1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/sbuf.h>
42#include <sys/taskqueue.h>
43#include <sys/sysctl.h>
44#include <sys/smp.h>
45#include <net/bpf.h>
46#include <net/ethernet.h>
47#include <net/if.h>
48#include <net/if_vlan_var.h>
49#include <netinet/in.h>
50#include <netinet/ip.h>
51#include <netinet/ip6.h>
52#include <netinet/tcp.h>
53#include <machine/md_var.h>
54#include <vm/vm.h>
55#include <vm/pmap.h>
56
57#include "common/common.h"
58#include "common/t4_regs.h"
59#include "common/t4_regs_values.h"
60#include "common/t4_msg.h"
61
62#ifdef T4_PKT_TIMESTAMP
63#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
64#else
65#define RX_COPY_THRESHOLD MINCLSIZE
66#endif
67
68/*
69 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
70 * 0-7 are valid values.
71 */
72static int fl_pktshift = 2;
73TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
74
75/*
76 * Pad ethernet payload up to this boundary.
77 * -1: driver should figure out a good value.
78 *  0: disable padding.
79 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
80 */
81static int fl_pad = -1;
82TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
83
84/*
85 * Status page length.
86 * -1: driver should figure out a good value.
87 *  64 or 128 are the only other valid values.
88 */
89static int spg_len = -1;
90TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
91
92/*
93 * Congestion drops.
94 * -1: no congestion feedback (not recommended).
95 *  0: backpressure the channel instead of dropping packets right away.
96 *  1: no backpressure, drop packets for the congested queue immediately.
97 */
98static int cong_drop = 0;
99TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
100
101/*
102 * Deliver multiple frames in the same free list buffer if they fit.
103 * -1: let the driver decide whether to enable buffer packing or not.
104 *  0: disable buffer packing.
105 *  1: enable buffer packing.
106 */
107static int buffer_packing = -1;
108TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
109
110/*
111 * Start next frame in a packed buffer at this boundary.
112 * -1: driver should figure out a good value.
113 * T4:
114 * ---
115 * if fl_pad != 0
116 * 	value specified here will be overridden by fl_pad.
117 * else
118 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
119 * T5:
120 * ---
121 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
122 */
123static int fl_pack = -1;
124static int t4_fl_pack;
125static int t5_fl_pack;
126TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
127
128/*
129 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
130 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
131 * 1: ok to create mbuf(s) within a cluster if there is room.
132 */
133static int allow_mbufs_in_cluster = 1;
134TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
135
136/*
137 * Largest rx cluster size that the driver is allowed to allocate.
138 */
139static int largest_rx_cluster = MJUM16BYTES;
140TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
141
142/*
143 * Size of cluster allocation that's most likely to succeed.  The driver will
144 * fall back to this size if it fails to allocate clusters larger than this.
145 */
146static int safest_rx_cluster = PAGE_SIZE;
147TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
148
149/* Used to track coalesced tx work request */
150struct txpkts {
151	uint64_t *flitp;	/* ptr to flit where next pkt should start */
152	uint8_t npkt;		/* # of packets in this work request */
153	uint8_t nflits;		/* # of flits used by this work request */
154	uint16_t plen;		/* total payload (sum of all packets) */
155};
156
157/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
158struct sgl {
159	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
160	int nflits;		/* # of flits needed for the SGL */
161	bus_dma_segment_t seg[TX_SGL_SEGS];
162};
163
164static int service_iq(struct sge_iq *, int);
165static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
166    int *);
167static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
168static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
169    int);
170static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
171    char *);
172static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
173    char *);
174static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
175    bus_addr_t *, void **);
176static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
177    void *);
178static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
179    int, int);
180static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
181static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
182    struct sge_fl *);
183static int alloc_fwq(struct adapter *);
184static int free_fwq(struct adapter *);
185static int alloc_mgmtq(struct adapter *);
186static int free_mgmtq(struct adapter *);
187static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
188    struct sysctl_oid *);
189static int free_rxq(struct port_info *, struct sge_rxq *);
190#ifdef TCP_OFFLOAD
191static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
192    struct sysctl_oid *);
193static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
194#endif
195static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
196static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
197#ifdef TCP_OFFLOAD
198static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
199#endif
200static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
201static int free_eq(struct adapter *, struct sge_eq *);
202static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
203    struct sysctl_oid *);
204static int free_wrq(struct adapter *, struct sge_wrq *);
205static int alloc_txq(struct port_info *, struct sge_txq *, int,
206    struct sysctl_oid *);
207static int free_txq(struct port_info *, struct sge_txq *);
208static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
209static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
210static inline void iq_next(struct sge_iq *);
211static inline void ring_fl_db(struct adapter *, struct sge_fl *);
212static int refill_fl(struct adapter *, struct sge_fl *, int);
213static void refill_sfl(void *);
214static int alloc_fl_sdesc(struct sge_fl *);
215static void free_fl_sdesc(struct adapter *, struct sge_fl *);
216static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
217static void find_safe_refill_source(struct adapter *, struct sge_fl *);
218static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
219
220static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
221static int free_pkt_sgl(struct sge_txq *, struct sgl *);
222static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
223    struct sgl *);
224static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
225    struct mbuf *, struct sgl *);
226static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
227static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
228    struct txpkts *, struct mbuf *, struct sgl *);
229static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
230static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
231static inline void ring_eq_db(struct adapter *, struct sge_eq *);
232static inline int reclaimable(struct sge_eq *);
233static int reclaim_tx_descs(struct sge_txq *, int, int);
234static void write_eqflush_wr(struct sge_eq *);
235static __be64 get_flit(bus_dma_segment_t *, int, int);
236static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
237    struct mbuf *);
238static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
239    struct mbuf *);
240
241static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
242static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
243
244/*
245 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
246 */
247void
248t4_sge_modload(void)
249{
250	int pad;
251
252	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
253#if defined(__i386__) || defined(__amd64__)
254	pad = max(cpu_clflush_line_size, 16);
255#else
256	pad = max(CACHE_LINE_SIZE, 16);
257#endif
258	pad = min(pad, 4096);
259
260	if (fl_pktshift < 0 || fl_pktshift > 7) {
261		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
262		    " using 2 instead.\n", fl_pktshift);
263		fl_pktshift = 2;
264	}
265
266	if (fl_pad != 0 &&
267	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
268
269		if (fl_pad != -1) {
270			printf("Invalid hw.cxgbe.fl_pad value (%d),"
271			    " using %d instead.\n", fl_pad, max(pad, 32));
272		}
273		fl_pad = max(pad, 32);
274	}
275
276	/*
277	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
278	 * pack boundary must be set to the same value.  Otherwise take the
279	 * specified value or auto-calculate something reasonable.
280	 */
281	if (fl_pad)
282		t4_fl_pack = fl_pad;
283	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
284		t4_fl_pack = max(pad, 32);
285	else
286		t4_fl_pack = fl_pack;
287
288	/* T5's pack boundary is independent of the pad boundary. */
289	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
290	    !powerof2(fl_pack))
291	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
292	else
293	       t5_fl_pack = fl_pack;
294
295	if (spg_len != 64 && spg_len != 128) {
296		int len;
297
298#if defined(__i386__) || defined(__amd64__)
299		len = cpu_clflush_line_size > 64 ? 128 : 64;
300#else
301		len = 64;
302#endif
303		if (spg_len != -1) {
304			printf("Invalid hw.cxgbe.spg_len value (%d),"
305			    " using %d instead.\n", spg_len, len);
306		}
307		spg_len = len;
308	}
309
310	if (cong_drop < -1 || cong_drop > 1) {
311		printf("Invalid hw.cxgbe.cong_drop value (%d),"
312		    " using 0 instead.\n", cong_drop);
313		cong_drop = 0;
314	}
315}
316
317void
318t4_init_sge_cpl_handlers(struct adapter *sc)
319{
320
321	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
322	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
323	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
324	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
325
326	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
327}
328
329/*
330 * adap->params.vpd.cclk must be set up before this is called.
331 */
332void
333t4_tweak_chip_settings(struct adapter *sc)
334{
335	int i;
336	uint32_t v, m;
337	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
338	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
339	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
340	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
341	static int sge_flbuf_sizes[] = {
342		MCLBYTES,
343#if MJUMPAGESIZE != MCLBYTES
344		MJUMPAGESIZE,
345		MJUMPAGESIZE - CL_METADATA_SIZE,
346		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
347#endif
348		MJUM9BYTES,
349		MJUM16BYTES,
350		MCLBYTES - MSIZE - CL_METADATA_SIZE,
351		MJUM9BYTES - CL_METADATA_SIZE,
352		MJUM16BYTES - CL_METADATA_SIZE,
353	};
354
355	KASSERT(sc->flags & MASTER_PF,
356	    ("%s: trying to change chip settings when not master.", __func__));
357
358	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
359	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
360	    V_EGRSTATUSPAGESIZE(spg_len == 128);
361	if (is_t4(sc) && (fl_pad || buffer_packing)) {
362		/* t4_fl_pack has the correct value even when fl_pad = 0 */
363		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
364		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
365	} else if (is_t5(sc) && fl_pad) {
366		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
367		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
368	}
369	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
370
371	if (is_t5(sc) && buffer_packing) {
372		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
373		if (t5_fl_pack == 16)
374			v = V_INGPACKBOUNDARY(0);
375		else
376			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
377		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
378	}
379
380	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
381	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
382	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
383	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
384	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
385	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
386	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
387	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
388	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
389
390	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
391	    ("%s: hw buffer size table too big", __func__));
392	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
393		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
394		    sge_flbuf_sizes[i]);
395	}
396
397	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
398	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
399	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
400
401	KASSERT(intr_timer[0] <= timer_max,
402	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
403	    timer_max));
404	for (i = 1; i < nitems(intr_timer); i++) {
405		KASSERT(intr_timer[i] >= intr_timer[i - 1],
406		    ("%s: timers not listed in increasing order (%d)",
407		    __func__, i));
408
409		while (intr_timer[i] > timer_max) {
410			if (i == nitems(intr_timer) - 1) {
411				intr_timer[i] = timer_max;
412				break;
413			}
414			intr_timer[i] += intr_timer[i - 1];
415			intr_timer[i] /= 2;
416		}
417	}
418
419	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
420	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
421	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
422	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
423	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
424	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
425	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
426	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
427	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
428
429	if (cong_drop == 0) {
430		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
431		    F_TUNNELCNGDROP3;
432		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
433	}
434
435	/* 4K, 16K, 64K, 256K DDP "page sizes" */
436	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
437	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
438
439	m = v = F_TDDPTAGTCB;
440	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
441
442	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
443	    F_RESETDDPOFFSET;
444	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
445	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
446}
447
448/*
449 * SGE wants the buffer to be at least 64B and then a multiple of the pad
450 * boundary or 16, whichever is greater.
451 */
452static inline int
453hwsz_ok(int hwsz)
454{
455	int mask = max(fl_pad, 16) - 1;
456
457	return (hwsz >= 64 && (hwsz & mask) == 0);
458}
459
460/*
461 * XXX: driver really should be able to deal with unexpected settings.
462 */
463int
464t4_read_chip_settings(struct adapter *sc)
465{
466	struct sge *s = &sc->sge;
467	int i, j, n, rc = 0;
468	uint32_t m, v, r;
469	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
470	static int sw_buf_sizes[] = {	/* Sorted by size */
471		MCLBYTES,
472#if MJUMPAGESIZE != MCLBYTES
473		MJUMPAGESIZE,
474#endif
475		MJUM9BYTES,
476		MJUM16BYTES
477	};
478	struct sw_zone_info *swz, *safe_swz;
479	struct hw_buf_info *hwb;
480
481	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
482	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
483	    V_EGRSTATUSPAGESIZE(spg_len == 128);
484	if (is_t4(sc) && (fl_pad || buffer_packing)) {
485		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
486		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
487	} else if (is_t5(sc) && fl_pad) {
488		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
489		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
490	}
491	r = t4_read_reg(sc, A_SGE_CONTROL);
492	if ((r & m) != v) {
493		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
494		rc = EINVAL;
495	}
496
497	if (is_t5(sc) && buffer_packing) {
498		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
499		if (t5_fl_pack == 16)
500			v = V_INGPACKBOUNDARY(0);
501		else
502			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
503		r = t4_read_reg(sc, A_SGE_CONTROL2);
504		if ((r & m) != v) {
505			device_printf(sc->dev,
506			    "invalid SGE_CONTROL2(0x%x)\n", r);
507			rc = EINVAL;
508		}
509	}
510	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
511
512	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
513	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
514	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
515	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
516	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
517	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
518	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
519	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
520	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
521	if (r != v) {
522		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
523		rc = EINVAL;
524	}
525
526	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
527	hwb = &s->hw_buf_info[0];
528	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
529		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
530		hwb->size = r;
531		hwb->zidx = hwsz_ok(r) ? -1 : -2;
532		hwb->next = -1;
533	}
534
535	/*
536	 * Create a sorted list in decreasing order of hw buffer sizes (and so
537	 * increasing order of spare area) for each software zone.
