0);
2953	mtx_unlock(&dev->event_lock);
2954}
2955
2956static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2957{
2958	struct drm_device *dev = crtc->dev;
2959	struct drm_mode_config *mode_config = &dev->mode_config;
2960	struct intel_encoder *encoder;
2961
2962	/*
2963	 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2964	 * must be driven by its own crtc; no sharing is possible.
2965	 */
2966	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2967		if (encoder->base.crtc != crtc)
2968			continue;
2969
2970		switch (encoder->type) {
2971		case INTEL_OUTPUT_EDP:
2972			if (!intel_encoder_is_pch_edp(&encoder->base))
2973				return false;
2974			continue;
2975		}
2976	}
2977
2978	return true;
2979}
2980
2981/*
2982 * Enable PCH resources required for PCH ports:
2983 *   - PCH PLLs
2984 *   - FDI training & RX/TX
2985 *   - update transcoder timings
2986 *   - DP transcoding bits
2987 *   - transcoder
2988 */
2989static void ironlake_pch_enable(struct drm_crtc *crtc)
2990{
2991	struct drm_device *dev = crtc->dev;
2992	struct drm_i915_private *dev_priv = dev->dev_private;
2993	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2994	int pipe = intel_crtc->pipe;
2995	u32 reg, temp, transc_sel;
2996
2997	/* For PCH output, training FDI link */
2998	dev_priv->display.fdi_link_train(crtc);
2999
3000	intel_enable_pch_pll(dev_priv, pipe);
3001
3002	if (HAS_PCH_CPT(dev)) {
3003		transc_sel = intel_crtc->use_pll_a ? TRANSC_DPLLA_SEL :
3004			TRANSC_DPLLB_SEL;
3005
3006		/* Be sure PCH DPLL SEL is set */
3007		temp = I915_READ(PCH_DPLL_SEL);
3008		if (pipe == 0) {
3009			temp &= ~(TRANSA_DPLLB_SEL);
3010			temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3011		} else if (pipe == 1) {
3012			temp &= ~(TRANSB_DPLLB_SEL);
3013			temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3014		} else if (pipe == 2) {
3015			temp &= ~(TRANSC_DPLLB_SEL);
3016			temp |= (TRANSC_DPLL_ENABLE | transc_sel);
3017		}
3018		I915_WRITE(PCH_DPLL_SEL, temp);
3019	}
3020
3021	/* set transcoder timing, panel must allow it */
3022	assert_panel_unlocked(dev_priv, pipe);
3023	I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
3024	I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
3025	I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
3026
3027	I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
3028	I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
3029	I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
3030	I915_WRITE(TRANS_VSYNCSHIFT(pipe),  I915_READ(VSYNCSHIFT(pipe)));
3031
3032	intel_fdi_normal_train(crtc);
3033
3034	/* For PCH DP, enable TRANS_DP_CTL */
3035	if (HAS_PCH_CPT(dev) &&
3036	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
3037	     intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3038		u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
3039		reg = TRANS_DP_CTL(pipe);
3040		temp = I915_READ(reg);
3041		temp &= ~(TRANS_DP_PORT_SEL_MASK |
3042			  TRANS_DP_SYNC_MASK |
3043			  TRANS_DP_BPC_MASK);
3044		temp |= (TRANS_DP_OUTPUT_ENABLE |
3045			 TRANS_DP_ENH_FRAMING);
3046		temp |= bpc << 9; /* same format but at 11:9 */
3047
3048		if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
3049			temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
3050		if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
3051			temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
3052
3053		switch (intel_trans_dp_port_sel(crtc)) {
3054		case PCH_DP_B:
3055			temp |= TRANS_DP_PORT_SEL_B;
3056			break;
3057		case PCH_DP_C:
3058			temp |= TRANS_DP_PORT_SEL_C;
3059			break;
3060		case PCH_DP_D:
3061			temp |= TRANS_DP_PORT_SEL_D;
3062			break;
3063		default:
3064			DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
3065			temp |= TRANS_DP_PORT_SEL_B;
3066			break;
3067		}
3068
3069		I915_WRITE(reg, temp);
3070	}
3071
3072	intel_enable_transcoder(dev_priv, pipe);
3073}
3074
3075void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
3076{
3077	struct drm_i915_private *dev_priv = dev->dev_private;
3078	int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
3079	u32 temp;
3080
3081	temp = I915_READ(dslreg);
3082	DELAY(500);
3083	if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1, "915cp1")) {
3084		/* Without this, mode sets may fail silently on FDI */
3085		I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
3086		DELAY(250);
3087		I915_WRITE(tc2reg, 0);
3088		if (_intel_wait_for(dev, I915_READ(dslreg) != temp, 5, 1,
3089		    "915cp2"))
3090			DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
3091	}
3092}
3093
3094static void ironlake_crtc_enable(struct drm_crtc *crtc)
3095{
3096	struct drm_device *dev = crtc->dev;
3097	struct drm_i915_private *dev_priv = dev->dev_private;
3098	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3099	int pipe = intel_crtc->pipe;
3100	int plane = intel_crtc->plane;
3101	u32 temp;
3102	bool is_pch_port;
3103
3104	if (intel_crtc->active)
3105		return;
3106
3107	intel_crtc->active = true;
3108	intel_update_watermarks(dev);
3109
3110	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
3111		temp = I915_READ(PCH_LVDS);
3112		if ((temp & LVDS_PORT_EN) == 0)
3113			I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
3114	}
3115
3116	is_pch_port = intel_crtc_driving_pch(crtc);
3117
3118	if (is_pch_port)
3119		ironlake_fdi_pll_enable(crtc);
3120	else
3121		ironlake_fdi_disable(crtc);
3122
3123	/* Enable panel fitting for LVDS */
3124	if (dev_priv->pch_pf_size &&
3125	    (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
3126		/* Force use of hard-coded filter coefficients
3127		 * as some pre-programmed values are broken,
3128		 * e.g. x201.
3129		 */
3130		I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
3131		I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
3132		I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
3133	}
3134
3135	intel_enable_pipe(dev_priv, pipe, is_pch_port);
3136	intel_enable_plane(dev_priv, plane, pipe);
3137
3138	if (is_pch_port)
3139		ironlake_pch_enable(crtc);
3140
3141	intel_crtc_load_lut(crtc);
3142
3143	DRM_LOCK(dev);
3144	intel_update_fbc(dev);
3145	DRM_UNLOCK(dev);
3146
3147	intel_crtc_update_cursor(crtc, true);
3148}
3149
3150static void ironlake_crtc_disable(struct drm_crtc *crtc)
3151{
3152	struct drm_device *dev = crtc->dev;
3153	struct drm_i915_private *dev_priv = dev->dev_private;
3154	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3155	int pipe = intel_crtc->pipe;
3156	int plane = intel_crtc->plane;
3157	u32 reg, temp;
3158
3159	if (!intel_crtc->active)
3160		return;
3161
3162	intel_crtc_wait_for_pending_flips(crtc);
3163	drm_vblank_off(dev, pipe);
3164	intel_crtc_update_cursor(crtc, false);
3165
3166	intel_disable_plane(dev_priv, plane, pipe);
3167
3168	if (dev_priv->cfb_plane == plane)
3169		intel_disable_fbc(dev);
3170
3171	intel_disable_pipe(dev_priv, pipe);
3172
3173	/* Disable PF */
3174	I915_WRITE(PF_CTL(pipe), 0);
3175	I915_WRITE(PF_WIN_SZ(pipe), 0);
3176
3177	ironlake_fdi_disable(crtc);
3178
3179	/* This is a horrible layering violation; we should be doing this in
3180	 * the connector/encoder ->prepare instead, but we don't always have
3181	 * enough information there about the config to know whether it will
3182	 * actually be necessary or just cause undesired flicker.
3183	 */
3184	intel_disable_pch_ports(dev_priv, pipe);
3185
3186	intel_disable_transcoder(dev_priv, pipe);
3187
3188	if (HAS_PCH_CPT(dev)) {
3189		/* disable TRANS_DP_CTL */
3190		reg = TRANS_DP_CTL(pipe);
3191		temp = I915_READ(reg);
3192		temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
3193		temp |= TRANS_DP_PORT_SEL_NONE;
3194		I915_WRITE(reg, temp);
3195
3196		/* disable DPLL_SEL */
3197		temp = I915_READ(PCH_DPLL_SEL);
3198		switch (pipe) {
3199		case 0:
3200			temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
3201			break;
3202		case 1:
3203			temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3204			break;
3205		case 2:
3206			/* C shares PLL A or B */
3207			temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
3208			break;
3209		default:
3210			KASSERT(1, ("Wrong pipe %d", pipe)); /* wtf */
3211		}
3212		I915_WRITE(PCH_DPLL_SEL, temp);
3213	}
3214
3215	/* disable PCH DPLL */
3216	if (!intel_crtc->no_pll)
3217		intel_disable_pch_pll(dev_priv, pipe);
3218
3219	/* Switch from PCDclk to Rawclk */
3220	reg = FDI_RX_CTL(pipe);
3221	temp = I915_READ(reg);
3222	I915_WRITE(reg, temp & ~FDI_PCDCLK);
3223
3224	/* Disable CPU FDI TX PLL */
3225	reg = FDI_TX_CTL(pipe);
3226	temp = I915_READ(reg);
3227	I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3228
3229	POSTING_READ(reg);
3230	DELAY(100);
3231
3232	reg = FDI_RX_CTL(pipe);
3233	temp = I915_READ(reg);
3234	I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3235
3236	/* Wait for the clocks to turn off. */
3237	POSTING_READ(reg);
3238	DELAY(100);
3239
3240	intel_crtc->active = false;
3241	intel_update_watermarks(dev);
3242
3243	DRM_LOCK(dev);
3244	intel_update_fbc(dev);
3245	intel_clear_scanline_wait(dev);
3246	DRM_UNLOCK(dev);
3247}
3248
3249static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
3250{
3251	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3252	int pipe = intel_crtc->pipe;
3253	int plane = intel_crtc->plane;
3254
3255	/* XXX: When our outputs are all unaware of DPMS modes other than off
3256	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3257	 */
3258	switch (mode) {
3259	case DRM_MODE_DPMS_ON:
3260	case DRM_MODE_DPMS_STANDBY:
3261	case DRM_MODE_DPMS_SUSPEND:
3262		DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
3263		ironlake_crtc_enable(crtc);
3264		break;
3265
3266	case DRM_MODE_DPMS_OFF:
3267		DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
3268		ironlake_crtc_disable(crtc);
3269		break;
3270	}
3271}
3272
3273static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
3274{
3275	if (!enable && intel_crtc->overlay) {
3276		struct drm_device *dev = intel_crtc->base.dev;
3277		struct drm_i915_private *dev_priv = dev->dev_private;
3278
3279		DRM_LOCK(dev);
3280		dev_priv->mm.interruptible = false;
3281		(void) intel_overlay_switch_off(intel_crtc->overlay);
3282		dev_priv->mm.interruptible = true;
3283		DRM_UNLOCK(dev);
3284	}
3285
3286	/* Let userspace switch the overlay on again. In most cases userspace
3287	 * has to recompute where to put it anyway.
3288	 */
3289}
3290
3291static void i9xx_crtc_enable(struct drm_crtc *crtc)
3292{
3293	struct drm_device *dev = crtc->dev;
3294	struct drm_i915_private *dev_priv = dev->dev_private;
3295	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3296	int pipe = intel_crtc->pipe;
3297	int plane = intel_crtc->plane;
3298
3299	if (intel_crtc->active)
3300		return;
3301
3302	intel_crtc->active = true;
3303	intel_update_watermarks(dev);
3304
3305	intel_enable_pll(dev_priv, pipe);
3306	intel_enable_pipe(dev_priv, pipe, false);
3307	intel_enable_plane(dev_priv, plane, pipe);
3308
3309	intel_crtc_load_lut(crtc);
3310	intel_update_fbc(dev);
3311
3312	/* Give the overlay scaler a chance to enable if it's on this pipe */
3313	intel_crtc_dpms_overlay(intel_crtc, true);
3314	intel_crtc_update_cursor(crtc, true);
3315}
3316
3317static void i9xx_crtc_disable(struct drm_crtc *crtc)
3318{
3319	struct drm_device *dev = crtc->dev;
3320	struct drm_i915_private *dev_priv = dev->dev_private;
3321	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3322	int pipe = intel_crtc->pipe;
3323	int plane = intel_crtc->plane;
3324
3325	if (!intel_crtc->active)
3326		return;
3327
3328	/* Give the overlay scaler a chance to disable if it's on this pipe */
3329	intel_crtc_wait_for_pending_flips(crtc);
3330	drm_vblank_off(dev, pipe);
3331	intel_crtc_dpms_overlay(intel_crtc, false);
3332	intel_crtc_update_cursor(crtc, false);
3333
3334	if (dev_priv->cfb_plane == plane)
3335		intel_disable_fbc(dev);
3336
3337	intel_disable_plane(dev_priv, plane, pipe);
3338	intel_disable_pipe(dev_priv, pipe);
3339	intel_disable_pll(dev_priv, pipe);
3340
3341	intel_crtc->active = false;
3342	intel_update_fbc(dev);
3343	intel_update_watermarks(dev);
3344	intel_clear_scanline_wait(dev);
3345}
3346
3347static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
3348{
3349	/* XXX: When our outputs are all unaware of DPMS modes other than off
3350	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3351	 */
3352	switch (mode) {
3353	case DRM_MODE_DPMS_ON:
3354	case DRM_MODE_DPMS_STANDBY:
3355	case DRM_MODE_DPMS_SUSPEND:
3356		i9xx_crtc_enable(crtc);
3357		break;
3358	case DRM_MODE_DPMS_OFF:
3359		i9xx_crtc_disable(crtc);
3360		break;
3361	}
3362}
3363
3364/**
3365 * Sets the power management mode of the pipe and plane.
3366 */
3367static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
3368{
3369	struct drm_device *dev = crtc->dev;
3370	struct drm_i915_private *dev_priv = dev->dev_private;
3371#if 0
3372	struct drm_i915_master_private *master_priv;
3373#endif
3374	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3375	int pipe = intel_crtc->pipe;
3376	bool enabled;
3377
3378	if (intel_crtc->dpms_mode == mode)
3379		return;
3380
3381	intel_crtc->dpms_mode = mode;
3382
3383	dev_priv->display.dpms(crtc, mode);
3384
3385#if 0
3386	if (!dev->primary->master)
3387		return;
3388
3389	master_priv = dev->primary->master->driver_priv;
3390	if (!master_priv->sarea_priv)
3391		return;
3392#else
3393	if (!dev_priv->sarea_priv)
3394		return;
3395#endif
3396
3397	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
3398
3399	switch (pipe) {
3400	case 0:
3401#if 0
3402		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
3403		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
3404#else
3405		dev_priv->sarea_priv->planeA_w = enabled ? crtc->mode.hdisplay : 0;
3406		dev_priv->sarea_priv->planeA_h = enabled ? crtc->mode.vdisplay : 0;
3407#endif
3408		break;
3409	case 1:
3410#if 0
3411		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
3412		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
3413#else
3414		dev_priv->sarea_priv->planeB_w = enabled ? crtc->mode.hdisplay : 0;
3415		dev_priv->sarea_priv->planeB_h = enabled ? crtc->mode.vdisplay : 0;
3416#endif
3417		break;
3418	default:
3419		DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
3420		break;
3421	}
3422}
3423
3424static void intel_crtc_disable(struct drm_crtc *crtc)
3425{
3426	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3427	struct drm_device *dev = crtc->dev;
3428
3429	/* Flush any pending WAITs before we disable the pipe. Note that
3430	 * we need to drop the struct_mutex in order to acquire it again
3431	 * during the lowlevel dpms routines around a couple of the
3432	 * operations. It does not look trivial nor desirable to move
3433	 * that locking higher. So instead we leave a window for the
3434	 * submission of further commands on the fb before we can actually
3435	 * disable it. This race with userspace exists anyway, and we can
3436	 * only rely on the pipe being disabled by userspace after it
3437	 * receives the hotplug notification and has flushed any pending
3438	 * batches.
3439	 */
3440	if (crtc->fb) {
3441		DRM_LOCK(dev);
3442		intel_finish_fb(crtc->fb);
3443		DRM_UNLOCK(dev);
3444	}
3445
3446	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
3447 	assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
3448	assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
3449
3450	if (crtc->fb) {
3451		DRM_LOCK(dev);
3452		intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
3453		DRM_UNLOCK(dev);
3454	}
3455}
3456
3457/* Prepare for a mode set.
3458 *
3459 * Note we could be a lot smarter here.  We need to figure out which outputs
3460 * will be enabled, which disabled (in short, how the config will changes)
3461 * and perform the minimum necessary steps to accomplish that, e.g. updating
3462 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3463 * panel fitting is in the proper state, etc.
3464 */
3465static void i9xx_crtc_prepare(struct drm_crtc *crtc)
3466{
3467	i9xx_crtc_disable(crtc);
3468}
3469
3470static void i9xx_crtc_commit(struct drm_crtc *crtc)
3471{
3472	i9xx_crtc_enable(crtc);
3473}
3474
3475static void ironlake_crtc_prepare(struct drm_crtc *crtc)
3476{
3477	ironlake_crtc_disable(crtc);
3478}
3479
3480static void ironlake_crtc_commit(struct drm_crtc *crtc)
3481{
3482	ironlake_crtc_enable(crtc);
3483}
3484
3485void intel_encoder_prepare(struct drm_encoder *encoder)
3486{
3487	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3488	/* lvds has its own version of prepare see intel_lvds_prepare */
3489	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
3490}
3491
3492void intel_encoder_commit(struct drm_encoder *encoder)
3493{
3494	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3495	struct drm_device *dev = encoder->dev;
3496	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3497	struct intel_crtc *intel_crtc = to_intel_crtc(intel_encoder->base.crtc);
3498
3499	/* lvds has its own version of commit see intel_lvds_commit */
3500	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3501
3502	if (HAS_PCH_CPT(dev))
3503		intel_cpt_verify_modeset(dev, intel_crtc->pipe);
3504}
3505
3506void intel_encoder_destroy(struct drm_encoder *encoder)
3507{
3508	struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
3509
3510	drm_encoder_cleanup(encoder);
3511	free(intel_encoder, DRM_MEM_KMS);
3512}
3513
3514static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
3515				  const struct drm_display_mode *mode,
3516				  struct drm_display_mode *adjusted_mode)
3517{
3518	struct drm_device *dev = crtc->dev;
3519
3520	if (HAS_PCH_SPLIT(dev)) {
3521		/* FDI link clock is fixed at 2.7G */
3522		if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
3523			return false;
3524	}
3525
3526	/* All interlaced capable intel hw wants timings in frames. Note though
3527	 * that intel_lvds_mode_fixup does some funny tricks with the crtc
3528	 * timings, so we need to be careful not to clobber these.*/
3529	if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
3530		drm_mode_set_crtcinfo(adjusted_mode, 0);
3531
3532	return true;
3533}
3534
3535static int i945_get_display_clock_speed(struct drm_device *dev)
3536{
3537	return 400000;
3538}
3539
3540static int i915_get_display_clock_speed(struct drm_device *dev)
3541{
3542	return 333000;
3543}
3544
3545static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
3546{
3547	return 200000;
3548}
3549
3550static int i915gm_get_display_clock_speed(struct drm_device *dev)
3551{
3552	u16 gcfgc = 0;
3553
3554	gcfgc = pci_read_config(dev->device, GCFGC, 2);
3555
3556	if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
3557		return 133000;
3558	else {
3559		switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
3560		case GC_DISPLAY_CLOCK_333_MHZ:
3561			return 333000;
3562		default:
3563		case GC_DISPLAY_CLOCK_190_200_MHZ:
3564			return 190000;
3565		}
3566	}
3567}
3568
3569static int i865_get_display_clock_speed(struct drm_device *dev)
3570{
3571	return 266000;
3572}
3573
3574static int i855_get_display_clock_speed(struct drm_device *dev)
3575{
3576	u16 hpllcc = 0;
3577	/* Assume that the hardware is in the high speed state.  This
3578	 * should be the default.
3579	 */
3580	switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
3581	case GC_CLOCK_133_200:
3582	case GC_CLOCK_100_200:
3583		return 200000;
3584	case GC_CLOCK_166_250:
3585		return 250000;
3586	case GC_CLOCK_100_133:
3587		return 133000;
3588	}
3589
3590	/* Shouldn't happen */
3591	return 0;
3592}
3593
3594static int i830_get_display_clock_speed(struct drm_device *dev)
3595{
3596	return 133000;
3597}
3598
3599struct fdi_m_n {
3600	u32        tu;
3601	u32        gmch_m;
3602	u32        gmch_n;
3603	u32        link_m;
3604	u32        link_n;
3605};
3606
3607static void
3608fdi_reduce_ratio(u32 *num, u32 *den)
3609{
3610	while (*num > 0xffffff || *den > 0xffffff) {
3611		*num >>= 1;
3612		*den >>= 1;
3613	}
3614}
3615
3616static void
3617ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3618		     int link_clock, struct fdi_m_n *m_n)
3619{
3620	m_n->tu = 64; /* default size */
3621
3622	/* BUG_ON(pixel_clock > INT_MAX / 36); */
3623	m_n->gmch_m = bits_per_pixel * pixel_clock;
3624	m_n->gmch_n = link_clock * nlanes * 8;
3625	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3626
3627	m_n->link_m = pixel_clock;
3628	m_n->link_n = link_clock;
3629	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3630}
3631
3632
3633struct intel_watermark_params {
3634	unsigned long fifo_size;
3635	unsigned long max_wm;
3636	unsigned long default_wm;
3637	unsigned long guard_size;
3638	unsigned long cacheline_size;
3639};
3640
3641/* Pineview has different values for various configs */
3642static const struct intel_watermark_params pineview_display_wm = {
3643	PINEVIEW_DISPLAY_FIFO,
3644	PINEVIEW_MAX_WM,
3645	PINEVIEW_DFT_WM,
3646	PINEVIEW_GUARD_WM,
3647	PINEVIEW_FIFO_LINE_SIZE
3648};
3649static const struct intel_watermark_params pineview_display_hplloff_wm = {
3650	PINEVIEW_DISPLAY_FIFO,
3651	PINEVIEW_MAX_WM,
3652	PINEVIEW_DFT_HPLLOFF_WM,
3653	PINEVIEW_GUARD_WM,
3654	PINEVIEW_FIFO_LINE_SIZE
3655};
3656static const struct intel_watermark_params pineview_cursor_wm = {
3657	PINEVIEW_CURSOR_FIFO,
3658	PINEVIEW_CURSOR_MAX_WM,
3659	PINEVIEW_CURSOR_DFT_WM,
3660	PINEVIEW_CURSOR_GUARD_WM,
3661	PINEVIEW_FIFO_LINE_SIZE,
3662};
3663static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3664	PINEVIEW_CURSOR_FIFO,
3665	PINEVIEW_CURSOR_MAX_WM,
3666	PINEVIEW_CURSOR_DFT_WM,
3667	PINEVIEW_CURSOR_GUARD_WM,
3668	PINEVIEW_FIFO_LINE_SIZE
3669};
3670static const struct intel_watermark_params g4x_wm_info = {
3671	G4X_FIFO_SIZE,
3672	G4X_MAX_WM,
3673	G4X_MAX_WM,
3674	2,
3675	G4X_FIFO_LINE_SIZE,
3676};
3677static const struct intel_watermark_params g4x_cursor_wm_info = {
3678	I965_CURSOR_FIFO,
3679	I965_CURSOR_MAX_WM,
3680	I965_CURSOR_DFT_WM,
3681	2,
3682	G4X_FIFO_LINE_SIZE,
3683};
3684static const struct intel_watermark_params i965_cursor_wm_info = {
3685	I965_CURSOR_FIFO,
3686	I965_CURSOR_MAX_WM,
3687	I965_CURSOR_DFT_WM,
3688	2,
3689	I915_FIFO_LINE_SIZE,
3690};
3691static const struct intel_watermark_params i945_wm_info = {
3692	I945_FIFO_SIZE,
3693	I915_MAX_WM,
3694	1,
3695	2,
3696	I915_FIFO_LINE_SIZE
3697};
3698static const struct intel_watermark_params i915_wm_info = {
3699	I915_FIFO_SIZE,
3700	I915_MAX_WM,
3701	1,
3702	2,
3703	I915_FIFO_LINE_SIZE
3704};
3705static const struct intel_watermark_params i855_wm_info = {
3706	I855GM_FIFO_SIZE,
3707	I915_MAX_WM,
3708	1,
3709	2,
3710	I830_FIFO_LINE_SIZE
3711};
3712static const struct intel_watermark_params i830_wm_info = {
3713	I830_FIFO_SIZE,
3714	I915_MAX_WM,
3715	1,
3716	2,
3717	I830_FIFO_LINE_SIZE
3718};
3719
3720static const struct intel_watermark_params ironlake_display_wm_info = {
3721	ILK_DISPLAY_FIFO,
3722	ILK_DISPLAY_MAXWM,
3723	ILK_DISPLAY_DFTWM,
3724	2,
3725	ILK_FIFO_LINE_SIZE
3726};
3727static const struct intel_watermark_params ironlake_cursor_wm_info = {
3728	ILK_CURSOR_FIFO,
3729	ILK_CURSOR_MAXWM,
3730	ILK_CURSOR_DFTWM,
3731	2,
3732	ILK_FIFO_LINE_SIZE
3733};
3734static const struct intel_watermark_params ironlake_display_srwm_info = {
3735	ILK_DISPLAY_SR_FIFO,
3736	ILK_DISPLAY_MAX_SRWM,
3737	ILK_DISPLAY_DFT_SRWM,
3738	2,
3739	ILK_FIFO_LINE_SIZE
3740};
3741static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3742	ILK_CURSOR_SR_FIFO,
3743	ILK_CURSOR_MAX_SRWM,
3744	ILK_CURSOR_DFT_SRWM,
3745	2,
3746	ILK_FIFO_LINE_SIZE
3747};
3748
3749static const struct intel_watermark_params sandybridge_display_wm_info = {
3750	SNB_DISPLAY_FIFO,
3751	SNB_DISPLAY_MAXWM,
3752	SNB_DISPLAY_DFTWM,
3753	2,
3754	SNB_FIFO_LINE_SIZE
3755};
3756static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3757	SNB_CURSOR_FIFO,
3758	SNB_CURSOR_MAXWM,
3759	SNB_CURSOR_DFTWM,
3760	2,
3761	SNB_FIFO_LINE_SIZE
3762};
3763static const struct intel_watermark_params sandybridge_display_srwm_info = {
3764	SNB_DISPLAY_SR_FIFO,
3765	SNB_DISPLAY_MAX_SRWM,
3766	SNB_DISPLAY_DFT_SRWM,
3767	2,
3768	SNB_FIFO_LINE_SIZE
3769};
3770static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3771	SNB_CURSOR_SR_FIFO,
3772	SNB_CURSOR_MAX_SRWM,
3773	SNB_CURSOR_DFT_SRWM,
3774	2,
3775	SNB_FIFO_LINE_SIZE
3776};
3777
3778
3779/**
3780 * intel_calculate_wm - calculate watermark level
3781 * @clock_in_khz: pixel clock
3782 * @wm: chip FIFO params
3783 * @pixel_size: display pixel size
3784 * @latency_ns: memory latency for the platform
3785 *
3786 * Calculate the watermark level (the level at which the display plane will
3787 * start fetching from memory again).  Each chip has a different display
3788 * FIFO size and allocation, so the caller needs to figure that out and pass
3789 * in the correct intel_watermark_params structure.
3790 *
3791 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3792 * on the pixel size.  When it reaches the watermark level, it'll start
3793 * fetching FIFO line sized based chunks from memory until the FIFO fills
3794 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3795 * will occur, and a display engine hang could result.