538	 */
539	n = 0;	/* no usable buffer size to begin with */
540	swz = &s->sw_zone_info[0];
541	safe_swz = NULL;
542	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
543		int8_t head = -1, tail = -1;
544
545		swz->size = sw_buf_sizes[i];
546		swz->zone = m_getzone(swz->size);
547		swz->type = m_gettype(swz->size);
548
549		if (swz->size == safest_rx_cluster)
550			safe_swz = swz;
551
552		hwb = &s->hw_buf_info[0];
553		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
554			if (hwb->zidx != -1 || hwb->size > swz->size)
555				continue;
556			hwb->zidx = i;
557			if (head == -1)
558				head = tail = j;
559			else if (hwb->size < s->hw_buf_info[tail].size) {
560				s->hw_buf_info[tail].next = j;
561				tail = j;
562			} else {
563				int8_t *cur;
564				struct hw_buf_info *t;
565
566				for (cur = &head; *cur != -1; cur = &t->next) {
567					t = &s->hw_buf_info[*cur];
568					if (hwb->size == t->size) {
569						hwb->zidx = -2;
570						break;
571					}
572					if (hwb->size > t->size) {
573						hwb->next = *cur;
574						*cur = j;
575						break;
576					}
577				}
578			}
579		}
580		swz->head_hwidx = head;
581		swz->tail_hwidx = tail;
582
583		if (tail != -1) {
584			n++;
585			if (swz->size - s->hw_buf_info[tail].size >=
586			    CL_METADATA_SIZE)
587				sc->flags |= BUF_PACKING_OK;
588		}
589	}
590	if (n == 0) {
591		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
592		rc = EINVAL;
593	}
594
595	s->safe_hwidx1 = -1;
596	s->safe_hwidx2 = -1;
597	if (safe_swz != NULL) {
598		s->safe_hwidx1 = safe_swz->head_hwidx;
599		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
600			int spare;
601
602			hwb = &s->hw_buf_info[i];
603			spare = safe_swz->size - hwb->size;
604			if (spare < CL_METADATA_SIZE)
605				continue;
606			if (s->safe_hwidx2 == -1 ||
607			    spare == CL_METADATA_SIZE + MSIZE)
608				s->safe_hwidx2 = i;
609			if (spare >= CL_METADATA_SIZE + MSIZE)
610				break;
611		}
612	}
613
614	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
615	s->counter_val[0] = G_THRESHOLD_0(r);
616	s->counter_val[1] = G_THRESHOLD_1(r);
617	s->counter_val[2] = G_THRESHOLD_2(r);
618	s->counter_val[3] = G_THRESHOLD_3(r);
619
620	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
621	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
622	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
623	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
624	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
625	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
626	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
627	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
628	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
629
630	if (cong_drop == 0) {
631		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
632		    F_TUNNELCNGDROP3;
633		r = t4_read_reg(sc, A_TP_PARA_REG3);
634		if (r & m) {
635			device_printf(sc->dev,
636			    "invalid TP_PARA_REG3(0x%x)\n", r);
637			rc = EINVAL;
638		}
639	}
640
641	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
642	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
643	if (r != v) {
644		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
645		rc = EINVAL;
646	}
647
648	m = v = F_TDDPTAGTCB;
649	r = t4_read_reg(sc, A_ULP_RX_CTL);
650	if ((r & m) != v) {
651		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
652		rc = EINVAL;
653	}
654
655	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
656	    F_RESETDDPOFFSET;
657	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
658	r = t4_read_reg(sc, A_TP_PARA_REG5);
659	if ((r & m) != v) {
660		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
661		rc = EINVAL;
662	}
663
664	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
665	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
666	if (is_t4(sc))
667		s->fl_starve_threshold2 = s->fl_starve_threshold;
668	else
669		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
670
671	/* egress queues: log2 of # of doorbells per BAR2 page */
672	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
673	r >>= S_QUEUESPERPAGEPF0 +
674	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
675	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
676
677	/* ingress queues: log2 of # of doorbells per BAR2 page */
678	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
679	r >>= S_QUEUESPERPAGEPF0 +
680	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
681	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
682
683	t4_init_tp_params(sc);
684
685	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
686	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
687
688	return (rc);
689}
690
691int
692t4_create_dma_tag(struct adapter *sc)
693{
694	int rc;
695
696	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
697	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
698	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
699	    NULL, &sc->dmat);
700	if (rc != 0) {
701		device_printf(sc->dev,
702		    "failed to create main DMA tag: %d\n", rc);
703	}
704
705	return (rc);
706}
707
708static inline int
709enable_buffer_packing(struct adapter *sc)
710{
711
712	if (sc->flags & BUF_PACKING_OK &&
713	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
714	    (is_t4(sc) && buffer_packing == 1)))
715		return (1);
716	return (0);
717}
718
719void
720t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
721    struct sysctl_oid_list *children)
722{
723
724	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
725	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
726	    "freelist buffer sizes");
727
728	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
729	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
730
731	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
732	    NULL, fl_pad, "payload pad boundary (bytes)");
733
734	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
735	    NULL, spg_len, "status page size (bytes)");
736
737	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
738	    NULL, cong_drop, "congestion drop setting");
739
740	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
741	    NULL, enable_buffer_packing(sc),
742	    "pack multiple frames in one fl buffer");
743
744	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
745	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
746}
747
748int
749t4_destroy_dma_tag(struct adapter *sc)
750{
751	if (sc->dmat)
752		bus_dma_tag_destroy(sc->dmat);
753
754	return (0);
755}
756
757/*
758 * Allocate and initialize the firmware event queue and the management queue.
759 *
760 * Returns errno on failure.  Resources allocated up to that point may still be
761 * allocated.  Caller is responsible for cleanup in case this function fails.
762 */
763int
764t4_setup_adapter_queues(struct adapter *sc)
765{
766	int rc;
767
768	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
769
770	sysctl_ctx_init(&sc->ctx);
771	sc->flags |= ADAP_SYSCTL_CTX;
772
773	/*
774	 * Firmware event queue
775	 */
776	rc = alloc_fwq(sc);
777	if (rc != 0)
778		return (rc);
779
780	/*
781	 * Management queue.  This is just a control queue that uses the fwq as
782	 * its associated iq.
783	 */
784	rc = alloc_mgmtq(sc);
785
786	return (rc);
787}
788
789/*
790 * Idempotent
791 */
792int
793t4_teardown_adapter_queues(struct adapter *sc)
794{
795
796	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
797
798	/* Do this before freeing the queue */
799	if (sc->flags & ADAP_SYSCTL_CTX) {
800		sysctl_ctx_free(&sc->ctx);
801		sc->flags &= ~ADAP_SYSCTL_CTX;
802	}
803
804	free_mgmtq(sc);
805	free_fwq(sc);
806
807	return (0);
808}
809
810static inline int
811first_vector(struct port_info *pi)
812{
813	struct adapter *sc = pi->adapter;
814	int rc = T4_EXTRA_INTR, i;
815
816	if (sc->intr_count == 1)
817		return (0);
818
819	for_each_port(sc, i) {
820		struct port_info *p = sc->port[i];
821
822		if (i == pi->port_id)
823			break;
824
825#ifdef TCP_OFFLOAD
826		if (sc->flags & INTR_DIRECT)
827			rc += p->nrxq + p->nofldrxq;
828		else
829			rc += max(p->nrxq, p->nofldrxq);
830#else
831		/*
832		 * Not compiled with offload support and intr_count > 1.  Only
833		 * NIC queues exist and they'd better be taking direct
834		 * interrupts.
835		 */
836		KASSERT(sc->flags & INTR_DIRECT,
837		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
838		    sc->intr_count));
839
840		rc += p->nrxq;
841#endif
842	}
843
844	return (rc);
845}
846
847/*
848 * Given an arbitrary "index," come up with an iq that can be used by other
849 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
850 * The iq returned is guaranteed to be something that takes direct interrupts.
851 */
852static struct sge_iq *
853port_intr_iq(struct port_info *pi, int idx)
854{
855	struct adapter *sc = pi->adapter;
856	struct sge *s = &sc->sge;
857	struct sge_iq *iq = NULL;
858
859	if (sc->intr_count == 1)
860		return (&sc->sge.fwq);
861
862#ifdef TCP_OFFLOAD
863	if (sc->flags & INTR_DIRECT) {
864		idx %= pi->nrxq + pi->nofldrxq;
865
866		if (idx >= pi->nrxq) {
867			idx -= pi->nrxq;
868			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
869		} else
870			iq = &s->rxq[pi->first_rxq + idx].iq;
871
872	} else {
873		idx %= max(pi->nrxq, pi->nofldrxq);
874
875		if (pi->nrxq >= pi->nofldrxq)
876			iq = &s->rxq[pi->first_rxq + idx].iq;
877		else
878			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
879	}
880#else
881	/*
882	 * Not compiled with offload support and intr_count > 1.  Only NIC
883	 * queues exist and they'd better be taking direct interrupts.
884	 */
885	KASSERT(sc->flags & INTR_DIRECT,
886	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
887
888	idx %= pi->nrxq;
889	iq = &s->rxq[pi->first_rxq + idx].iq;
890#endif
891
892	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
893	return (iq);
894}
895
896/* Maximum payload that can be delivered with a single iq descriptor */
897static inline int
898mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
899{
900	int payload;
901
902#ifdef TCP_OFFLOAD
903	if (toe) {
904		payload = sc->tt.rx_coalesce ?
905		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
906	} else {
907#endif
908		/* large enough even when hw VLAN extraction is disabled */
909		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
910		    mtu;
911#ifdef TCP_OFFLOAD
912	}
913#endif
914	payload = roundup2(payload, fl_pad);
915
916	return (payload);
917}
918
919int
920t4_setup_port_queues(struct port_info *pi)
921{
922	int rc = 0, i, j, intr_idx, iqid;
923	struct sge_rxq *rxq;
924	struct sge_txq *txq;
925	struct sge_wrq *ctrlq;
926#ifdef TCP_OFFLOAD
927	struct sge_ofld_rxq *ofld_rxq;
928	struct sge_wrq *ofld_txq;
929	struct sysctl_oid *oid2 = NULL;
930#endif
931	char name[16];
932	struct adapter *sc = pi->adapter;
933	struct ifnet *ifp = pi->ifp;
934	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
935	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
936	int maxp, pack, mtu = ifp->if_mtu;
937
938	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
939	    NULL, "rx queues");
940
941#ifdef TCP_OFFLOAD
942	if (is_offload(sc)) {
943		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
944		    CTLFLAG_RD, NULL,
945		    "rx queues for offloaded TCP connections");
946	}
947#endif
948
949	/* Interrupt vector to start from (when using multiple vectors) */
950	intr_idx = first_vector(pi);
951
952	/*
953	 * First pass over all rx queues (NIC and TOE):
954	 * a) initialize iq and fl
955	 * b) allocate queue iff it will take direct interrupts.
956	 */
957	maxp = mtu_to_max_payload(sc, mtu, 0);
958	pack = enable_buffer_packing(sc);
959	for_each_rxq(pi, i, rxq) {
960
961		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
962		    RX_IQ_ESIZE);
963
964		snprintf(name, sizeof(name), "%s rxq%d-fl",
965		    device_get_nameunit(pi->dev), i);
966		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
967
968		if (sc->flags & INTR_DIRECT
969#ifdef TCP_OFFLOAD
970		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
971#endif
972		   ) {
973			rxq->iq.flags |= IQ_INTR;
974			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
975			if (rc != 0)
976				goto done;
977			intr_idx++;
978		}
979	}
980
981#ifdef TCP_OFFLOAD
982	maxp = mtu_to_max_payload(sc, mtu, 1);
983	for_each_ofld_rxq(pi, i, ofld_rxq) {
984
985		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
986		    pi->qsize_rxq, RX_IQ_ESIZE);
987
988		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
989		    device_get_nameunit(pi->dev), i);
990		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
991
992		if (sc->flags & INTR_DIRECT ||
993		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
994			ofld_rxq->iq.flags |= IQ_INTR;
995			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
996			if (rc != 0)
997				goto done;
998			intr_idx++;
999		}
1000	}
1001#endif
1002
1003	/*
1004	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
1005	 * their interrupts are allocated now.
1006	 */
1007	j = 0;
1008	for_each_rxq(pi, i, rxq) {
1009		if (rxq->iq.flags & IQ_INTR)
1010			continue;
1011
1012		intr_idx = port_intr_iq(pi, j)->abs_id;
1013
1014		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1015		if (rc != 0)
1016			goto done;
1017		j++;
1018	}
1019
1020#ifdef TCP_OFFLOAD
1021	for_each_ofld_rxq(pi, i, ofld_rxq) {
1022		if (ofld_rxq->iq.flags & IQ_INTR)
1023			continue;
1024
1025		intr_idx = port_intr_iq(pi, j)->abs_id;
1026
1027		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
1028		if (rc != 0)
1029			goto done;
1030		j++;
1031	}
1032#endif
1033
1034	/*
1035	 * Now the tx queues.  Only one pass needed.
1036	 */
1037	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1038	    NULL, "tx queues");
1039	j = 0;
1040	for_each_txq(pi, i, txq) {
1041		uint16_t iqid;
1042
1043		iqid = port_intr_iq(pi, j)->cntxt_id;
1044
1045		snprintf(name, sizeof(name), "%s txq%d",
1046		    device_get_nameunit(pi->dev), i);
1047		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1048		    name);
1049
1050		rc = alloc_txq(pi, txq, i, oid);
1051		if (rc != 0)
1052			goto done;
1053		j++;
1054	}
1055
1056#ifdef TCP_OFFLOAD
1057	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1058	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1059	for_each_ofld_txq(pi, i, ofld_txq) {
1060		uint16_t iqid;
1061
1062		iqid = port_intr_iq(pi, j)->cntxt_id;
1063
1064		snprintf(name, sizeof(name), "%s ofld_txq%d",
1065		    device_get_nameunit(pi->dev), i);
1066		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1067		    iqid, name);
1068
1069		snprintf(name, sizeof(name), "%d", i);
1070		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1071		    name, CTLFLAG_RD, NULL, "offload tx queue");
1072
1073		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1074		if (rc != 0)
1075			goto done;
1076		j++;
1077	}
1078#endif
1079
1080	/*
1081	 * Finally, the control queue.
1082	 */
1083	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1084	    NULL, "ctrl queue");
1085	ctrlq = &sc->sge.ctrlq[pi->port_id];
1086	iqid = port_intr_iq(pi, 0)->cntxt_id;
1087	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1088	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1089	rc = alloc_wrq(sc, pi, ctrlq, oid);
1090
1091done:
1092	if (rc)
1093		t4_teardown_port_queues(pi);
1094
1095	return (rc);
1096}
1097
1098/*
1099 * Idempotent
1100 */
1101int
1102t4_teardown_port_queues(struct port_info *pi)
1103{
1104	int i;
1105	struct adapter *sc = pi->adapter;
1106	struct sge_rxq *rxq;
1107	struct sge_txq *txq;
1108#ifdef TCP_OFFLOAD
1109	struct sge_ofld_rxq *ofld_rxq;
1110	struct sge_wrq *ofld_txq;
1111#endif
1112
1113	/* Do this before freeing the queues */
1114	if (pi->flags & PORT_SYSCTL_CTX) {
1115		sysctl_ctx_free(&pi->ctx);
1116		pi->flags &= ~PORT_SYSCTL_CTX;
1117	}
1118
1119	/*
1120	 * Take down all the tx queues first, as they reference the rx queues
1121	 * (for egress updates, etc.).
1122	 */
1123
1124	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1125
1126	for_each_txq(pi, i, txq) {
1127		free_txq(pi, txq);
1128	}
1129
1130#ifdef TCP_OFFLOAD
1131	for_each_ofld_txq(pi, i, ofld_txq) {
1132		free_wrq(sc, ofld_txq);
1133	}
1134#endif
1135
1136	/*
1137	 * Then take down the rx queues that forward their interrupts, as they
1138	 * reference other rx queues.
1139	 */
1140
1141	for_each_rxq(pi, i, rxq) {
1142		if ((rxq->iq.flags & IQ_INTR) == 0)
1143			free_rxq(pi, rxq);
1144	}
1145
1146#ifdef TCP_OFFLOAD
1147	for_each_ofld_rxq(pi, i, ofld_rxq) {
1148		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1149			free_ofld_rxq(pi, ofld_rxq);
1150	}
1151#endif
1152
1153	/*
1154	 * Then take down the rx queues that take direct interrupts.
1155	 */
1156
1157	for_each_rxq(pi, i, rxq) {
1158		if (rxq->iq.flags & IQ_INTR)
1159			free_rxq(pi, rxq);
1160	}
1161
1162#ifdef TCP_OFFLOAD
1163	for_each_ofld_rxq(pi, i, ofld_rxq) {
1164		if (ofld_rxq->iq.flags & IQ_INTR)
1165			free_ofld_rxq(pi, ofld_rxq);
1166	}
1167#endif
1168
1169	return (0);
1170}
1171
1172/*
1173 * Deals with errors and the firmware event queue.  All data rx queues forward
1174 * their interrupt to the firmware event queue.
1175 */
1176void
1177t4_intr_all(void *arg)
1178{
1179	struct adapter *sc = arg;
1180	struct sge_iq *fwq = &sc->sge.fwq;
1181
1182	t4_intr_err(arg);
1183	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1184		service_iq(fwq, 0);
1185		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1186	}
1187}
1188
1189/* Deals with error interrupts */
1190void
1191t4_intr_err(void *arg)
1192{
1193	struct adapter *sc = arg;
1194
1195	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1196	t4_slow_intr_handler(sc);
1197}
1198
1199void
1200t4_intr_evt(void *arg)
1201{
1202	struct sge_iq *iq = arg;
1203
1204	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1205		service_iq(iq, 0);
1206		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1207	}
1208}
1209
1210void
1211t4_intr(void *arg)
1212{
1213	struct sge_iq *iq = arg;
1214
1215	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1216		service_iq(iq, 0);
1217		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1218	}
1219}
1220
1221/*
1222 * Deals with anything and everything on the given ingress queue.
1223 */
1224static int
1225service_iq(struct sge_iq *iq, int budget)
1226{
1227	struct sge_iq *q;
1228	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1229	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1230	struct adapter *sc = iq->adapter;
1231	struct rsp_ctrl *ctrl;
1232	const struct rss_header *rss;
1233	int ndescs = 0, limit, fl_bufs_used = 0;
1234	int rsp_type;
1235	uint32_t lq;
1236	struct mbuf *m0;
1237	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1238
1239	limit = budget ? budget : iq->qsize / 8;
1240
1241	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1242
1243	/*
1244	 * We always come back and check the descriptor ring for new indirect
1245	 * interrupts and other responses after running a single handler.
1246	 */
1247	for (;;) {
1248		while (is_new_response(iq, &ctrl)) {
1249
1250			rmb();
1251
1252			m0 = NULL;
1253			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1254			lq = be32toh(ctrl->pldbuflen_qid);
1255			rss = (const void *)iq->cdesc;
1256
1257			switch (rsp_type) {
1258			case X_RSPD_TYPE_FLBUF:
1259
1260				KASSERT(iq->flags & IQ_HAS_FL,
1261				    ("%s: data for an iq (%p) with no freelist",
1262				    __func__, iq));
1263
1264				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1265				if (__predict_false(m0 == NULL))
1266					goto process_iql;
1267#ifdef T4_PKT_TIMESTAMP
1268				/*
1269				 * 60 bit timestamp for the payload is
1270				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1271				 * in the leading free-space in the mbuf.  The
1272				 * kernel can clobber it during a pullup,
1273				 * m_copymdata, etc.  You need to make sure that
1274				 * the mbuf reaches you unmolested if you care
1275				 * about the timestamp.
1276				 */
1277				*(uint64_t *)m0->m_pktdat =
1278				    be64toh(ctrl->u.last_flit) &
1279				    0xfffffffffffffff;
1280#endif
1281
1282				/* fall through */
1283
1284			case X_RSPD_TYPE_CPL:
1285				KASSERT(rss->opcode < NUM_CPL_CMDS,
1286				    ("%s: bad opcode %02x.", __func__,
1287				    rss->opcode));
1288				sc->cpl_handler[rss->opcode](iq, rss, m0);
1289				break;
1290
1291			case X_RSPD_TYPE_INTR:
1292
1293				/*
1294				 * Interrupts should be forwarded only to queues
1295				 * that are not forwarding their interrupts.
1296				 * This means service_iq can recurse but only 1
1297				 * level deep.
1298				 */
1299				KASSERT(budget == 0,
1300				    ("%s: budget %u, rsp_type %u", __func__,
1301				    budget, rsp_type));
1302
1303				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1304				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1305				    IQS_BUSY)) {
1306					if (service_iq(q, q->qsize / 8) == 0) {
1307						atomic_cmpset_int(&q->state,
1308						    IQS_BUSY, IQS_IDLE);
1309					} else {
1310						STAILQ_INSERT_TAIL(&iql, q,
1311						    link);
1312					}
1313				}
1314				break;
1315
1316			default:
1317				sc->an_handler(iq, ctrl);
1318				break;
1319			}
1320
1321			if (fl_bufs_used >= 16) {
1322				FL_LOCK(fl);
1323				fl->needed += fl_bufs_used;
1324				refill_fl(sc, fl, 32);
1325				FL_UNLOCK(fl);
1326				fl_bufs_used = 0;
1327			}
1328
1329			iq_next(iq);
1330			if (++ndescs == limit) {
1331				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1332				    V_CIDXINC(ndescs) |
1333				    V_INGRESSQID(iq->cntxt_id) |
1334				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1335				ndescs = 0;
1336
1337				if (budget) {
1338					if (fl_bufs_used) {
1339						FL_LOCK(fl);
1340						fl->needed += fl_bufs_used;
1341						refill_fl(sc, fl, 32);
1342						FL_UNLOCK(fl);
1343					}
1344					return (EINPROGRESS);
1345				}
1346			}
1347		}
1348
1349process_iql:
1350		if (STAILQ_EMPTY(&iql))
1351			break;
1352
1353		/*
1354		 * Process the head only, and send it to the back of the list if
1355		 * it's still not done.
1356		 */
1357		q = STAILQ_FIRST(&iql);
1358		STAILQ_REMOVE_HEAD(&iql, link);
1359		if (service_iq(q, q->qsize / 8) == 0)
1360			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1361		else
1362			STAILQ_INSERT_TAIL(&iql, q, link);
1363	}
1364
1365#if defined(INET) || defined(INET6)
1366	if (iq->flags & IQ_LRO_ENABLED) {
1367		struct lro_ctrl *lro = &rxq->lro;
1368		struct lro_entry *l;
1369
1370		while (!SLIST_EMPTY(&lro->lro_active)) {
1371			l = SLIST_FIRST(&lro->lro_active);
1372			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1373			tcp_lro_flush(lro, l);
1374		}
1375	}
1376#endif
1377
1378	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1379	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1380
1381	if (iq->flags & IQ_HAS_FL) {
1382		int starved;
1383
1384		FL_LOCK(fl);
1385		fl->needed += fl_bufs_used;
1386		starved = refill_fl(sc, fl, 64);
1387		FL_UNLOCK(fl);
1388		if (__predict_false(starved != 0))
1389			add_fl_to_sfl(sc, fl);
1390	}
1391
1392	return (0);
1393}
1394
1395static inline int
1396cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1397{
1398	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1399
1400	if (rc)
1401		MPASS(cll->region3 >= CL_METADATA_SIZE);
1402
1403	return (rc);
1404}
1405
1406static inline struct cluster_metadata *
1407cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1408    caddr_t cl)
1409{
1410
1411	if (cl_has_metadata(fl, cll)) {
1412		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1413
1414		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1415	}
1416	return (NULL);
1417}
1418
1419static void
1420rxb_free(void *arg1, void *arg2)
1421{
1422	uma_zone_t zone = arg1;
1423	caddr_t cl = arg2;
1424
1425	uma_zfree(zone, cl);
1426}
1427
1428/*
1429 * The mbuf returned by this function could be allocated from zone_mbuf or
1430 * constructed in spare room in the cluster.
1431 *
1432 * The mbuf carries the payload in one of these ways
1433 * a) frame inside the mbuf (mbuf from zone_mbuf)
1434 * b) m_cljset (for clusters without metadata) zone_mbuf
1435 * c) m_extaddref (cluster with metadata) inline mbuf
1436 * d) m_extaddref (cluster with metadata) zone_mbuf
1437 */
1438static struct mbuf *
1439get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1440{
1441	struct mbuf *m;
1442	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1443	struct cluster_layout *cll = &sd->cll;
1444	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1445	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1446	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1447	int len, padded_len;
1448	caddr_t payload;
1449
1450	len = min(total, hwb->size - fl->rx_offset);
1451	padded_len = roundup2(len, fl_pad);
1452	payload = sd->cl + cll->region1 + fl->rx_offset;
1453
1454	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1455
1456		/*
1457		 * Copy payload into a freshly allocated mbuf.
1458		 */
1459
1460		m = flags & M_PKTHDR ?
1461		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1462		if (m == NULL)
1463			return (NULL);
1464		fl->mbuf_allocated++;
1465#ifdef T4_PKT_TIMESTAMP
1466		/* Leave room for a timestamp */
1467		m->m_data += 8;
1468#endif
1469		/* copy data to mbuf */
1470		bcopy(payload, mtod(m, caddr_t), len);
1471
1472	} else if (sd->nimbuf * MSIZE < cll->region1) {
1473
1474		/*
1475		 * There's spare room in the cluster for an mbuf.  Create one
1476		 * and associate it with the payload that's in the cluster.
1477		 */
1478
1479		MPASS(clm != NULL);
1480		m = (struct mbuf *)(sd->cl + sd->nimbuf * MSIZE);
1481		/* No bzero required */
1482		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1483			return (NULL);
1484		fl->mbuf_inlined++;
1485		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1486		    swz->zone, sd->cl);
1487		sd->nimbuf++;
1488
1489	} else {
1490
1491		/*
1492		 * Grab an mbuf from zone_mbuf and associate it with the
1493		 * payload in the cluster.
1494		 */
1495
1496		m = flags & M_PKTHDR ?
1497		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1498		if (m == NULL)
1499			return (NULL);
1500		fl->mbuf_allocated++;
1501		if (clm != NULL) {
1502			m_extaddref(m, payload, padded_len, &clm->refcount,
1503			    rxb_free, swz->zone, sd->cl);
1504			sd->nembuf++;
1505		} else {
1506			m_cljset(m, sd->cl, swz->type);
1507			sd->cl = NULL;	/* consumed, not a recycle candidate */
1508		}
1509	}
1510	if (flags & M_PKTHDR)
1511		m->m_pkthdr.len = total;
1512	m->m_len = len;
1513
1514	if (fl->flags & FL_BUF_PACKING) {
1515		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1516		MPASS(fl->rx_offset <= hwb->size);
1517		if (fl->rx_offset < hwb->size)
1518			return (m);	/* without advancing the cidx */
1519	}
1520
1521	if (__predict_false(++fl->cidx == fl->cap))
1522		fl->cidx = 0;
1523	fl->rx_offset = 0;
1524
1525	return (m);
1526}
1527
1528static struct mbuf *
1529get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1530    int *fl_bufs_used)
1531{
1532	struct mbuf *m0, *m, **pnext;
1533	u_int nbuf, len;
1534
1535	/*
1536	 * No assertion for the fl lock because we don't need it.  This routine
1537	 * is called only from the rx interrupt handler and it only updates
1538	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1539	 * updated in the rx interrupt handler or the starvation helper routine.
1540	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1541	 * lock but this routine does not).
1542	 */
1543
1544	nbuf = 0;
1545	len = G_RSPD_LEN(len_newbuf);
1546	if (__predict_false(fl->m0 != NULL)) {
1547		M_ASSERTPKTHDR(fl->m0);
1548		MPASS(len == fl->m0->m_pkthdr.len);
1549		MPASS(fl->remaining < len);
1550
1551		m0 = fl->m0;
1552		pnext = fl->pnext;
1553		len = fl->remaining;
1554		fl->m0 = NULL;
1555		goto get_segment;
1556	}
1557
1558	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1559		nbuf++;
1560		fl->rx_offset = 0;
1561		if (__predict_false(++fl->cidx == fl->cap))
1562			fl->cidx = 0;
1563	}
1564
1565	/*
1566	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1567	 * 'len' and it may span multiple hw buffers.
1568	 */
1569
1570	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1571	if (m0 == NULL)
1572		goto done;
1573	len -= m0->m_len;
1574	pnext = &m0->m_next;
1575	while (len > 0) {
1576		nbuf++;
1577get_segment:
1578		MPASS(fl->rx_offset == 0);
1579		m = get_scatter_segment(sc, fl, len, 0);
1580		if (m == NULL) {
1581			fl->m0 = m0;
1582			fl->pnext = pnext;
1583			fl->remaining = len;
1584			m0 = NULL;
1585			goto done;
1586		}
1587		*pnext = m;
1588		pnext = &m->m_next;
1589		len -= m->m_len;
1590	}
1591	*pnext = NULL;
1592	if (fl->rx_offset == 0)
1593		nbuf++;
1594done:
1595	(*fl_bufs_used) += nbuf;
1596	return (m0);
1597}
1598
1599static int
1600t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1601{
1602	struct sge_rxq *rxq = iq_to_rxq(iq);
1603	struct ifnet *ifp = rxq->ifp;
1604	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1605#if defined(INET) || defined(INET6)
1606	struct lro_ctrl *lro = &rxq->lro;
1607#endif
1608
1609	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1610	    rss->opcode));
1611
1612	m0->m_pkthdr.len -= fl_pktshift;
1613	m0->m_len -= fl_pktshift;
1614	m0->m_data += fl_pktshift;
1615
1616	m0->m_pkthdr.rcvif = ifp;
1617	m0->m_flags |= M_FLOWID;
1618	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1619
1620	if (cpl->csum_calc && !cpl->err_vec) {
1621		if (ifp->if_capenable & IFCAP_RXCSUM &&
1622		    cpl->l2info & htobe32(F_RXF_IP)) {
1623			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1624			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1625			rxq->rxcsum++;
1626		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1627		    cpl->l2info & htobe32(F_RXF_IP6)) {
1628			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1629			    CSUM_PSEUDO_HDR);
1630			rxq->rxcsum++;
1631		}
1632
1633		if (__predict_false(cpl->ip_frag))
1634			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1635		else
1636			m0->m_pkthdr.csum_data = 0xffff;
1637	}
1638
1639	if (cpl->vlan_ex) {
1640		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1641		m0->m_flags |= M_VLANTAG;
1642		rxq->vlan_extraction++;
1643	}
1644
1645#if defined(INET) || defined(INET6)
1646	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1647	    iq->flags & IQ_LRO_ENABLED &&
1648	    tcp_lro_rx(lro, m0, 0) == 0) {
1649		/* queued for LRO */
1650	} else
1651#endif
1652	ifp->if_input(ifp, m0);
1653
1654	return (0);
1655}
1656
1657/*
1658 * Doesn't fail.  Holds on to work requests it can't send right away.