3796 */
3797static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3798					const struct intel_watermark_params *wm,
3799					int fifo_size,
3800					int pixel_size,
3801					unsigned long latency_ns)
3802{
3803	long entries_required, wm_size;
3804
3805	/*
3806	 * Note: we need to make sure we don't overflow for various clock &
3807	 * latency values.
3808	 * clocks go from a few thousand to several hundred thousand.
3809	 * latency is usually a few thousand
3810	 */
3811	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3812		1000;
3813	entries_required = howmany(entries_required, wm->cacheline_size);
3814
3815	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
3816
3817	wm_size = fifo_size - (entries_required + wm->guard_size);
3818
3819	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
3820
3821	/* Don't promote wm_size to unsigned... */
3822	if (wm_size > (long)wm->max_wm)
3823		wm_size = wm->max_wm;
3824	if (wm_size <= 0)
3825		wm_size = wm->default_wm;
3826	return wm_size;
3827}
3828
3829struct cxsr_latency {
3830	int is_desktop;
3831	int is_ddr3;
3832	unsigned long fsb_freq;
3833	unsigned long mem_freq;
3834	unsigned long display_sr;
3835	unsigned long display_hpll_disable;
3836	unsigned long cursor_sr;
3837	unsigned long cursor_hpll_disable;
3838};
3839
3840static const struct cxsr_latency cxsr_latency_table[] = {
3841	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3842	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3843	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3844	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3845	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3846
3847	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3848	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3849	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3850	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3851	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3852
3853	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3854	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3855	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3856	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3857	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3858
3859	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3860	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3861	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3862	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3863	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3864
3865	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3866	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3867	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3868	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3869	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3870
3871	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3872	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3873	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3874	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3875	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3876};
3877
3878static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3879							 int is_ddr3,
3880							 int fsb,
3881							 int mem)
3882{
3883	const struct cxsr_latency *latency;
3884	int i;
3885
3886	if (fsb == 0 || mem == 0)
3887		return NULL;
3888
3889	for (i = 0; i < DRM_ARRAY_SIZE(cxsr_latency_table); i++) {
3890		latency = &cxsr_latency_table[i];
3891		if (is_desktop == latency->is_desktop &&
3892		    is_ddr3 == latency->is_ddr3 &&
3893		    fsb == latency->fsb_freq && mem == latency->mem_freq)
3894			return latency;
3895	}
3896
3897	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3898
3899	return NULL;
3900}
3901
3902static void pineview_disable_cxsr(struct drm_device *dev)
3903{
3904	struct drm_i915_private *dev_priv = dev->dev_private;
3905
3906	/* deactivate cxsr */
3907	I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3908}
3909
3910/*
3911 * Latency for FIFO fetches is dependent on several factors:
3912 *   - memory configuration (speed, channels)
3913 *   - chipset
3914 *   - current MCH state
3915 * It can be fairly high in some situations, so here we assume a fairly
3916 * pessimal value.  It's a tradeoff between extra memory fetches (if we
3917 * set this value too high, the FIFO will fetch frequently to stay full)
3918 * and power consumption (set it too low to save power and we might see
3919 * FIFO underruns and display "flicker").
3920 *
3921 * A value of 5us seems to be a good balance; safe for very low end
3922 * platforms but not overly aggressive on lower latency configs.
3923 */
3924static const int latency_ns = 5000;
3925
3926static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3927{
3928	struct drm_i915_private *dev_priv = dev->dev_private;
3929	uint32_t dsparb = I915_READ(DSPARB);
3930	int size;
3931
3932	size = dsparb & 0x7f;
3933	if (plane)
3934		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3935
3936	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3937		      plane ? "B" : "A", size);
3938
3939	return size;
3940}
3941
3942static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3943{
3944	struct drm_i915_private *dev_priv = dev->dev_private;
3945	uint32_t dsparb = I915_READ(DSPARB);
3946	int size;
3947
3948	size = dsparb & 0x1ff;
3949	if (plane)
3950		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3951	size >>= 1; /* Convert to cachelines */
3952
3953	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3954		      plane ? "B" : "A", size);
3955
3956	return size;
3957}
3958
3959static int i845_get_fifo_size(struct drm_device *dev, int plane)
3960{
3961	struct drm_i915_private *dev_priv = dev->dev_private;
3962	uint32_t dsparb = I915_READ(DSPARB);
3963	int size;
3964
3965	size = dsparb & 0x7f;
3966	size >>= 2; /* Convert to cachelines */
3967
3968	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3969		      plane ? "B" : "A",
3970		      size);
3971
3972	return size;
3973}
3974
3975static int i830_get_fifo_size(struct drm_device *dev, int plane)
3976{
3977	struct drm_i915_private *dev_priv = dev->dev_private;
3978	uint32_t dsparb = I915_READ(DSPARB);
3979	int size;
3980
3981	size = dsparb & 0x7f;
3982	size >>= 1; /* Convert to cachelines */
3983
3984	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3985		      plane ? "B" : "A", size);
3986
3987	return size;
3988}
3989
3990static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3991{
3992	struct drm_crtc *crtc, *enabled = NULL;
3993
3994	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3995		if (crtc->enabled && crtc->fb) {
3996			if (enabled)
3997				return NULL;
3998			enabled = crtc;
3999		}
4000	}
4001
4002	return enabled;
4003}
4004
4005static void pineview_update_wm(struct drm_device *dev)
4006{
4007	struct drm_i915_private *dev_priv = dev->dev_private;
4008	struct drm_crtc *crtc;
4009	const struct cxsr_latency *latency;
4010	u32 reg;
4011	unsigned long wm;
4012
4013	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
4014					 dev_priv->fsb_freq, dev_priv->mem_freq);
4015	if (!latency) {
4016		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
4017		pineview_disable_cxsr(dev);
4018		return;
4019	}
4020
4021	crtc = single_enabled_crtc(dev);
4022	if (crtc) {
4023		int clock = crtc->mode.clock;
4024		int pixel_size = crtc->fb->bits_per_pixel / 8;
4025
4026		/* Display SR */
4027		wm = intel_calculate_wm(clock, &pineview_display_wm,
4028					pineview_display_wm.fifo_size,
4029					pixel_size, latency->display_sr);
4030		reg = I915_READ(DSPFW1);
4031		reg &= ~DSPFW_SR_MASK;
4032		reg |= wm << DSPFW_SR_SHIFT;
4033		I915_WRITE(DSPFW1, reg);
4034		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
4035
4036		/* cursor SR */
4037		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
4038					pineview_display_wm.fifo_size,
4039					pixel_size, latency->cursor_sr);
4040		reg = I915_READ(DSPFW3);
4041		reg &= ~DSPFW_CURSOR_SR_MASK;
4042		reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
4043		I915_WRITE(DSPFW3, reg);
4044
4045		/* Display HPLL off SR */
4046		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
4047					pineview_display_hplloff_wm.fifo_size,
4048					pixel_size, latency->display_hpll_disable);
4049		reg = I915_READ(DSPFW3);
4050		reg &= ~DSPFW_HPLL_SR_MASK;
4051		reg |= wm & DSPFW_HPLL_SR_MASK;
4052		I915_WRITE(DSPFW3, reg);
4053
4054		/* cursor HPLL off SR */
4055		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
4056					pineview_display_hplloff_wm.fifo_size,
4057					pixel_size, latency->cursor_hpll_disable);
4058		reg = I915_READ(DSPFW3);
4059		reg &= ~DSPFW_HPLL_CURSOR_MASK;
4060		reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
4061		I915_WRITE(DSPFW3, reg);
4062		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
4063
4064		/* activate cxsr */
4065		I915_WRITE(DSPFW3,
4066			   I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
4067		DRM_DEBUG_KMS("Self-refresh is enabled\n");
4068	} else {
4069		pineview_disable_cxsr(dev);
4070		DRM_DEBUG_KMS("Self-refresh is disabled\n");
4071	}
4072}
4073
4074static bool g4x_compute_wm0(struct drm_device *dev,
4075			    int plane,
4076			    const struct intel_watermark_params *display,
4077			    int display_latency_ns,
4078			    const struct intel_watermark_params *cursor,
4079			    int cursor_latency_ns,
4080			    int *plane_wm,
4081			    int *cursor_wm)
4082{
4083	struct drm_crtc *crtc;
4084	int htotal, hdisplay, clock, pixel_size;
4085	int line_time_us, line_count;
4086	int entries, tlb_miss;
4087
4088	crtc = intel_get_crtc_for_plane(dev, plane);
4089	if (crtc->fb == NULL || !crtc->enabled) {
4090		*cursor_wm = cursor->guard_size;
4091		*plane_wm = display->guard_size;
4092		return false;
4093	}
4094
4095	htotal = crtc->mode.htotal;
4096	hdisplay = crtc->mode.hdisplay;
4097	clock = crtc->mode.clock;
4098	pixel_size = crtc->fb->bits_per_pixel / 8;
4099
4100	/* Use the small buffer method to calculate plane watermark */
4101	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4102	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
4103	if (tlb_miss > 0)
4104		entries += tlb_miss;
4105	entries = howmany(entries, display->cacheline_size);
4106	*plane_wm = entries + display->guard_size;
4107	if (*plane_wm > (int)display->max_wm)
4108		*plane_wm = display->max_wm;
4109
4110	/* Use the large buffer method to calculate cursor watermark */
4111	line_time_us = ((htotal * 1000) / clock);
4112	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
4113	entries = line_count * 64 * pixel_size;
4114	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
4115	if (tlb_miss > 0)
4116		entries += tlb_miss;
4117	entries = howmany(entries, cursor->cacheline_size);
4118	*cursor_wm = entries + cursor->guard_size;
4119	if (*cursor_wm > (int)cursor->max_wm)
4120		*cursor_wm = (int)cursor->max_wm;
4121
4122	return true;
4123}
4124
4125/*
4126 * Check the wm result.
4127 *
4128 * If any calculated watermark values is larger than the maximum value that
4129 * can be programmed into the associated watermark register, that watermark
4130 * must be disabled.
4131 */
4132static bool g4x_check_srwm(struct drm_device *dev,
4133			   int display_wm, int cursor_wm,
4134			   const struct intel_watermark_params *display,
4135			   const struct intel_watermark_params *cursor)
4136{
4137	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
4138		      display_wm, cursor_wm);
4139
4140	if (display_wm > display->max_wm) {
4141		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
4142			      display_wm, display->max_wm);
4143		return false;
4144	}
4145
4146	if (cursor_wm > cursor->max_wm) {
4147		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
4148			      cursor_wm, cursor->max_wm);
4149		return false;
4150	}
4151
4152	if (!(display_wm || cursor_wm)) {
4153		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
4154		return false;
4155	}
4156
4157	return true;
4158}
4159
4160static bool g4x_compute_srwm(struct drm_device *dev,
4161			     int plane,
4162			     int latency_ns,
4163			     const struct intel_watermark_params *display,
4164			     const struct intel_watermark_params *cursor,
4165			     int *display_wm, int *cursor_wm)
4166{
4167	struct drm_crtc *crtc;
4168	int hdisplay, htotal, pixel_size, clock;
4169	unsigned long line_time_us;
4170	int line_count, line_size;
4171	int small, large;
4172	int entries;
4173
4174	if (!latency_ns) {
4175		*display_wm = *cursor_wm = 0;
4176		return false;
4177	}
4178
4179	crtc = intel_get_crtc_for_plane(dev, plane);
4180	hdisplay = crtc->mode.hdisplay;
4181	htotal = crtc->mode.htotal;
4182	clock = crtc->mode.clock;
4183	pixel_size = crtc->fb->bits_per_pixel / 8;
4184
4185	line_time_us = (htotal * 1000) / clock;
4186	line_count = (latency_ns / line_time_us + 1000) / 1000;
4187	line_size = hdisplay * pixel_size;
4188
4189	/* Use the minimum of the small and large buffer method for primary */
4190	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4191	large = line_count * line_size;
4192
4193	entries = howmany(min(small, large), display->cacheline_size);
4194	*display_wm = entries + display->guard_size;
4195
4196	/* calculate the self-refresh watermark for display cursor */
4197	entries = line_count * pixel_size * 64;
4198	entries = howmany(entries, cursor->cacheline_size);
4199	*cursor_wm = entries + cursor->guard_size;
4200
4201	return g4x_check_srwm(dev,
4202			      *display_wm, *cursor_wm,
4203			      display, cursor);
4204}
4205
4206#define single_plane_enabled(mask) ((mask) != 0 && powerof2(mask))
4207
4208static void g4x_update_wm(struct drm_device *dev)
4209{
4210	static const int sr_latency_ns = 12000;
4211	struct drm_i915_private *dev_priv = dev->dev_private;
4212	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
4213	int plane_sr, cursor_sr;
4214	unsigned int enabled = 0;
4215
4216	if (g4x_compute_wm0(dev, 0,
4217			    &g4x_wm_info, latency_ns,
4218			    &g4x_cursor_wm_info, latency_ns,
4219			    &planea_wm, &cursora_wm))
4220		enabled |= 1;
4221
4222	if (g4x_compute_wm0(dev, 1,
4223			    &g4x_wm_info, latency_ns,
4224			    &g4x_cursor_wm_info, latency_ns,
4225			    &planeb_wm, &cursorb_wm))
4226		enabled |= 2;
4227
4228	plane_sr = cursor_sr = 0;
4229	if (single_plane_enabled(enabled) &&
4230	    g4x_compute_srwm(dev, ffs(enabled) - 1,
4231			     sr_latency_ns,
4232			     &g4x_wm_info,
4233			     &g4x_cursor_wm_info,
4234			     &plane_sr, &cursor_sr))
4235		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4236	else
4237		I915_WRITE(FW_BLC_SELF,
4238			   I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
4239
4240	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4241		      planea_wm, cursora_wm,
4242		      planeb_wm, cursorb_wm,
4243		      plane_sr, cursor_sr);
4244
4245	I915_WRITE(DSPFW1,
4246		   (plane_sr << DSPFW_SR_SHIFT) |
4247		   (cursorb_wm << DSPFW_CURSORB_SHIFT) |
4248		   (planeb_wm << DSPFW_PLANEB_SHIFT) |
4249		   planea_wm);
4250	I915_WRITE(DSPFW2,
4251		   (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
4252		   (cursora_wm << DSPFW_CURSORA_SHIFT));
4253	/* HPLL off in SR has some issues on G4x... disable it */
4254	I915_WRITE(DSPFW3,
4255		   (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
4256		   (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4257}
4258
4259static void i965_update_wm(struct drm_device *dev)
4260{
4261	struct drm_i915_private *dev_priv = dev->dev_private;
4262	struct drm_crtc *crtc;
4263	int srwm = 1;
4264	int cursor_sr = 16;
4265
4266	/* Calc sr entries for one plane configs */
4267	crtc = single_enabled_crtc(dev);
4268	if (crtc) {
4269		/* self-refresh has much higher latency */
4270		static const int sr_latency_ns = 12000;
4271		int clock = crtc->mode.clock;
4272		int htotal = crtc->mode.htotal;
4273		int hdisplay = crtc->mode.hdisplay;
4274		int pixel_size = crtc->fb->bits_per_pixel / 8;
4275		unsigned long line_time_us;
4276		int entries;
4277
4278		line_time_us = ((htotal * 1000) / clock);
4279
4280		/* Use ns/us then divide to preserve precision */
4281		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4282			pixel_size * hdisplay;
4283		entries = howmany(entries, I915_FIFO_LINE_SIZE);
4284		srwm = I965_FIFO_SIZE - entries;
4285		if (srwm < 0)
4286			srwm = 1;
4287		srwm &= 0x1ff;
4288		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4289			      entries, srwm);
4290
4291		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4292			pixel_size * 64;
4293		entries = howmany(entries, i965_cursor_wm_info.cacheline_size);
4294		cursor_sr = i965_cursor_wm_info.fifo_size -
4295			(entries + i965_cursor_wm_info.guard_size);
4296
4297		if (cursor_sr > i965_cursor_wm_info.max_wm)
4298			cursor_sr = i965_cursor_wm_info.max_wm;
4299
4300		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4301			      "cursor %d\n", srwm, cursor_sr);
4302
4303		if (IS_CRESTLINE(dev))
4304			I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
4305	} else {
4306		/* Turn off self refresh if both pipes are enabled */
4307		if (IS_CRESTLINE(dev))
4308			I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
4309				   & ~FW_BLC_SELF_EN);
4310	}
4311
4312	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4313		      srwm);
4314
4315	/* 965 has limitations... */
4316	I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
4317		   (8 << 16) | (8 << 8) | (8 << 0));
4318	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
4319	/* update cursor SR watermark */
4320	I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
4321}
4322
4323static void i9xx_update_wm(struct drm_device *dev)
4324{
4325	struct drm_i915_private *dev_priv = dev->dev_private;
4326	const struct intel_watermark_params *wm_info;
4327	uint32_t fwater_lo;
4328	uint32_t fwater_hi;
4329	int cwm, srwm = 1;
4330	int fifo_size;
4331	int planea_wm, planeb_wm;
4332	struct drm_crtc *crtc, *enabled = NULL;
4333
4334	if (IS_I945GM(dev))
4335		wm_info = &i945_wm_info;
4336	else if (!IS_GEN2(dev))
4337		wm_info = &i915_wm_info;
4338	else
4339		wm_info = &i855_wm_info;
4340
4341	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
4342	crtc = intel_get_crtc_for_plane(dev, 0);
4343	if (crtc->enabled && crtc->fb) {
4344		planea_wm = intel_calculate_wm(crtc->mode.clock,
4345					       wm_info, fifo_size,
4346					       crtc->fb->bits_per_pixel / 8,
4347					       latency_ns);
4348		enabled = crtc;
4349	} else
4350		planea_wm = fifo_size - wm_info->guard_size;
4351
4352	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
4353	crtc = intel_get_crtc_for_plane(dev, 1);
4354	if (crtc->enabled && crtc->fb) {
4355		planeb_wm = intel_calculate_wm(crtc->mode.clock,
4356					       wm_info, fifo_size,
4357					       crtc->fb->bits_per_pixel / 8,
4358					       latency_ns);
4359		if (enabled == NULL)
4360			enabled = crtc;
4361		else
4362			enabled = NULL;
4363	} else
4364		planeb_wm = fifo_size - wm_info->guard_size;
4365
4366	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
4367
4368	/*
4369	 * Overlay gets an aggressive default since video jitter is bad.
4370	 */
4371	cwm = 2;
4372
4373	/* Play safe and disable self-refresh before adjusting watermarks. */
4374	if (IS_I945G(dev) || IS_I945GM(dev))
4375		I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
4376	else if (IS_I915GM(dev))
4377		I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
4378
4379	/* Calc sr entries for one plane configs */
4380	if (HAS_FW_BLC(dev) && enabled) {
4381		/* self-refresh has much higher latency */
4382		static const int sr_latency_ns = 6000;
4383		int clock = enabled->mode.clock;
4384		int htotal = enabled->mode.htotal;
4385		int hdisplay = enabled->mode.hdisplay;
4386		int pixel_size = enabled->fb->bits_per_pixel / 8;
4387		unsigned long line_time_us;
4388		int entries;
4389
4390		line_time_us = (htotal * 1000) / clock;
4391
4392		/* Use ns/us then divide to preserve precision */
4393		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
4394			pixel_size * hdisplay;
4395		entries = howmany(entries, wm_info->cacheline_size);
4396		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
4397		srwm = wm_info->fifo_size - entries;
4398		if (srwm < 0)
4399			srwm = 1;
4400
4401		if (IS_I945G(dev) || IS_I945GM(dev))
4402			I915_WRITE(FW_BLC_SELF,
4403				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
4404		else if (IS_I915GM(dev))
4405			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
4406	}
4407
4408	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4409		      planea_wm, planeb_wm, cwm, srwm);
4410
4411	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
4412	fwater_hi = (cwm & 0x1f);
4413
4414	/* Set request length to 8 cachelines per fetch */
4415	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
4416	fwater_hi = fwater_hi | (1 << 8);
4417
4418	I915_WRITE(FW_BLC, fwater_lo);
4419	I915_WRITE(FW_BLC2, fwater_hi);
4420
4421	if (HAS_FW_BLC(dev)) {
4422		if (enabled) {
4423			if (IS_I945G(dev) || IS_I945GM(dev))
4424				I915_WRITE(FW_BLC_SELF,
4425					   FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4426			else if (IS_I915GM(dev))
4427				I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
4428			DRM_DEBUG_KMS("memory self refresh enabled\n");
4429		} else
4430			DRM_DEBUG_KMS("memory self refresh disabled\n");
4431	}
4432}
4433
4434static void i830_update_wm(struct drm_device *dev)
4435{
4436	struct drm_i915_private *dev_priv = dev->dev_private;
4437	struct drm_crtc *crtc;
4438	uint32_t fwater_lo;
4439	int planea_wm;
4440
4441	crtc = single_enabled_crtc(dev);
4442	if (crtc == NULL)
4443		return;
4444
4445	planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
4446				       dev_priv->display.get_fifo_size(dev, 0),
4447				       crtc->fb->bits_per_pixel / 8,
4448				       latency_ns);
4449	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
4450	fwater_lo |= (3<<8) | planea_wm;
4451
4452	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
4453
4454	I915_WRITE(FW_BLC, fwater_lo);
4455}
4456
4457#define ILK_LP0_PLANE_LATENCY		700
4458#define ILK_LP0_CURSOR_LATENCY		1300
4459
4460/*
4461 * Check the wm result.
4462 *
4463 * If any calculated watermark values is larger than the maximum value that
4464 * can be programmed into the associated watermark register, that watermark
4465 * must be disabled.
4466 */
4467static bool ironlake_check_srwm(struct drm_device *dev, int level,
4468				int fbc_wm, int display_wm, int cursor_wm,
4469				const struct intel_watermark_params *display,
4470				const struct intel_watermark_params *cursor)
4471{
4472	struct drm_i915_private *dev_priv = dev->dev_private;
4473
4474	DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4475		      " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
4476
4477	if (fbc_wm > SNB_FBC_MAX_SRWM) {
4478		DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4479			      fbc_wm, SNB_FBC_MAX_SRWM, level);
4480
4481		/* fbc has it's own way to disable FBC WM */
4482		I915_WRITE(DISP_ARB_CTL,
4483			   I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
4484		return false;
4485	}
4486
4487	if (display_wm > display->max_wm) {
4488		DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4489			      display_wm, SNB_DISPLAY_MAX_SRWM, level);
4490		return false;
4491	}
4492
4493	if (cursor_wm > cursor->max_wm) {
4494		DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4495			      cursor_wm, SNB_CURSOR_MAX_SRWM, level);
4496		return false;
4497	}
4498
4499	if (!(fbc_wm || display_wm || cursor_wm)) {
4500		DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
4501		return false;
4502	}
4503
4504	return true;
4505}
4506
4507/*
4508 * Compute watermark values of WM[1-3],
4509 */
4510static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
4511				  int latency_ns,
4512				  const struct intel_watermark_params *display,
4513				  const struct intel_watermark_params *cursor,
4514				  int *fbc_wm, int *display_wm, int *cursor_wm)
4515{
4516	struct drm_crtc *crtc;
4517	unsigned long line_time_us;
4518	int hdisplay, htotal, pixel_size, clock;
4519	int line_count, line_size;
4520	int small, large;
4521	int entries;
4522
4523	if (!latency_ns) {
4524		*fbc_wm = *display_wm = *cursor_wm = 0;
4525		return false;
4526	}
4527
4528	crtc = intel_get_crtc_for_plane(dev, plane);
4529	hdisplay = crtc->mode.hdisplay;
4530	htotal = crtc->mode.htotal;
4531	clock = crtc->mode.clock;
4532	pixel_size = crtc->fb->bits_per_pixel / 8;
4533
4534	line_time_us = (htotal * 1000) / clock;
4535	line_count = (latency_ns / line_time_us + 1000) / 1000;
4536	line_size = hdisplay * pixel_size;
4537
4538	/* Use the minimum of the small and large buffer method for primary */
4539	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4540	large = line_count * line_size;
4541
4542	entries = howmany(min(small, large), display->cacheline_size);
4543	*display_wm = entries + display->guard_size;
4544
4545	/*
4546	 * Spec says:
4547	 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4548	 */
4549	*fbc_wm = howmany(*display_wm * 64, line_size) + 2;
4550
4551	/* calculate the self-refresh watermark for display cursor */
4552	entries = line_count * pixel_size * 64;
4553	entries = howmany(entries, cursor->cacheline_size);
4554	*cursor_wm = entries + cursor->guard_size;
4555
4556	return ironlake_check_srwm(dev, level,
4557				   *fbc_wm, *display_wm, *cursor_wm,
4558				   display, cursor);
4559}
4560
4561static void ironlake_update_wm(struct drm_device *dev)
4562{
4563	struct drm_i915_private *dev_priv = dev->dev_private;
4564	int fbc_wm, plane_wm, cursor_wm;
4565	unsigned int enabled;
4566
4567	enabled = 0;
4568	if (g4x_compute_wm0(dev, 0,
4569			    &ironlake_display_wm_info,
4570			    ILK_LP0_PLANE_LATENCY,
4571			    &ironlake_cursor_wm_info,
4572			    ILK_LP0_CURSOR_LATENCY,
4573			    &plane_wm, &cursor_wm)) {
4574		I915_WRITE(WM0_PIPEA_ILK,
4575			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4576		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4577			      " plane %d, " "cursor: %d\n",
4578			      plane_wm, cursor_wm);
4579		enabled |= 1;
4580	}
4581
4582	if (g4x_compute_wm0(dev, 1,
4583			    &ironlake_display_wm_info,
4584			    ILK_LP0_PLANE_LATENCY,
4585			    &ironlake_cursor_wm_info,
4586			    ILK_LP0_CURSOR_LATENCY,
4587			    &plane_wm, &cursor_wm)) {
4588		I915_WRITE(WM0_PIPEB_ILK,
4589			   (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4590		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4591			      " plane %d, cursor: %d\n",
4592			      plane_wm, cursor_wm);
4593		enabled |= 2;
4594	}
4595
4596	/*
4597	 * Calculate and update the self-refresh watermark only when one
4598	 * display plane is used.