1659 */
1660void
1661t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1662{
1663	struct sge_eq *eq = &wrq->eq;
1664	int can_reclaim;
1665	caddr_t dst;
1666
1667	TXQ_LOCK_ASSERT_OWNED(wrq);
1668#ifdef TCP_OFFLOAD
1669	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1670	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1671	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1672#else
1673	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1674	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1675#endif
1676
1677	if (__predict_true(wr != NULL))
1678		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1679
1680	can_reclaim = reclaimable(eq);
1681	if (__predict_false(eq->flags & EQ_STALLED)) {
1682		if (can_reclaim < tx_resume_threshold(eq))
1683			return;
1684		eq->flags &= ~EQ_STALLED;
1685		eq->unstalled++;
1686	}
1687	eq->cidx += can_reclaim;
1688	eq->avail += can_reclaim;
1689	if (__predict_false(eq->cidx >= eq->cap))
1690		eq->cidx -= eq->cap;
1691
1692	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1693		int ndesc;
1694
1695		if (__predict_false(wr->wr_len < 0 ||
1696		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1697
1698#ifdef INVARIANTS
1699			panic("%s: work request with length %d", __func__,
1700			    wr->wr_len);
1701#endif
1702#ifdef KDB
1703			kdb_backtrace();
1704#endif
1705			log(LOG_ERR, "%s: %s work request with length %d",
1706			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1707			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1708			free_wrqe(wr);
1709			continue;
1710		}
1711
1712		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1713		if (eq->avail < ndesc) {
1714			wrq->no_desc++;
1715			break;
1716		}
1717
1718		dst = (void *)&eq->desc[eq->pidx];
1719		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1720
1721		eq->pidx += ndesc;
1722		eq->avail -= ndesc;
1723		if (__predict_false(eq->pidx >= eq->cap))
1724			eq->pidx -= eq->cap;
1725
1726		eq->pending += ndesc;
1727		if (eq->pending >= 8)
1728			ring_eq_db(sc, eq);
1729
1730		wrq->tx_wrs++;
1731		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1732		free_wrqe(wr);
1733
1734		if (eq->avail < 8) {
1735			can_reclaim = reclaimable(eq);
1736			eq->cidx += can_reclaim;
1737			eq->avail += can_reclaim;
1738			if (__predict_false(eq->cidx >= eq->cap))
1739				eq->cidx -= eq->cap;
1740		}
1741	}
1742
1743	if (eq->pending)
1744		ring_eq_db(sc, eq);
1745
1746	if (wr != NULL) {
1747		eq->flags |= EQ_STALLED;
1748		if (callout_pending(&eq->tx_callout) == 0)
1749			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1750	}
1751}
1752
1753/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1754#define TXPKTS_PKT_HDR ((\
1755    sizeof(struct ulp_txpkt) + \
1756    sizeof(struct ulptx_idata) + \
1757    sizeof(struct cpl_tx_pkt_core) \
1758    ) / 8)
1759
1760/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1761#define TXPKTS_WR_HDR (\
1762    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1763    TXPKTS_PKT_HDR)
1764
1765/* Header of a tx WR, before SGL of first packet (in flits) */
1766#define TXPKT_WR_HDR ((\
1767    sizeof(struct fw_eth_tx_pkt_wr) + \
1768    sizeof(struct cpl_tx_pkt_core) \
1769    ) / 8 )
1770
1771/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1772#define TXPKT_LSO_WR_HDR ((\
1773    sizeof(struct fw_eth_tx_pkt_wr) + \
1774    sizeof(struct cpl_tx_pkt_lso_core) + \
1775    sizeof(struct cpl_tx_pkt_core) \
1776    ) / 8 )
1777
1778int
1779t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1780{
1781	struct port_info *pi = (void *)ifp->if_softc;
1782	struct adapter *sc = pi->adapter;
1783	struct sge_eq *eq = &txq->eq;
1784	struct buf_ring *br = txq->br;
1785	struct mbuf *next;
1786	int rc, coalescing, can_reclaim;
1787	struct txpkts txpkts;
1788	struct sgl sgl;
1789
1790	TXQ_LOCK_ASSERT_OWNED(txq);
1791	KASSERT(m, ("%s: called with nothing to do.", __func__));
1792	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1793	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1794
1795	prefetch(&eq->desc[eq->pidx]);
1796	prefetch(&txq->sdesc[eq->pidx]);
1797
1798	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1799	coalescing = 0;
1800
1801	can_reclaim = reclaimable(eq);
1802	if (__predict_false(eq->flags & EQ_STALLED)) {
1803		if (can_reclaim < tx_resume_threshold(eq)) {
1804			txq->m = m;
1805			return (0);
1806		}
1807		eq->flags &= ~EQ_STALLED;
1808		eq->unstalled++;
1809	}
1810
1811	if (__predict_false(eq->flags & EQ_DOOMED)) {
1812		m_freem(m);
1813		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1814			m_freem(m);
1815		return (ENETDOWN);
1816	}
1817
1818	if (eq->avail < 8 && can_reclaim)
1819		reclaim_tx_descs(txq, can_reclaim, 32);
1820
1821	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1822
1823		if (eq->avail < 8)
1824			break;
1825
1826		next = m->m_nextpkt;
1827		m->m_nextpkt = NULL;
1828
1829		if (next || buf_ring_peek(br))
1830			coalescing = 1;
1831
1832		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1833		if (rc != 0) {
1834			if (rc == ENOMEM) {
1835
1836				/* Short of resources, suspend tx */
1837
1838				m->m_nextpkt = next;
1839				break;
1840			}
1841
1842			/*
1843			 * Unrecoverable error for this packet, throw it away
1844			 * and move on to the next.  get_pkt_sgl may already
1845			 * have freed m (it will be NULL in that case and the
1846			 * m_freem here is still safe).
1847			 */
1848
1849			m_freem(m);
1850			continue;
1851		}
1852
1853		if (coalescing &&
1854		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1855
1856			/* Successfully absorbed into txpkts */
1857
1858			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1859			goto doorbell;
1860		}
1861
1862		/*
1863		 * We weren't coalescing to begin with, or current frame could
1864		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1865		 * given to it can't be coalesced).  Either way there should be
1866		 * nothing in txpkts.
1867		 */
1868		KASSERT(txpkts.npkt == 0,
1869		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1870
1871		/* We're sending out individual packets now */
1872		coalescing = 0;
1873
1874		if (eq->avail < 8)
1875			reclaim_tx_descs(txq, 0, 8);
1876		rc = write_txpkt_wr(pi, txq, m, &sgl);
1877		if (rc != 0) {
1878
1879			/* Short of hardware descriptors, suspend tx */
1880
1881			/*
1882			 * This is an unlikely but expensive failure.  We've
1883			 * done all the hard work (DMA mappings etc.) and now we
1884			 * can't send out the packet.  What's worse, we have to
1885			 * spend even more time freeing up everything in sgl.
1886			 */
1887			txq->no_desc++;
1888			free_pkt_sgl(txq, &sgl);
1889
1890			m->m_nextpkt = next;
1891			break;
1892		}
1893
1894		ETHER_BPF_MTAP(ifp, m);
1895		if (sgl.nsegs == 0)
1896			m_freem(m);
1897doorbell:
1898		if (eq->pending >= 8)
1899			ring_eq_db(sc, eq);
1900
1901		can_reclaim = reclaimable(eq);
1902		if (can_reclaim >= 32)
1903			reclaim_tx_descs(txq, can_reclaim, 64);
1904	}
1905
1906	if (txpkts.npkt > 0)
1907		write_txpkts_wr(txq, &txpkts);
1908
1909	/*
1910	 * m not NULL means there was an error but we haven't thrown it away.
1911	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1912	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1913	 * will get things going again.
1914	 */
1915	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1916		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1917
1918		/*
1919		 * If EQ_CRFLUSHED is not set then we know we have at least one
1920		 * available descriptor because any WR that reduces eq->avail to
1921		 * 0 also sets EQ_CRFLUSHED.
1922		 */
1923		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1924
1925		txsd->desc_used = 1;
1926		txsd->credits = 0;
1927		write_eqflush_wr(eq);
1928	}
1929	txq->m = m;
1930
1931	if (eq->pending)
1932		ring_eq_db(sc, eq);
1933
1934	reclaim_tx_descs(txq, 0, 128);
1935
1936	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1937		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1938
1939	return (0);
1940}
1941
1942void
1943t4_update_fl_bufsize(struct ifnet *ifp)
1944{
1945	struct port_info *pi = ifp->if_softc;
1946	struct adapter *sc = pi->adapter;
1947	struct sge_rxq *rxq;
1948#ifdef TCP_OFFLOAD
1949	struct sge_ofld_rxq *ofld_rxq;
1950#endif
1951	struct sge_fl *fl;
1952	int i, maxp, mtu = ifp->if_mtu;
1953
1954	maxp = mtu_to_max_payload(sc, mtu, 0);
1955	for_each_rxq(pi, i, rxq) {
1956		fl = &rxq->fl;
1957
1958		FL_LOCK(fl);
1959		find_best_refill_source(sc, fl, maxp);
1960		FL_UNLOCK(fl);
1961	}
1962#ifdef TCP_OFFLOAD
1963	maxp = mtu_to_max_payload(sc, mtu, 1);
1964	for_each_ofld_rxq(pi, i, ofld_rxq) {
1965		fl = &ofld_rxq->fl;
1966
1967		FL_LOCK(fl);
1968		find_best_refill_source(sc, fl, maxp);
1969		FL_UNLOCK(fl);
1970	}
1971#endif
1972}
1973
1974int
1975can_resume_tx(struct sge_eq *eq)
1976{
1977	return (reclaimable(eq) >= tx_resume_threshold(eq));
1978}
1979
1980static inline void
1981init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1982    int qsize, int esize)
1983{
1984	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1985	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1986	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1987	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1988
1989	iq->flags = 0;
1990	iq->adapter = sc;
1991	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1992	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1993	if (pktc_idx >= 0) {
1994		iq->intr_params |= F_QINTR_CNT_EN;
1995		iq->intr_pktc_idx = pktc_idx;
1996	}
1997	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
1998	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1999}
2000
2001static inline void
2002init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2003    char *name)
2004{
2005
2006	fl->qsize = qsize;
2007	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2008	if (pack)
2009		fl->flags |= FL_BUF_PACKING;
2010	find_best_refill_source(sc, fl, maxp);
2011	find_safe_refill_source(sc, fl);
2012}
2013
2014static inline void
2015init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2016    uint16_t iqid, char *name)
2017{
2018	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2019	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2020
2021	eq->flags = eqtype & EQ_TYPEMASK;
2022	eq->tx_chan = tx_chan;
2023	eq->iqid = iqid;
2024	eq->qsize = qsize;
2025	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2026
2027	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2028	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2029}
2030
2031static int
2032alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2033    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2034{
2035	int rc;
2036
2037	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2038	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2039	if (rc != 0) {
2040		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2041		goto done;
2042	}
2043
2044	rc = bus_dmamem_alloc(*tag, va,
2045	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2046	if (rc != 0) {
2047		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2048		goto done;
2049	}
2050
2051	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2052	if (rc != 0) {
2053		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2054		goto done;
2055	}
2056done:
2057	if (rc)
2058		free_ring(sc, *tag, *map, *pa, *va);
2059
2060	return (rc);
2061}
2062
2063static int
2064free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2065    bus_addr_t pa, void *va)
2066{
2067	if (pa)
2068		bus_dmamap_unload(tag, map);
2069	if (va)
2070		bus_dmamem_free(tag, va, map);
2071	if (tag)
2072		bus_dma_tag_destroy(tag);
2073
2074	return (0);
2075}
2076
2077/*
2078 * Allocates the ring for an ingress queue and an optional freelist.  If the
2079 * freelist is specified it will be allocated and then associated with the
2080 * ingress queue.
2081 *
2082 * Returns errno on failure.  Resources allocated up to that point may still be
2083 * allocated.  Caller is responsible for cleanup in case this function fails.
2084 *
2085 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2086 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2087 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2088 */
2089static int
2090alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2091    int intr_idx, int cong)
2092{
2093	int rc, i, cntxt_id;
2094	size_t len;
2095	struct fw_iq_cmd c;
2096	struct adapter *sc = iq->adapter;
2097	__be32 v = 0;
2098
2099	len = iq->qsize * iq->esize;
2100	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2101	    (void **)&iq->desc);
2102	if (rc != 0)
2103		return (rc);
2104
2105	bzero(&c, sizeof(c));
2106	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2107	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2108	    V_FW_IQ_CMD_VFN(0));
2109
2110	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2111	    FW_LEN16(c));
2112
2113	/* Special handling for firmware event queue */
2114	if (iq == &sc->sge.fwq)
2115		v |= F_FW_IQ_CMD_IQASYNCH;
2116
2117	if (iq->flags & IQ_INTR) {
2118		KASSERT(intr_idx < sc->intr_count,
2119		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2120	} else
2121		v |= F_FW_IQ_CMD_IQANDST;
2122	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2123
2124	c.type_to_iqandstindex = htobe32(v |
2125	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2126	    V_FW_IQ_CMD_VIID(pi->viid) |
2127	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2128	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2129	    F_FW_IQ_CMD_IQGTSMODE |
2130	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2131	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2132	c.iqsize = htobe16(iq->qsize);
2133	c.iqaddr = htobe64(iq->ba);
2134	if (cong >= 0)
2135		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2136
2137	if (fl) {
2138		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2139
2140		len = fl->qsize * RX_FL_ESIZE;
2141		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2142		    &fl->ba, (void **)&fl->desc);
2143		if (rc)
2144			return (rc);
2145
2146		/* Allocate space for one software descriptor per buffer. */
2147		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2148		rc = alloc_fl_sdesc(fl);
2149		if (rc != 0) {
2150			device_printf(sc->dev,
2151			    "failed to setup fl software descriptors: %d\n",
2152			    rc);
2153			return (rc);
2154		}
2155		fl->needed = fl->cap;
2156		fl->lowat = fl->flags & FL_BUF_PACKING ?