4599	 */
4600	I915_WRITE(WM3_LP_ILK, 0);
4601	I915_WRITE(WM2_LP_ILK, 0);
4602	I915_WRITE(WM1_LP_ILK, 0);
4603
4604	if (!single_plane_enabled(enabled))
4605		return;
4606	enabled = ffs(enabled) - 1;
4607
4608	/* WM1 */
4609	if (!ironlake_compute_srwm(dev, 1, enabled,
4610				   ILK_READ_WM1_LATENCY() * 500,
4611				   &ironlake_display_srwm_info,
4612				   &ironlake_cursor_srwm_info,
4613				   &fbc_wm, &plane_wm, &cursor_wm))
4614		return;
4615
4616	I915_WRITE(WM1_LP_ILK,
4617		   WM1_LP_SR_EN |
4618		   (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4619		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4620		   (plane_wm << WM1_LP_SR_SHIFT) |
4621		   cursor_wm);
4622
4623	/* WM2 */
4624	if (!ironlake_compute_srwm(dev, 2, enabled,
4625				   ILK_READ_WM2_LATENCY() * 500,
4626				   &ironlake_display_srwm_info,
4627				   &ironlake_cursor_srwm_info,
4628				   &fbc_wm, &plane_wm, &cursor_wm))
4629		return;
4630
4631	I915_WRITE(WM2_LP_ILK,
4632		   WM2_LP_EN |
4633		   (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4634		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4635		   (plane_wm << WM1_LP_SR_SHIFT) |
4636		   cursor_wm);
4637
4638	/*
4639	 * WM3 is unsupported on ILK, probably because we don't have latency
4640	 * data for that power state
4641	 */
4642}
4643
4644void sandybridge_update_wm(struct drm_device *dev)
4645{
4646	struct drm_i915_private *dev_priv = dev->dev_private;
4647	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
4648	u32 val;
4649	int fbc_wm, plane_wm, cursor_wm;
4650	unsigned int enabled;
4651
4652	enabled = 0;
4653	if (g4x_compute_wm0(dev, 0,
4654			    &sandybridge_display_wm_info, latency,
4655			    &sandybridge_cursor_wm_info, latency,
4656			    &plane_wm, &cursor_wm)) {
4657		val = I915_READ(WM0_PIPEA_ILK);
4658		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4659		I915_WRITE(WM0_PIPEA_ILK, val |
4660			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4661		DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4662			      " plane %d, " "cursor: %d\n",
4663			      plane_wm, cursor_wm);
4664		enabled |= 1;
4665	}
4666
4667	if (g4x_compute_wm0(dev, 1,
4668			    &sandybridge_display_wm_info, latency,
4669			    &sandybridge_cursor_wm_info, latency,
4670			    &plane_wm, &cursor_wm)) {
4671		val = I915_READ(WM0_PIPEB_ILK);
4672		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4673		I915_WRITE(WM0_PIPEB_ILK, val |
4674			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4675		DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4676			      " plane %d, cursor: %d\n",
4677			      plane_wm, cursor_wm);
4678		enabled |= 2;
4679	}
4680
4681	/* IVB has 3 pipes */
4682	if (IS_IVYBRIDGE(dev) &&
4683	    g4x_compute_wm0(dev, 2,
4684			    &sandybridge_display_wm_info, latency,
4685			    &sandybridge_cursor_wm_info, latency,
4686			    &plane_wm, &cursor_wm)) {
4687		val = I915_READ(WM0_PIPEC_IVB);
4688		val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
4689		I915_WRITE(WM0_PIPEC_IVB, val |
4690			   ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
4691		DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
4692			      " plane %d, cursor: %d\n",
4693			      plane_wm, cursor_wm);
4694		enabled |= 3;
4695	}
4696
4697	/*
4698	 * Calculate and update the self-refresh watermark only when one
4699	 * display plane is used.
4700	 *
4701	 * SNB support 3 levels of watermark.
4702	 *
4703	 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4704	 * and disabled in the descending order
4705	 *
4706	 */
4707	I915_WRITE(WM3_LP_ILK, 0);
4708	I915_WRITE(WM2_LP_ILK, 0);
4709	I915_WRITE(WM1_LP_ILK, 0);
4710
4711	if (!single_plane_enabled(enabled) ||
4712	    dev_priv->sprite_scaling_enabled)
4713		return;
4714	enabled = ffs(enabled) - 1;
4715
4716	/* WM1 */
4717	if (!ironlake_compute_srwm(dev, 1, enabled,
4718				   SNB_READ_WM1_LATENCY() * 500,
4719				   &sandybridge_display_srwm_info,
4720				   &sandybridge_cursor_srwm_info,
4721				   &fbc_wm, &plane_wm, &cursor_wm))
4722		return;
4723
4724	I915_WRITE(WM1_LP_ILK,
4725		   WM1_LP_SR_EN |
4726		   (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4727		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4728		   (plane_wm << WM1_LP_SR_SHIFT) |
4729		   cursor_wm);
4730
4731	/* WM2 */
4732	if (!ironlake_compute_srwm(dev, 2, enabled,
4733				   SNB_READ_WM2_LATENCY() * 500,
4734				   &sandybridge_display_srwm_info,
4735				   &sandybridge_cursor_srwm_info,
4736				   &fbc_wm, &plane_wm, &cursor_wm))
4737		return;
4738
4739	I915_WRITE(WM2_LP_ILK,
4740		   WM2_LP_EN |
4741		   (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4742		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4743		   (plane_wm << WM1_LP_SR_SHIFT) |
4744		   cursor_wm);
4745
4746	/* WM3 */
4747	if (!ironlake_compute_srwm(dev, 3, enabled,
4748				   SNB_READ_WM3_LATENCY() * 500,
4749				   &sandybridge_display_srwm_info,
4750				   &sandybridge_cursor_srwm_info,
4751				   &fbc_wm, &plane_wm, &cursor_wm))
4752		return;
4753
4754	I915_WRITE(WM3_LP_ILK,
4755		   WM3_LP_EN |
4756		   (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4757		   (fbc_wm << WM1_LP_FBC_SHIFT) |
4758		   (plane_wm << WM1_LP_SR_SHIFT) |
4759		   cursor_wm);
4760}
4761
4762static bool
4763sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
4764			      uint32_t sprite_width, int pixel_size,
4765			      const struct intel_watermark_params *display,
4766			      int display_latency_ns, int *sprite_wm)
4767{
4768	struct drm_crtc *crtc;
4769	int clock;
4770	int entries, tlb_miss;
4771
4772	crtc = intel_get_crtc_for_plane(dev, plane);
4773	if (crtc->fb == NULL || !crtc->enabled) {
4774		*sprite_wm = display->guard_size;
4775		return false;
4776	}
4777
4778	clock = crtc->mode.clock;
4779
4780	/* Use the small buffer method to calculate the sprite watermark */
4781	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
4782	tlb_miss = display->fifo_size*display->cacheline_size -
4783		sprite_width * 8;
4784	if (tlb_miss > 0)
4785		entries += tlb_miss;
4786	entries = howmany(entries, display->cacheline_size);
4787	*sprite_wm = entries + display->guard_size;
4788	if (*sprite_wm > (int)display->max_wm)
4789		*sprite_wm = display->max_wm;
4790
4791	return true;
4792}
4793
4794static bool
4795sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
4796				uint32_t sprite_width, int pixel_size,
4797				const struct intel_watermark_params *display,
4798				int latency_ns, int *sprite_wm)
4799{
4800	struct drm_crtc *crtc;
4801	unsigned long line_time_us;
4802	int clock;
4803	int line_count, line_size;
4804	int small, large;
4805	int entries;
4806
4807	if (!latency_ns) {
4808		*sprite_wm = 0;
4809		return false;
4810	}
4811
4812	crtc = intel_get_crtc_for_plane(dev, plane);
4813	clock = crtc->mode.clock;
4814	if (!clock) {
4815		*sprite_wm = 0;
4816		return false;
4817	}
4818
4819	line_time_us = (sprite_width * 1000) / clock;
4820	if (!line_time_us) {
4821		*sprite_wm = 0;
4822		return false;
4823	}
4824
4825	line_count = (latency_ns / line_time_us + 1000) / 1000;
4826	line_size = sprite_width * pixel_size;
4827
4828	/* Use the minimum of the small and large buffer method for primary */
4829	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
4830	large = line_count * line_size;
4831
4832	entries = howmany(min(small, large), display->cacheline_size);
4833	*sprite_wm = entries + display->guard_size;
4834
4835	return *sprite_wm > 0x3ff ? false : true;
4836}
4837
4838static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
4839					 uint32_t sprite_width, int pixel_size)
4840{
4841	struct drm_i915_private *dev_priv = dev->dev_private;
4842	int latency = SNB_READ_WM0_LATENCY() * 100;	/* In unit 0.1us */
4843	u32 val;
4844	int sprite_wm, reg;
4845	int ret;
4846
4847	switch (pipe) {
4848	case 0:
4849		reg = WM0_PIPEA_ILK;
4850		break;
4851	case 1:
4852		reg = WM0_PIPEB_ILK;
4853		break;
4854	case 2:
4855		reg = WM0_PIPEC_IVB;
4856		break;
4857	default:
4858		return; /* bad pipe */
4859	}
4860
4861	ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
4862					    &sandybridge_display_wm_info,
4863					    latency, &sprite_wm);
4864	if (!ret) {
4865		DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
4866			      pipe);
4867		return;
4868	}
4869
4870	val = I915_READ(reg);
4871	val &= ~WM0_PIPE_SPRITE_MASK;
4872	I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
4873	DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
4874
4875
4876	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4877					      pixel_size,
4878					      &sandybridge_display_srwm_info,
4879					      SNB_READ_WM1_LATENCY() * 500,
4880					      &sprite_wm);
4881	if (!ret) {
4882		DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
4883			      pipe);
4884		return;
4885	}
4886	I915_WRITE(WM1S_LP_ILK, sprite_wm);
4887
4888	/* Only IVB has two more LP watermarks for sprite */
4889	if (!IS_IVYBRIDGE(dev))
4890		return;
4891
4892	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4893					      pixel_size,
4894					      &sandybridge_display_srwm_info,
4895					      SNB_READ_WM2_LATENCY() * 500,
4896					      &sprite_wm);
4897	if (!ret) {
4898		DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
4899			      pipe);
4900		return;
4901	}
4902	I915_WRITE(WM2S_LP_IVB, sprite_wm);
4903
4904	ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
4905					      pixel_size,
4906					      &sandybridge_display_srwm_info,
4907					      SNB_READ_WM3_LATENCY() * 500,
4908					      &sprite_wm);
4909	if (!ret) {
4910		DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
4911			      pipe);
4912		return;
4913	}
4914	I915_WRITE(WM3S_LP_IVB, sprite_wm);
4915}
4916
4917/**
4918 * intel_update_watermarks - update FIFO watermark values based on current modes
4919 *
4920 * Calculate watermark values for the various WM regs based on current mode
4921 * and plane configuration.
4922 *
4923 * There are several cases to deal with here:
4924 *   - normal (i.e. non-self-refresh)
4925 *   - self-refresh (SR) mode
4926 *   - lines are large relative to FIFO size (buffer can hold up to 2)
4927 *   - lines are small relative to FIFO size (buffer can hold more than 2
4928 *     lines), so need to account for TLB latency
4929 *
4930 *   The normal calculation is:
4931 *     watermark = dotclock * bytes per pixel * latency
4932 *   where latency is platform & configuration dependent (we assume pessimal
4933 *   values here).
4934 *
4935 *   The SR calculation is:
4936 *     watermark = (trunc(latency/line time)+1) * surface width *
4937 *       bytes per pixel
4938 *   where
4939 *     line time = htotal / dotclock
4940 *     surface width = hdisplay for normal plane and 64 for cursor
4941 *   and latency is assumed to be high, as above.
4942 *
4943 * The final value programmed to the register should always be rounded up,
4944 * and include an extra 2 entries to account for clock crossings.
4945 *
4946 * We don't use the sprite, so we can ignore that.  And on Crestline we have
4947 * to set the non-SR watermarks to 8.
4948 */
4949static void intel_update_watermarks(struct drm_device *dev)
4950{
4951	struct drm_i915_private *dev_priv = dev->dev_private;
4952
4953	if (dev_priv->display.update_wm)
4954		dev_priv->display.update_wm(dev);
4955}
4956
4957void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
4958				    uint32_t sprite_width, int pixel_size)
4959{
4960	struct drm_i915_private *dev_priv = dev->dev_private;
4961
4962	if (dev_priv->display.update_sprite_wm)
4963		dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
4964						   pixel_size);
4965}
4966
4967static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4968{
4969	if (i915_panel_use_ssc >= 0)
4970		return i915_panel_use_ssc != 0;
4971	return dev_priv->lvds_use_ssc
4972		&& !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
4973}
4974
4975/**
4976 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4977 * @crtc: CRTC structure
4978 * @mode: requested mode
4979 *
4980 * A pipe may be connected to one or more outputs.  Based on the depth of the
4981 * attached framebuffer, choose a good color depth to use on the pipe.
4982 *
4983 * If possible, match the pipe depth to the fb depth.  In some cases, this
4984 * isn't ideal, because the connected output supports a lesser or restricted
4985 * set of depths.  Resolve that here:
4986 *    LVDS typically supports only 6bpc, so clamp down in that case
4987 *    HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4988 *    Displays may support a restricted set as well, check EDID and clamp as
4989 *      appropriate.
4990 *    DP may want to dither down to 6bpc to fit larger modes
4991 *
4992 * RETURNS:
4993 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4994 * true if they don't match).
4995 */
4996static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
4997					 unsigned int *pipe_bpp,
4998					 struct drm_display_mode *mode)
4999{
5000	struct drm_device *dev = crtc->dev;
5001	struct drm_i915_private *dev_priv = dev->dev_private;
5002	struct drm_encoder *encoder;
5003	struct drm_connector *connector;
5004	unsigned int display_bpc = UINT_MAX, bpc;
5005
5006	/* Walk the encoders & connectors on this crtc, get min bpc */
5007	list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
5008		struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5009
5010		if (encoder->crtc != crtc)
5011			continue;
5012
5013		if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
5014			unsigned int lvds_bpc;
5015
5016			if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
5017			    LVDS_A3_POWER_UP)
5018				lvds_bpc = 8;
5019			else
5020				lvds_bpc = 6;
5021
5022			if (lvds_bpc < display_bpc) {
5023				DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
5024				display_bpc = lvds_bpc;
5025			}
5026			continue;
5027		}
5028
5029		if (intel_encoder->type == INTEL_OUTPUT_EDP) {
5030			/* Use VBT settings if we have an eDP panel */
5031			unsigned int edp_bpc = dev_priv->edp.bpp / 3;
5032
5033			if (edp_bpc < display_bpc) {
5034				DRM_DEBUG_KMS("clamping display bpc (was %d) to eDP (%d)\n", display_bpc, edp_bpc);
5035				display_bpc = edp_bpc;
5036			}
5037			continue;
5038		}
5039
5040		/* Not one of the known troublemakers, check the EDID */
5041		list_for_each_entry(connector, &dev->mode_config.connector_list,
5042				    head) {
5043			if (connector->encoder != encoder)
5044				continue;
5045
5046			/* Don't use an invalid EDID bpc value */
5047			if (connector->display_info.bpc &&
5048			    connector->display_info.bpc < display_bpc) {
5049				DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
5050				display_bpc = connector->display_info.bpc;
5051			}
5052		}
5053
5054		/*
5055		 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
5056		 * through, clamp it down.  (Note: >12bpc will be caught below.)
5057		 */
5058		if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
5059			if (display_bpc > 8 && display_bpc < 12) {
5060				DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
5061				display_bpc = 12;
5062			} else {
5063				DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
5064				display_bpc = 8;
5065			}
5066		}
5067	}
5068
5069	if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5070		DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
5071		display_bpc = 6;
5072	}
5073
5074	/*
5075	 * We could just drive the pipe at the highest bpc all the time and
5076	 * enable dithering as needed, but that costs bandwidth.  So choose
5077	 * the minimum value that expresses the full color range of the fb but
5078	 * also stays within the max display bpc discovered above.
5079	 */
5080
5081	switch (crtc->fb->depth) {
5082	case 8:
5083		bpc = 8; /* since we go through a colormap */
5084		break;
5085	case 15:
5086	case 16:
5087		bpc = 6; /* min is 18bpp */
5088		break;
5089	case 24:
5090		bpc = 8;
5091		break;
5092	case 30:
5093		bpc = 10;
5094		break;
5095	case 48:
5096		bpc = 12;
5097		break;
5098	default:
5099		DRM_DEBUG("unsupported depth, assuming 24 bits\n");
5100		bpc = min((unsigned int)8, display_bpc);
5101		break;
5102	}
5103
5104	display_bpc = min(display_bpc, bpc);
5105
5106	DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
5107			 bpc, display_bpc);
5108
5109	*pipe_bpp = display_bpc * 3;
5110
5111	return display_bpc != bpc;
5112}
5113
5114static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
5115{
5116	struct drm_device *dev = crtc->dev;
5117	struct drm_i915_private *dev_priv = dev->dev_private;
5118	int refclk;
5119
5120	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5121	    intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5122		refclk = dev_priv->lvds_ssc_freq * 1000;
5123		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5124			      refclk / 1000);
5125	} else if (!IS_GEN2(dev)) {
5126		refclk = 96000;
5127	} else {
5128		refclk = 48000;
5129	}
5130
5131	return refclk;
5132}
5133
5134static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
5135				      intel_clock_t *clock)
5136{
5137	/* SDVO TV has fixed PLL values depend on its clock range,
5138	   this mirrors vbios setting. */
5139	if (adjusted_mode->clock >= 100000
5140	    && adjusted_mode->clock < 140500) {
5141		clock->p1 = 2;
5142		clock->p2 = 10;
5143		clock->n = 3;
5144		clock->m1 = 16;
5145		clock->m2 = 8;
5146	} else if (adjusted_mode->clock >= 140500
5147		   && adjusted_mode->clock <= 200000) {
5148		clock->p1 = 1;
5149		clock->p2 = 10;
5150		clock->n = 6;
5151		clock->m1 = 12;
5152		clock->m2 = 8;
5153	}
5154}
5155
5156static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
5157				     intel_clock_t *clock,
5158				     intel_clock_t *reduced_clock)
5159{
5160	struct drm_device *dev = crtc->dev;
5161	struct drm_i915_private *dev_priv = dev->dev_private;
5162	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5163	int pipe = intel_crtc->pipe;
5164	u32 fp, fp2 = 0;
5165
5166	if (IS_PINEVIEW(dev)) {
5167		fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
5168		if (reduced_clock)
5169			fp2 = (1 << reduced_clock->n) << 16 |
5170				reduced_clock->m1 << 8 | reduced_clock->m2;
5171	} else {
5172		fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
5173		if (reduced_clock)
5174			fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
5175				reduced_clock->m2;
5176	}
5177
5178	I915_WRITE(FP0(pipe), fp);
5179
5180	intel_crtc->lowfreq_avail = false;
5181	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
5182	    reduced_clock && i915_powersave) {
5183		I915_WRITE(FP1(pipe), fp2);
5184		intel_crtc->lowfreq_avail = true;
5185	} else {
5186		I915_WRITE(FP1(pipe), fp);
5187	}
5188}
5189
5190static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
5191			      struct drm_display_mode *mode,
5192			      struct drm_display_mode *adjusted_mode,
5193			      int x, int y,
5194			      struct drm_framebuffer *old_fb)
5195{
5196	struct drm_device *dev = crtc->dev;
5197	struct drm_i915_private *dev_priv = dev->dev_private;
5198	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5199	int pipe = intel_crtc->pipe;
5200	int plane = intel_crtc->plane;
5201	int refclk, num_connectors = 0;
5202	intel_clock_t clock, reduced_clock;
5203	u32 dpll, dspcntr, pipeconf, vsyncshift;
5204	bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
5205	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5206	struct drm_mode_config *mode_config = &dev->mode_config;
5207	struct intel_encoder *encoder;
5208	const intel_limit_t *limit;
5209	int ret;
5210	u32 temp;
5211	u32 lvds_sync = 0;
5212
5213	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5214		if (encoder->base.crtc != crtc)
5215			continue;
5216
5217		switch (encoder->type) {
5218		case INTEL_OUTPUT_LVDS:
5219			is_lvds = true;
5220			break;
5221		case INTEL_OUTPUT_SDVO:
5222		case INTEL_OUTPUT_HDMI:
5223			is_sdvo = true;
5224			if (encoder->needs_tv_clock)
5225				is_tv = true;
5226			break;
5227		case INTEL_OUTPUT_DVO:
5228			is_dvo = true;
5229			break;
5230		case INTEL_OUTPUT_TVOUT:
5231			is_tv = true;
5232			break;
5233		case INTEL_OUTPUT_ANALOG:
5234			is_crt = true;
5235			break;
5236		case INTEL_OUTPUT_DISPLAYPORT:
5237			is_dp = true;
5238			break;
5239		}
5240
5241		num_connectors++;
5242	}
5243
5244	refclk = i9xx_get_refclk(crtc, num_connectors);
5245
5246	/*
5247	 * Returns a set of divisors for the desired target clock with the given
5248	 * refclk, or false.  The returned values represent the clock equation:
5249	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5250	 */
5251	limit = intel_limit(crtc, refclk);
5252	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5253			     &clock);
5254	if (!ok) {
5255		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5256		return -EINVAL;
5257	}
5258
5259	/* Ensure that the cursor is valid for the new mode before changing... */
5260	intel_crtc_update_cursor(crtc, true);
5261
5262	if (is_lvds && dev_priv->lvds_downclock_avail) {
5263		/*
5264		 * Ensure we match the reduced clock's P to the target clock.
5265		 * If the clocks don't match, we can't switch the display clock
5266		 * by using the FP0/FP1. In such case we will disable the LVDS
5267		 * downclock feature.
5268		*/
5269		has_reduced_clock = limit->find_pll(limit, crtc,
5270						    dev_priv->lvds_downclock,
5271						    refclk,
5272						    &clock,
5273						    &reduced_clock);
5274	}
5275
5276	if (is_sdvo && is_tv)
5277		i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
5278
5279	i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
5280				 &reduced_clock : NULL);
5281
5282	dpll = DPLL_VGA_MODE_DIS;
5283
5284	if (!IS_GEN2(dev)) {
5285		if (is_lvds)
5286			dpll |= DPLLB_MODE_LVDS;
5287		else
5288			dpll |= DPLLB_MODE_DAC_SERIAL;
5289		if (is_sdvo) {
5290			int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5291			if (pixel_multiplier > 1) {
5292				if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
5293					dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
5294			}
5295			dpll |= DPLL_DVO_HIGH_SPEED;
5296		}
5297		if (is_dp)
5298			dpll |= DPLL_DVO_HIGH_SPEED;
5299
5300		/* compute bitmask from p1 value */
5301		if (IS_PINEVIEW(dev))
5302			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
5303		else {
5304			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5305			if (IS_G4X(dev) && has_reduced_clock)
5306				dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5307		}
5308		switch (clock.p2) {
5309		case 5:
5310			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5311			break;
5312		case 7:
5313			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5314			break;
5315		case 10:
5316			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5317			break;
5318		case 14:
5319			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5320			break;
5321		}
5322		if (INTEL_INFO(dev)->gen >= 4)
5323			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
5324	} else {
5325		if (is_lvds) {
5326			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5327		} else {
5328			if (clock.p1 == 2)
5329				dpll |= PLL_P1_DIVIDE_BY_TWO;
5330			else
5331				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5332			if (clock.p2 == 4)
5333				dpll |= PLL_P2_DIVIDE_BY_4;
5334		}
5335	}
5336
5337	if (is_sdvo && is_tv)
5338		dpll |= PLL_REF_INPUT_TVCLKINBC;
5339	else if (is_tv)
5340		/* XXX: just matching BIOS for now */
5341		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
5342		dpll |= 3;
5343	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5344		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5345	else
5346		dpll |= PLL_REF_INPUT_DREFCLK;
5347
5348	/* setup pipeconf */
5349	pipeconf = I915_READ(PIPECONF(pipe));
5350
5351	/* Set up the display plane register */
5352	dspcntr = DISPPLANE_GAMMA_ENABLE;
5353
5354	if (pipe == 0)
5355		dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
5356	else
5357		dspcntr |= DISPPLANE_SEL_PIPE_B;
5358
5359	if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
5360		/* Enable pixel doubling when the dot clock is > 90% of the (display)
5361		 * core speed.
5362		 *
5363		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
5364		 * pipe == 0 check?
5365		 */
5366		if (mode->clock >
5367		    dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
5368			pipeconf |= PIPECONF_DOUBLE_WIDE;
5369		else
5370			pipeconf &= ~PIPECONF_DOUBLE_WIDE;
5371	}
5372
5373	/* default to 8bpc */
5374	pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
5375	if (is_dp) {
5376		if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
5377			pipeconf |= PIPECONF_BPP_6 |
5378				    PIPECONF_DITHER_EN |
5379				    PIPECONF_DITHER_TYPE_SP;
5380		}
5381	}
5382
5383	dpll |= DPLL_VCO_ENABLE;
5384
5385	DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
5386	drm_mode_debug_printmodeline(mode);
5387
5388	I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5389
5390	POSTING_READ(DPLL(pipe));
5391	DELAY(150);
5392
5393	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
5394	 * This is an exception to the general rule that mode_set doesn't turn
5395	 * things on.
5396	 */
5397	if (is_lvds) {
5398		temp = I915_READ(LVDS);
5399		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5400		if (pipe == 1) {
5401			temp |= LVDS_PIPEB_SELECT;
5402		} else {
5403			temp &= ~LVDS_PIPEB_SELECT;
5404		}
5405		/* set the corresponsding LVDS_BORDER bit */
5406		temp |= dev_priv->lvds_border_bits;
5407		/* Set the B0-B3 data pairs corresponding to whether we're going to
5408		 * set the DPLLs for dual-channel mode or not.
5409		 */
5410		if (clock.p2 == 7)
5411			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5412		else
5413			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5414
5415		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5416		 * appropriately here, but we need to look more thoroughly into how
5417		 * panels behave in the two modes.
5418		 */
5419		/* set the dithering flag on LVDS as needed */
5420		if (INTEL_INFO(dev)->gen >= 4) {
5421			if (dev_priv->lvds_dither)
5422				temp |= LVDS_ENABLE_DITHER;
5423			else
5424				temp &= ~LVDS_ENABLE_DITHER;
5425		}
5426		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5427			lvds_sync |= LVDS_HSYNC_POLARITY;
5428		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5429			lvds_sync |= LVDS_VSYNC_POLARITY;
5430		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5431		    != lvds_sync) {
5432			char flags[2] = "-+";
5433			DRM_INFO("Changing LVDS panel from "
5434				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5435				 flags[!(temp & LVDS_HSYNC_POLARITY)],
5436				 flags[!(temp & LVDS_VSYNC_POLARITY)],
5437				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5438				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5439			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5440			temp |= lvds_sync;
5441		}
5442		I915_WRITE(LVDS, temp);
5443	}
5444
5445	if (is_dp) {
5446		intel_dp_set_m_n(crtc, mode, adjusted_mode);
5447	}
5448
5449	I915_WRITE(DPLL(pipe), dpll);
5450
5451	/* Wait for the clocks to stabilize. */
5452	POSTING_READ(DPLL(pipe));
5453	DELAY(150);
5454
5455	if (INTEL_INFO(dev)->gen >= 4) {
5456		temp = 0;
5457		if (is_sdvo) {
5458			temp = intel_mode_get_pixel_multiplier(adjusted_mode);
5459			if (temp > 1)
5460				temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
5461			else
5462				temp = 0;
5463		}
5464		I915_WRITE(DPLL_MD(pipe), temp);
5465	} else {
5466		/* The pixel multiplier can only be updated once the
5467		 * DPLL is enabled and the clocks are stable.
5468		 *
5469		 * So write it again.
5470		 */
5471		I915_WRITE(DPLL(pipe), dpll);
5472	}
5473
5474	if (HAS_PIPE_CXSR(dev)) {
5475		if (intel_crtc->lowfreq_avail) {
5476			DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5477			pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5478		} else {
5479			DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5480			pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5481		}
5482	}
5483
5484	pipeconf &= ~PIPECONF_INTERLACE_MASK;
5485	if (!IS_GEN2(dev) &&
5486	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5487		pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5488		/* the chip adds 2 halflines automatically */
5489		adjusted_mode->crtc_vtotal -= 1;
5490		adjusted_mode->crtc_vblank_end -= 1;
5491		vsyncshift = adjusted_mode->crtc_hsync_start
5492			     - adjusted_mode->crtc_htotal/2;
5493	} else {
5494		pipeconf |= PIPECONF_PROGRESSIVE;
5495		vsyncshift = 0;
5496	}
5497
5498	if (!IS_GEN3(dev))
5499		I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
5500
5501	I915_WRITE(HTOTAL(pipe),
5502		   (adjusted_mode->crtc_hdisplay - 1) |
5503		   ((adjusted_mode->crtc_htotal - 1) << 16));
5504	I915_WRITE(HBLANK(pipe),
5505		   (adjusted_mode->crtc_hblank_start - 1) |
5506		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
5507	I915_WRITE(HSYNC(pipe),
5508		   (adjusted_mode->crtc_hsync_start - 1) |
5509		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
5510
5511	I915_WRITE(VTOTAL(pipe),
5512		   (adjusted_mode->crtc_vdisplay - 1) |
5513		   ((adjusted_mode->crtc_vtotal - 1) << 16));
5514	I915_WRITE(VBLANK(pipe),
5515		   (adjusted_mode->crtc_vblank_start - 1) |
5516		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
5517	I915_WRITE(VSYNC(pipe),
5518		   (adjusted_mode->crtc_vsync_start - 1) |
5519		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
5520
5521	/* pipesrc and dspsize control the size that is scaled from,
5522	 * which should always be the user's requested size.
5523	 */
5524	I915_WRITE(DSPSIZE(plane),
5525		   ((mode->vdisplay - 1) << 16) |
5526		   (mode->hdisplay - 1));
5527	I915_WRITE(DSPPOS(plane), 0);
5528	I915_WRITE(PIPESRC(pipe),
5529		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5530
5531	I915_WRITE(PIPECONF(pipe), pipeconf);
5532	POSTING_READ(PIPECONF(pipe));
5533	intel_enable_pipe(dev_priv, pipe, false);
5534
5535	intel_wait_for_vblank(dev, pipe);
5536
5537	I915_WRITE(DSPCNTR(plane), dspcntr);
5538	POSTING_READ(DSPCNTR(plane));
5539	intel_enable_plane(dev_priv, plane, pipe);
5540
5541	ret = intel_pipe_set_base(crtc, x, y, old_fb);
5542
5543	intel_update_watermarks(dev);
5544
5545	return ret;
5546}
5547
5548/*
5549 * Initialize reference clocks when the driver loads
5550 */
5551void ironlake_init_pch_refclk(struct drm_device *dev)
5552{
5553	struct drm_i915_private *dev_priv = dev->dev_private;
5554	struct drm_mode_config *mode_config = &dev->mode_config;
5555	struct intel_encoder *encoder;
5556	u32 temp;
5557	bool has_lvds = false;
5558	bool has_cpu_edp = false;
5559	bool has_pch_edp = false;
5560	bool has_panel = false;
5561	bool has_ck505 = false;
5562	bool can_ssc = false;
5563
5564	/* We need to take the global config into account */
5565	list_for_each_entry(encoder, &mode_config->encoder_list,
5566			    base.head) {
5567		switch (encoder->type) {
5568		case INTEL_OUTPUT_LVDS:
5569			has_panel = true;
5570			has_lvds = true;
5571			break;
5572		case INTEL_OUTPUT_EDP:
5573			has_panel = true;
5574			if (intel_encoder_is_pch_edp(&encoder->base))
5575				has_pch_edp = true;
5576			else
5577				has_cpu_edp = true;
5578			break;
5579		}
5580	}
5581
5582	if (HAS_PCH_IBX(dev)) {
5583		has_ck505 = dev_priv->display_clock_mode;
5584		can_ssc = has_ck505;
5585	} else {
5586		has_ck505 = false;
5587		can_ssc = true;
5588	}
5589
5590	DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
5591		      has_panel, has_lvds, has_pch_edp, has_cpu_edp,
5592		      has_ck505);
5593
5594	/* Ironlake: try to setup display ref clock before DPLL
5595	 * enabling. This is only under driver's control after
5596	 * PCH B stepping, previous chipset stepping should be
5597	 * ignoring this setting.
5598	 */
5599	temp = I915_READ(PCH_DREF_CONTROL);
5600	/* Always enable nonspread source */
5601	temp &= ~DREF_NONSPREAD_SOURCE_MASK;
5602
5603	if (has_ck505)
5604		temp |= DREF_NONSPREAD_CK505_ENABLE;
5605	else
5606		temp |= DREF_NONSPREAD_SOURCE_ENABLE;
5607
5608	if (has_panel) {
5609		temp &= ~DREF_SSC_SOURCE_MASK;
5610		temp |= DREF_SSC_SOURCE_ENABLE;
5611
5612		/* SSC must be turned on before enabling the CPU output  */
5613		if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5614			DRM_DEBUG_KMS("Using SSC on panel\n");
5615			temp |= DREF_SSC1_ENABLE;
5616		} else
5617			temp &= ~DREF_SSC1_ENABLE;
5618
5619		/* Get SSC going before enabling the outputs */
5620		I915_WRITE(PCH_DREF_CONTROL, temp);
5621		POSTING_READ(PCH_DREF_CONTROL);
5622		DELAY(200);
5623
5624		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5625
5626		/* Enable CPU source on CPU attached eDP */
5627		if (has_cpu_edp) {
5628			if (intel_panel_use_ssc(dev_priv) && can_ssc) {
5629				DRM_DEBUG_KMS("Using SSC on eDP\n");
5630				temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
5631			}
5632			else
5633				temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
5634		} else
5635			temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5636
5637		I915_WRITE(PCH_DREF_CONTROL, temp);
5638		POSTING_READ(PCH_DREF_CONTROL);
5639		DELAY(200);
5640	} else {
5641		DRM_DEBUG_KMS("Disabling SSC entirely\n");
5642
5643		temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
5644
5645		/* Turn off CPU output */
5646		temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
5647
5648		I915_WRITE(PCH_DREF_CONTROL, temp);
5649		POSTING_READ(PCH_DREF_CONTROL);
5650		DELAY(200);
5651
5652		/* Turn off the SSC source */
5653		temp &= ~DREF_SSC_SOURCE_MASK;
5654		temp |= DREF_SSC_SOURCE_DISABLE;
5655
5656		/* Turn off SSC1 */
5657		temp &= ~ DREF_SSC1_ENABLE;
5658
5659		I915_WRITE(PCH_DREF_CONTROL, temp);
5660		POSTING_READ(PCH_DREF_CONTROL);
5661		DELAY(200);
5662	}
5663}
5664
5665static int ironlake_get_refclk(struct drm_crtc *crtc)
5666{
5667	struct drm_device *dev = crtc->dev;
5668	struct drm_i915_private *dev_priv = dev->dev_private;
5669	struct intel_encoder *encoder;
5670	struct drm_mode_config *mode_config = &dev->mode_config;
5671	struct intel_encoder *edp_encoder = NULL;
5672	int num_connectors = 0;
5673	bool is_lvds = false;
5674
5675	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5676		if (encoder->base.crtc != crtc)
5677			continue;
5678
5679		switch (encoder->type) {
5680		case INTEL_OUTPUT_LVDS:
5681			is_lvds = true;
5682			break;
5683		case INTEL_OUTPUT_EDP:
5684			edp_encoder = encoder;
5685			break;
5686		}
5687		num_connectors++;
5688	}
5689
5690	if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
5691		DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5692			      dev_priv->lvds_ssc_freq);
5693		return dev_priv->lvds_ssc_freq * 1000;
5694	}
5695
5696	return 120000;
5697}
5698
5699static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
5700				  struct drm_display_mode *mode,
5701				  struct drm_display_mode *adjusted_mode,
5702				  int x, int y,
5703				  struct drm_framebuffer *old_fb)
5704{
5705	struct drm_device *dev = crtc->dev;
5706	struct drm_i915_private *dev_priv = dev->dev_private;
5707	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5708	int pipe = intel_crtc->pipe;
5709	int plane = intel_crtc->plane;
5710	int refclk, num_connectors = 0;
5711	intel_clock_t clock, reduced_clock;
5712	u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
5713	bool ok, has_reduced_clock = false, is_sdvo = false;
5714	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
5715	struct intel_encoder *has_edp_encoder = NULL;
5716	struct drm_mode_config *mode_config = &dev->mode_config;
5717	struct intel_encoder *encoder;
5718	const intel_limit_t *limit;
5719	int ret;
5720	struct fdi_m_n m_n = {0};
5721	u32 temp;
5722	u32 lvds_sync = 0;
5723	int target_clock, pixel_multiplier, lane, link_bw, factor;
5724	unsigned int pipe_bpp;
5725	bool dither;
5726
5727	list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
5728		if (encoder->base.crtc != crtc)
5729			continue;
5730
5731		switch (encoder->type) {
5732		case INTEL_OUTPUT_LVDS:
5733			is_lvds = true;
5734			break;
5735		case INTEL_OUTPUT_SDVO:
5736		case INTEL_OUTPUT_HDMI:
5737			is_sdvo = true;
5738			if (encoder->needs_tv_clock)
5739				is_tv = true;
5740			break;
5741		case INTEL_OUTPUT_TVOUT:
5742			is_tv = true;
5743			break;
5744		case INTEL_OUTPUT_ANALOG:
5745			is_crt = true;
5746			break;
5747		case INTEL_OUTPUT_DISPLAYPORT:
5748			is_dp = true;
5749			break;
5750		case INTEL_OUTPUT_EDP:
5751			has_edp_encoder = encoder;
5752			break;
5753		}
5754
5755		num_connectors++;
5756	}
5757
5758	refclk = ironlake_get_refclk(crtc);
5759
5760	/*
5761	 * Returns a set of divisors for the desired target clock with the given
5762	 * refclk, or false.  The returned values represent the clock equation:
5763	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5764	 */
5765	limit = intel_limit(crtc, refclk);
5766	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
5767			     &clock);
5768	if (!ok) {
5769		DRM_ERROR("Couldn't find PLL settings for mode!\n");
5770		return -EINVAL;
5771	}
5772
5773	/* Ensure that the cursor is valid for the new mode before changing... */
5774	intel_crtc_update_cursor(crtc, true);
5775
5776	if (is_lvds && dev_priv->lvds_downclock_avail) {
5777		/*
5778		 * Ensure we match the reduced clock's P to the target clock.
5779		 * If the clocks don't match, we can't switch the display clock
5780		 * by using the FP0/FP1. In such case we will disable the LVDS
5781		 * downclock feature.
5782		*/
5783		has_reduced_clock = limit->find_pll(limit, crtc,
5784						    dev_priv->lvds_downclock,
5785						    refclk,
5786						    &clock,
5787						    &reduced_clock);
5788	}
5789	/* SDVO TV has fixed PLL values depend on its clock range,
5790	   this mirrors vbios setting. */
5791	if (is_sdvo && is_tv) {
5792		if (adjusted_mode->clock >= 100000
5793		    && adjusted_mode->clock < 140500) {
5794			clock.p1 = 2;
5795			clock.p2 = 10;
5796			clock.n = 3;
5797			clock.m1 = 16;
5798			clock.m2 = 8;
5799		} else if (adjusted_mode->clock >= 140500
5800			   && adjusted_mode->clock <= 200000) {
5801			clock.p1 = 1;
5802			clock.p2 = 10;
5803			clock.n = 6;
5804			clock.m1 = 12;
5805			clock.m2 = 8;
5806		}
5807	}
5808
5809	/* FDI link */
5810	pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5811	lane = 0;
5812	/* CPU eDP doesn't require FDI link, so just set DP M/N
5813	   according to current link config */
5814	if (has_edp_encoder &&
5815	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5816		target_clock = mode->clock;
5817		intel_edp_link_config(has_edp_encoder,
5818				      &lane, &link_bw);
5819	} else {
5820		/* [e]DP over FDI requires target mode clock
5821		   instead of link clock */
5822		if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5823			target_clock = mode->clock;
5824		else
5825			target_clock = adjusted_mode->clock;
5826
5827		/* FDI is a binary signal running at ~2.7GHz, encoding
5828		 * each output octet as 10 bits. The actual frequency
5829		 * is stored as a divider into a 100MHz clock, and the
5830		 * mode pixel clock is stored in units of 1KHz.
5831		 * Hence the bw of each lane in terms of the mode signal
5832		 * is:
5833		 */
5834		link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
5835	}
5836
5837	/* determine panel color depth */
5838	temp = I915_READ(PIPECONF(pipe));
5839	temp &= ~PIPE_BPC_MASK;
5840	dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
5841	switch (pipe_bpp) {
5842	case 18:
5843		temp |= PIPE_6BPC;
5844		break;
5845	case 24:
5846		temp |= PIPE_8BPC;
5847		break;
5848	case 30:
5849		temp |= PIPE_10BPC;
5850		break;
5851	case 36:
5852		temp |= PIPE_12BPC;
5853		break;
5854	default:
5855		printf("intel_choose_pipe_bpp returned invalid value %d\n",
5856			pipe_bpp);
5857		temp |= PIPE_8BPC;
5858		pipe_bpp = 24;
5859		break;
5860	}
5861
5862	intel_crtc->bpp = pipe_bpp;
5863	I915_WRITE(PIPECONF(pipe), temp);
5864
5865	if (!lane) {
5866		/*
5867		 * Account for spread spectrum to avoid
5868		 * oversubscribing the link. Max center spread
5869		 * is 2.5%; use 5% for safety's sake.
5870		 */
5871		u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
5872		lane = bps / (link_bw * 8) + 1;
5873	}
5874
5875	intel_crtc->fdi_lanes = lane;
5876
5877	if (pixel_multiplier > 1)
5878		link_bw *= pixel_multiplier;
5879	ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
5880			     &m_n);
5881
5882	fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
5883	if (has_reduced_clock)
5884		fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
5885			reduced_clock.m2;
5886
5887	/* Enable autotuning of the PLL clock (if permissible) */
5888	factor = 21;
5889	if (is_lvds) {
5890		if ((intel_panel_use_ssc(dev_priv) &&
5891		     dev_priv->lvds_ssc_freq == 100) ||
5892		    (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
5893			factor = 25;
5894	} else if (is_sdvo && is_tv)
5895		factor = 20;
5896
5897	if (clock.m < factor * clock.n)
5898		fp |= FP_CB_TUNE;
5899
5900	dpll = 0;
5901
5902	if (is_lvds)
5903		dpll |= DPLLB_MODE_LVDS;
5904	else
5905		dpll |= DPLLB_MODE_DAC_SERIAL;
5906	if (is_sdvo) {
5907		int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
5908		if (pixel_multiplier > 1) {
5909			dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
5910		}
5911		dpll |= DPLL_DVO_HIGH_SPEED;
5912	}
5913	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
5914		dpll |= DPLL_DVO_HIGH_SPEED;
5915
5916	/* compute bitmask from p1 value */
5917	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
5918	/* also FPA1 */
5919	dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
5920
5921	switch (clock.p2) {
5922	case 5:
5923		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
5924		break;
5925	case 7:
5926		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
5927		break;
5928	case 10:
5929		dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
5930		break;
5931	case 14:
5932		dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
5933		break;
5934	}
5935
5936	if (is_sdvo && is_tv)
5937		dpll |= PLL_REF_INPUT_TVCLKINBC;
5938	else if (is_tv)
5939		/* XXX: just matching BIOS for now */
5940		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
5941		dpll |= 3;
5942	else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
5943		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
5944	else
5945		dpll |= PLL_REF_INPUT_DREFCLK;
5946
5947	/* setup pipeconf */
5948	pipeconf = I915_READ(PIPECONF(pipe));
5949
5950	/* Set up the display plane register */
5951	dspcntr = DISPPLANE_GAMMA_ENABLE;
5952
5953	DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
5954	drm_mode_debug_printmodeline(mode);
5955
5956	/* PCH eDP needs FDI, but CPU eDP does not */
5957	if (!intel_crtc->no_pll) {
5958		if (!has_edp_encoder ||
5959		    intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5960			I915_WRITE(PCH_FP0(pipe), fp);
5961			I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
5962
5963			POSTING_READ(PCH_DPLL(pipe));
5964			DELAY(150);
5965		}
5966	} else {
5967		if (dpll == (I915_READ(PCH_DPLL(0)) & 0x7fffffff) &&
5968		    fp == I915_READ(PCH_FP0(0))) {
5969			intel_crtc->use_pll_a = true;
5970			DRM_DEBUG_KMS("using pipe a dpll\n");
5971		} else if (dpll == (I915_READ(PCH_DPLL(1)) & 0x7fffffff) &&
5972			   fp == I915_READ(PCH_FP0(1))) {
5973			intel_crtc->use_pll_a = false;
5974			DRM_DEBUG_KMS("using pipe b dpll\n");
5975		} else {
5976			DRM_DEBUG_KMS("no matching PLL configuration for pipe 2\n");
5977			return -EINVAL;
5978		}
5979	}
5980
5981	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
5982	 * This is an exception to the general rule that mode_set doesn't turn
5983	 * things on.
5984	 */
5985	if (is_lvds) {
5986		temp = I915_READ(PCH_LVDS);
5987		temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
5988		if (HAS_PCH_CPT(dev)) {
5989			temp &= ~PORT_TRANS_SEL_MASK;
5990			temp |= PORT_TRANS_SEL_CPT(pipe);
5991		} else {
5992			if (pipe == 1)
5993				temp |= LVDS_PIPEB_SELECT;
5994			else
5995				temp &= ~LVDS_PIPEB_SELECT;
5996		}
5997
5998		/* set the corresponsding LVDS_BORDER bit */
5999		temp |= dev_priv->lvds_border_bits;
6000		/* Set the B0-B3 data pairs corresponding to whether we're going to
6001		 * set the DPLLs for dual-channel mode or not.
6002		 */
6003		if (clock.p2 == 7)
6004			temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
6005		else
6006			temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
6007
6008		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
6009		 * appropriately here, but we need to look more thoroughly into how
6010		 * panels behave in the two modes.
6011		 */
6012		if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
6013			lvds_sync |= LVDS_HSYNC_POLARITY;
6014		if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
6015			lvds_sync |= LVDS_VSYNC_POLARITY;
6016		if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
6017		    != lvds_sync) {
6018			char flags[2] = "-+";
6019			DRM_INFO("Changing LVDS panel from "
6020				 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
6021				 flags[!(temp & LVDS_HSYNC_POLARITY)],
6022				 flags[!(temp & LVDS_VSYNC_POLARITY)],
6023				 flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
6024				 flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
6025			temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
6026			temp |= lvds_sync;
6027		}
6028		I915_WRITE(PCH_LVDS, temp);
6029	}
6030
6031	pipeconf &= ~PIPECONF_DITHER_EN;
6032	pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
6033	if ((is_lvds && dev_priv->lvds_dither) || dither) {
6034		pipeconf |= PIPECONF_DITHER_EN;
6035		pipeconf |= PIPECONF_DITHER_TYPE_SP;
6036	}
6037	if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6038		intel_dp_set_m_n(crtc, mode, adjusted_mode);
6039	} else {
6040		/* For non-DP output, clear any trans DP clock recovery setting.*/
6041		I915_WRITE(TRANSDATA_M1(pipe), 0);
6042		I915_WRITE(TRANSDATA_N1(pipe), 0);
6043		I915_WRITE(TRANSDPLINK_M1(pipe), 0);
6044		I915_WRITE(TRANSDPLINK_N1(pipe), 0);
6045	}
6046
6047	if (!intel_crtc->no_pll &&
6048	    (!has_edp_encoder ||
6049	     intel_encoder_is_pch_edp(&has_edp_encoder->base))) {
6050		I915_WRITE(PCH_DPLL(pipe), dpll);
6051
6052		/* Wait for the clocks to stabilize. */
6053		POSTING_READ(PCH_DPLL(pipe));
6054		DELAY(150);
6055
6056		/* The pixel multiplier can only be updated once the
6057		 * DPLL is enabled and the clocks are stable.
6058		 *
6059		 * So write it again.
6060		 */
6061		I915_WRITE(PCH_DPLL(pipe), dpll);
6062	}
6063
6064	intel_crtc->lowfreq_avail = false;
6065	if (!intel_crtc->no_pll) {
6066		if (is_lvds && has_reduced_clock && i915_powersave) {
6067			I915_WRITE(PCH_FP1(pipe), fp2);
6068			intel_crtc->lowfreq_avail = true;
6069			if (HAS_PIPE_CXSR(dev)) {
6070				DRM_DEBUG_KMS("enabling CxSR downclocking\n");
6071				pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
6072			}
6073		} else {
6074			I915_WRITE(PCH_FP1(pipe), fp);
6075			if (HAS_PIPE_CXSR(dev)) {
6076				DRM_DEBUG_KMS("disabling CxSR downclocking\n");
6077				pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
6078			}
6079		}
6080	}
6081
6082	pipeconf &= ~PIPECONF_INTERLACE_MASK;
6083	if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
6084		pipeconf |= PIPECONF_INTERLACED_ILK;
6085		/* the chip adds 2 halflines automatically */
6086		adjusted_mode->crtc_vtotal -= 1;
6087		adjusted_mode->crtc_vblank_end -= 1;
6088		I915_WRITE(VSYNCSHIFT(pipe),
6089			   adjusted_mode->crtc_hsync_start
6090			   - adjusted_mode->crtc_htotal/2);
6091	} else {
6092		pipeconf |= PIPECONF_PROGRESSIVE;
6093		I915_WRITE(VSYNCSHIFT(pipe), 0);
6094	}
6095
6096	I915_WRITE(HTOTAL(pipe),
6097		   (adjusted_mode->crtc_hdisplay - 1) |
6098		   ((adjusted_mode->crtc_htotal - 1) << 16));
6099	I915_WRITE(HBLANK(pipe),
6100		   (adjusted_mode->crtc_hblank_start - 1) |
6101		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
6102	I915_WRITE(HSYNC(pipe),
6103		   (adjusted_mode->crtc_hsync_start - 1) |
6104		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
6105
6106	I915_WRITE(VTOTAL(pipe),
6107		   (adjusted_mode->crtc_vdisplay - 1) |
6108		   ((adjusted_mode->crtc_vtotal - 1) << 16));
6109	I915_WRITE(VBLANK(pipe),
6110		   (adjusted_mode->crtc_vblank_start - 1) |
6111		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
6112	I915_WRITE(VSYNC(pipe),
6113		   (adjusted_mode->crtc_vsync_start - 1) |
6114		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
6115
6116	/* pipesrc controls the size that is scaled from, which should
6117	 * always be the user's requested size.
6118	 */
6119	I915_WRITE(PIPESRC(pipe),
6120		   ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
6121
6122	I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
6123	I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
6124	I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
6125	I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
6126
6127	if (has_edp_encoder &&
6128	    !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
6129		ironlake_set_pll_edp(crtc, adjusted_mode->clock);
6130	}
6131
6132	I915_WRITE(PIPECONF(pipe), pipeconf);
6133	POSTING_READ(PIPECONF(pipe));
6134
6135	intel_wait_for_vblank(dev, pipe);
6136
6137	I915_WRITE(DSPCNTR(plane), dspcntr);
6138	POSTING_READ(DSPCNTR(plane));
6139
6140	ret = intel_pipe_set_base(crtc, x, y, old_fb);
6141
6142	intel_update_watermarks(dev);
6143
6144	return ret;
6145}
6146
6147static int intel_crtc_mode_set(struct drm_crtc *crtc,
6148			       struct drm_display_mode *mode,
6149			       struct drm_display_mode *adjusted_mode,
6150			       int x, int y,
6151			       struct drm_framebuffer *old_fb)
6152{
6153	struct drm_device *dev = crtc->dev;
6154	struct drm_i915_private *dev_priv = dev->dev_private;
6155	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6156	int pipe = intel_crtc->pipe;
6157	int ret;
6158
6159	drm_vblank_pre_modeset(dev, pipe);
6160
6161	ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
6162					      x, y, old_fb);
6163	drm_vblank_post_modeset(dev, pipe);
6164
6165	if (ret)
6166		intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
6167	else
6168		intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
6169
6170	return ret;
6171}
6172
6173static bool intel_eld_uptodate(struct drm_connector *connector,
6174			       int reg_eldv, uint32_t bits_eldv,
6175			       int reg_elda, uint32_t bits_elda,
6176			       int reg_edid)
6177{
6178	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6179	uint8_t *eld = connector->eld;
6180	uint32_t i;
6181
6182	i = I915_READ(reg_eldv);
6183	i &= bits_eldv;
6184
6185	if (!eld[0])
6186		return !i;
6187
6188	if (!i)
6189		return false;
6190
6191	i = I915_READ(reg_elda);
6192	i &= ~bits_elda;
6193	I915_WRITE(reg_elda, i);
6194
6195	for (i = 0; i < eld[2]; i++)
6196		if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
6197			return false;
6198
6199	return true;
6200}
6201
6202static void g4x_write_eld(struct drm_connector *connector,
6203			  struct drm_crtc *crtc)
6204{
6205	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6206	uint8_t *eld = connector->eld;
6207	uint32_t eldv;
6208	uint32_t len;
6209	uint32_t i;
6210
6211	i = I915_READ(G4X_AUD_VID_DID);
6212
6213	if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
6214		eldv = G4X_ELDV_DEVCL_DEVBLC;
6215	else
6216		eldv = G4X_ELDV_DEVCTG;
6217
6218	if (intel_eld_uptodate(connector,
6219			       G4X_AUD_CNTL_ST, eldv,
6220			       G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
6221			       G4X_HDMIW_HDMIEDID))
6222		return;
6223
6224	i = I915_READ(G4X_AUD_CNTL_ST);
6225	i &= ~(eldv | G4X_ELD_ADDR);
6226	len = (i >> 9) & 0x1f;		/* ELD buffer size */
6227	I915_WRITE(G4X_AUD_CNTL_ST, i);
6228
6229	if (!eld[0])
6230		return;
6231
6232	if (eld[2] < (uint8_t)len)
6233		len = eld[2];
6234	DRM_DEBUG_KMS("ELD size %d\n", len);
6235	for (i = 0; i < len; i++)
6236		I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
6237
6238	i = I915_READ(G4X_AUD_CNTL_ST);
6239	i |= eldv;
6240	I915_WRITE(G4X_AUD_CNTL_ST, i);
6241}
6242
6243static void ironlake_write_eld(struct drm_connector *connector,
6244				     struct drm_crtc *crtc)
6245{
6246	struct drm_i915_private *dev_priv = connector->dev->dev_private;
6247	uint8_t *eld = connector->eld;
6248	uint32_t eldv;
6249	uint32_t i;
6250	int len;
6251	int hdmiw_hdmiedid;
6252	int aud_config;
6253	int aud_cntl_st;
6254	int aud_cntrl_st2;
6255
6256	if (HAS_PCH_IBX(connector->dev)) {
6257		hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID_A;
6258		aud_config = IBX_AUD_CONFIG_A;
6259		aud_cntl_st = IBX_AUD_CNTL_ST_A;
6260		aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
6261	} else {
6262		hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID_A;
6263		aud_config = CPT_AUD_CONFIG_A;
6264		aud_cntl_st = CPT_AUD_CNTL_ST_A;
6265		aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
6266	}
6267
6268	i = to_intel_crtc(crtc)->pipe;
6269	hdmiw_hdmiedid += i * 0x100;
6270	aud_cntl_st += i * 0x100;
6271	aud_config += i * 0x100;
6272
6273	DRM_DEBUG_KMS("ELD on pipe %c\n", pipe_name(i));
6274
6275	i = I915_READ(aud_cntl_st);
6276	i = (i >> 29) & 0x3;		/* DIP_Port_Select, 0x1 = PortB */
6277	if (!i) {
6278		DRM_DEBUG_KMS("Audio directed to unknown port\n");
6279		/* operate blindly on all ports */
6280		eldv = IBX_ELD_VALIDB;
6281		eldv |= IBX_ELD_VALIDB << 4;
6282		eldv |= IBX_ELD_VALIDB << 8;
6283	} else {
6284		DRM_DEBUG_KMS("ELD on port %c\n", 'A' + i);
6285		eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
6286	}
6287
6288	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
6289		DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
6290		eld[5] |= (1 << 2);	/* Conn_Type, 0x1 = DisplayPort */
6291		I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
6292	} else
6293		I915_WRITE(aud_config, 0);
6294
6295	if (intel_eld_uptodate(connector,
6296			       aud_cntrl_st2, eldv,
6297			       aud_cntl_st, IBX_ELD_ADDRESS,
6298			       hdmiw_hdmiedid))
6299		return;
6300
6301	i = I915_READ(aud_cntrl_st2);
6302	i &= ~eldv;
6303	I915_WRITE(aud_cntrl_st2, i);
6304
6305	if (!eld[0])
6306		return;
6307
6308	i = I915_READ(aud_cntl_st);
6309	i &= ~IBX_ELD_ADDRESS;
6310	I915_WRITE(aud_cntl_st, i);
6311
6312	/* 84 bytes of hw ELD buffer */
6313	len = 21;
6314	if (eld[2] < (uint8_t)len)
6315		len = eld[2];
6316	DRM_DEBUG_KMS("ELD size %d\n", len);
6317	for (i = 0; i < len; i++)
6318		I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
6319
6320	i = I915_READ(aud_cntrl_st2);
6321	i |= eldv;
6322	I915_WRITE(aud_cntrl_st2, i);
6323}
6324
6325void intel_write_eld(struct drm_encoder *encoder,
6326		     struct drm_display_mode *mode)
6327{
6328	struct drm_crtc *crtc = encoder->crtc;
6329	struct drm_connector *connector;
6330	struct drm_device *dev = encoder->dev;
6331	struct drm_i915_private *dev_priv = dev->dev_private;
6332
6333	connector = drm_select_eld(encoder, mode);
6334	if (!connector)
6335		return;
6336
6337	DRM_DEBUG_KMS("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6338			 connector->base.id,
6339			 drm_get_connector_name(connector),
6340			 connector->encoder->base.id,
6341			 drm_get_encoder_name(connector->encoder));
6342
6343	connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
6344
6345	if (dev_priv->display.write_eld)
6346		dev_priv->display.write_eld(connector, crtc);
6347}
6348
6349/** Loads the palette/gamma unit for the CRTC with the prepared values */
6350void intel_crtc_load_lut(struct drm_crtc *crtc)
6351{
6352	struct drm_device *dev = crtc->dev;
6353	struct drm_i915_private *dev_priv = dev->dev_private;
6354	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6355	int palreg = PALETTE(intel_crtc->pipe);
6356	int i;
6357
6358	/* The clocks have to be on to load the palette. */
6359	if (!crtc->enabled || !intel_crtc->active)
6360		return;
6361
6362	/* use legacy palette for Ironlake */
6363	if (HAS_PCH_SPLIT(dev))
6364		palreg = LGC_PALETTE(intel_crtc->pipe);
6365
6366	for (i = 0; i < 256; i++) {
6367		I915_WRITE(palreg + 4 * i,
6368			   (intel_crtc->lut_r[i] << 16) |
6369			   (intel_crtc->lut_g[i] << 8) |
6370			   intel_crtc->lut_b[i]);
6371	}
6372}
6373
6374static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
6375{
6376	struct drm_device *dev = crtc->dev;
6377	struct drm_i915_private *dev_priv = dev->dev_private;
6378	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6379	bool visible = base != 0;
6380	u32 cntl;
6381
6382	if (intel_crtc->cursor_visible == visible)
6383		return;
6384
6385	cntl = I915_READ(_CURACNTR);
6386	if (visible) {
6387		/* On these chipsets we can only modify the base whilst
6388		 * the cursor is disabled.