2157		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2158		    roundup2(sc->sge.fl_starve_threshold, 8);
2159
2160		c.iqns_to_fl0congen |=
2161		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2162			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2163			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2164			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2165			    0));
2166		if (cong >= 0) {
2167			c.iqns_to_fl0congen |=
2168				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2169				    F_FW_IQ_CMD_FL0CONGCIF |
2170				    F_FW_IQ_CMD_FL0CONGEN);
2171		}
2172		c.fl0dcaen_to_fl0cidxfthresh =
2173		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2174			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2175		c.fl0size = htobe16(fl->qsize);
2176		c.fl0addr = htobe64(fl->ba);
2177	}
2178
2179	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2180	if (rc != 0) {
2181		device_printf(sc->dev,
2182		    "failed to create ingress queue: %d\n", rc);
2183		return (rc);
2184	}
2185
2186	iq->cdesc = iq->desc;
2187	iq->cidx = 0;
2188	iq->gen = 1;
2189	iq->intr_next = iq->intr_params;
2190	iq->cntxt_id = be16toh(c.iqid);
2191	iq->abs_id = be16toh(c.physiqid);
2192	iq->flags |= IQ_ALLOCATED;
2193
2194	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2195	if (cntxt_id >= sc->sge.niq) {
2196		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2197		    cntxt_id, sc->sge.niq - 1);
2198	}
2199	sc->sge.iqmap[cntxt_id] = iq;
2200
2201	if (fl) {
2202		fl->cntxt_id = be16toh(c.fl0id);
2203		fl->pidx = fl->cidx = 0;
2204
2205		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2206		if (cntxt_id >= sc->sge.neq) {
2207			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2208			    __func__, cntxt_id, sc->sge.neq - 1);
2209		}
2210		sc->sge.eqmap[cntxt_id] = (void *)fl;
2211
2212		FL_LOCK(fl);
2213		/* Enough to make sure the SGE doesn't think it's starved */
2214		refill_fl(sc, fl, fl->lowat);
2215		FL_UNLOCK(fl);
2216
2217		iq->flags |= IQ_HAS_FL;
2218	}
2219
2220	if (is_t5(sc) && cong >= 0) {
2221		uint32_t param, val;
2222
2223		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2224		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2225		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2226		if (cong == 0)
2227			val = 1 << 19;
2228		else {
2229			val = 2 << 19;
2230			for (i = 0; i < 4; i++) {
2231				if (cong & (1 << i))
2232					val |= 1 << (i << 2);
2233			}
2234		}
2235
2236		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2237		if (rc != 0) {
2238			/* report error but carry on */
2239			device_printf(sc->dev,
2240			    "failed to set congestion manager context for "
2241			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2242		}
2243	}
2244
2245	/* Enable IQ interrupts */
2246	atomic_store_rel_int(&iq->state, IQS_IDLE);
2247	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2248	    V_INGRESSQID(iq->cntxt_id));
2249
2250	return (0);
2251}
2252
2253static int
2254free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2255{
2256	int rc;
2257	struct adapter *sc = iq->adapter;
2258	device_t dev;
2259
2260	if (sc == NULL)
2261		return (0);	/* nothing to do */
2262
2263	dev = pi ? pi->dev : sc->dev;
2264
2265	if (iq->flags & IQ_ALLOCATED) {
2266		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2267		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2268		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2269		if (rc != 0) {
2270			device_printf(dev,
2271			    "failed to free queue %p: %d\n", iq, rc);
2272			return (rc);
2273		}
2274		iq->flags &= ~IQ_ALLOCATED;
2275	}
2276
2277	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2278
2279	bzero(iq, sizeof(*iq));
2280
2281	if (fl) {
2282		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2283		    fl->desc);
2284
2285		if (fl->sdesc)
2286			free_fl_sdesc(sc, fl);
2287
2288		if (mtx_initialized(&fl->fl_lock))
2289			mtx_destroy(&fl->fl_lock);
2290
2291		bzero(fl, sizeof(*fl));
2292	}
2293
2294	return (0);
2295}
2296
2297static void
2298add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2299    struct sge_fl *fl)
2300{
2301	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2302
2303	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2304	    "freelist");
2305	children = SYSCTL_CHILDREN(oid);
2306
2307	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2308	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2309	    "SGE context id of the freelist");
2310	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2311	    0, "consumer index");
2312	if (fl->flags & FL_BUF_PACKING) {
2313		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2314		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2315	}
2316	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2317	    0, "producer index");
2318	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2319	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2320	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2321	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2322	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2323	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2324	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2325	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2326	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2327	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2328}
2329
2330static int
2331alloc_fwq(struct adapter *sc)
2332{
2333	int rc, intr_idx;
2334	struct sge_iq *fwq = &sc->sge.fwq;
2335	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2336	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2337
2338	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2339	fwq->flags |= IQ_INTR;	/* always */
2340	intr_idx = sc->intr_count > 1 ? 1 : 0;
2341	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2342	if (rc != 0) {
2343		device_printf(sc->dev,
2344		    "failed to create firmware event queue: %d\n", rc);
2345		return (rc);
2346	}
2347
2348	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2349	    NULL, "firmware event queue");
2350	children = SYSCTL_CHILDREN(oid);
2351
2352	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2353	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2354	    "absolute id of the queue");
2355	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2356	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2357	    "SGE context id of the queue");
2358	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2359	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2360	    "consumer index");
2361
2362	return (0);
2363}
2364
2365static int
2366free_fwq(struct adapter *sc)
2367{
2368	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2369}
2370
2371static int
2372alloc_mgmtq(struct adapter *sc)
2373{
2374	int rc;
2375	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2376	char name[16];
2377	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2378	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2379
2380	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2381	    NULL, "management queue");
2382
2383	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2384	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2385	    sc->sge.fwq.cntxt_id, name);
2386	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2387	if (rc != 0) {
2388		device_printf(sc->dev,
2389		    "failed to create management queue: %d\n", rc);
2390		return (rc);
2391	}
2392
2393	return (0);
2394}
2395
2396static int
2397free_mgmtq(struct adapter *sc)
2398{
2399
2400	return free_wrq(sc, &sc->sge.mgmtq);
2401}
2402
2403static inline int
2404tnl_cong(struct port_info *pi)
2405{
2406
2407	if (cong_drop == -1)
2408		return (-1);
2409	else if (cong_drop == 1)
2410		return (0);
2411	else
2412		return (pi->rx_chan_map);
2413}
2414
2415static int
2416alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2417    struct sysctl_oid *oid)
2418{
2419	int rc;
2420	struct sysctl_oid_list *children;
2421	char name[16];
2422
2423	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2424	if (rc != 0)
2425		return (rc);
2426
2427	FL_LOCK(&rxq->fl);
2428	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2429	FL_UNLOCK(&rxq->fl);
2430
2431#if defined(INET) || defined(INET6)
2432	rc = tcp_lro_init(&rxq->lro);
2433	if (rc != 0)
2434		return (rc);
2435	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2436
2437	if (pi->ifp->if_capenable & IFCAP_LRO)
2438		rxq->iq.flags |= IQ_LRO_ENABLED;
2439#endif
2440	rxq->ifp = pi->ifp;
2441
2442	children = SYSCTL_CHILDREN(oid);
2443
2444	snprintf(name, sizeof(name), "%d", idx);
2445	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2446	    NULL, "rx queue");
2447	children = SYSCTL_CHILDREN(oid);
2448
2449	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2450	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2451	    "absolute id of the queue");
2452	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2453	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2454	    "SGE context id of the queue");
2455	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2456	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2457	    "consumer index");
2458#if defined(INET) || defined(INET6)
2459	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2460	    &rxq->lro.lro_queued, 0, NULL);
2461	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2462	    &rxq->lro.lro_flushed, 0, NULL);
2463#endif
2464	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2465	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2466	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2467	    CTLFLAG_RD, &rxq->vlan_extraction,
2468	    "# of times hardware extracted 802.1Q tag");
2469
2470	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2471
2472	return (rc);
2473}
2474
2475static int
2476free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2477{
2478	int rc;
2479
2480#if defined(INET) || defined(INET6)
2481	if (rxq->lro.ifp) {
2482		tcp_lro_free(&rxq->lro);
2483		rxq->lro.ifp = NULL;
2484	}
2485#endif
2486
2487	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2488	if (rc == 0)
2489		bzero(rxq, sizeof(*rxq));
2490
2491	return (rc);
2492}
2493
2494#ifdef TCP_OFFLOAD
2495static int
2496alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2497    int intr_idx, int idx, struct sysctl_oid *oid)
2498{
2499	int rc;
2500	struct sysctl_oid_list *children;
2501	char name[16];
2502
2503	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2504	    pi->rx_chan_map);
2505	if (rc != 0)
2506		return (rc);
2507
2508	children = SYSCTL_CHILDREN(oid);
2509
2510	snprintf(name, sizeof(name), "%d", idx);
2511	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2512	    NULL, "rx queue");
2513	children = SYSCTL_CHILDREN(oid);
2514
2515	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2516	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2517	    "I", "absolute id of the queue");
2518	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2519	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2520	    "I", "SGE context id of the queue");
2521	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2522	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2523	    "consumer index");
2524
2525	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2526
2527	return (rc);
2528}
2529
2530static int
2531free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2532{
2533	int rc;
2534
2535	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2536	if (rc == 0)
2537		bzero(ofld_rxq, sizeof(*ofld_rxq));
2538
2539	return (rc);
2540}
2541#endif
2542
2543static int
2544ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2545{
2546	int rc, cntxt_id;
2547	struct fw_eq_ctrl_cmd c;
2548
2549	bzero(&c, sizeof(c));
2550
2551	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2552	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2553	    V_FW_EQ_CTRL_CMD_VFN(0));
2554	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2555	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2556	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2557	c.physeqid_pkd = htobe32(0);
2558	c.fetchszm_to_iqid =
2559	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2560		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2561		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2562	c.dcaen_to_eqsize =
2563	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2564		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2565		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2566		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2567	c.eqaddr = htobe64(eq->ba);
2568
2569	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2570	if (rc != 0) {
2571		device_printf(sc->dev,
2572		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2573		return (rc);
2574	}
2575	eq->flags |= EQ_ALLOCATED;
2576
2577	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2578	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2579	if (cntxt_id >= sc->sge.neq)
2580	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2581		cntxt_id, sc->sge.neq - 1);
2582	sc->sge.eqmap[cntxt_id] = eq;
2583
2584	return (rc);
2585}
2586
2587static int
2588eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2589{
2590	int rc, cntxt_id;
2591	struct fw_eq_eth_cmd c;
2592
2593	bzero(&c, sizeof(c));
2594
2595	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2596	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2597	    V_FW_EQ_ETH_CMD_VFN(0));
2598	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2599	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2600	c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2601	c.fetchszm_to_iqid =
2602	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2603		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2604		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2605	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2606		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2607		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2608		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2609	c.eqaddr = htobe64(eq->ba);
2610
2611	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2612	if (rc != 0) {
2613		device_printf(pi->dev,
2614		    "failed to create Ethernet egress queue: %d\n", rc);
2615		return (rc);
2616	}
2617	eq->flags |= EQ_ALLOCATED;
2618
2619	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2620	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2621	if (cntxt_id >= sc->sge.neq)
2622	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2623		cntxt_id, sc->sge.neq - 1);
2624	sc->sge.eqmap[cntxt_id] = eq;
2625
2626	return (rc);
2627}
2628
2629#ifdef TCP_OFFLOAD
2630static int
2631ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2632{
2633	int rc, cntxt_id;
2634	struct fw_eq_ofld_cmd c;
2635
2636	bzero(&c, sizeof(c));
2637
2638	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2639	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2640	    V_FW_EQ_OFLD_CMD_VFN(0));
2641	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2642	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2643	c.fetchszm_to_iqid =
2644		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2645		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2646		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2647	c.dcaen_to_eqsize =
2648	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2649		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2650		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2651		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2652	c.eqaddr = htobe64(eq->ba);
2653
2654	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2655	if (rc != 0) {
2656		device_printf(pi->dev,
2657		    "failed to create egress queue for TCP offload: %d\n", rc);
2658		return (rc);
2659	}
2660	eq->flags |= EQ_ALLOCATED;
2661
2662	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2663	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2664	if (cntxt_id >= sc->sge.neq)
2665	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2666		cntxt_id, sc->sge.neq - 1);
2667	sc->sge.eqmap[cntxt_id] = eq;
2668
2669	return (rc);
2670}
2671#endif
2672
2673static int
2674alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2675{
2676	int rc;
2677	size_t len;
2678
2679	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2680
2681	len = eq->qsize * EQ_ESIZE;
2682	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2683	    &eq->ba, (void **)&eq->desc);
2684	if (rc)
2685		return (rc);
2686
2687	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2688	eq->spg = (void *)&eq->desc[eq->cap];
2689	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2690	eq->pidx = eq->cidx = 0;
2691	eq->doorbells = sc->doorbells;
2692
2693	switch (eq->flags & EQ_TYPEMASK) {
2694	case EQ_CTRL:
2695		rc = ctrl_eq_alloc(sc, eq);
2696		break;
2697
2698	case EQ_ETH:
2699		rc = eth_eq_alloc(sc, pi, eq);
2700		break;
2701
2702#ifdef TCP_OFFLOAD
2703	case EQ_OFLD:
2704		rc = ofld_eq_alloc(sc, pi, eq);
2705		break;
2706#endif
2707
2708	default:
2709		panic("%s: invalid eq type %d.", __func__,
2710		    eq->flags & EQ_TYPEMASK);
2711	}
2712	if (rc != 0) {
2713		device_printf(sc->dev,
2714		    "failed to allocate egress queue(%d): %d",
2715		    eq->flags & EQ_TYPEMASK, rc);
2716	}
2717
2718	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2719
2720	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2721	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2722	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2723		uint32_t s_qpp = sc->sge.eq_s_qpp;
2724		uint32_t mask = (1 << s_qpp) - 1;
2725		volatile uint8_t *udb;
2726
2727		udb = sc->udbs_base + UDBS_DB_OFFSET;
2728		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2729		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2730		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2731	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2732		else {
2733			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2734			eq->udb_qid = 0;
2735		}
2736		eq->udb = (volatile void *)udb;
2737	}
2738
2739	return (rc);
2740}
2741
2742static int
2743free_eq(struct adapter *sc, struct sge_eq *eq)
2744{
2745	int rc;
2746
2747	if (eq->flags & EQ_ALLOCATED) {
2748		switch (eq->flags & EQ_TYPEMASK) {
2749		case EQ_CTRL:
2750			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2751			    eq->cntxt_id);
2752			break;
2753
2754		case EQ_ETH:
2755			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2756			    eq->cntxt_id);
2757			break;
2758
2759#ifdef TCP_OFFLOAD
2760		case EQ_OFLD:
2761			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2762			    eq->cntxt_id);
2763			break;
2764#endif
2765
2766		default:
2767			panic("%s: invalid eq type %d.", __func__,
2768			    eq->flags & EQ_TYPEMASK);
2769		}
2770		if (rc != 0) {
2771			device_printf(sc->dev,
2772			    "failed to free egress queue (%d): %d\n",
2773			    eq->flags & EQ_TYPEMASK, rc);
2774			return (rc);
2775		}
2776		eq->flags &= ~EQ_ALLOCATED;
2777	}
2778
2779	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2780
2781	if (mtx_initialized(&eq->eq_lock))
2782		mtx_destroy(&eq->eq_lock);
2783
2784	bzero(eq, sizeof(*eq));
2785	return (0);
2786}
2787
2788static int
2789alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2790    struct sysctl_oid *oid)
2791{
2792	int rc;
2793	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2794	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2795
2796	rc = alloc_eq(sc, pi, &wrq->eq);
2797	if (rc)
2798		return (rc);
2799
2800	wrq->adapter = sc;
2801	STAILQ_INIT(&wrq->wr_list);
2802
2803	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2804	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2805	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2806	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2807	    "consumer index");
2808	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2809	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2810	    "producer index");
2811	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2812	    &wrq->tx_wrs, "# of work requests");
2813	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2814	    &wrq->no_desc, 0,
2815	    "# of times queue ran out of hardware descriptors");
2816	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2817	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2818
2819	return (rc);
2820}
2821
2822static int
2823free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2824{
2825	int rc;
2826
2827	rc = free_eq(sc, &wrq->eq);
2828	if (rc)
2829		return (rc);
2830
2831	bzero(wrq, sizeof(*wrq));
2832	return (0);
2833}
2834
2835static int
2836alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2837    struct sysctl_oid *oid)
2838{
2839	int rc;
2840	struct adapter *sc = pi->adapter;
2841	struct sge_eq *eq = &txq->eq;
2842	char name[16];
2843	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2844
2845	rc = alloc_eq(sc, pi, eq);
2846	if (rc)
2847		return (rc);
2848
2849	txq->ifp = pi->ifp;
2850
2851	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2852	    M_ZERO | M_WAITOK);
2853	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2854
2855	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2856	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2857	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2858	if (rc != 0) {
2859		device_printf(sc->dev,
2860		    "failed to create tx DMA tag: %d\n", rc);
2861		return (rc);
2862	}
2863
2864	/*
2865	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2866	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2867	 * sized for the worst case.