6389		 */
6390		I915_WRITE(_CURABASE, base);
6391
6392		cntl &= ~(CURSOR_FORMAT_MASK);
6393		/* XXX width must be 64, stride 256 => 0x00 << 28 */
6394		cntl |= CURSOR_ENABLE |
6395			CURSOR_GAMMA_ENABLE |
6396			CURSOR_FORMAT_ARGB;
6397	} else
6398		cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
6399	I915_WRITE(_CURACNTR, cntl);
6400
6401	intel_crtc->cursor_visible = visible;
6402}
6403
6404static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
6405{
6406	struct drm_device *dev = crtc->dev;
6407	struct drm_i915_private *dev_priv = dev->dev_private;
6408	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6409	int pipe = intel_crtc->pipe;
6410	bool visible = base != 0;
6411
6412	if (intel_crtc->cursor_visible != visible) {
6413		uint32_t cntl = I915_READ(CURCNTR(pipe));
6414		if (base) {
6415			cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
6416			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6417			cntl |= pipe << 28; /* Connect to correct pipe */
6418		} else {
6419			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6420			cntl |= CURSOR_MODE_DISABLE;
6421		}
6422		I915_WRITE(CURCNTR(pipe), cntl);
6423
6424		intel_crtc->cursor_visible = visible;
6425	}
6426	/* and commit changes on next vblank */
6427	I915_WRITE(CURBASE(pipe), base);
6428}
6429
6430static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
6431{
6432	struct drm_device *dev = crtc->dev;
6433	struct drm_i915_private *dev_priv = dev->dev_private;
6434	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6435	int pipe = intel_crtc->pipe;
6436	bool visible = base != 0;
6437
6438	if (intel_crtc->cursor_visible != visible) {
6439		uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
6440		if (base) {
6441			cntl &= ~CURSOR_MODE;
6442			cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
6443		} else {
6444			cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
6445			cntl |= CURSOR_MODE_DISABLE;
6446		}
6447		I915_WRITE(CURCNTR_IVB(pipe), cntl);
6448
6449		intel_crtc->cursor_visible = visible;
6450	}
6451	/* and commit changes on next vblank */
6452	I915_WRITE(CURBASE_IVB(pipe), base);
6453}
6454
6455/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6456static void intel_crtc_update_cursor(struct drm_crtc *crtc,
6457				     bool on)
6458{
6459	struct drm_device *dev = crtc->dev;
6460	struct drm_i915_private *dev_priv = dev->dev_private;
6461	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6462	int pipe = intel_crtc->pipe;
6463	int x = intel_crtc->cursor_x;
6464	int y = intel_crtc->cursor_y;
6465	u32 base, pos;
6466	bool visible;
6467
6468	pos = 0;
6469
6470	if (on && crtc->enabled && crtc->fb) {
6471		base = intel_crtc->cursor_addr;
6472		if (x > (int) crtc->fb->width)
6473			base = 0;
6474
6475		if (y > (int) crtc->fb->height)
6476			base = 0;
6477	} else
6478		base = 0;
6479
6480	if (x < 0) {
6481		if (x + intel_crtc->cursor_width < 0)
6482			base = 0;
6483
6484		pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
6485		x = -x;
6486	}
6487	pos |= x << CURSOR_X_SHIFT;
6488
6489	if (y < 0) {
6490		if (y + intel_crtc->cursor_height < 0)
6491			base = 0;
6492
6493		pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
6494		y = -y;
6495	}
6496	pos |= y << CURSOR_Y_SHIFT;
6497
6498	visible = base != 0;
6499	if (!visible && !intel_crtc->cursor_visible)
6500		return;
6501
6502	if (IS_IVYBRIDGE(dev)) {
6503		I915_WRITE(CURPOS_IVB(pipe), pos);
6504		ivb_update_cursor(crtc, base);
6505	} else {
6506		I915_WRITE(CURPOS(pipe), pos);
6507		if (IS_845G(dev) || IS_I865G(dev))
6508			i845_update_cursor(crtc, base);
6509		else
6510			i9xx_update_cursor(crtc, base);
6511	}
6512
6513	if (visible)
6514		intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
6515}
6516
6517static int intel_crtc_cursor_set(struct drm_crtc *crtc,
6518				 struct drm_file *file,
6519				 uint32_t handle,
6520				 uint32_t width, uint32_t height)
6521{
6522	struct drm_device *dev = crtc->dev;
6523	struct drm_i915_private *dev_priv = dev->dev_private;
6524	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6525	struct drm_i915_gem_object *obj;
6526	uint32_t addr;
6527	int ret;
6528
6529	DRM_DEBUG_KMS("\n");
6530
6531	/* if we want to turn off the cursor ignore width and height */
6532	if (!handle) {
6533		DRM_DEBUG_KMS("cursor off\n");
6534		addr = 0;
6535		obj = NULL;
6536		DRM_LOCK(dev);
6537		goto finish;
6538	}
6539
6540	/* Currently we only support 64x64 cursors */
6541	if (width != 64 || height != 64) {
6542		DRM_ERROR("we currently only support 64x64 cursors\n");
6543		return -EINVAL;
6544	}
6545
6546	obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
6547	if (&obj->base == NULL)
6548		return -ENOENT;
6549
6550	if (obj->base.size < width * height * 4) {
6551		DRM_ERROR("buffer is to small\n");
6552		ret = -ENOMEM;
6553		goto fail;
6554	}
6555
6556	/* we only need to pin inside GTT if cursor is non-phy */
6557	DRM_LOCK(dev);
6558	if (!dev_priv->info->cursor_needs_physical) {
6559		if (obj->tiling_mode) {
6560			DRM_ERROR("cursor cannot be tiled\n");
6561			ret = -EINVAL;
6562			goto fail_locked;
6563		}
6564
6565		ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
6566		if (ret) {
6567			DRM_ERROR("failed to move cursor bo into the GTT\n");
6568			goto fail_locked;
6569		}
6570
6571		ret = i915_gem_object_put_fence(obj);
6572		if (ret) {
6573			DRM_ERROR("failed to release fence for cursor\n");
6574			goto fail_unpin;
6575		}
6576
6577		addr = obj->gtt_offset;
6578	} else {
6579		int align = IS_I830(dev) ? 16 * 1024 : 256;
6580		ret = i915_gem_attach_phys_object(dev, obj,
6581						  (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
6582						  align);
6583		if (ret) {
6584			DRM_ERROR("failed to attach phys object\n");
6585			goto fail_locked;
6586		}
6587		addr = obj->phys_obj->handle->busaddr;
6588	}
6589
6590	if (IS_GEN2(dev))
6591		I915_WRITE(CURSIZE, (height << 12) | width);
6592
6593 finish:
6594	if (intel_crtc->cursor_bo) {
6595		if (dev_priv->info->cursor_needs_physical) {
6596			if (intel_crtc->cursor_bo != obj)
6597				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
6598		} else
6599			i915_gem_object_unpin(intel_crtc->cursor_bo);
6600		drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
6601	}
6602
6603	DRM_UNLOCK(dev);
6604
6605	intel_crtc->cursor_addr = addr;
6606	intel_crtc->cursor_bo = obj;
6607	intel_crtc->cursor_width = width;
6608	intel_crtc->cursor_height = height;
6609
6610	intel_crtc_update_cursor(crtc, true);
6611
6612	return 0;
6613fail_unpin:
6614	i915_gem_object_unpin(obj);
6615fail_locked:
6616	DRM_UNLOCK(dev);
6617fail:
6618	drm_gem_object_unreference_unlocked(&obj->base);
6619	return ret;
6620}
6621
6622static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
6623{
6624	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6625
6626	intel_crtc->cursor_x = x;
6627	intel_crtc->cursor_y = y;
6628
6629	intel_crtc_update_cursor(crtc, true);
6630
6631	return 0;
6632}
6633
6634/** Sets the color ramps on behalf of RandR */
6635void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
6636				 u16 blue, int regno)
6637{
6638	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6639
6640	intel_crtc->lut_r[regno] = red >> 8;
6641	intel_crtc->lut_g[regno] = green >> 8;
6642	intel_crtc->lut_b[regno] = blue >> 8;
6643}
6644
6645void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
6646			     u16 *blue, int regno)
6647{
6648	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6649
6650	*red = intel_crtc->lut_r[regno] << 8;
6651	*green = intel_crtc->lut_g[regno] << 8;
6652	*blue = intel_crtc->lut_b[regno] << 8;
6653}
6654
6655static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
6656				 u16 *blue, uint32_t start, uint32_t size)
6657{
6658	int end = (start + size > 256) ? 256 : start + size, i;
6659	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6660
6661	for (i = start; i < end; i++) {
6662		intel_crtc->lut_r[i] = red[i] >> 8;
6663		intel_crtc->lut_g[i] = green[i] >> 8;
6664		intel_crtc->lut_b[i] = blue[i] >> 8;
6665	}
6666
6667	intel_crtc_load_lut(crtc);
6668}
6669
6670/**
6671 * Get a pipe with a simple mode set on it for doing load-based monitor
6672 * detection.
6673 *
6674 * It will be up to the load-detect code to adjust the pipe as appropriate for
6675 * its requirements.  The pipe will be connected to no other encoders.
6676 *
6677 * Currently this code will only succeed if there is a pipe with no encoders
6678 * configured for it.  In the future, it could choose to temporarily disable
6679 * some outputs to free up a pipe for its use.
6680 *
6681 * \return crtc, or NULL if no pipes are available.
6682 */
6683
6684/* VESA 640x480x72Hz mode to set on the pipe */
6685static struct drm_display_mode load_detect_mode = {
6686	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
6687		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
6688};
6689
6690static int
6691intel_framebuffer_create(struct drm_device *dev,
6692    struct drm_mode_fb_cmd2 *mode_cmd, struct drm_i915_gem_object *obj,
6693     struct drm_framebuffer **res)
6694{
6695	struct intel_framebuffer *intel_fb;
6696	int ret;
6697
6698	intel_fb = malloc(sizeof(*intel_fb), DRM_MEM_KMS, M_WAITOK | M_ZERO);
6699	ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
6700	if (ret) {
6701		drm_gem_object_unreference_unlocked(&obj->base);
6702		free(intel_fb, DRM_MEM_KMS);
6703		return (ret);
6704	}
6705
6706	*res = &intel_fb->base;
6707	return (0);
6708}
6709
6710static u32
6711intel_framebuffer_pitch_for_width(int width, int bpp)
6712{
6713	u32 pitch = howmany(width * bpp, 8);
6714	return roundup2(pitch, 64);
6715}
6716
6717static u32
6718intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
6719{
6720	u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
6721	return roundup2(pitch * mode->vdisplay, PAGE_SIZE);
6722}
6723
6724static int
6725intel_framebuffer_create_for_mode(struct drm_device *dev,
6726    struct drm_display_mode *mode, int depth, int bpp,
6727    struct drm_framebuffer **res)
6728{
6729	struct drm_i915_gem_object *obj;
6730	struct drm_mode_fb_cmd2 mode_cmd;
6731
6732	obj = i915_gem_alloc_object(dev,
6733				    intel_framebuffer_size_for_mode(mode, bpp));
6734	if (obj == NULL)
6735		return (-ENOMEM);
6736
6737	mode_cmd.width = mode->hdisplay;
6738	mode_cmd.height = mode->vdisplay;
6739	mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
6740								bpp);
6741	mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
6742
6743	return (intel_framebuffer_create(dev, &mode_cmd, obj, res));
6744}
6745
6746static int
6747mode_fits_in_fbdev(struct drm_device *dev,
6748    struct drm_display_mode *mode, struct drm_framebuffer **res)
6749{
6750	struct drm_i915_private *dev_priv = dev->dev_private;
6751	struct drm_i915_gem_object *obj;
6752	struct drm_framebuffer *fb;
6753
6754	if (dev_priv->fbdev == NULL) {
6755		*res = NULL;
6756		return (0);
6757	}
6758
6759	obj = dev_priv->fbdev->ifb.obj;
6760	if (obj == NULL) {
6761		*res = NULL;
6762		return (0);
6763	}
6764
6765	fb = &dev_priv->fbdev->ifb.base;
6766	if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
6767	    fb->bits_per_pixel)) {
6768		*res = NULL;
6769		return (0);
6770	}
6771
6772	if (obj->base.size < mode->vdisplay * fb->pitches[0]) {
6773		*res = NULL;
6774		return (0);
6775	}
6776
6777	*res = fb;
6778	return (0);
6779}
6780
6781bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
6782				struct drm_connector *connector,
6783				struct drm_display_mode *mode,
6784				struct intel_load_detect_pipe *old)
6785{
6786	struct intel_crtc *intel_crtc;
6787	struct drm_crtc *possible_crtc;
6788	struct drm_encoder *encoder = &intel_encoder->base;
6789	struct drm_crtc *crtc = NULL;
6790	struct drm_device *dev = encoder->dev;
6791	struct drm_framebuffer *old_fb;
6792	int i = -1, r;
6793
6794	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6795		      connector->base.id, drm_get_connector_name(connector),
6796		      encoder->base.id, drm_get_encoder_name(encoder));
6797
6798	/*
6799	 * Algorithm gets a little messy:
6800	 *
6801	 *   - if the connector already has an assigned crtc, use it (but make
6802	 *     sure it's on first)
6803	 *
6804	 *   - try to find the first unused crtc that can drive this connector,
6805	 *     and use that if we find one
6806	 */
6807
6808	/* See if we already have a CRTC for this connector */
6809	if (encoder->crtc) {
6810		crtc = encoder->crtc;
6811
6812		intel_crtc = to_intel_crtc(crtc);
6813		old->dpms_mode = intel_crtc->dpms_mode;
6814		old->load_detect_temp = false;
6815
6816		/* Make sure the crtc and connector are running */
6817		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
6818			struct drm_encoder_helper_funcs *encoder_funcs;
6819			struct drm_crtc_helper_funcs *crtc_funcs;
6820
6821			crtc_funcs = crtc->helper_private;
6822			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
6823
6824			encoder_funcs = encoder->helper_private;
6825			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
6826		}
6827
6828		return true;
6829	}
6830
6831	/* Find an unused one (if possible) */
6832	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
6833		i++;
6834		if (!(encoder->possible_crtcs & (1 << i)))
6835			continue;
6836		if (!possible_crtc->enabled) {
6837			crtc = possible_crtc;
6838			break;
6839		}
6840	}
6841
6842	/*
6843	 * If we didn't find an unused CRTC, don't use any.
6844	 */
6845	if (!crtc) {
6846		DRM_DEBUG_KMS("no pipe available for load-detect\n");
6847		return false;
6848	}
6849
6850	encoder->crtc = crtc;
6851	connector->encoder = encoder;
6852
6853	intel_crtc = to_intel_crtc(crtc);
6854	old->dpms_mode = intel_crtc->dpms_mode;
6855	old->load_detect_temp = true;
6856	old->release_fb = NULL;
6857
6858	if (!mode)
6859		mode = &load_detect_mode;
6860
6861	old_fb = crtc->fb;
6862
6863	/* We need a framebuffer large enough to accommodate all accesses
6864	 * that the plane may generate whilst we perform load detection.
6865	 * We can not rely on the fbcon either being present (we get called
6866	 * during its initialisation to detect all boot displays, or it may
6867	 * not even exist) or that it is large enough to satisfy the
6868	 * requested mode.
6869	 */
6870	r = mode_fits_in_fbdev(dev, mode, &crtc->fb);
6871	if (crtc->fb == NULL) {
6872		DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6873		r = intel_framebuffer_create_for_mode(dev, mode, 24, 32,
6874		    &crtc->fb);
6875		old->release_fb = crtc->fb;
6876	} else
6877		DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6878	if (r != 0) {
6879		DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6880		crtc->fb = old_fb;
6881		return false;
6882	}
6883
6884	if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
6885		DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6886		if (old->release_fb)
6887			old->release_fb->funcs->destroy(old->release_fb);
6888		crtc->fb = old_fb;
6889		return false;
6890	}
6891
6892	/* let the connector get through one full cycle before testing */
6893	intel_wait_for_vblank(dev, intel_crtc->pipe);
6894
6895	return true;
6896}
6897
6898void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
6899				    struct drm_connector *connector,
6900				    struct intel_load_detect_pipe *old)
6901{
6902	struct drm_encoder *encoder = &intel_encoder->base;
6903	struct drm_device *dev = encoder->dev;
6904	struct drm_crtc *crtc = encoder->crtc;
6905	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
6906	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
6907
6908	DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6909		      connector->base.id, drm_get_connector_name(connector),
6910		      encoder->base.id, drm_get_encoder_name(encoder));
6911
6912	if (old->load_detect_temp) {
6913		connector->encoder = NULL;
6914		drm_helper_disable_unused_functions(dev);
6915
6916		if (old->release_fb)
6917			old->release_fb->funcs->destroy(old->release_fb);
6918
6919		return;
6920	}
6921
6922	/* Switch crtc and encoder back off if necessary */
6923	if (old->dpms_mode != DRM_MODE_DPMS_ON) {
6924		encoder_funcs->dpms(encoder, old->dpms_mode);
6925		crtc_funcs->dpms(crtc, old->dpms_mode);
6926	}
6927}
6928
6929/* Returns the clock of the currently programmed mode of the given pipe. */
6930static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
6931{
6932	struct drm_i915_private *dev_priv = dev->dev_private;
6933	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6934	int pipe = intel_crtc->pipe;
6935	u32 dpll = I915_READ(DPLL(pipe));
6936	u32 fp;
6937	intel_clock_t clock;
6938
6939	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
6940		fp = I915_READ(FP0(pipe));
6941	else
6942		fp = I915_READ(FP1(pipe));
6943
6944	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
6945	if (IS_PINEVIEW(dev)) {
6946		clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
6947		clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
6948	} else {
6949		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
6950		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
6951	}
6952
6953	if (!IS_GEN2(dev)) {
6954		if (IS_PINEVIEW(dev))
6955			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
6956				DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
6957		else
6958			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
6959			       DPLL_FPA01_P1_POST_DIV_SHIFT);
6960
6961		switch (dpll & DPLL_MODE_MASK) {
6962		case DPLLB_MODE_DAC_SERIAL:
6963			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
6964				5 : 10;
6965			break;
6966		case DPLLB_MODE_LVDS:
6967			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
6968				7 : 14;
6969			break;
6970		default:
6971			DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6972				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
6973			return 0;
6974		}
6975
6976		/* XXX: Handle the 100Mhz refclk */
6977		intel_clock(dev, 96000, &clock);
6978	} else {
6979		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
6980
6981		if (is_lvds) {
6982			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
6983				       DPLL_FPA01_P1_POST_DIV_SHIFT);
6984			clock.p2 = 14;
6985
6986			if ((dpll & PLL_REF_INPUT_MASK) ==
6987			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
6988				/* XXX: might not be 66MHz */
6989				intel_clock(dev, 66000, &clock);
6990			} else
6991				intel_clock(dev, 48000, &clock);
6992		} else {
6993			if (dpll & PLL_P1_DIVIDE_BY_TWO)
6994				clock.p1 = 2;
6995			else {
6996				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
6997					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
6998			}
6999			if (dpll & PLL_P2_DIVIDE_BY_4)
7000				clock.p2 = 4;
7001			else
7002				clock.p2 = 2;
7003
7004			intel_clock(dev, 48000, &clock);
7005		}
7006	}
7007
7008	/* XXX: It would be nice to validate the clocks, but we can't reuse
7009	 * i830PllIsValid() because it relies on the xf86_config connector
7010	 * configuration being accurate, which it isn't necessarily.
7011	 */
7012
7013	return clock.dot;
7014}
7015
7016/** Returns the currently programmed mode of the given pipe. */
7017struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
7018					     struct drm_crtc *crtc)
7019{
7020	struct drm_i915_private *dev_priv = dev->dev_private;
7021	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7022	int pipe = intel_crtc->pipe;
7023	struct drm_display_mode *mode;
7024	int htot = I915_READ(HTOTAL(pipe));
7025	int hsync = I915_READ(HSYNC(pipe));
7026	int vtot = I915_READ(VTOTAL(pipe));
7027	int vsync = I915_READ(VSYNC(pipe));
7028
7029	mode = malloc(sizeof(*mode), DRM_MEM_KMS, M_WAITOK | M_ZERO);
7030
7031	mode->clock = intel_crtc_clock_get(dev, crtc);
7032	mode->hdisplay = (htot & 0xffff) + 1;
7033	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
7034	mode->hsync_start = (hsync & 0xffff) + 1;
7035	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
7036	mode->vdisplay = (vtot & 0xffff) + 1;
7037	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
7038	mode->vsync_start = (vsync & 0xffff) + 1;
7039	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
7040
7041	drm_mode_set_name(mode);
7042	drm_mode_set_crtcinfo(mode, 0);
7043
7044	return mode;
7045}
7046
7047#define GPU_IDLE_TIMEOUT (500 /* ms */ * 1000 / hz)
7048
7049/* When this timer fires, we've been idle for awhile */
7050static void intel_gpu_idle_timer(void *arg)
7051{
7052	struct drm_device *dev = arg;
7053	drm_i915_private_t *dev_priv = dev->dev_private;
7054
7055	if (!list_empty(&dev_priv->mm.active_list)) {
7056		/* Still processing requests, so just re-arm the timer. */
7057		callout_schedule(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT);
7058		return;
7059	}
7060
7061	dev_priv->busy = false;
7062	taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7063}
7064
7065#define CRTC_IDLE_TIMEOUT (1000 /* ms */ * 1000 / hz)
7066
7067static void intel_crtc_idle_timer(void *arg)
7068{
7069	struct intel_crtc *intel_crtc = arg;
7070	struct drm_crtc *crtc = &intel_crtc->base;
7071	drm_i915_private_t *dev_priv = crtc->dev->dev_private;
7072	struct intel_framebuffer *intel_fb;
7073
7074	intel_fb = to_intel_framebuffer(crtc->fb);
7075	if (intel_fb && intel_fb->obj->active) {
7076		/* The framebuffer is still being accessed by the GPU. */
7077		callout_schedule(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT);
7078		return;
7079	}
7080
7081	intel_crtc->busy = false;
7082	taskqueue_enqueue(dev_priv->tq, &dev_priv->idle_task);
7083}
7084
7085static void intel_increase_pllclock(struct drm_crtc *crtc)
7086{
7087	struct drm_device *dev = crtc->dev;
7088	drm_i915_private_t *dev_priv = dev->dev_private;
7089	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7090	int pipe = intel_crtc->pipe;
7091	int dpll_reg = DPLL(pipe);
7092	int dpll;
7093
7094	if (HAS_PCH_SPLIT(dev))
7095		return;
7096
7097	if (!dev_priv->lvds_downclock_avail)
7098		return;
7099
7100	dpll = I915_READ(dpll_reg);
7101	if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
7102		DRM_DEBUG_DRIVER("upclocking LVDS\n");
7103
7104		assert_panel_unlocked(dev_priv, pipe);
7105
7106		dpll &= ~DISPLAY_RATE_SELECT_FPA1;
7107		I915_WRITE(dpll_reg, dpll);
7108		intel_wait_for_vblank(dev, pipe);
7109
7110		dpll = I915_READ(dpll_reg);
7111		if (dpll & DISPLAY_RATE_SELECT_FPA1)
7112			DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
7113	}
7114
7115	/* Schedule downclock */
7116	callout_reset(&intel_crtc->idle_callout, CRTC_IDLE_TIMEOUT,
7117	    intel_crtc_idle_timer, intel_crtc);
7118}
7119
7120static void intel_decrease_pllclock(struct drm_crtc *crtc)
7121{
7122	struct drm_device *dev = crtc->dev;
7123	drm_i915_private_t *dev_priv = dev->dev_private;
7124	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7125
7126	if (HAS_PCH_SPLIT(dev))
7127		return;
7128
7129	if (!dev_priv->lvds_downclock_avail)
7130		return;
7131
7132	/*
7133	 * Since this is called by a timer, we should never get here in
7134	 * the manual case.
7135	 */
7136	if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
7137		int pipe = intel_crtc->pipe;
7138		int dpll_reg = DPLL(pipe);
7139		u32 dpll;
7140
7141		DRM_DEBUG_DRIVER("downclocking LVDS\n");
7142
7143		assert_panel_unlocked(dev_priv, pipe);
7144
7145		dpll = I915_READ(dpll_reg);
7146		dpll |= DISPLAY_RATE_SELECT_FPA1;
7147		I915_WRITE(dpll_reg, dpll);
7148		intel_wait_for_vblank(dev, pipe);
7149		dpll = I915_READ(dpll_reg);
7150		if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
7151			DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
7152	}
7153}
7154
7155/**
7156 * intel_idle_update - adjust clocks for idleness
7157 * @work: work struct
7158 *
7159 * Either the GPU or display (or both) went idle.  Check the busy status
7160 * here and adjust the CRTC and GPU clocks as necessary.
7161 */
7162static void intel_idle_update(void *arg, int pending)
7163{
7164	drm_i915_private_t *dev_priv = arg;
7165	struct drm_device *dev = dev_priv->dev;
7166	struct drm_crtc *crtc;
7167	struct intel_crtc *intel_crtc;
7168
7169	if (!i915_powersave)
7170		return;
7171
7172	DRM_LOCK(dev);
7173
7174	i915_update_gfx_val(dev_priv);
7175
7176	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7177		/* Skip inactive CRTCs */
7178		if (!crtc->fb)
7179			continue;
7180
7181		intel_crtc = to_intel_crtc(crtc);
7182		if (!intel_crtc->busy)
7183			intel_decrease_pllclock(crtc);
7184	}
7185
7186	DRM_UNLOCK(dev);
7187}
7188
7189/**
7190 * intel_mark_busy - mark the GPU and possibly the display busy
7191 * @dev: drm device
7192 * @obj: object we're operating on
7193 *
7194 * Callers can use this function to indicate that the GPU is busy processing
7195 * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
7196 * buffer), we'll also mark the display as busy, so we know to increase its
7197 * clock frequency.
7198 */
7199void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
7200{
7201	drm_i915_private_t *dev_priv = dev->dev_private;
7202	struct drm_crtc *crtc = NULL;
7203	struct intel_framebuffer *intel_fb;
7204	struct intel_crtc *intel_crtc;
7205
7206	if (!drm_core_check_feature(dev, DRIVER_MODESET))
7207		return;
7208
7209	if (!dev_priv->busy)
7210		dev_priv->busy = true;
7211	else
7212		callout_reset(&dev_priv->idle_callout, GPU_IDLE_TIMEOUT,
7213		    intel_gpu_idle_timer, dev);
7214
7215	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7216		if (!crtc->fb)
7217			continue;
7218
7219		intel_crtc = to_intel_crtc(crtc);
7220		intel_fb = to_intel_framebuffer(crtc->fb);
7221		if (intel_fb->obj == obj) {
7222			if (!intel_crtc->busy) {
7223				/* Non-busy -> busy, upclock */
7224				intel_increase_pllclock(crtc);
7225				intel_crtc->busy = true;
7226			} else {
7227				/* Busy -> busy, put off timer */
7228				callout_reset(&intel_crtc->idle_callout,
7229				    CRTC_IDLE_TIMEOUT, intel_crtc_idle_timer,
7230				    intel_crtc);
7231			}
7232		}
7233	}
7234}
7235
7236static void intel_crtc_destroy(struct drm_crtc *crtc)
7237{
7238	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7239	struct drm_device *dev = crtc->dev;
7240	struct drm_i915_private *dev_priv = dev->dev_private;
7241	struct intel_unpin_work *work;
7242
7243	mtx_lock(&dev->event_lock);
7244	work = intel_crtc->unpin_work;
7245	intel_crtc->unpin_work = NULL;
7246	mtx_unlock(&dev->event_lock);
7247
7248	if (work) {
7249		taskqueue_cancel(dev_priv->tq, &work->task, NULL);
7250		taskqueue_drain(dev_priv->tq, &work->task);
7251		free(work, DRM_MEM_KMS);
7252	}
7253
7254	drm_crtc_cleanup(crtc);
7255
7256	free(intel_crtc, DRM_MEM_KMS);
7257}
7258
7259static void intel_unpin_work_fn(void *arg, int pending)
7260{
7261	struct intel_unpin_work *work = arg;
7262	struct drm_device *dev;
7263
7264	dev = work->dev;
7265	DRM_LOCK(dev);
7266	intel_unpin_fb_obj(work->old_fb_obj);
7267	drm_gem_object_unreference(&work->pending_flip_obj->base);
7268	drm_gem_object_unreference(&work->old_fb_obj->base);
7269
7270	intel_update_fbc(work->dev);
7271	DRM_UNLOCK(dev);
7272	free(work, DRM_MEM_KMS);
7273}
7274
7275static void do_intel_finish_page_flip(struct drm_device *dev,
7276				      struct drm_crtc *crtc)
7277{
7278	drm_i915_private_t *dev_priv = dev->dev_private;
7279	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7280	struct intel_unpin_work *work;
7281	struct drm_i915_gem_object *obj;
7282	struct drm_pending_vblank_event *e;
7283	struct timeval tnow, tvbl;
7284
7285	/* Ignore early vblank irqs */
7286	if (intel_crtc == NULL)
7287		return;
7288
7289	microtime(&tnow);
7290
7291	mtx_lock(&dev->event_lock);
7292	work = intel_crtc->unpin_work;
7293	if (work == NULL || !work->pending) {
7294		mtx_unlock(&dev->event_lock);
7295		return;
7296	}
7297
7298	intel_crtc->unpin_work = NULL;
7299
7300	if (work->event) {
7301		e = work->event;
7302		e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
7303
7304		/* Called before vblank count and timestamps have
7305		 * been updated for the vblank interval of flip
7306		 * completion? Need to increment vblank count and
7307		 * add one videorefresh duration to returned timestamp
7308		 * to account for this. We assume this happened if we
7309		 * get called over 0.9 frame durations after the last
7310		 * timestamped vblank.
7311		 *
7312		 * This calculation can not be used with vrefresh rates
7313		 * below 5Hz (10Hz to be on the safe side) without
7314		 * promoting to 64 integers.
7315		 */
7316		if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
7317		    9 * crtc->framedur_ns) {
7318			e->event.sequence++;
7319			tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
7320					     crtc->framedur_ns);
7321		}
7322
7323		e->event.tv_sec = tvbl.tv_sec;
7324		e->event.tv_usec = tvbl.tv_usec;
7325
7326		list_add_tail(&e->base.link,
7327			      &e->base.file_priv->event_list);
7328		drm_event_wakeup(&e->base);
7329	}
7330
7331	drm_vblank_put(dev, intel_crtc->pipe);
7332
7333	obj = work->old_fb_obj;
7334
7335	atomic_clear_int(&obj->pending_flip, 1 << intel_crtc->plane);
7336	if (atomic_load_acq_int(&obj->pending_flip) == 0)
7337		wakeup(&obj->pending_flip);
7338	mtx_unlock(&dev->event_lock);
7339
7340	taskqueue_enqueue(dev_priv->tq, &work->task);
7341
7342	CTR2(KTR_DRM, "i915_flip_complete %d %p", intel_crtc->plane,
7343	    work->pending_flip_obj);
7344}
7345
7346void intel_finish_page_flip(struct drm_device *dev, int pipe)
7347{
7348	drm_i915_private_t *dev_priv = dev->dev_private;
7349	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
7350
7351	do_intel_finish_page_flip(dev, crtc);
7352}
7353
7354void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
7355{
7356	drm_i915_private_t *dev_priv = dev->dev_private;
7357	struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
7358
7359	do_intel_finish_page_flip(dev, crtc);
7360}
7361
7362void intel_prepare_page_flip(struct drm_device *dev, int plane)
7363{
7364	drm_i915_private_t *dev_priv = dev->dev_private;
7365	struct intel_crtc *intel_crtc =
7366		to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
7367
7368	mtx_lock(&dev->event_lock);
7369	if (intel_crtc->unpin_work) {
7370		if ((++intel_crtc->unpin_work->pending) > 1)
7371			DRM_ERROR("Prepared flip multiple times\n");
7372	} else {
7373		DRM_DEBUG("preparing flip with no unpin work?\n");
7374	}
7375	mtx_unlock(&dev->event_lock);
7376}
7377
7378static int intel_gen2_queue_flip(struct drm_device *dev,
7379				 struct drm_crtc *crtc,
7380				 struct drm_framebuffer *fb,
7381				 struct drm_i915_gem_object *obj)
7382{
7383	struct drm_i915_private *dev_priv = dev->dev_private;
7384	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7385	unsigned long offset;
7386	u32 flip_mask;
7387	int ret;
7388
7389	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7390	if (ret)
7391		goto out;
7392
7393	/* Offset into the new buffer for cases of shared fbs between CRTCs */
7394	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7395
7396	ret = BEGIN_LP_RING(6);
7397	if (ret)
7398		goto out;
7399
7400	/* Can't queue multiple flips, so wait for the previous
7401	 * one to finish before executing the next.
7402	 */
7403	if (intel_crtc->plane)
7404		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7405	else
7406		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7407	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7408	OUT_RING(MI_NOOP);
7409	OUT_RING(MI_DISPLAY_FLIP |
7410		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7411	OUT_RING(fb->pitches[0]);
7412	OUT_RING(obj->gtt_offset + offset);
7413	OUT_RING(0); /* aux display base address, unused */
7414	ADVANCE_LP_RING();
7415out:
7416	return ret;
7417}
7418
7419static int intel_gen3_queue_flip(struct drm_device *dev,
7420				 struct drm_crtc *crtc,
7421				 struct drm_framebuffer *fb,
7422				 struct drm_i915_gem_object *obj)
7423{
7424	struct drm_i915_private *dev_priv = dev->dev_private;
7425	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7426	unsigned long offset;
7427	u32 flip_mask;
7428	int ret;
7429
7430	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7431	if (ret)
7432		goto out;
7433
7434	/* Offset into the new buffer for cases of shared fbs between CRTCs */
7435	offset = crtc->y * fb->pitches[0] + crtc->x * fb->bits_per_pixel/8;
7436
7437	ret = BEGIN_LP_RING(6);
7438	if (ret)
7439		goto out;
7440
7441	if (intel_crtc->plane)
7442		flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
7443	else
7444		flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
7445	OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
7446	OUT_RING(MI_NOOP);
7447	OUT_RING(MI_DISPLAY_FLIP_I915 |
7448		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7449	OUT_RING(fb->pitches[0]);
7450	OUT_RING(obj->gtt_offset + offset);
7451	OUT_RING(MI_NOOP);
7452
7453	ADVANCE_LP_RING();
7454out:
7455	return ret;
7456}
7457
7458static int intel_gen4_queue_flip(struct drm_device *dev,
7459				 struct drm_crtc *crtc,
7460				 struct drm_framebuffer *fb,
7461				 struct drm_i915_gem_object *obj)
7462{
7463	struct drm_i915_private *dev_priv = dev->dev_private;
7464	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7465	uint32_t pf, pipesrc;
7466	int ret;
7467
7468	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7469	if (ret)
7470		goto out;
7471
7472	ret = BEGIN_LP_RING(4);
7473	if (ret)
7474		goto out;
7475
7476	/* i965+ uses the linear or tiled offsets from the
7477	 * Display Registers (which do not change across a page-flip)
7478	 * so we need only reprogram the base address.
7479	 */
7480	OUT_RING(MI_DISPLAY_FLIP |
7481		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7482	OUT_RING(fb->pitches[0]);
7483	OUT_RING(obj->gtt_offset | obj->tiling_mode);
7484
7485	/* XXX Enabling the panel-fitter across page-flip is so far
7486	 * untested on non-native modes, so ignore it for now.
7487	 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
7488	 */
7489	pf = 0;
7490	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7491	OUT_RING(pf | pipesrc);
7492	ADVANCE_LP_RING();
7493out:
7494	return ret;
7495}
7496
7497static int intel_gen6_queue_flip(struct drm_device *dev,
7498				 struct drm_crtc *crtc,
7499				 struct drm_framebuffer *fb,
7500				 struct drm_i915_gem_object *obj)
7501{
7502	struct drm_i915_private *dev_priv = dev->dev_private;
7503	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7504	uint32_t pf, pipesrc;
7505	int ret;
7506
7507	ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
7508	if (ret)
7509		goto out;
7510
7511	ret = BEGIN_LP_RING(4);
7512	if (ret)
7513		goto out;
7514
7515	OUT_RING(MI_DISPLAY_FLIP |
7516		 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
7517	OUT_RING(fb->pitches[0] | obj->tiling_mode);
7518	OUT_RING(obj->gtt_offset);
7519
7520	/* Contrary to the suggestions in the documentation,
7521	 * "Enable Panel Fitter" does not seem to be required when page
7522	 * flipping with a non-native mode, and worse causes a normal
7523	 * modeset to fail.
7524	 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
7525	 */
7526	pf = 0;
7527	pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
7528	OUT_RING(pf | pipesrc);
7529	ADVANCE_LP_RING();
7530out:
7531	return ret;
7532}
7533
7534/*
7535 * On gen7 we currently use the blit ring because (in early silicon at least)
7536 * the render ring doesn't give us interrpts for page flip completion, which
7537 * means clients will hang after the first flip is queued.  Fortunately the
7538 * blit ring generates interrupts properly, so use it instead.
7539 */
7540static int intel_gen7_queue_flip(struct drm_device *dev,
7541				 struct drm_crtc *crtc,
7542				 struct drm_framebuffer *fb,
7543				 struct drm_i915_gem_object *obj)
7544{
7545	struct drm_i915_private *dev_priv = dev->dev_private;
7546	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7547	struct intel_ring_buffer *ring = &dev_priv->rings[BCS];
7548	int ret;
7549
7550	ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
7551	if (ret)
7552		goto out;
7553
7554	ret = intel_ring_begin(ring, 4);
7555	if (ret)
7556		goto out;
7557
7558	intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | (intel_crtc->plane << 19));
7559	intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
7560	intel_ring_emit(ring, (obj->gtt_offset));
7561	intel_ring_emit(ring, (MI_NOOP));
7562	intel_ring_advance(ring);
7563out:
7564	return ret;
7565}
7566
7567static int intel_default_queue_flip(struct drm_device *dev,
7568				    struct drm_crtc *crtc,
7569				    struct drm_framebuffer *fb,
7570				    struct drm_i915_gem_object *obj)
7571{
7572	return -ENODEV;
7573}
7574
7575static int intel_crtc_page_flip(struct drm_crtc *crtc,
7576				struct drm_framebuffer *fb,
7577				struct drm_pending_vblank_event *event)
7578{
7579	struct drm_device *dev = crtc->dev;
7580	struct drm_i915_private *dev_priv = dev->dev_private;
7581	struct intel_framebuffer *intel_fb;
7582	struct drm_i915_gem_object *obj;
7583	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7584	struct intel_unpin_work *work;
7585	int ret;
7586
7587	work = malloc(sizeof *work, DRM_MEM_KMS, M_WAITOK | M_ZERO);
7588
7589	work->event = event;
7590	work->dev = crtc->dev;
7591	intel_fb = to_intel_framebuffer(crtc->fb);
7592	work->old_fb_obj = intel_fb->obj;
7593	TASK_INIT(&work->task, 0, intel_unpin_work_fn, work);
7594
7595	ret = drm_vblank_get(dev, intel_crtc->pipe);
7596	if (ret)
7597		goto free_work;
7598
7599	/* We borrow the event spin lock for protecting unpin_work */
7600	mtx_lock(&dev->event_lock);
7601	if (intel_crtc->unpin_work) {
7602		mtx_unlock(&dev->event_lock);
7603		free(work, DRM_MEM_KMS);
7604		drm_vblank_put(dev, intel_crtc->pipe);
7605
7606		DRM_DEBUG("flip queue: crtc already busy\n");
7607		return -EBUSY;
7608	}
7609	intel_crtc->unpin_work = work;
7610	mtx_unlock(&dev->event_lock);
7611
7612	intel_fb = to_intel_framebuffer(fb);
7613	obj = intel_fb->obj;
7614
7615	DRM_LOCK(dev);
7616
7617	/* Reference the objects for the scheduled work. */
7618	drm_gem_object_reference(&work->old_fb_obj->base);
7619	drm_gem_object_reference(&obj->base);
7620
7621	crtc->fb = fb;
7622
7623	work->pending_flip_obj = obj;
7624
7625	work->enable_stall_check = true;
7626
7627	/* Block clients from rendering to the new back buffer until
7628	 * the flip occurs and the object is no longer visible.
7629	 */
7630	atomic_set_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7631
7632	ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
7633	if (ret)
7634		goto cleanup_pending;
7635	intel_disable_fbc(dev);
7636	DRM_UNLOCK(dev);
7637
7638	CTR2(KTR_DRM, "i915_flip_request %d %p", intel_crtc->plane, obj);
7639
7640	return 0;
7641
7642cleanup_pending:
7643	atomic_clear_int(&work->old_fb_obj->pending_flip, 1 << intel_crtc->plane);
7644	drm_gem_object_unreference(&work->old_fb_obj->base);
7645	drm_gem_object_unreference(&obj->base);
7646	DRM_UNLOCK(dev);
7647
7648	mtx_lock(&dev->event_lock);
7649	intel_crtc->unpin_work = NULL;
7650	mtx_unlock(&dev->event_lock);
7651
7652	drm_vblank_put(dev, intel_crtc->pipe);
7653free_work:
7654	free(work, DRM_MEM_KMS);
7655
7656	return ret;
7657}
7658
7659static void intel_sanitize_modesetting(struct drm_device *dev,
7660				       int pipe, int plane)
7661{
7662	struct drm_i915_private *dev_priv = dev->dev_private;
7663	u32 reg, val;
7664
7665	/* Clear any frame start delays used for debugging left by the BIOS */
7666	for_each_pipe(pipe) {
7667		reg = PIPECONF(pipe);
7668		I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
7669	}
7670
7671	if (HAS_PCH_SPLIT(dev))
7672		return;
7673
7674	/* Who knows what state these registers were left in by the BIOS or
7675	 * grub?
7676	 *
7677	 * If we leave the registers in a conflicting state (e.g. with the
7678	 * display plane reading from the other pipe than the one we intend
7679	 * to use) then when we attempt to teardown the active mode, we will
7680	 * not disable the pipes and planes in the correct order -- leaving
7681	 * a plane reading from a disabled pipe and possibly leading to
7682	 * undefined behaviour.
7683	 */
7684
7685	reg = DSPCNTR(plane);
7686	val = I915_READ(reg);
7687
7688	if ((val & DISPLAY_PLANE_ENABLE) == 0)
7689		return;
7690	if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
7691		return;
7692
7693	/* This display plane is active and attached to the other CPU pipe. */
7694	pipe = !pipe;
7695
7696	/* Disable the plane and wait for it to stop reading from the pipe. */
7697	intel_disable_plane(dev_priv, plane, pipe);
7698	intel_disable_pipe(dev_priv, pipe);
7699}
7700
7701static void intel_crtc_reset(struct drm_crtc *crtc)
7702{
7703	struct drm_device *dev = crtc->dev;
7704	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7705
7706	/* Reset flags back to the 'unknown' status so that they
7707	 * will be correctly set on the initial modeset.
7708	 */
7709	intel_crtc->dpms_mode = -1;
7710
7711	/* We need to fix up any BIOS configuration that conflicts with
7712	 * our expectations.
7713	 */
7714	intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
7715}
7716
7717static struct drm_crtc_helper_funcs intel_helper_funcs = {
7718	.dpms = intel_crtc_dpms,
7719	.mode_fixup = intel_crtc_mode_fixup,
7720	.mode_set = intel_crtc_mode_set,
7721	.mode_set_base = intel_pipe_set_base,
7722	.mode_set_base_atomic = intel_pipe_set_base_atomic,
7723	.load_lut = intel_crtc_load_lut,
7724	.disable = intel_crtc_disable,
7725};
7726
7727static const struct drm_crtc_funcs intel_crtc_funcs = {
7728	.reset = intel_crtc_reset,
7729	.cursor_set = intel_crtc_cursor_set,
7730	.cursor_move = intel_crtc_cursor_move,
7731	.gamma_set = intel_crtc_gamma_set,
7732	.set_config = drm_crtc_helper_set_config,
7733	.destroy = intel_crtc_destroy,
7734	.page_flip = intel_crtc_page_flip,
7735};
7736
7737static void intel_crtc_init(struct drm_device *dev, int pipe)
7738{
7739	drm_i915_private_t *dev_priv = dev->dev_private;
7740	struct intel_crtc *intel_crtc;
7741	int i;
7742
7743	intel_crtc = malloc(sizeof(struct intel_crtc) +
7744	    (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
7745	    DRM_MEM_KMS, M_WAITOK | M_ZERO);
7746
7747	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
7748
7749	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
7750	for (i = 0; i < 256; i++) {
7751		intel_crtc->lut_r[i] = i;
7752		intel_crtc->lut_g[i] = i;
7753		intel_crtc->lut_b[i] = i;
7754	}
7755
7756	/* Swap pipes & planes for FBC on pre-965 */
7757	intel_crtc->pipe = pipe;
7758	intel_crtc->plane = pipe;
7759	if (IS_MOBILE(dev) && IS_GEN3(dev)) {
7760		DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7761		intel_crtc->plane = !pipe;
7762	}
7763
7764	KASSERT(pipe < DRM_ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) &&
7765	    dev_priv->plane_to_crtc_mapping[intel_crtc->plane] == NULL,
7766	    ("plane_to_crtc is already initialized"));
7767	dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
7768	dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
7769
7770	intel_crtc_reset(&intel_crtc->base);
7771	intel_crtc->active = true; /* force the pipe off on setup_init_config */
7772	intel_crtc->bpp = 24; /* default for pre-Ironlake */
7773
7774	if (HAS_PCH_SPLIT(dev)) {
7775		if (pipe == 2 && IS_IVYBRIDGE(dev))
7776			intel_crtc->no_pll = true;
7777		intel_helper_funcs.prepare = ironlake_crtc_prepare;
7778		intel_helper_funcs.commit = ironlake_crtc_commit;
7779	} else {
7780		intel_helper_funcs.prepare = i9xx_crtc_prepare;
7781		intel_helper_funcs.commit = i9xx_crtc_commit;
7782	}
7783
7784	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
7785
7786	intel_crtc->busy = false;
7787
7788	callout_init(&intel_crtc->idle_callout, CALLOUT_MPSAFE);
7789}
7790
7791int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
7792				struct drm_file *file)
7793{
7794	drm_i915_private_t *dev_priv = dev->dev_private;
7795	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7796	struct drm_mode_object *drmmode_obj;
7797	struct intel_crtc *crtc;
7798
7799	if (!dev_priv) {
7800		DRM_ERROR("called with no initialization\n");
7801		return -EINVAL;
7802	}
7803
7804	drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
7805			DRM_MODE_OBJECT_CRTC);
7806
7807	if (!drmmode_obj) {
7808		DRM_ERROR("no such CRTC id\n");
7809		return -EINVAL;
7810	}
7811
7812	crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
7813	pipe_from_crtc_id->pipe = crtc->pipe;
7814
7815	return 0;
7816}
7817
7818static int intel_encoder_clones(struct drm_device *dev, int type_mask)
7819{
7820	struct intel_encoder *encoder;
7821	int index_mask = 0;
7822	int entry = 0;
7823
7824	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7825		if (type_mask & encoder->clone_mask)
7826			index_mask |= (1 << entry);
7827		entry++;
7828	}
7829
7830	return index_mask;
7831}
7832
7833static bool has_edp_a(struct drm_device *dev)
7834{
7835	struct drm_i915_private *dev_priv = dev->dev_private;
7836
7837	if (!IS_MOBILE(dev))
7838		return false;
7839
7840	if ((I915_READ(DP_A) & DP_DETECTED) == 0)
7841		return false;
7842
7843	if (IS_GEN5(dev) &&
7844	    (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
7845		return false;
7846
7847	return true;
7848}
7849
7850static void intel_setup_outputs(struct drm_device *dev)
7851{
7852	struct drm_i915_private *dev_priv = dev->dev_private;
7853	struct intel_encoder *encoder;
7854	bool dpd_is_edp = false;
7855	bool has_lvds;
7856
7857	has_lvds = intel_lvds_init(dev);
7858	if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
7859		/* disable the panel fitter on everything but LVDS */
7860		I915_WRITE(PFIT_CONTROL, 0);
7861	}
7862
7863	if (HAS_PCH_SPLIT(dev)) {
7864		dpd_is_edp = intel_dpd_is_edp(dev);
7865
7866		if (has_edp_a(dev))
7867			intel_dp_init(dev, DP_A);
7868
7869		if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7870			intel_dp_init(dev, PCH_DP_D);
7871	}
7872
7873	intel_crt_init(dev);
7874
7875	if (HAS_PCH_SPLIT(dev)) {
7876		int found;
7877
7878		DRM_DEBUG_KMS(
7879"HDMIB %d PCH_DP_B %d HDMIC %d HDMID %d PCH_DP_C %d PCH_DP_D %d LVDS %d\n",
7880		    (I915_READ(HDMIB) & PORT_DETECTED) != 0,
7881		    (I915_READ(PCH_DP_B) & DP_DETECTED) != 0,
7882		    (I915_READ(HDMIC) & PORT_DETECTED) != 0,
7883		    (I915_READ(HDMID) & PORT_DETECTED) != 0,
7884		    (I915_READ(PCH_DP_C) & DP_DETECTED) != 0,
7885		    (I915_READ(PCH_DP_D) & DP_DETECTED) != 0,
7886		    (I915_READ(PCH_LVDS) & LVDS_DETECTED) != 0);
7887
7888		if (I915_READ(HDMIB) & PORT_DETECTED) {
7889			/* PCH SDVOB multiplex with HDMIB */
7890			found = intel_sdvo_init(dev, PCH_SDVOB);
7891			if (!found)
7892				intel_hdmi_init(dev, HDMIB);
7893			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
7894				intel_dp_init(dev, PCH_DP_B);
7895		}
7896
7897		if (I915_READ(HDMIC) & PORT_DETECTED)
7898			intel_hdmi_init(dev, HDMIC);
7899
7900		if (I915_READ(HDMID) & PORT_DETECTED)
7901			intel_hdmi_init(dev, HDMID);
7902
7903		if (I915_READ(PCH_DP_C) & DP_DETECTED)
7904			intel_dp_init(dev, PCH_DP_C);
7905
7906		if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
7907			intel_dp_init(dev, PCH_DP_D);
7908
7909	} else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
7910		bool found = false;
7911
7912		if (I915_READ(SDVOB) & SDVO_DETECTED) {
7913			DRM_DEBUG_KMS("probing SDVOB\n");
7914			found = intel_sdvo_init(dev, SDVOB);
7915			if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
7916				DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7917				intel_hdmi_init(dev, SDVOB);
7918			}
7919
7920			if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
7921				DRM_DEBUG_KMS("probing DP_B\n");
7922				intel_dp_init(dev, DP_B);
7923			}
7924		}
7925
7926		/* Before G4X SDVOC doesn't have its own detect register */
7927
7928		if (I915_READ(SDVOB) & SDVO_DETECTED) {
7929			DRM_DEBUG_KMS("probing SDVOC\n");
7930			found = intel_sdvo_init(dev, SDVOC);
7931		}
7932
7933		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
7934
7935			if (SUPPORTS_INTEGRATED_HDMI(dev)) {
7936				DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7937				intel_hdmi_init(dev, SDVOC);
7938			}
7939			if (SUPPORTS_INTEGRATED_DP(dev)) {
7940				DRM_DEBUG_KMS("probing DP_C\n");
7941				intel_dp_init(dev, DP_C);
7942			}
7943		}
7944
7945		if (SUPPORTS_INTEGRATED_DP(dev) &&
7946		    (I915_READ(DP_D) & DP_DETECTED)) {
7947			DRM_DEBUG_KMS("probing DP_D\n");
7948			intel_dp_init(dev, DP_D);
7949		}
7950	} else if (IS_GEN2(dev)) {
7951#if 1
7952		KIB_NOTYET();
7953#else
7954		intel_dvo_init(dev);
7955#endif
7956	}
7957
7958	if (SUPPORTS_TV(dev))
7959		intel_tv_init(dev);
7960
7961	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
7962		encoder->base.possible_crtcs = encoder->crtc_mask;
7963		encoder->base.possible_clones =
7964			intel_encoder_clones(dev, encoder->clone_mask);
7965	}
7966
7967	/* disable all the possible outputs/crtcs before entering KMS mode */
7968	drm_helper_disable_unused_functions(dev);
7969
7970	if (HAS_PCH_SPLIT(dev))
7971		ironlake_init_pch_refclk(dev);
7972}
7973
7974static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
7975{
7976	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7977
7978	drm_framebuffer_cleanup(fb);
7979	drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
7980
7981	free(intel_fb, DRM_MEM_KMS);
7982}
7983
7984static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
7985						struct drm_file *file,
7986						unsigned int *handle)
7987{
7988	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
7989	struct drm_i915_gem_object *obj = intel_fb->obj;
7990
7991	return drm_gem_handle_create(file, &obj->base, handle);
7992}
7993
7994static const struct drm_framebuffer_funcs intel_fb_funcs = {
7995	.destroy = intel_user_framebuffer_destroy,
7996	.create_handle = intel_user_framebuffer_create_handle,
7997};
7998
7999int intel_framebuffer_init(struct drm_device *dev,
8000			   struct intel_framebuffer *intel_fb,
8001			   struct drm_mode_fb_cmd2 *mode_cmd,
8002			   struct drm_i915_gem_object *obj)
8003{
8004	int ret;
8005