2868	 */
2869	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2870	    M_WAITOK);
2871	if (rc != 0) {
2872		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2873		return (rc);
2874	}
2875
2876	snprintf(name, sizeof(name), "%d", idx);
2877	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2878	    NULL, "tx queue");
2879	children = SYSCTL_CHILDREN(oid);
2880
2881	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2882	    &eq->cntxt_id, 0, "SGE context id of the queue");
2883	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2884	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2885	    "consumer index");
2886	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2887	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2888	    "producer index");
2889
2890	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2891	    &txq->txcsum, "# of times hardware assisted with checksum");
2892	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2893	    CTLFLAG_RD, &txq->vlan_insertion,
2894	    "# of times hardware inserted 802.1Q tag");
2895	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2896	    &txq->tso_wrs, "# of TSO work requests");
2897	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2898	    &txq->imm_wrs, "# of work requests with immediate data");
2899	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2900	    &txq->sgl_wrs, "# of work requests with direct SGL");
2901	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2902	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2903	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2904	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2905	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2906	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2907
2908	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2909	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2910	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2911	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2912	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2913	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2914	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2915	    &eq->egr_update, 0, "egress update notifications from the SGE");
2916	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2917	    &eq->unstalled, 0, "# of times txq recovered after stall");
2918
2919	return (rc);
2920}
2921
2922static int
2923free_txq(struct port_info *pi, struct sge_txq *txq)
2924{
2925	int rc;
2926	struct adapter *sc = pi->adapter;
2927	struct sge_eq *eq = &txq->eq;
2928
2929	rc = free_eq(sc, eq);
2930	if (rc)
2931		return (rc);
2932
2933	free(txq->sdesc, M_CXGBE);
2934
2935	if (txq->txmaps.maps)
2936		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2937
2938	buf_ring_free(txq->br, M_CXGBE);
2939
2940	if (txq->tx_tag)
2941		bus_dma_tag_destroy(txq->tx_tag);
2942
2943	bzero(txq, sizeof(*txq));
2944	return (0);
2945}
2946
2947static void
2948oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2949{
2950	bus_addr_t *ba = arg;
2951
2952	KASSERT(nseg == 1,
2953	    ("%s meant for single segment mappings only.", __func__));
2954
2955	*ba = error ? 0 : segs->ds_addr;
2956}
2957
2958static inline bool
2959is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2960{
2961	*ctrl = (void *)((uintptr_t)iq->cdesc +
2962	    (iq->esize - sizeof(struct rsp_ctrl)));
2963
2964	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2965}
2966
2967static inline void
2968iq_next(struct sge_iq *iq)
2969{
2970	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2971	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2972		iq->cidx = 0;
2973		iq->gen ^= 1;
2974		iq->cdesc = iq->desc;
2975	}
2976}
2977
2978#define FL_HW_IDX(x) ((x) >> 3)
2979static inline void
2980ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2981{
2982	int ndesc = fl->pending / 8;
2983	uint32_t v;
2984
2985	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2986		ndesc--;	/* hold back one credit */
2987
2988	if (ndesc <= 0)
2989		return;		/* nothing to do */
2990
2991	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
2992	if (is_t5(sc))
2993		v |= F_DBTYPE;
2994
2995	wmb();
2996
2997	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
2998	fl->pending -= ndesc * 8;
2999}
3000
3001/*
3002 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3003 *
3004 * Returns non-zero to indicate that it should be added to the list of starving
3005 * freelists.
3006 */
3007static int
3008refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3009{
3010	__be64 *d = &fl->desc[fl->pidx];
3011	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3012	uintptr_t pa;
3013	caddr_t cl;
3014	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3015	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3016	struct cluster_metadata *clm;
3017
3018	FL_LOCK_ASSERT_OWNED(fl);
3019
3020	if (nbufs > fl->needed)
3021		nbufs = fl->needed;
3022	nbufs -= (fl->pidx + nbufs) % 8;
3023
3024	while (nbufs--) {
3025
3026		if (sd->cl != NULL) {
3027
3028			if (sd->nimbuf + sd->nembuf == 0) {
3029				/*
3030				 * Fast recycle without involving any atomics on
3031				 * the cluster's metadata (if the cluster has
3032				 * metadata).  This happens when all frames
3033				 * received in the cluster were small enough to
3034				 * fit within a single mbuf each.
3035				 */
3036				fl->cl_fast_recycled++;
3037#ifdef INVARIANTS
3038				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3039				if (clm != NULL)
3040					MPASS(clm->refcount == 1);
3041#endif
3042				goto recycled_fast;
3043			}
3044
3045			/*
3046			 * Cluster is guaranteed to have metadata.  Clusters
3047			 * without metadata always take the fast recycle path
3048			 * when they're recycled.
3049			 */
3050			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3051			MPASS(clm != NULL);
3052
3053			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3054				fl->cl_recycled++;
3055				goto recycled;
3056			}
3057			sd->cl = NULL;	/* gave up my reference */
3058		}
3059		MPASS(sd->cl == NULL);
3060alloc:
3061		cl = uma_zalloc(swz->zone, M_NOWAIT);
3062		if (__predict_false(cl == NULL)) {
3063			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3064			    fl->cll_def.zidx == fl->cll_alt.zidx)
3065				break;
3066
3067			/* fall back to the safe zone */
3068			cll = &fl->cll_alt;
3069			swz = &sc->sge.sw_zone_info[cll->zidx];
3070			goto alloc;
3071		}
3072		fl->cl_allocated++;
3073
3074		pa = pmap_kextract((vm_offset_t)cl);
3075		pa += cll->region1;
3076		sd->cl = cl;
3077		sd->cll = *cll;
3078		*d = htobe64(pa | cll->hwidx);
3079		clm = cl_metadata(sc, fl, cll, cl);
3080		if (clm != NULL) {
3081recycled:
3082#ifdef INVARIANTS
3083			clm->sd = sd;
3084#endif
3085			clm->refcount = 1;
3086		}
3087		sd->nimbuf = 0;
3088		sd->nembuf = 0;
3089recycled_fast:
3090		fl->pending++;
3091		fl->needed--;
3092		d++;
3093		sd++;
3094		if (__predict_false(++fl->pidx == fl->cap)) {
3095			fl->pidx = 0;
3096			sd = fl->sdesc;
3097			d = fl->desc;
3098		}
3099	}
3100
3101	if (fl->pending >= 8)
3102		ring_fl_db(sc, fl);
3103
3104	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3105}
3106
3107/*
3108 * Attempt to refill all starving freelists.
3109 */
3110static void
3111refill_sfl(void *arg)
3112{
3113	struct adapter *sc = arg;
3114	struct sge_fl *fl, *fl_temp;
3115
3116	mtx_lock(&sc->sfl_lock);
3117	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3118		FL_LOCK(fl);
3119		refill_fl(sc, fl, 64);
3120		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3121			TAILQ_REMOVE(&sc->sfl, fl, link);
3122			fl->flags &= ~FL_STARVING;
3123		}
3124		FL_UNLOCK(fl);
3125	}
3126
3127	if (!TAILQ_EMPTY(&sc->sfl))
3128		callout_schedule(&sc->sfl_callout, hz / 5);
3129	mtx_unlock(&sc->sfl_lock);
3130}
3131
3132static int
3133alloc_fl_sdesc(struct sge_fl *fl)
3134{
3135
3136	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3137	    M_ZERO | M_WAITOK);
3138
3139	return (0);
3140}
3141
3142static void
3143free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3144{
3145	struct fl_sdesc *sd;
3146	struct cluster_metadata *clm;
3147	struct cluster_layout *cll;
3148	int i;
3149
3150	sd = fl->sdesc;
3151	for (i = 0; i < fl->cap; i++, sd++) {
3152		if (sd->cl == NULL)
3153			continue;
3154
3155		cll = &sd->cll;
3156		clm = cl_metadata(sc, fl, cll, sd->cl);
3157		if (sd->nimbuf + sd->nembuf == 0 ||
3158		    (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
3159			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3160		}
3161		sd->cl = NULL;
3162	}
3163
3164	free(fl->sdesc, M_CXGBE);
3165	fl->sdesc = NULL;
3166}
3167
3168int
3169t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3170    int flags)
3171{
3172	struct tx_map *txm;
3173	int i, rc;
3174
3175	txmaps->map_total = txmaps->map_avail = count;
3176	txmaps->map_cidx = txmaps->map_pidx = 0;
3177
3178	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3179	    M_ZERO | flags);
3180
3181	txm = txmaps->maps;
3182	for (i = 0; i < count; i++, txm++) {
3183		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3184		if (rc != 0)
3185			goto failed;
3186	}
3187
3188	return (0);
3189failed:
3190	while (--i >= 0) {
3191		txm--;
3192		bus_dmamap_destroy(tx_tag, txm->map);
3193	}
3194	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3195
3196	free(txmaps->maps, M_CXGBE);
3197	txmaps->maps = NULL;
3198
3199	return (rc);
3200}
3201
3202void
3203t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3204{
3205	struct tx_map *txm;
3206	int i;
3207
3208	txm = txmaps->maps;
3209	for (i = 0; i < txmaps->map_total; i++, txm++) {
3210
3211		if (txm->m) {
3212			bus_dmamap_unload(tx_tag, txm->map);
3213			m_freem(txm->m);
3214			txm->m = NULL;
3215		}
3216
3217		bus_dmamap_destroy(tx_tag, txm->map);
3218	}
3219
3220	free(txmaps->maps, M_CXGBE);
3221	txmaps->maps = NULL;
3222}
3223
3224/*
3225 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3226 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3227 * of immediate data.
3228 */
3229#define IMM_LEN ( \
3230      2 * EQ_ESIZE \
3231    - sizeof(struct fw_eth_tx_pkt_wr) \
3232    - sizeof(struct cpl_tx_pkt_core))
3233
3234/*
3235 * Returns non-zero on failure, no need to cleanup anything in that case.
3236 *
3237 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3238 * if the resulting chain still won't fit in a tx descriptor.
3239 *
3240 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3241 * does not have the TCP header in it.
3242 */
3243static int
3244get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3245    int sgl_only)
3246{
3247	struct mbuf *m = *fp;
3248	struct tx_maps *txmaps;
3249	struct tx_map *txm;
3250	int rc, defragged = 0, n;
3251
3252	TXQ_LOCK_ASSERT_OWNED(txq);
3253
3254	if (m->m_pkthdr.tso_segsz)
3255		sgl_only = 1;	/* Do not allow immediate data with LSO */
3256
3257start:	sgl->nsegs = 0;
3258
3259	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3260		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3261
3262	txmaps = &txq->txmaps;
3263	if (txmaps->map_avail == 0) {
3264		txq->no_dmamap++;
3265		return (ENOMEM);
3266	}
3267	txm = &txmaps->maps[txmaps->map_pidx];
3268
3269	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3270		*fp = m_pullup(m, 50);
3271		m = *fp;
3272		if (m == NULL)
3273			return (ENOBUFS);
3274	}
3275
3276	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3277	    &sgl->nsegs, BUS_DMA_NOWAIT);
3278	if (rc == EFBIG && defragged == 0) {
3279		m = m_defrag(m, M_NOWAIT);
3280		if (m == NULL)
3281			return (EFBIG);
3282
3283		defragged = 1;
3284		*fp = m;
3285		goto start;
3286	}
3287	if (rc != 0)
3288		return (rc);
3289
3290	txm->m = m;
3291	txmaps->map_avail--;
3292	if (++txmaps->map_pidx == txmaps->map_total)
3293		txmaps->map_pidx = 0;
3294
3295	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3296	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3297
3298	/*
3299	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3300	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3301	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3302	 * then len1 must be set to 0.
3303	 */
3304	n = sgl->nsegs - 1;
3305	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3306
3307	return (0);
3308}
3309
3310
3311/*
3312 * Releases all the txq resources used up in the specified sgl.
3313 */
3314static int
3315free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3316{
3317	struct tx_maps *txmaps;
3318	struct tx_map *txm;
3319
3320	TXQ_LOCK_ASSERT_OWNED(txq);
3321
3322	if (sgl->nsegs == 0)
3323		return (0);	/* didn't use any map */
3324
3325	txmaps = &txq->txmaps;
3326
3327	/* 1 pkt uses exactly 1 map, back it out */
3328
3329	txmaps->map_avail++;
3330	if (txmaps->map_pidx > 0)
3331		txmaps->map_pidx--;
3332	else
3333		txmaps->map_pidx = txmaps->map_total - 1;
3334
3335	txm = &txmaps->maps[txmaps->map_pidx];
3336	bus_dmamap_unload(txq->tx_tag, txm->map);
3337	txm->m = NULL;
3338
3339	return (0);
3340}
3341
3342static int
3343write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3344    struct sgl *sgl)
3345{
3346	struct sge_eq *eq = &txq->eq;
3347	struct fw_eth_tx_pkt_wr *wr;
3348	struct cpl_tx_pkt_core *cpl;
3349	uint32_t ctrl;	/* used in many unrelated places */
3350	uint64_t ctrl1;
3351	int nflits, ndesc, pktlen;
3352	struct tx_sdesc *txsd;
3353	caddr_t dst;
3354
3355	TXQ_LOCK_ASSERT_OWNED(txq);
3356
3357	pktlen = m->m_pkthdr.len;
3358
3359	/*
3360	 * Do we have enough flits to send this frame out?
3361	 */
3362	ctrl = sizeof(struct cpl_tx_pkt_core);
3363	if (m->m_pkthdr.tso_segsz) {
3364		nflits = TXPKT_LSO_WR_HDR;
3365		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3366	} else
3367		nflits = TXPKT_WR_HDR;
3368	if (sgl->nsegs > 0)
3369		nflits += sgl->nflits;
3370	else {
3371		nflits += howmany(pktlen, 8);
3372		ctrl += pktlen;
3373	}
3374	ndesc = howmany(nflits, 8);
3375	if (ndesc > eq->avail)
3376		return (ENOMEM);
3377
3378	/* Firmware work request header */
3379	wr = (void *)&eq->desc[eq->pidx];
3380	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3381	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3382	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3383	if (eq->avail == ndesc) {
3384		if (!(eq->flags & EQ_CRFLUSHED)) {
3385			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3386			eq->flags |= EQ_CRFLUSHED;
3387		}
3388		eq->flags |= EQ_STALLED;
3389	}
3390
3391	wr->equiq_to_len16 = htobe32(ctrl);
3392	wr->r3 = 0;
3393
3394	if (m->m_pkthdr.tso_segsz) {
3395		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3396		struct ether_header *eh;
3397		void *l3hdr;
3398#if defined(INET) || defined(INET6)
3399		struct tcphdr *tcp;
3400#endif
3401		uint16_t eh_type;
3402
3403		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3404		    F_LSO_LAST_SLICE;
3405
3406		eh = mtod(m, struct ether_header *);
3407		eh_type = ntohs(eh->ether_type);
3408		if (eh_type == ETHERTYPE_VLAN) {
3409			struct ether_vlan_header *evh = (void *)eh;
3410
3411			ctrl |= V_LSO_ETHHDR_LEN(1);
3412			l3hdr = evh + 1;
3413			eh_type = ntohs(evh->evl_proto);
3414		} else
3415			l3hdr = eh + 1;
3416
3417		switch (eh_type) {
3418#ifdef INET6
3419		case ETHERTYPE_IPV6:
3420		{
3421			struct ip6_hdr *ip6 = l3hdr;
3422
3423			/*
3424			 * XXX-BZ For now we do not pretend to support
3425			 * IPv6 extension headers.
3426			 */
3427			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3428			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3429			tcp = (struct tcphdr *)(ip6 + 1);
3430			ctrl |= F_LSO_IPV6;
3431			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3432			    V_LSO_TCPHDR_LEN(tcp->th_off);
3433			break;
3434		}
3435#endif
3436#ifdef INET
3437		case ETHERTYPE_IP:
3438		{
3439			struct ip *ip = l3hdr;
3440
3441			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3442			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3443			    V_LSO_TCPHDR_LEN(tcp->th_off);
3444			break;
3445		}
3446#endif
3447		default:
3448			panic("%s: CSUM_TSO but no supported IP version "
3449			    "(0x%04x)", __func__, eh_type);
3450		}
3451
3452		lso->lso_ctrl = htobe32(ctrl);
3453		lso->ipid_ofst = htobe16(0);
3454		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3455		lso->seqno_offset = htobe32(0);
3456		lso->len = htobe32(pktlen);
3457
3458		cpl = (void *)(lso + 1);
3459
3460		txq->tso_wrs++;
3461	} else
3462		cpl = (void *)(wr + 1);
3463
3464	/* Checksum offload */
3465	ctrl1 = 0;
3466	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3467		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3468	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3469	    CSUM_TCP_IPV6 | CSUM_TSO)))
3470		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3471	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3472	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3473		txq->txcsum++;	/* some hardware assistance provided */
3474
3475	/* VLAN tag insertion */
3476	if (m->m_flags & M_VLANTAG) {
3477		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3478		txq->vlan_insertion++;
3479	}
3480
3481	/* CPL header */
3482	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3483	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3484	cpl->pack = 0;
3485	cpl->len = htobe16(pktlen);
3486	cpl->ctrl1 = htobe64(ctrl1);
3487
3488	/* Software descriptor */
3489	txsd = &txq->sdesc[eq->pidx];
3490	txsd->desc_used = ndesc;
3491
3492	eq->pending += ndesc;
3493	eq->avail -= ndesc;
3494	eq->pidx += ndesc;
3495	if (eq->pidx >= eq->cap)
3496		eq->pidx -= eq->cap;
3497
3498	/* SGL */
3499	dst = (void *)(cpl + 1);
3500	if (sgl->nsegs > 0) {
3501		txsd->credits = 1;
3502		txq->sgl_wrs++;
3503		write_sgl_to_txd(eq, sgl, &dst);
3504	} else {
3505		txsd->credits = 0;
3506		txq->imm_wrs++;
3507		for (; m; m = m->m_next) {
3508			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3509#ifdef INVARIANTS
3510			pktlen -= m->m_len;
3511#endif
3512		}
3513#ifdef INVARIANTS
3514		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3515#endif
3516
3517	}
3518
3519	txq->txpkt_wrs++;
3520	return (0);
3521}
3522
3523/*
3524 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3525 * request.  It has either been folded into txpkts or txpkts was flushed and m
3526 * has started a new coalesced work request (as the first frame in a fresh
3527 * txpkts).
3528 *
3529 * Returns non-zero to indicate a failure - caller is responsible for
3530 * transmitting m, if there was anything in txpkts it has been flushed.
3531 */
3532static int
3533add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3534    struct mbuf *m, struct sgl *sgl)
3535{
3536	struct sge_eq *eq = &txq->eq;
3537	int can_coalesce;
3538	struct tx_sdesc *txsd;
3539	int flits;
3540
3541	TXQ_LOCK_ASSERT_OWNED(txq);
3542
3543	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3544
3545	if (txpkts->npkt > 0) {
3546		flits = TXPKTS_PKT_HDR + sgl->nflits;
3547		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3548		    txpkts->nflits + flits <= TX_WR_FLITS &&
3549		    txpkts->nflits + flits <= eq->avail * 8 &&
3550		    txpkts->plen + m->m_pkthdr.len < 65536;
3551
3552		if (can_coalesce) {
3553			txpkts->npkt++;
3554			txpkts->nflits += flits;
3555			txpkts->plen += m->m_pkthdr.len;
3556
3557			txsd = &txq->sdesc[eq->pidx];
3558			txsd->credits++;
3559
3560			return (0);
3561		}
3562
3563		/*
3564		 * Couldn't coalesce m into txpkts.  The first order of business
3565		 * is to send txpkts on its way.  Then we'll revisit m.
3566		 */
3567		write_txpkts_wr(txq, txpkts);
3568	}
3569
3570	/*
3571	 * Check if we can start a new coalesced tx work request with m as
3572	 * the first packet in it.
3573	 */
3574
3575	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3576
3577	flits = TXPKTS_WR_HDR + sgl->nflits;
3578	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3579	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3580
3581	if (can_coalesce == 0)
3582		return (EINVAL);
3583
3584	/*
3585	 * Start a fresh coalesced tx WR with m as the first frame in it.
3586	 */
3587	txpkts->npkt = 1;
3588	txpkts->nflits = flits;
3589	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3590	txpkts->plen = m->m_pkthdr.len;
3591
3592	txsd = &txq->sdesc[eq->pidx];
3593	txsd->credits = 1;
3594
3595	return (0);
3596}
3597
3598/*
3599 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3600 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3601 * coalescing only if sufficient hardware descriptors are available.
3602 */
3603static void
3604write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3605{
3606	struct sge_eq *eq = &txq->eq;
3607	struct fw_eth_tx_pkts_wr *wr;
3608	struct tx_sdesc *txsd;
3609	uint32_t ctrl;
3610	int ndesc;
3611
3612	TXQ_LOCK_ASSERT_OWNED(txq);
3613
3614	ndesc = howmany(txpkts->nflits, 8);
3615
3616	wr = (void *)&eq->desc[eq->pidx];
3617	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3618	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3619	if (eq->avail == ndesc) {
3620		if (!(eq->flags & EQ_CRFLUSHED)) {
3621			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3622			eq->flags |= EQ_CRFLUSHED;
3623		}
3624		eq->flags |= EQ_STALLED;
3625	}
3626	wr->equiq_to_len16 = htobe32(ctrl);
3627	wr->plen = htobe16(txpkts->plen);
3628	wr->npkt = txpkts->npkt;
3629	wr->r3 = wr->type = 0;
3630
3631	/* Everything else already written */
3632
3633	txsd = &txq->sdesc[eq->pidx];
3634	txsd->desc_used = ndesc;
3635
3636	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3637
3638	eq->pending += ndesc;
3639	eq->avail -= ndesc;
3640	eq->pidx += ndesc;
3641	if (eq->pidx >= eq->cap)
3642		eq->pidx -= eq->cap;
3643
3644	txq->txpkts_pkts += txpkts->npkt;
3645	txq->txpkts_wrs++;
3646	txpkts->npkt = 0;	/* emptied */
3647}
3648
3649static inline void
3650write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3651    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3652{
3653	struct ulp_txpkt *ulpmc;
3654	struct ulptx_idata *ulpsc;
3655	struct cpl_tx_pkt_core *cpl;
3656	struct sge_eq *eq = &txq->eq;
3657	uintptr_t flitp, start, end;
3658	uint64_t ctrl;
3659	caddr_t dst;
3660
3661	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3662
3663	start = (uintptr_t)eq->desc;
3664	end = (uintptr_t)eq->spg;
3665
3666	/* Checksum offload */
3667	ctrl = 0;
3668	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3669		ctrl |= F_TXPKT_IPCSUM_DIS;
3670	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3671	    CSUM_TCP_IPV6 | CSUM_TSO)))
3672		ctrl |= F_TXPKT_L4CSUM_DIS;
3673	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3674	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3675		txq->txcsum++;	/* some hardware assistance provided */
3676
3677	/* VLAN tag insertion */
3678	if (m->m_flags & M_VLANTAG) {
3679		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3680		txq->vlan_insertion++;
3681	}
3682
3683	/*
3684	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3685	 * is required by the firmware/hardware).  It follows that flitp cannot
3686	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3687	 * bytes each), and that it can not wrap around in the middle of the
3688	 * cpl_tx_pkt_core either.
3689	 */
3690	flitp = (uintptr_t)txpkts->flitp;
3691	KASSERT((flitp & 0xf) == 0,
3692	    ("%s: last SGL did not end at 16 byte boundary: %p",
3693	    __func__, txpkts->flitp));
3694
3695	/* ULP master command */
3696	ulpmc = (void *)flitp;
3697	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3698	    V_ULP_TXPKT_FID(eq->iqid));
3699	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3700	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3701
3702	/* ULP subcommand */
3703	ulpsc = (void *)(ulpmc + 1);
3704	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3705	    F_ULP_TX_SC_MORE);
3706	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3707
3708	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3709	if (flitp == end)
3710		flitp = start;
3711
3712	/* CPL_TX_PKT */
3713	cpl = (void *)flitp;
3714	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3715	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3716	cpl->pack = 0;
3717	cpl->len = htobe16(m->m_pkthdr.len);
3718	cpl->ctrl1 = htobe64(ctrl);
3719
3720	flitp += sizeof(*cpl);
3721	if (flitp == end)
3722		flitp = start;
3723
3724	/* SGL for this frame */
3725	dst = (caddr_t)flitp;
3726	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3727	txpkts->flitp = (void *)dst;
3728
3729	KASSERT(((uintptr_t)dst & 0xf) == 0,
3730	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3731}
3732
3733/*
3734 * If the SGL ends on an address that is not 16 byte aligned, this function will
3735 * add a 0 filled flit at the end.  It returns 1 in that case.