8006	if (obj->tiling_mode == I915_TILING_Y)
8007		return -EINVAL;
8008
8009	if (mode_cmd->pitches[0] & 63)
8010		return -EINVAL;
8011
8012	switch (mode_cmd->pixel_format) {
8013	case DRM_FORMAT_RGB332:
8014	case DRM_FORMAT_RGB565:
8015	case DRM_FORMAT_XRGB8888:
8016	case DRM_FORMAT_XBGR8888:
8017	case DRM_FORMAT_ARGB8888:
8018	case DRM_FORMAT_XRGB2101010:
8019	case DRM_FORMAT_ARGB2101010:
8020		/* RGB formats are common across chipsets */
8021		break;
8022	case DRM_FORMAT_YUYV:
8023	case DRM_FORMAT_UYVY:
8024	case DRM_FORMAT_YVYU:
8025	case DRM_FORMAT_VYUY:
8026		break;
8027	default:
8028		DRM_DEBUG_KMS("unsupported pixel format %u\n",
8029				mode_cmd->pixel_format);
8030		return -EINVAL;
8031	}
8032
8033	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
8034	if (ret) {
8035		DRM_ERROR("framebuffer init failed %d\n", ret);
8036		return ret;
8037	}
8038
8039	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
8040	intel_fb->obj = obj;
8041	return 0;
8042}
8043
8044static int
8045intel_user_framebuffer_create(struct drm_device *dev,
8046    struct drm_file *filp, struct drm_mode_fb_cmd2 *mode_cmd,
8047    struct drm_framebuffer **res)
8048{
8049	struct drm_i915_gem_object *obj;
8050
8051	obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
8052						mode_cmd->handles[0]));
8053	if (&obj->base == NULL)
8054		return (-ENOENT);
8055
8056	return (intel_framebuffer_create(dev, mode_cmd, obj, res));
8057}
8058
8059static const struct drm_mode_config_funcs intel_mode_funcs = {
8060	.fb_create = intel_user_framebuffer_create,
8061	.output_poll_changed = intel_fb_output_poll_changed,
8062};
8063
8064static struct drm_i915_gem_object *
8065intel_alloc_context_page(struct drm_device *dev)
8066{
8067	struct drm_i915_gem_object *ctx;
8068	int ret;
8069
8070	DRM_LOCK_ASSERT(dev);
8071
8072	ctx = i915_gem_alloc_object(dev, 4096);
8073	if (!ctx) {
8074		DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
8075		return NULL;
8076	}
8077
8078	ret = i915_gem_object_pin(ctx, 4096, true);
8079	if (ret) {
8080		DRM_ERROR("failed to pin power context: %d\n", ret);
8081		goto err_unref;
8082	}
8083
8084	ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
8085	if (ret) {
8086		DRM_ERROR("failed to set-domain on power context: %d\n", ret);
8087		goto err_unpin;
8088	}
8089
8090	return ctx;
8091
8092err_unpin:
8093	i915_gem_object_unpin(ctx);
8094err_unref:
8095	drm_gem_object_unreference(&ctx->base);
8096	DRM_UNLOCK(dev);
8097	return NULL;
8098}
8099
8100bool ironlake_set_drps(struct drm_device *dev, u8 val)
8101{
8102	struct drm_i915_private *dev_priv = dev->dev_private;
8103	u16 rgvswctl;
8104
8105	rgvswctl = I915_READ16(MEMSWCTL);
8106	if (rgvswctl & MEMCTL_CMD_STS) {
8107		DRM_DEBUG("gpu busy, RCS change rejected\n");
8108		return false; /* still busy with another command */
8109	}
8110
8111	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
8112		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
8113	I915_WRITE16(MEMSWCTL, rgvswctl);
8114	POSTING_READ16(MEMSWCTL);
8115
8116	rgvswctl |= MEMCTL_CMD_STS;
8117	I915_WRITE16(MEMSWCTL, rgvswctl);
8118
8119	return true;
8120}
8121
8122void ironlake_enable_drps(struct drm_device *dev)
8123{
8124	struct drm_i915_private *dev_priv = dev->dev_private;
8125	u32 rgvmodectl = I915_READ(MEMMODECTL);
8126	u8 fmax, fmin, fstart, vstart;
8127
8128	/* Enable temp reporting */
8129	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
8130	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
8131
8132	/* 100ms RC evaluation intervals */
8133	I915_WRITE(RCUPEI, 100000);
8134	I915_WRITE(RCDNEI, 100000);
8135
8136	/* Set max/min thresholds to 90ms and 80ms respectively */
8137	I915_WRITE(RCBMAXAVG, 90000);
8138	I915_WRITE(RCBMINAVG, 80000);
8139
8140	I915_WRITE(MEMIHYST, 1);
8141
8142	/* Set up min, max, and cur for interrupt handling */
8143	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
8144	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
8145	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
8146		MEMMODE_FSTART_SHIFT;
8147
8148	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
8149		PXVFREQ_PX_SHIFT;
8150
8151	dev_priv->fmax = fmax; /* IPS callback will increase this */
8152	dev_priv->fstart = fstart;
8153
8154	dev_priv->max_delay = fstart;
8155	dev_priv->min_delay = fmin;
8156	dev_priv->cur_delay = fstart;
8157
8158	DRM_DEBUG("fmax: %d, fmin: %d, fstart: %d\n",
8159			 fmax, fmin, fstart);
8160
8161	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
8162
8163	/*
8164	 * Interrupts will be enabled in ironlake_irq_postinstall
8165	 */
8166
8167	I915_WRITE(VIDSTART, vstart);
8168	POSTING_READ(VIDSTART);
8169
8170	rgvmodectl |= MEMMODE_SWMODE_EN;
8171	I915_WRITE(MEMMODECTL, rgvmodectl);
8172
8173	if (_intel_wait_for(dev,
8174	    (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10,
8175	    1, "915per"))
8176		DRM_ERROR("stuck trying to change perf mode\n");
8177	pause("915dsp", 1);
8178
8179	ironlake_set_drps(dev, fstart);
8180
8181	dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
8182		I915_READ(0x112e0);
8183	dev_priv->last_time1 = jiffies_to_msecs(jiffies);
8184	dev_priv->last_count2 = I915_READ(0x112f4);
8185	nanotime(&dev_priv->last_time2);
8186}
8187
8188void ironlake_disable_drps(struct drm_device *dev)
8189{
8190	struct drm_i915_private *dev_priv = dev->dev_private;
8191	u16 rgvswctl = I915_READ16(MEMSWCTL);
8192
8193	/* Ack interrupts, disable EFC interrupt */
8194	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
8195	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
8196	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
8197	I915_WRITE(DEIIR, DE_PCU_EVENT);
8198	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
8199
8200	/* Go back to the starting frequency */
8201	ironlake_set_drps(dev, dev_priv->fstart);
8202	pause("915dsp", 1);
8203	rgvswctl |= MEMCTL_CMD_STS;
8204	I915_WRITE(MEMSWCTL, rgvswctl);
8205	pause("915dsp", 1);
8206
8207}
8208
8209void gen6_set_rps(struct drm_device *dev, u8 val)
8210{
8211	struct drm_i915_private *dev_priv = dev->dev_private;
8212	u32 swreq;
8213
8214	swreq = (val & 0x3ff) << 25;
8215	I915_WRITE(GEN6_RPNSWREQ, swreq);
8216}
8217
8218void gen6_disable_rps(struct drm_device *dev)
8219{
8220	struct drm_i915_private *dev_priv = dev->dev_private;
8221
8222	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
8223	I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
8224	I915_WRITE(GEN6_PMIER, 0);
8225	/* Complete PM interrupt masking here doesn't race with the rps work
8226	 * item again unmasking PM interrupts because that is using a different
8227	 * register (PMIMR) to mask PM interrupts. The only risk is in leaving
8228	 * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
8229
8230	mtx_lock(&dev_priv->rps_lock);
8231	dev_priv->pm_iir = 0;
8232	mtx_unlock(&dev_priv->rps_lock);
8233
8234	I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
8235}
8236
8237static unsigned long intel_pxfreq(u32 vidfreq)
8238{
8239	unsigned long freq;
8240	int div = (vidfreq & 0x3f0000) >> 16;
8241	int post = (vidfreq & 0x3000) >> 12;
8242	int pre = (vidfreq & 0x7);
8243
8244	if (!pre)
8245		return 0;
8246
8247	freq = ((div * 133333) / ((1<<post) * pre));
8248
8249	return freq;
8250}
8251
8252void intel_init_emon(struct drm_device *dev)
8253{
8254	struct drm_i915_private *dev_priv = dev->dev_private;
8255	u32 lcfuse;
8256	u8 pxw[16];
8257	int i;
8258
8259	/* Disable to program */
8260	I915_WRITE(ECR, 0);
8261	POSTING_READ(ECR);
8262
8263	/* Program energy weights for various events */
8264	I915_WRITE(SDEW, 0x15040d00);
8265	I915_WRITE(CSIEW0, 0x007f0000);
8266	I915_WRITE(CSIEW1, 0x1e220004);
8267	I915_WRITE(CSIEW2, 0x04000004);
8268
8269	for (i = 0; i < 5; i++)
8270		I915_WRITE(PEW + (i * 4), 0);
8271	for (i = 0; i < 3; i++)
8272		I915_WRITE(DEW + (i * 4), 0);
8273
8274	/* Program P-state weights to account for frequency power adjustment */
8275	for (i = 0; i < 16; i++) {
8276		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
8277		unsigned long freq = intel_pxfreq(pxvidfreq);
8278		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8279			PXVFREQ_PX_SHIFT;
8280		unsigned long val;
8281
8282		val = vid * vid;
8283		val *= (freq / 1000);
8284		val *= 255;
8285		val /= (127*127*900);
8286		if (val > 0xff)
8287			DRM_ERROR("bad pxval: %ld\n", val);
8288		pxw[i] = val;
8289	}
8290	/* Render standby states get 0 weight */
8291	pxw[14] = 0;
8292	pxw[15] = 0;
8293
8294	for (i = 0; i < 4; i++) {
8295		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8296			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8297		I915_WRITE(PXW + (i * 4), val);
8298	}
8299
8300	/* Adjust magic regs to magic values (more experimental results) */
8301	I915_WRITE(OGW0, 0);
8302	I915_WRITE(OGW1, 0);
8303	I915_WRITE(EG0, 0x00007f00);
8304	I915_WRITE(EG1, 0x0000000e);
8305	I915_WRITE(EG2, 0x000e0000);
8306	I915_WRITE(EG3, 0x68000300);
8307	I915_WRITE(EG4, 0x42000000);
8308	I915_WRITE(EG5, 0x00140031);
8309	I915_WRITE(EG6, 0);
8310	I915_WRITE(EG7, 0);
8311
8312	for (i = 0; i < 8; i++)
8313		I915_WRITE(PXWL + (i * 4), 0);
8314
8315	/* Enable PMON + select events */
8316	I915_WRITE(ECR, 0x80000019);
8317
8318	lcfuse = I915_READ(LCFUSE02);
8319
8320	dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
8321}
8322
8323static int intel_enable_rc6(struct drm_device *dev)
8324{
8325	/*
8326	 * Respect the kernel parameter if it is set
8327	 */
8328	if (i915_enable_rc6 >= 0)
8329		return i915_enable_rc6;
8330
8331	/*
8332	 * Disable RC6 on Ironlake
8333	 */
8334	if (INTEL_INFO(dev)->gen == 5)
8335		return 0;
8336
8337	/*
8338	 * Enable rc6 on Sandybridge if DMA remapping is disabled
8339	 */
8340	if (INTEL_INFO(dev)->gen == 6) {
8341		DRM_DEBUG_DRIVER(
8342		    "Sandybridge: intel_iommu_enabled %s -- RC6 %sabled\n",
8343		     intel_iommu_enabled ? "true" : "false",
8344		     !intel_iommu_enabled ? "en" : "dis");
8345		return (intel_iommu_enabled ? 0 : INTEL_RC6_ENABLE);
8346	}
8347	DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
8348	return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
8349}
8350
8351void gen6_enable_rps(struct drm_i915_private *dev_priv)
8352{
8353	struct drm_device *dev = dev_priv->dev;
8354	u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
8355	u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
8356	u32 pcu_mbox, rc6_mask = 0;
8357	u32 gtfifodbg;
8358	int cur_freq, min_freq, max_freq;
8359	int rc6_mode;
8360	int i;
8361
8362	/* Here begins a magic sequence of register writes to enable
8363	 * auto-downclocking.
8364	 *
8365	 * Perhaps there might be some value in exposing these to
8366	 * userspace...
8367	 */
8368	I915_WRITE(GEN6_RC_STATE, 0);
8369	DRM_LOCK(dev);
8370
8371	/* Clear the DBG now so we don't confuse earlier errors */
8372	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
8373		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
8374		I915_WRITE(GTFIFODBG, gtfifodbg);
8375	}
8376
8377	gen6_gt_force_wake_get(dev_priv);
8378
8379	/* disable the counters and set deterministic thresholds */
8380	I915_WRITE(GEN6_RC_CONTROL, 0);
8381
8382	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
8383	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
8384	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
8385	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8386	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8387
8388	for (i = 0; i < I915_NUM_RINGS; i++)
8389		I915_WRITE(RING_MAX_IDLE(dev_priv->rings[i].mmio_base), 10);
8390
8391	I915_WRITE(GEN6_RC_SLEEP, 0);
8392	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
8393	I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
8394	I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
8395	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
8396
8397	rc6_mode = intel_enable_rc6(dev_priv->dev);
8398	if (rc6_mode & INTEL_RC6_ENABLE)
8399		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
8400
8401	if (rc6_mode & INTEL_RC6p_ENABLE)
8402		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
8403
8404	if (rc6_mode & INTEL_RC6pp_ENABLE)
8405		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
8406
8407	DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
8408			(rc6_mode & INTEL_RC6_ENABLE) ? "on" : "off",
8409			(rc6_mode & INTEL_RC6p_ENABLE) ? "on" : "off",
8410			(rc6_mode & INTEL_RC6pp_ENABLE) ? "on" : "off");
8411
8412	I915_WRITE(GEN6_RC_CONTROL,
8413		   rc6_mask |
8414		   GEN6_RC_CTL_EI_MODE(1) |
8415		   GEN6_RC_CTL_HW_ENABLE);
8416
8417	I915_WRITE(GEN6_RPNSWREQ,
8418		   GEN6_FREQUENCY(10) |
8419		   GEN6_OFFSET(0) |
8420		   GEN6_AGGRESSIVE_TURBO);
8421	I915_WRITE(GEN6_RC_VIDEO_FREQ,
8422		   GEN6_FREQUENCY(12));
8423
8424	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8425	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
8426		   18 << 24 |
8427		   6 << 16);
8428	I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
8429	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
8430	I915_WRITE(GEN6_RP_UP_EI, 100000);
8431	I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
8432	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8433	I915_WRITE(GEN6_RP_CONTROL,
8434		   GEN6_RP_MEDIA_TURBO |
8435		   GEN6_RP_MEDIA_HW_MODE |
8436		   GEN6_RP_MEDIA_IS_GFX |
8437		   GEN6_RP_ENABLE |
8438		   GEN6_RP_UP_BUSY_AVG |
8439		   GEN6_RP_DOWN_IDLE_CONT);
8440
8441	if (_intel_wait_for(dev,
8442	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8443	    1, "915pr1"))
8444		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8445
8446	I915_WRITE(GEN6_PCODE_DATA, 0);
8447	I915_WRITE(GEN6_PCODE_MAILBOX,
8448		   GEN6_PCODE_READY |
8449		   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8450	if (_intel_wait_for(dev,
8451	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8452	    1, "915pr2"))
8453		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8454
8455	min_freq = (rp_state_cap & 0xff0000) >> 16;
8456	max_freq = rp_state_cap & 0xff;
8457	cur_freq = (gt_perf_status & 0xff00) >> 8;
8458
8459	/* Check for overclock support */
8460	if (_intel_wait_for(dev,
8461	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8462	    1, "915pr3"))
8463		DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
8464	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
8465	pcu_mbox = I915_READ(GEN6_PCODE_DATA);
8466	if (_intel_wait_for(dev,
8467	    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0, 500,
8468	    1, "915pr4"))
8469		DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
8470	if (pcu_mbox & (1<<31)) { /* OC supported */
8471		max_freq = pcu_mbox & 0xff;
8472		DRM_DEBUG("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
8473	}
8474
8475	/* In units of 100MHz */
8476	dev_priv->max_delay = max_freq;
8477	dev_priv->min_delay = min_freq;
8478	dev_priv->cur_delay = cur_freq;
8479
8480	/* requires MSI enabled */
8481	I915_WRITE(GEN6_PMIER,
8482		   GEN6_PM_MBOX_EVENT |
8483		   GEN6_PM_THERMAL_EVENT |
8484		   GEN6_PM_RP_DOWN_TIMEOUT |
8485		   GEN6_PM_RP_UP_THRESHOLD |
8486		   GEN6_PM_RP_DOWN_THRESHOLD |
8487		   GEN6_PM_RP_UP_EI_EXPIRED |
8488		   GEN6_PM_RP_DOWN_EI_EXPIRED);
8489	mtx_lock(&dev_priv->rps_lock);
8490	if (dev_priv->pm_iir != 0)
8491		printf("pm_iir %x\n", dev_priv->pm_iir);
8492	I915_WRITE(GEN6_PMIMR, 0);
8493	mtx_unlock(&dev_priv->rps_lock);
8494	/* enable all PM interrupts */
8495	I915_WRITE(GEN6_PMINTRMSK, 0);
8496
8497	gen6_gt_force_wake_put(dev_priv);
8498	DRM_UNLOCK(dev);
8499}
8500
8501void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
8502{
8503	struct drm_device *dev;
8504	int min_freq = 15;
8505	int gpu_freq, ia_freq, max_ia_freq;
8506	int scaling_factor = 180;
8507	uint64_t tsc_freq;
8508
8509	dev = dev_priv->dev;
8510#if 0
8511	max_ia_freq = cpufreq_quick_get_max(0);
8512	/*
8513	 * Default to measured freq if none found, PCU will ensure we don't go
8514	 * over
8515	 */
8516	if (!max_ia_freq)
8517		max_ia_freq = tsc_freq;
8518
8519	/* Convert from Hz to MHz */
8520	max_ia_freq /= 1000;
8521#else
8522	tsc_freq = atomic_load_acq_64(&tsc_freq);
8523	max_ia_freq = tsc_freq / 1000 / 1000;
8524#endif
8525
8526	DRM_LOCK(dev);
8527
8528	/*
8529	 * For each potential GPU frequency, load a ring frequency we'd like
8530	 * to use for memory access.  We do this by specifying the IA frequency
8531	 * the PCU should use as a reference to determine the ring frequency.
8532	 */
8533	for (gpu_freq = dev_priv->max_delay; gpu_freq >= dev_priv->min_delay;
8534	     gpu_freq--) {
8535		int diff = dev_priv->max_delay - gpu_freq;
8536		int d;
8537
8538		/*
8539		 * For GPU frequencies less than 750MHz, just use the lowest
8540		 * ring freq.
8541		 */
8542		if (gpu_freq < min_freq)
8543			ia_freq = 800;
8544		else
8545			ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
8546		d = 100;
8547		ia_freq = (ia_freq + d / 2) / d;
8548
8549		I915_WRITE(GEN6_PCODE_DATA,
8550			   (ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT) |
8551			   gpu_freq);
8552		I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY |
8553			   GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
8554		if (_intel_wait_for(dev,
8555		    (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
8556		    10, 1, "915frq")) {
8557			DRM_ERROR("pcode write of freq table timed out\n");
8558			continue;
8559		}
8560	}
8561
8562	DRM_UNLOCK(dev);
8563}
8564
8565static void ironlake_init_clock_gating(struct drm_device *dev)
8566{
8567	struct drm_i915_private *dev_priv = dev->dev_private;
8568	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8569
8570	/* Required for FBC */
8571	dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
8572		DPFCRUNIT_CLOCK_GATE_DISABLE |
8573		DPFDUNIT_CLOCK_GATE_DISABLE;
8574	/* Required for CxSR */
8575	dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
8576
8577	I915_WRITE(PCH_3DCGDIS0,
8578		   MARIUNIT_CLOCK_GATE_DISABLE |
8579		   SVSMUNIT_CLOCK_GATE_DISABLE);
8580	I915_WRITE(PCH_3DCGDIS1,
8581		   VFMUNIT_CLOCK_GATE_DISABLE);
8582
8583	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8584
8585	/*
8586	 * According to the spec the following bits should be set in
8587	 * order to enable memory self-refresh
8588	 * The bit 22/21 of 0x42004
8589	 * The bit 5 of 0x42020
8590	 * The bit 15 of 0x45000
8591	 */
8592	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8593		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8594		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8595	I915_WRITE(ILK_DSPCLK_GATE,
8596		   (I915_READ(ILK_DSPCLK_GATE) |
8597		    ILK_DPARB_CLK_GATE));
8598	I915_WRITE(DISP_ARB_CTL,
8599		   (I915_READ(DISP_ARB_CTL) |
8600		    DISP_FBC_WM_DIS));
8601	I915_WRITE(WM3_LP_ILK, 0);
8602	I915_WRITE(WM2_LP_ILK, 0);
8603	I915_WRITE(WM1_LP_ILK, 0);
8604
8605	/*
8606	 * Based on the document from hardware guys the following bits
8607	 * should be set unconditionally in order to enable FBC.
8608	 * The bit 22 of 0x42000
8609	 * The bit 22 of 0x42004
8610	 * The bit 7,8,9 of 0x42020.
8611	 */
8612	if (IS_IRONLAKE_M(dev)) {
8613		I915_WRITE(ILK_DISPLAY_CHICKEN1,
8614			   I915_READ(ILK_DISPLAY_CHICKEN1) |
8615			   ILK_FBCQ_DIS);
8616		I915_WRITE(ILK_DISPLAY_CHICKEN2,
8617			   I915_READ(ILK_DISPLAY_CHICKEN2) |
8618			   ILK_DPARB_GATE);
8619		I915_WRITE(ILK_DSPCLK_GATE,
8620			   I915_READ(ILK_DSPCLK_GATE) |
8621			   ILK_DPFC_DIS1 |
8622			   ILK_DPFC_DIS2 |
8623			   ILK_CLK_FBC);
8624	}
8625
8626	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8627		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8628		   ILK_ELPIN_409_SELECT);
8629	I915_WRITE(_3D_CHICKEN2,
8630		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8631		   _3D_CHICKEN2_WM_READ_PIPELINED);
8632}
8633
8634static void gen6_init_clock_gating(struct drm_device *dev)
8635{
8636	struct drm_i915_private *dev_priv = dev->dev_private;
8637	int pipe;
8638	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8639
8640	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8641
8642	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8643		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8644		   ILK_ELPIN_409_SELECT);
8645
8646	I915_WRITE(WM3_LP_ILK, 0);
8647	I915_WRITE(WM2_LP_ILK, 0);
8648	I915_WRITE(WM1_LP_ILK, 0);
8649
8650	I915_WRITE(GEN6_UCGCTL1,
8651		   I915_READ(GEN6_UCGCTL1) |
8652		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE);
8653
8654	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
8655	 * gating disable must be set.  Failure to set it results in
8656	 * flickering pixels due to Z write ordering failures after
8657	 * some amount of runtime in the Mesa "fire" demo, and Unigine
8658	 * Sanctuary and Tropics, and apparently anything else with
8659	 * alpha test or pixel discard.
8660	 *
8661	 * According to the spec, bit 11 (RCCUNIT) must also be set,
8662	 * but we didn't debug actual testcases to find it out.
8663	 */
8664	I915_WRITE(GEN6_UCGCTL2,
8665		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
8666		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
8667
8668	/*
8669	 * According to the spec the following bits should be
8670	 * set in order to enable memory self-refresh and fbc:
8671	 * The bit21 and bit22 of 0x42000
8672	 * The bit21 and bit22 of 0x42004
8673	 * The bit5 and bit7 of 0x42020
8674	 * The bit14 of 0x70180
8675	 * The bit14 of 0x71180
8676	 */
8677	I915_WRITE(ILK_DISPLAY_CHICKEN1,
8678		   I915_READ(ILK_DISPLAY_CHICKEN1) |
8679		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
8680	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8681		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8682		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
8683	I915_WRITE(ILK_DSPCLK_GATE,
8684		   I915_READ(ILK_DSPCLK_GATE) |
8685		   ILK_DPARB_CLK_GATE  |
8686		   ILK_DPFD_CLK_GATE);
8687
8688	for_each_pipe(pipe) {
8689		I915_WRITE(DSPCNTR(pipe),
8690			   I915_READ(DSPCNTR(pipe)) |
8691			   DISPPLANE_TRICKLE_FEED_DISABLE);
8692		intel_flush_display_plane(dev_priv, pipe);
8693	}
8694}
8695
8696static void ivybridge_init_clock_gating(struct drm_device *dev)
8697{
8698	struct drm_i915_private *dev_priv = dev->dev_private;
8699	int pipe;
8700	uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
8701
8702	I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
8703
8704	I915_WRITE(WM3_LP_ILK, 0);
8705	I915_WRITE(WM2_LP_ILK, 0);
8706	I915_WRITE(WM1_LP_ILK, 0);
8707
8708	/* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
8709	 * This implements the WaDisableRCZUnitClockGating workaround.
8710	 */
8711	I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
8712
8713	I915_WRITE(ILK_DSPCLK_GATE, IVB_VRHUNIT_CLK_GATE);
8714
8715	I915_WRITE(IVB_CHICKEN3,
8716		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
8717		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
8718
8719	/* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
8720	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
8721		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
8722
8723	/* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
8724	I915_WRITE(GEN7_L3CNTLREG1,
8725			GEN7_WA_FOR_GEN7_L3_CONTROL);
8726	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
8727			GEN7_WA_L3_CHICKEN_MODE);
8728
8729	/* This is required by WaCatErrorRejectionIssue */
8730	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
8731			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
8732			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
8733
8734	for_each_pipe(pipe) {
8735		I915_WRITE(DSPCNTR(pipe),
8736			   I915_READ(DSPCNTR(pipe)) |
8737			   DISPPLANE_TRICKLE_FEED_DISABLE);
8738		intel_flush_display_plane(dev_priv, pipe);
8739	}
8740}
8741
8742static void g4x_init_clock_gating(struct drm_device *dev)
8743{
8744	struct drm_i915_private *dev_priv = dev->dev_private;
8745	uint32_t dspclk_gate;
8746
8747	I915_WRITE(RENCLK_GATE_D1, 0);
8748	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
8749		   GS_UNIT_CLOCK_GATE_DISABLE |
8750		   CL_UNIT_CLOCK_GATE_DISABLE);
8751	I915_WRITE(RAMCLK_GATE_D, 0);
8752	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
8753		OVRUNIT_CLOCK_GATE_DISABLE |
8754		OVCUNIT_CLOCK_GATE_DISABLE;
8755	if (IS_GM45(dev))
8756		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
8757	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
8758}
8759
8760static void crestline_init_clock_gating(struct drm_device *dev)
8761{
8762	struct drm_i915_private *dev_priv = dev->dev_private;
8763
8764	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
8765	I915_WRITE(RENCLK_GATE_D2, 0);
8766	I915_WRITE(DSPCLK_GATE_D, 0);
8767	I915_WRITE(RAMCLK_GATE_D, 0);
8768	I915_WRITE16(DEUC, 0);
8769}
8770
8771static void broadwater_init_clock_gating(struct drm_device *dev)
8772{
8773	struct drm_i915_private *dev_priv = dev->dev_private;
8774
8775	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
8776		   I965_RCC_CLOCK_GATE_DISABLE |
8777		   I965_RCPB_CLOCK_GATE_DISABLE |
8778		   I965_ISC_CLOCK_GATE_DISABLE |
8779		   I965_FBC_CLOCK_GATE_DISABLE);
8780	I915_WRITE(RENCLK_GATE_D2, 0);
8781}
8782
8783static void gen3_init_clock_gating(struct drm_device *dev)
8784{
8785	struct drm_i915_private *dev_priv = dev->dev_private;
8786	u32 dstate = I915_READ(D_STATE);
8787
8788	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
8789		DSTATE_DOT_CLOCK_GATING;
8790	I915_WRITE(D_STATE, dstate);
8791}
8792
8793static void i85x_init_clock_gating(struct drm_device *dev)
8794{
8795	struct drm_i915_private *dev_priv = dev->dev_private;
8796
8797	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
8798}
8799
8800static void i830_init_clock_gating(struct drm_device *dev)
8801{
8802	struct drm_i915_private *dev_priv = dev->dev_private;
8803
8804	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
8805}
8806
8807static void ibx_init_clock_gating(struct drm_device *dev)
8808{
8809	struct drm_i915_private *dev_priv = dev->dev_private;
8810
8811	/*
8812	 * On Ibex Peak and Cougar Point, we need to disable clock
8813	 * gating for the panel power sequencer or it will fail to
8814	 * start up when no ports are active.