3736 */
3737static int
3738write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3739{
3740	__be64 *flitp, *end;
3741	struct ulptx_sgl *usgl;
3742	bus_dma_segment_t *seg;
3743	int i, padded;
3744
3745	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3746	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3747	    __func__, sgl->nsegs, sgl->nflits));
3748
3749	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3750	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3751
3752	flitp = (__be64 *)(*to);
3753	end = flitp + sgl->nflits;
3754	seg = &sgl->seg[0];
3755	usgl = (void *)flitp;
3756
3757	/*
3758	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3759	 * ring, so we're at least 16 bytes away from the status page.  There is
3760	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3761	 */
3762
3763	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3764	    V_ULPTX_NSGE(sgl->nsegs));
3765	usgl->len0 = htobe32(seg->ds_len);
3766	usgl->addr0 = htobe64(seg->ds_addr);
3767	seg++;
3768
3769	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3770
3771		/* Won't wrap around at all */
3772
3773		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3774			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3775			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3776		}
3777		if (i & 1)
3778			usgl->sge[i / 2].len[1] = htobe32(0);
3779	} else {
3780
3781		/* Will wrap somewhere in the rest of the SGL */
3782
3783		/* 2 flits already written, write the rest flit by flit */
3784		flitp = (void *)(usgl + 1);
3785		for (i = 0; i < sgl->nflits - 2; i++) {
3786			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3787				flitp = (void *)eq->desc;
3788			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3789		}
3790		end = flitp;
3791	}
3792
3793	if ((uintptr_t)end & 0xf) {
3794		*(uint64_t *)end = 0;
3795		end++;
3796		padded = 1;
3797	} else
3798		padded = 0;
3799
3800	if ((uintptr_t)end == (uintptr_t)eq->spg)
3801		*to = (void *)eq->desc;
3802	else
3803		*to = (void *)end;
3804
3805	return (padded);
3806}
3807
3808static inline void
3809copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3810{
3811	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3812		bcopy(from, *to, len);
3813		(*to) += len;
3814	} else {
3815		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3816
3817		bcopy(from, *to, portion);
3818		from += portion;
3819		portion = len - portion;	/* remaining */
3820		bcopy(from, (void *)eq->desc, portion);
3821		(*to) = (caddr_t)eq->desc + portion;
3822	}
3823}
3824
3825static inline void
3826ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3827{
3828	u_int db, pending;
3829
3830	db = eq->doorbells;
3831	pending = eq->pending;
3832	if (pending > 1)
3833		clrbit(&db, DOORBELL_WCWR);
3834	eq->pending = 0;
3835	wmb();
3836
3837	switch (ffs(db) - 1) {
3838	case DOORBELL_UDB:
3839		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3840		return;
3841
3842	case DOORBELL_WCWR: {
3843		volatile uint64_t *dst, *src;
3844		int i;
3845
3846		/*
3847		 * Queues whose 128B doorbell segment fits in the page do not
3848		 * use relative qid (udb_qid is always 0).  Only queues with
3849		 * doorbell segments can do WCWR.
3850		 */
3851		KASSERT(eq->udb_qid == 0 && pending == 1,
3852		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
3853		    __func__, eq->doorbells, pending, eq->pidx, eq));
3854
3855		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
3856		    UDBS_DB_OFFSET);
3857		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3858		src = (void *)&eq->desc[i];
3859		while (src != (void *)&eq->desc[i + 1])
3860			*dst++ = *src++;
3861		wmb();
3862		return;
3863	}
3864
3865	case DOORBELL_UDBWC:
3866		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3867		wmb();
3868		return;
3869
3870	case DOORBELL_KDB:
3871		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3872		    V_QID(eq->cntxt_id) | V_PIDX(pending));
3873		return;
3874	}
3875}
3876
3877static inline int
3878reclaimable(struct sge_eq *eq)
3879{
3880	unsigned int cidx;
3881
3882	cidx = eq->spg->cidx;	/* stable snapshot */
3883	cidx = be16toh(cidx);
3884
3885	if (cidx >= eq->cidx)
3886		return (cidx - eq->cidx);
3887	else
3888		return (cidx + eq->cap - eq->cidx);
3889}
3890
3891/*
3892 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3893 * many as possible but stop when there are around "n" mbufs to free.
3894 *
3895 * The actual number reclaimed is provided as the return value.
3896 */
3897static int
3898reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3899{
3900	struct tx_sdesc *txsd;
3901	struct tx_maps *txmaps;
3902	struct tx_map *txm;
3903	unsigned int reclaimed, maps;
3904	struct sge_eq *eq = &txq->eq;
3905
3906	TXQ_LOCK_ASSERT_OWNED(txq);
3907
3908	if (can_reclaim == 0)
3909		can_reclaim = reclaimable(eq);
3910
3911	maps = reclaimed = 0;
3912	while (can_reclaim && maps < n) {
3913		int ndesc;
3914
3915		txsd = &txq->sdesc[eq->cidx];
3916		ndesc = txsd->desc_used;
3917
3918		/* Firmware doesn't return "partial" credits. */
3919		KASSERT(can_reclaim >= ndesc,
3920		    ("%s: unexpected number of credits: %d, %d",
3921		    __func__, can_reclaim, ndesc));
3922
3923		maps += txsd->credits;
3924
3925		reclaimed += ndesc;
3926		can_reclaim -= ndesc;
3927
3928		eq->cidx += ndesc;
3929		if (__predict_false(eq->cidx >= eq->cap))
3930			eq->cidx -= eq->cap;
3931	}
3932
3933	txmaps = &txq->txmaps;
3934	txm = &txmaps->maps[txmaps->map_cidx];
3935	if (maps)
3936		prefetch(txm->m);
3937
3938	eq->avail += reclaimed;
3939	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3940	    ("%s: too many descriptors available", __func__));
3941
3942	txmaps->map_avail += maps;
3943	KASSERT(txmaps->map_avail <= txmaps->map_total,
3944	    ("%s: too many maps available", __func__));
3945
3946	while (maps--) {
3947		struct tx_map *next;
3948
3949		next = txm + 1;
3950		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3951			next = txmaps->maps;
3952		prefetch(next->m);
3953
3954		bus_dmamap_unload(txq->tx_tag, txm->map);
3955		m_freem(txm->m);
3956		txm->m = NULL;
3957
3958		txm = next;
3959		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3960			txmaps->map_cidx = 0;
3961	}
3962
3963	return (reclaimed);
3964}
3965
3966static void
3967write_eqflush_wr(struct sge_eq *eq)
3968{
3969	struct fw_eq_flush_wr *wr;
3970
3971	EQ_LOCK_ASSERT_OWNED(eq);
3972	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3973	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3974
3975	wr = (void *)&eq->desc[eq->pidx];
3976	bzero(wr, sizeof(*wr));
3977	wr->opcode = FW_EQ_FLUSH_WR;
3978	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3979	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3980
3981	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3982	eq->pending++;
3983	eq->avail--;
3984	if (++eq->pidx == eq->cap)
3985		eq->pidx = 0;
3986}
3987
3988static __be64
3989get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3990{
3991	int i = (idx / 3) * 2;
3992
3993	switch (idx % 3) {
3994	case 0: {
3995		__be64 rc;
3996
3997		rc = htobe32(sgl[i].ds_len);
3998		if (i + 1 < nsegs)
3999			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4000
4001		return (rc);
4002	}
4003	case 1:
4004		return htobe64(sgl[i].ds_addr);
4005	case 2:
4006		return htobe64(sgl[i + 1].ds_addr);
4007	}
4008
4009	return (0);
4010}
4011
4012static void
4013find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4014{
4015	int8_t zidx, hwidx, idx;
4016	uint16_t region1, region3;
4017	int spare, spare_needed, n;
4018	struct sw_zone_info *swz;
4019	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4020
4021	/*
4022	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4023	 * large enough for the max payload and cluster metadata.  Otherwise
4024	 * settle for the largest bufsize that leaves enough room in the cluster
4025	 * for metadata.
4026	 *
4027	 * Without buffer packing: Look for the smallest zone which has a
4028	 * bufsize large enough for the max payload.  Settle for the largest
4029	 * bufsize available if there's nothing big enough for max payload.
4030	 */
4031	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4032	swz = &sc->sge.sw_zone_info[0];
4033	hwidx = -1;
4034	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4035		if (swz->size > largest_rx_cluster) {
4036			if (__predict_true(hwidx != -1))
4037				break;
4038
4039			/*
4040			 * This is a misconfiguration.  largest_rx_cluster is
4041			 * preventing us from finding a refill source.  See
4042			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4043			 */
4044			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4045			    " refill source for fl %p (dma %u).  Ignored.\n",
4046			    largest_rx_cluster, fl, maxp);
4047		}
4048		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4049			hwb = &hwb_list[idx];
4050			spare = swz->size - hwb->size;
4051			if (spare < spare_needed)
4052				continue;
4053
4054			hwidx = idx;		/* best option so far */
4055			if (hwb->size >= maxp) {
4056
4057				if ((fl->flags & FL_BUF_PACKING) == 0)
4058					goto done; /* stop looking (not packing) */
4059
4060				if (swz->size >= safest_rx_cluster)
4061					goto done; /* stop looking (packing) */
4062			}
4063			break;		/* keep looking, next zone */
4064		}
4065	}
4066done:
4067	/* A usable hwidx has been located. */
4068	MPASS(hwidx != -1);
4069	hwb = &hwb_list[hwidx];
4070	zidx = hwb->zidx;
4071	swz = &sc->sge.sw_zone_info[zidx];
4072	region1 = 0;
4073	region3 = swz->size - hwb->size;
4074
4075	/*
4076	 * Stay within this zone and see if there is a better match when mbuf
4077	 * inlining is allowed.  Remember that the hwidx's are sorted in
4078	 * decreasing order of size (so in increasing order of spare area).
4079	 */
4080	for (idx = hwidx; idx != -1; idx = hwb->next) {
4081		hwb = &hwb_list[idx];
4082		spare = swz->size - hwb->size;
4083
4084		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4085			break;
4086		if (spare < CL_METADATA_SIZE + MSIZE)
4087			continue;
4088		n = (spare - CL_METADATA_SIZE) / MSIZE;
4089		if (n > howmany(hwb->size, maxp))
4090			break;
4091
4092		hwidx = idx;
4093		if (fl->flags & FL_BUF_PACKING) {
4094			region1 = n * MSIZE;
4095			region3 = spare - region1;
4096		} else {
4097			region1 = MSIZE;
4098			region3 = spare - region1;
4099			break;
4100		}
4101	}
4102
4103	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4104	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4105	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4106	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4107	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4108	    sc->sge.sw_zone_info[zidx].size,
4109	    ("%s: bad buffer layout for fl %p, maxp %d. "
4110		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4111		sc->sge.sw_zone_info[zidx].size, region1,
4112		sc->sge.hw_buf_info[hwidx].size, region3));
4113	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4114		KASSERT(region3 >= CL_METADATA_SIZE,
4115		    ("%s: no room for metadata.  fl %p, maxp %d; "
4116		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4117		    sc->sge.sw_zone_info[zidx].size, region1,
4118		    sc->sge.hw_buf_info[hwidx].size, region3));
4119		KASSERT(region1 % MSIZE == 0,
4120		    ("%s: bad mbuf region for fl %p, maxp %d. "
4121		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4122		    sc->sge.sw_zone_info[zidx].size, region1,
4123		    sc->sge.hw_buf_info[hwidx].size, region3));
4124	}
4125
4126	fl->cll_def.zidx = zidx;
4127	fl->cll_def.hwidx = hwidx;
4128	fl->cll_def.region1 = region1;
4129	fl->cll_def.region3 = region3;
4130}
4131
4132static void
4133find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4134{
4135	struct sge *s = &sc->sge;
4136	struct hw_buf_info *hwb;
4137	struct sw_zone_info *swz;
4138	int spare;
4139	int8_t hwidx;
4140
4141	if (fl->flags & FL_BUF_PACKING)
4142		hwidx = s->safe_hwidx2;	/* with room for metadata */
4143	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4144		hwidx = s->safe_hwidx2;
4145		hwb = &s->hw_buf_info[hwidx];
4146		swz = &s->sw_zone_info[hwb->zidx];
4147		spare = swz->size - hwb->size;
4148
4149		/* no good if there isn't room for an mbuf as well */
4150		if (spare < CL_METADATA_SIZE + MSIZE)
4151			hwidx = s->safe_hwidx1;
4152	} else
4153		hwidx = s->safe_hwidx1;
4154
4155	if (hwidx == -1) {
4156		/* No fallback source */
4157		fl->cll_alt.hwidx = -1;
4158		fl->cll_alt.zidx = -1;
4159
4160		return;
4161	}
4162
4163	hwb = &s->hw_buf_info[hwidx];
4164	swz = &s->sw_zone_info[hwb->zidx];
4165	spare = swz->size - hwb->size;
4166	fl->cll_alt.hwidx = hwidx;
4167	fl->cll_alt.zidx = hwb->zidx;
4168	if (allow_mbufs_in_cluster)
4169		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4170	else
4171		fl->cll_alt.region1 = 0;
4172	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4173}
4174
4175static void
4176add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4177{
4178	mtx_lock(&sc->sfl_lock);
4179	FL_LOCK(fl);
4180	if ((fl->flags & FL_DOOMED) == 0) {
4181		fl->flags |= FL_STARVING;
4182		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4183		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4184	}
4185	FL_UNLOCK(fl);
4186	mtx_unlock(&sc->sfl_lock);
4187}
4188
4189static int
4190handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4191    struct mbuf *m)
4192{
4193	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4194	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4195	struct adapter *sc = iq->adapter;
4196	struct sge *s = &sc->sge;
4197	struct sge_eq *eq;
4198
4199	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4200	    rss->opcode));
4201
4202	eq = s->eqmap[qid - s->eq_start];
4203	EQ_LOCK(eq);
4204	KASSERT(eq->flags & EQ_CRFLUSHED,
4205	    ("%s: unsolicited egress update", __func__));
4206	eq->flags &= ~EQ_CRFLUSHED;
4207	eq->egr_update++;
4208
4209	if (__predict_false(eq->flags & EQ_DOOMED))
4210		wakeup_one(eq);
4211	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4212		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4213	EQ_UNLOCK(eq);
4214
4215	return (0);
4216}
4217
4218/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4219CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4220    offsetof(struct cpl_fw6_msg, data));
4221
4222static int
4223handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4224{
4225	struct adapter *sc = iq->adapter;
4226	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4227
4228	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4229	    rss->opcode));
4230
4231	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4232		const struct rss_header *rss2;
4233
4234		rss2 = (const struct rss_header *)&cpl->data[0];
4235		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4236	}
4237
4238	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4239}
4240
4241static int
4242sysctl_uint16(SYSCTL_HANDLER_ARGS)
4243{
4244	uint16_t *id = arg1;
4245	int i = *id;
4246
4247	return sysctl_handle_int(oidp, &i, 0, req);
4248}
4249
4250static int
4251sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4252{
4253	struct sge *s = arg1;
4254	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4255	struct sw_zone_info *swz = &s->sw_zone_info[0];
4256	int i, rc;
4257	struct sbuf sb;
4258	char c;
4259
4260	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4261	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4262		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4263			c = '*';
4264		else
4265			c = '\0';
4266
4267		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4268	}
4269	sbuf_trim(&sb);
4270	sbuf_finish(&sb);
4271	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4272	sbuf_delete(&sb);
4273	return (rc);
4274}
4275