8815	 */
8816	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8817}
8818
8819static void cpt_init_clock_gating(struct drm_device *dev)
8820{
8821	struct drm_i915_private *dev_priv = dev->dev_private;
8822	int pipe;
8823
8824	/*
8825	 * On Ibex Peak and Cougar Point, we need to disable clock
8826	 * gating for the panel power sequencer or it will fail to
8827	 * start up when no ports are active.
8828	 */
8829	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8830	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8831		   DPLS_EDP_PPS_FIX_DIS);
8832	/* Without this, mode sets may fail silently on FDI */
8833	for_each_pipe(pipe)
8834		I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_AUTOTRAIN_GEN_STALL_DIS);
8835}
8836
8837static void ironlake_teardown_rc6(struct drm_device *dev)
8838{
8839	struct drm_i915_private *dev_priv = dev->dev_private;
8840
8841	if (dev_priv->renderctx) {
8842		i915_gem_object_unpin(dev_priv->renderctx);
8843		drm_gem_object_unreference(&dev_priv->renderctx->base);
8844		dev_priv->renderctx = NULL;
8845	}
8846
8847	if (dev_priv->pwrctx) {
8848		i915_gem_object_unpin(dev_priv->pwrctx);
8849		drm_gem_object_unreference(&dev_priv->pwrctx->base);
8850		dev_priv->pwrctx = NULL;
8851	}
8852}
8853
8854static void ironlake_disable_rc6(struct drm_device *dev)
8855{
8856	struct drm_i915_private *dev_priv = dev->dev_private;
8857
8858	if (I915_READ(PWRCTXA)) {
8859		/* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8860		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
8861		(void)_intel_wait_for(dev,
8862		    ((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
8863		    50, 1, "915pro");
8864
8865		I915_WRITE(PWRCTXA, 0);
8866		POSTING_READ(PWRCTXA);
8867
8868		I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8869		POSTING_READ(RSTDBYCTL);
8870	}
8871
8872	ironlake_teardown_rc6(dev);
8873}
8874
8875static int ironlake_setup_rc6(struct drm_device *dev)
8876{
8877	struct drm_i915_private *dev_priv = dev->dev_private;
8878
8879	if (dev_priv->renderctx == NULL)
8880		dev_priv->renderctx = intel_alloc_context_page(dev);
8881	if (!dev_priv->renderctx)
8882		return -ENOMEM;
8883
8884	if (dev_priv->pwrctx == NULL)
8885		dev_priv->pwrctx = intel_alloc_context_page(dev);
8886	if (!dev_priv->pwrctx) {
8887		ironlake_teardown_rc6(dev);
8888		return -ENOMEM;
8889	}
8890
8891	return 0;
8892}
8893
8894void ironlake_enable_rc6(struct drm_device *dev)
8895{
8896	struct drm_i915_private *dev_priv = dev->dev_private;
8897	int ret;
8898
8899	/* rc6 disabled by default due to repeated reports of hanging during
8900	 * boot and resume.
8901	 */
8902	if (!intel_enable_rc6(dev))
8903		return;
8904
8905	DRM_LOCK(dev);
8906	ret = ironlake_setup_rc6(dev);
8907	if (ret) {
8908		DRM_UNLOCK(dev);
8909		return;
8910	}
8911
8912	/*
8913	 * GPU can automatically power down the render unit if given a page
8914	 * to save state.
8915	 */
8916	ret = BEGIN_LP_RING(6);
8917	if (ret) {
8918		ironlake_teardown_rc6(dev);
8919		DRM_UNLOCK(dev);
8920		return;
8921	}
8922
8923	OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
8924	OUT_RING(MI_SET_CONTEXT);
8925	OUT_RING(dev_priv->renderctx->gtt_offset |
8926		 MI_MM_SPACE_GTT |
8927		 MI_SAVE_EXT_STATE_EN |
8928		 MI_RESTORE_EXT_STATE_EN |
8929		 MI_RESTORE_INHIBIT);
8930	OUT_RING(MI_SUSPEND_FLUSH);
8931	OUT_RING(MI_NOOP);
8932	OUT_RING(MI_FLUSH);
8933	ADVANCE_LP_RING();
8934
8935	/*
8936	 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8937	 * does an implicit flush, combined with MI_FLUSH above, it should be
8938	 * safe to assume that renderctx is valid
8939	 */
8940	ret = intel_wait_ring_idle(LP_RING(dev_priv));
8941	if (ret) {
8942		DRM_ERROR("failed to enable ironlake power power savings\n");
8943		ironlake_teardown_rc6(dev);
8944		DRM_UNLOCK(dev);
8945		return;
8946	}
8947
8948	I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
8949	I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
8950	DRM_UNLOCK(dev);
8951}
8952
8953void intel_init_clock_gating(struct drm_device *dev)
8954{
8955	struct drm_i915_private *dev_priv = dev->dev_private;
8956
8957	dev_priv->display.init_clock_gating(dev);
8958
8959	if (dev_priv->display.init_pch_clock_gating)
8960		dev_priv->display.init_pch_clock_gating(dev);
8961}
8962
8963/* Set up chip specific display functions */
8964static void intel_init_display(struct drm_device *dev)
8965{
8966	struct drm_i915_private *dev_priv = dev->dev_private;
8967
8968	/* We always want a DPMS function */
8969	if (HAS_PCH_SPLIT(dev)) {
8970		dev_priv->display.dpms = ironlake_crtc_dpms;
8971		dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
8972		dev_priv->display.update_plane = ironlake_update_plane;
8973	} else {
8974		dev_priv->display.dpms = i9xx_crtc_dpms;
8975		dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
8976		dev_priv->display.update_plane = i9xx_update_plane;
8977	}
8978
8979	if (I915_HAS_FBC(dev)) {
8980		if (HAS_PCH_SPLIT(dev)) {
8981			dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
8982			dev_priv->display.enable_fbc = ironlake_enable_fbc;
8983			dev_priv->display.disable_fbc = ironlake_disable_fbc;
8984		} else if (IS_GM45(dev)) {
8985			dev_priv->display.fbc_enabled = g4x_fbc_enabled;
8986			dev_priv->display.enable_fbc = g4x_enable_fbc;
8987			dev_priv->display.disable_fbc = g4x_disable_fbc;
8988		} else if (IS_CRESTLINE(dev)) {
8989			dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
8990			dev_priv->display.enable_fbc = i8xx_enable_fbc;
8991			dev_priv->display.disable_fbc = i8xx_disable_fbc;
8992		}
8993		/* 855GM needs testing */
8994	}
8995
8996	/* Returns the core display clock speed */
8997	if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
8998		dev_priv->display.get_display_clock_speed =
8999			i945_get_display_clock_speed;
9000	else if (IS_I915G(dev))
9001		dev_priv->display.get_display_clock_speed =
9002			i915_get_display_clock_speed;
9003	else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
9004		dev_priv->display.get_display_clock_speed =
9005			i9xx_misc_get_display_clock_speed;
9006	else if (IS_I915GM(dev))
9007		dev_priv->display.get_display_clock_speed =
9008			i915gm_get_display_clock_speed;
9009	else if (IS_I865G(dev))
9010		dev_priv->display.get_display_clock_speed =
9011			i865_get_display_clock_speed;
9012	else if (IS_I85X(dev))
9013		dev_priv->display.get_display_clock_speed =
9014			i855_get_display_clock_speed;
9015	else /* 852, 830 */
9016		dev_priv->display.get_display_clock_speed =
9017			i830_get_display_clock_speed;
9018
9019	/* For FIFO watermark updates */
9020	if (HAS_PCH_SPLIT(dev)) {
9021		dev_priv->display.force_wake_get = __gen6_gt_force_wake_get;
9022		dev_priv->display.force_wake_put = __gen6_gt_force_wake_put;
9023
9024		/* IVB configs may use multi-threaded forcewake */
9025		if (IS_IVYBRIDGE(dev)) {
9026			u32	ecobus;
9027
9028			/* A small trick here - if the bios hasn't configured MT forcewake,
9029			 * and if the device is in RC6, then force_wake_mt_get will not wake
9030			 * the device and the ECOBUS read will return zero. Which will be
9031			 * (correctly) interpreted by the test below as MT forcewake being
9032			 * disabled.
9033			 */
9034			DRM_LOCK(dev);
9035			__gen6_gt_force_wake_mt_get(dev_priv);
9036			ecobus = I915_READ_NOTRACE(ECOBUS);
9037			__gen6_gt_force_wake_mt_put(dev_priv);
9038			DRM_UNLOCK(dev);
9039
9040			if (ecobus & FORCEWAKE_MT_ENABLE) {
9041				DRM_DEBUG_KMS("Using MT version of forcewake\n");
9042				dev_priv->display.force_wake_get =
9043					__gen6_gt_force_wake_mt_get;
9044				dev_priv->display.force_wake_put =
9045					__gen6_gt_force_wake_mt_put;
9046			}
9047		}
9048
9049		if (HAS_PCH_IBX(dev))
9050			dev_priv->display.init_pch_clock_gating = ibx_init_clock_gating;
9051		else if (HAS_PCH_CPT(dev))
9052			dev_priv->display.init_pch_clock_gating = cpt_init_clock_gating;
9053
9054		if (IS_GEN5(dev)) {
9055			if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
9056				dev_priv->display.update_wm = ironlake_update_wm;
9057			else {
9058				DRM_DEBUG_KMS("Failed to get proper latency. "
9059					      "Disable CxSR\n");
9060				dev_priv->display.update_wm = NULL;
9061			}
9062			dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
9063			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
9064			dev_priv->display.write_eld = ironlake_write_eld;
9065		} else if (IS_GEN6(dev)) {
9066			if (SNB_READ_WM0_LATENCY()) {
9067				dev_priv->display.update_wm = sandybridge_update_wm;
9068				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9069			} else {
9070				DRM_DEBUG_KMS("Failed to read display plane latency. "
9071					      "Disable CxSR\n");
9072				dev_priv->display.update_wm = NULL;
9073			}
9074			dev_priv->display.fdi_link_train = gen6_fdi_link_train;
9075			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9076			dev_priv->display.write_eld = ironlake_write_eld;
9077		} else if (IS_IVYBRIDGE(dev)) {
9078			/* FIXME: detect B0+ stepping and use auto training */
9079			dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
9080			if (SNB_READ_WM0_LATENCY()) {
9081				dev_priv->display.update_wm = sandybridge_update_wm;
9082				dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
9083			} else {
9084				DRM_DEBUG_KMS("Failed to read display plane latency. "
9085					      "Disable CxSR\n");
9086				dev_priv->display.update_wm = NULL;
9087			}
9088			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
9089			dev_priv->display.write_eld = ironlake_write_eld;
9090		} else
9091			dev_priv->display.update_wm = NULL;
9092	} else if (IS_PINEVIEW(dev)) {
9093		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
9094					    dev_priv->is_ddr3,
9095					    dev_priv->fsb_freq,
9096					    dev_priv->mem_freq)) {
9097			DRM_INFO("failed to find known CxSR latency "
9098				 "(found ddr%s fsb freq %d, mem freq %d), "
9099				 "disabling CxSR\n",
9100				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9101				 dev_priv->fsb_freq, dev_priv->mem_freq);
9102			/* Disable CxSR and never update its watermark again */
9103			pineview_disable_cxsr(dev);
9104			dev_priv->display.update_wm = NULL;
9105		} else
9106			dev_priv->display.update_wm = pineview_update_wm;
9107		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9108	} else if (IS_G4X(dev)) {
9109		dev_priv->display.write_eld = g4x_write_eld;
9110		dev_priv->display.update_wm = g4x_update_wm;
9111		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9112	} else if (IS_GEN4(dev)) {
9113		dev_priv->display.update_wm = i965_update_wm;
9114		if (IS_CRESTLINE(dev))
9115			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
9116		else if (IS_BROADWATER(dev))
9117			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
9118	} else if (IS_GEN3(dev)) {
9119		dev_priv->display.update_wm = i9xx_update_wm;
9120		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9121		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9122	} else if (IS_I865G(dev)) {
9123		dev_priv->display.update_wm = i830_update_wm;
9124		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9125		dev_priv->display.get_fifo_size = i830_get_fifo_size;
9126	} else if (IS_I85X(dev)) {
9127		dev_priv->display.update_wm = i9xx_update_wm;
9128		dev_priv->display.get_fifo_size = i85x_get_fifo_size;
9129		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9130	} else {
9131		dev_priv->display.update_wm = i830_update_wm;
9132		dev_priv->display.init_clock_gating = i830_init_clock_gating;
9133		if (IS_845G(dev))
9134			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9135		else
9136			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9137	}
9138
9139	/* Default just returns -ENODEV to indicate unsupported */
9140	dev_priv->display.queue_flip = intel_default_queue_flip;
9141
9142	switch (INTEL_INFO(dev)->gen) {
9143	case 2:
9144		dev_priv->display.queue_flip = intel_gen2_queue_flip;
9145		break;
9146
9147	case 3:
9148		dev_priv->display.queue_flip = intel_gen3_queue_flip;
9149		break;
9150
9151	case 4:
9152	case 5:
9153		dev_priv->display.queue_flip = intel_gen4_queue_flip;
9154		break;
9155
9156	case 6:
9157		dev_priv->display.queue_flip = intel_gen6_queue_flip;
9158		break;
9159	case 7:
9160		dev_priv->display.queue_flip = intel_gen7_queue_flip;
9161		break;
9162	}
9163}
9164
9165/*
9166 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
9167 * resume, or other times.  This quirk makes sure that's the case for
9168 * affected systems.
9169 */
9170static void quirk_pipea_force(struct drm_device *dev)
9171{
9172	struct drm_i915_private *dev_priv = dev->dev_private;
9173
9174	dev_priv->quirks |= QUIRK_PIPEA_FORCE;
9175	DRM_DEBUG("applying pipe a force quirk\n");
9176}
9177
9178/*
9179 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
9180 */
9181static void quirk_ssc_force_disable(struct drm_device *dev)
9182{
9183	struct drm_i915_private *dev_priv = dev->dev_private;
9184	dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
9185}
9186
9187struct intel_quirk {
9188	int device;
9189	int subsystem_vendor;
9190	int subsystem_device;
9191	void (*hook)(struct drm_device *dev);
9192};
9193
9194#define	PCI_ANY_ID	(~0u)
9195
9196struct intel_quirk intel_quirks[] = {
9197	/* HP Mini needs pipe A force quirk (LP: #322104) */
9198	{ 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
9199
9200	/* Thinkpad R31 needs pipe A force quirk */
9201	{ 0x3577, 0x1014, 0x0505, quirk_pipea_force },
9202	/* Toshiba Protege R-205, S-209 needs pipe A force quirk */
9203	{ 0x2592, 0x1179, 0x0001, quirk_pipea_force },
9204
9205	/* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
9206	{ 0x3577,  0x1014, 0x0513, quirk_pipea_force },
9207	/* ThinkPad X40 needs pipe A force quirk */
9208
9209	/* ThinkPad T60 needs pipe A force quirk (bug #16494) */
9210	{ 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
9211
9212	/* 855 & before need to leave pipe A & dpll A up */
9213	{ 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9214	{ 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
9215
9216	/* Lenovo U160 cannot use SSC on LVDS */
9217	{ 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
9218
9219	/* Sony Vaio Y cannot use SSC on LVDS */
9220	{ 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
9221};
9222
9223static void intel_init_quirks(struct drm_device *dev)
9224{
9225	struct intel_quirk *q;
9226	device_t d;
9227	int i;
9228
9229	d = dev->device;
9230	for (i = 0; i < DRM_ARRAY_SIZE(intel_quirks); i++) {
9231		q = &intel_quirks[i];
9232		if (pci_get_device(d) == q->device &&
9233		    (pci_get_subvendor(d) == q->subsystem_vendor ||
9234		     q->subsystem_vendor == PCI_ANY_ID) &&
9235		    (pci_get_subdevice(d) == q->subsystem_device ||
9236		     q->subsystem_device == PCI_ANY_ID))
9237			q->hook(dev);
9238	}
9239}
9240
9241/* Disable the VGA plane that we never use */
9242static void i915_disable_vga(struct drm_device *dev)
9243{
9244	struct drm_i915_private *dev_priv = dev->dev_private;
9245	u8 sr1;
9246	u32 vga_reg;
9247
9248	if (HAS_PCH_SPLIT(dev))
9249		vga_reg = CPU_VGACNTRL;
9250	else
9251		vga_reg = VGACNTRL;
9252
9253#if 0
9254	vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
9255#endif
9256	outb(VGA_SR_INDEX, 1);
9257	sr1 = inb(VGA_SR_DATA);
9258	outb(VGA_SR_DATA, sr1 | 1 << 5);
9259#if 0
9260	vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
9261#endif
9262	DELAY(300);
9263
9264	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9265	POSTING_READ(vga_reg);
9266}
9267
9268void intel_modeset_init(struct drm_device *dev)
9269{
9270	struct drm_i915_private *dev_priv = dev->dev_private;
9271	int i, ret;
9272
9273	drm_mode_config_init(dev);
9274
9275	dev->mode_config.min_width = 0;
9276	dev->mode_config.min_height = 0;
9277
9278	dev->mode_config.preferred_depth = 24;
9279	dev->mode_config.prefer_shadow = 1;
9280
9281	dev->mode_config.funcs = __DECONST(struct drm_mode_config_funcs *,
9282	    &intel_mode_funcs);
9283
9284	intel_init_quirks(dev);
9285
9286	intel_init_display(dev);
9287
9288	if (IS_GEN2(dev)) {
9289		dev->mode_config.max_width = 2048;
9290		dev->mode_config.max_height = 2048;
9291	} else if (IS_GEN3(dev)) {
9292		dev->mode_config.max_width = 4096;
9293		dev->mode_config.max_height = 4096;
9294	} else {
9295		dev->mode_config.max_width = 8192;
9296		dev->mode_config.max_height = 8192;
9297	}
9298	dev->mode_config.fb_base = dev->agp->base;
9299
9300	DRM_DEBUG_KMS("%d display pipe%s available.\n",
9301		      dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
9302
9303	for (i = 0; i < dev_priv->num_pipe; i++) {
9304		intel_crtc_init(dev, i);
9305		ret = intel_plane_init(dev, i);
9306		if (ret)
9307			DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
9308	}
9309
9310	/* Just disable it once at startup */
9311	i915_disable_vga(dev);
9312	intel_setup_outputs(dev);
9313
9314	intel_init_clock_gating(dev);
9315
9316	if (IS_IRONLAKE_M(dev)) {
9317		ironlake_enable_drps(dev);
9318		intel_init_emon(dev);
9319	}
9320
9321	if (IS_GEN6(dev)) {
9322		gen6_enable_rps(dev_priv);
9323		gen6_update_ring_freq(dev_priv);
9324	}
9325
9326	TASK_INIT(&dev_priv->idle_task, 0, intel_idle_update, dev_priv);
9327	callout_init(&dev_priv->idle_callout, CALLOUT_MPSAFE);
9328}
9329
9330void intel_modeset_gem_init(struct drm_device *dev)
9331{
9332	if (IS_IRONLAKE_M(dev))
9333		ironlake_enable_rc6(dev);
9334
9335	intel_setup_overlay(dev);
9336}
9337
9338void intel_modeset_cleanup(struct drm_device *dev)
9339{
9340	struct drm_i915_private *dev_priv = dev->dev_private;
9341	struct drm_crtc *crtc;
9342	struct intel_crtc *intel_crtc;
9343
9344	drm_kms_helper_poll_fini(dev);
9345	DRM_LOCK(dev);
9346
9347#if 0
9348	intel_unregister_dsm_handler();
9349#endif
9350
9351	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9352		/* Skip inactive CRTCs */
9353		if (!crtc->fb)
9354			continue;
9355
9356		intel_crtc = to_intel_crtc(crtc);
9357		intel_increase_pllclock(crtc);
9358	}
9359
9360	intel_disable_fbc(dev);
9361
9362	if (IS_IRONLAKE_M(dev))
9363		ironlake_disable_drps(dev);
9364	if (IS_GEN6(dev))
9365		gen6_disable_rps(dev);
9366
9367	if (IS_IRONLAKE_M(dev))
9368		ironlake_disable_rc6(dev);
9369
9370	/* Disable the irq before mode object teardown, for the irq might
9371	 * enqueue unpin/hotplug work. */
9372	drm_irq_uninstall(dev);
9373	DRM_UNLOCK(dev);
9374
9375	if (taskqueue_cancel(dev_priv->tq, &dev_priv->hotplug_task, NULL))
9376		taskqueue_drain(dev_priv->tq, &dev_priv->hotplug_task);
9377	if (taskqueue_cancel(dev_priv->tq, &dev_priv->rps_task, NULL))
9378		taskqueue_drain(dev_priv->tq, &dev_priv->rps_task);
9379
9380	/* Shut off idle work before the crtcs get freed. */
9381	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
9382		intel_crtc = to_intel_crtc(crtc);
9383		callout_drain(&intel_crtc->idle_callout);
9384	}
9385	callout_drain(&dev_priv->idle_callout);
9386	if (taskqueue_cancel(dev_priv->tq, &dev_priv->idle_task, NULL))
9387		taskqueue_drain(dev_priv->tq, &dev_priv->idle_task);
9388
9389	drm_mode_config_cleanup(dev);
9390}
9391
9392/*
9393 * Return which encoder is currently attached for connector.
9394 */
9395struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
9396{
9397	return &intel_attached_encoder(connector)->base;
9398}
9399
9400void intel_connector_attach_encoder(struct intel_connector *connector,
9401				    struct intel_encoder *encoder)
9402{
9403	connector->encoder = encoder;
9404	drm_mode_connector_attach_encoder(&connector->base,
9405					  &encoder->base);
9406}
9407
9408/*
9409 * set vga decode state - true == enable VGA decode
9410 */
9411int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
9412{
9413	struct drm_i915_private *dev_priv;
9414	device_t bridge_dev;
9415	u16 gmch_ctrl;
9416
9417	dev_priv = dev->dev_private;
9418	bridge_dev = intel_gtt_get_bridge_device();
9419	gmch_ctrl = pci_read_config(bridge_dev, INTEL_GMCH_CTRL, 2);
9420	if (state)
9421		gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
9422	else
9423		gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
9424	pci_write_config(bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl, 2);
9425	return (0);
9426}
9427
9428struct intel_display_error_state {
9429	struct intel_cursor_error_state {
9430		u32 control;
9431		u32 position;
9432		u32 base;
9433		u32 size;
9434	} cursor[2];
9435
9436	struct intel_pipe_error_state {
9437		u32 conf;
9438		u32 source;
9439
9440		u32 htotal;
9441		u32 hblank;
9442		u32 hsync;
9443		u32 vtotal;
9444		u32 vblank;
9445		u32 vsync;
9446	} pipe[2];
9447
9448	struct intel_plane_error_state {
9449		u32 control;
9450		u32 stride;
9451		u32 size;
9452		u32 pos;
9453		u32 addr;
9454		u32 surface;
9455		u32 tile_offset;
9456	} plane[2];
9457};
9458
9459struct intel_display_error_state *
9460intel_display_capture_error_state(struct drm_device *dev)
9461{
9462	drm_i915_private_t *dev_priv = dev->dev_private;
9463	struct intel_display_error_state *error;
9464	int i;
9465
9466	error = malloc(sizeof(*error), DRM_MEM_KMS, M_NOWAIT);
9467	if (error == NULL)
9468		return NULL;
9469
9470	for (i = 0; i < 2; i++) {
9471		error->cursor[i].control = I915_READ(CURCNTR(i));
9472		error->cursor[i].position = I915_READ(CURPOS(i));
9473		error->cursor[i].base = I915_READ(CURBASE(i));
9474
9475		error->plane[i].control = I915_READ(DSPCNTR(i));
9476		error->plane[i].stride = I915_READ(DSPSTRIDE(i));
9477		error->plane[i].size = I915_READ(DSPSIZE(i));
9478		error->plane[i].pos = I915_READ(DSPPOS(i));
9479		error->plane[i].addr = I915_READ(DSPADDR(i));
9480		if (INTEL_INFO(dev)->gen >= 4) {
9481			error->plane[i].surface = I915_READ(DSPSURF(i));
9482			error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
9483		}
9484
9485		error->pipe[i].conf = I915_READ(PIPECONF(i));
9486		error->pipe[i].source = I915_READ(PIPESRC(i));
9487		error->pipe[i].htotal = I915_READ(HTOTAL(i));
9488		error->pipe[i].hblank = I915_READ(HBLANK(i));
9489		error->pipe[i].hsync = I915_READ(HSYNC(i));
9490		error->pipe[i].vtotal = I915_READ(VTOTAL(i));
9491		error->pipe[i].vblank = I915_READ(VBLANK(i));
9492		error->pipe[i].vsync = I915_READ(VSYNC(i));
9493	}
9494
9495	return error;
9496}
9497
9498void
9499intel_display_print_error_state(struct sbuf *m,
9500				struct drm_device *dev,
9501				struct intel_display_error_state *error)
9502{
9503	int i;
9504
9505	for (i = 0; i < 2; i++) {
9506		sbuf_printf(m, "Pipe [%d]:\n", i);
9507		sbuf_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
9508		sbuf_printf(m, "  SRC: %08x\n", error->pipe[i].source);
9509		sbuf_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
9510		sbuf_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
9511		sbuf_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
9512		sbuf_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
9513		sbuf_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
9514		sbuf_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
9515
9516		sbuf_printf(m, "Plane [%d]:\n", i);
9517		sbuf_printf(m, "  CNTR: %08x\n", error->plane[i].control);
9518		sbuf_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
9519		sbuf_printf(m, "  SIZE: %08x\n", error->plane[i].size);
9520		sbuf_printf(m, "  POS: %08x\n", error->plane[i].pos);
9521		sbuf_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
9522		if (INTEL_INFO(dev)->gen >= 4) {
9523			sbuf_printf(m, "  SURF: %08x\n", error->plane[i].surface);
9524			sbuf_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
9525		}
9526
9527		sbuf_printf(m, "Cursor [%d]:\n", i);
9528		sbuf_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
9529		sbuf_printf(m, "  POS: %08x\n", error->cursor[i].position);
9530		sbuf_printf(m, "  BASE: %08x\n", error->cursor[i].base);
9531	}
9532}
9533