ar5212_misc.c revision 187831
1185377Ssam/*
2187831Ssam * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3185377Ssam * Copyright (c) 2002-2008 Atheros Communications, Inc.
4185377Ssam *
5185377Ssam * Permission to use, copy, modify, and/or distribute this software for any
6185377Ssam * purpose with or without fee is hereby granted, provided that the above
7185377Ssam * copyright notice and this permission notice appear in all copies.
8185377Ssam *
9185377Ssam * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10185377Ssam * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11185377Ssam * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12185377Ssam * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13185377Ssam * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14185377Ssam * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15185377Ssam * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16185377Ssam *
17185907Ssam * $FreeBSD: head/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c 187831 2009-01-28 18:00:22Z sam $
18185377Ssam */
19185377Ssam#include "opt_ah.h"
20185377Ssam
21185377Ssam#include "ah.h"
22185377Ssam#include "ah_internal.h"
23185377Ssam#include "ah_devid.h"
24185377Ssam#ifdef AH_DEBUG
25185377Ssam#include "ah_desc.h"			/* NB: for HAL_PHYERR* */
26185377Ssam#endif
27185377Ssam
28185377Ssam#include "ar5212/ar5212.h"
29185377Ssam#include "ar5212/ar5212reg.h"
30185377Ssam#include "ar5212/ar5212phy.h"
31185377Ssam
32185377Ssam#include "ah_eeprom_v3.h"
33185377Ssam
34185377Ssam#define	AR_NUM_GPIO	6		/* 6 GPIO pins */
35185377Ssam#define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
36185377Ssam
37185377Ssamvoid
38185377Ssamar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
39185377Ssam{
40185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
41185377Ssam
42185377Ssam	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
43185377Ssam}
44185377Ssam
45185377SsamHAL_BOOL
46185377Ssamar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
47185377Ssam{
48185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
49185377Ssam
50185377Ssam	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
51185377Ssam	return AH_TRUE;
52185377Ssam}
53185377Ssam
54185377Ssamvoid
55185377Ssamar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
56185377Ssam{
57185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
58185377Ssam
59185377Ssam	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
60185377Ssam}
61185377Ssam
62185377SsamHAL_BOOL
63185377Ssamar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
64185377Ssam{
65185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
66185377Ssam
67185377Ssam	/* save it since it must be rewritten on reset */
68185377Ssam	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
69185377Ssam
70185377Ssam	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
71185377Ssam	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
72185377Ssam	return AH_TRUE;
73185377Ssam}
74185377Ssam
75185377Ssam/*
76185380Ssam * Attempt to change the cards operating regulatory domain to the given value
77185380Ssam */
78185380SsamHAL_BOOL
79185380Ssamar5212SetRegulatoryDomain(struct ath_hal *ah,
80185380Ssam	uint16_t regDomain, HAL_STATUS *status)
81185380Ssam{
82185380Ssam	HAL_STATUS ecode;
83185380Ssam
84185380Ssam	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
85185380Ssam		ecode = HAL_EINVAL;
86185380Ssam		goto bad;
87185380Ssam	}
88185380Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
89185380Ssam		ecode = HAL_EEWRITE;
90185380Ssam		goto bad;
91185380Ssam	}
92185380Ssam#ifdef AH_SUPPORT_WRITE_REGDOMAIN
93185380Ssam	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
94185380Ssam		HALDEBUG(ah, HAL_DEBUG_ANY,
95185380Ssam		    "%s: set regulatory domain to %u (0x%x)\n",
96185380Ssam		    __func__, regDomain, regDomain);
97185380Ssam		AH_PRIVATE(ah)->ah_currentRD = regDomain;
98185380Ssam		return AH_TRUE;
99185380Ssam	}
100185380Ssam#endif
101185380Ssam	ecode = HAL_EIO;
102185380Ssambad:
103185380Ssam	if (status)
104185380Ssam		*status = ecode;
105185380Ssam	return AH_FALSE;
106185380Ssam}
107185380Ssam
108185380Ssam/*
109185377Ssam * Return the wireless modes (a,b,g,t) supported by hardware.
110185377Ssam *
111185377Ssam * This value is what is actually supported by the hardware
112185377Ssam * and is unaffected by regulatory/country code settings.
113185377Ssam */
114185377Ssamu_int
115185377Ssamar5212GetWirelessModes(struct ath_hal *ah)
116185377Ssam{
117185377Ssam	u_int mode = 0;
118185377Ssam
119185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
120185377Ssam		mode = HAL_MODE_11A;
121185377Ssam		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
122185377Ssam			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
123185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
124185380Ssam			mode |= HAL_MODE_11A_HALF_RATE;
125185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
126185380Ssam			mode |= HAL_MODE_11A_QUARTER_RATE;
127185377Ssam	}
128185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
129185377Ssam		mode |= HAL_MODE_11B;
130185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
131185377Ssam	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
132185377Ssam		mode |= HAL_MODE_11G;
133185377Ssam		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
134185377Ssam			mode |= HAL_MODE_108G;
135185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
136185380Ssam			mode |= HAL_MODE_11G_HALF_RATE;
137185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
138185380Ssam			mode |= HAL_MODE_11G_QUARTER_RATE;
139185377Ssam	}
140185377Ssam	return mode;
141185377Ssam}
142185377Ssam
143185377Ssam/*
144185377Ssam * Set the interrupt and GPIO values so the ISR can disable RF
145185377Ssam * on a switch signal.  Assumes GPIO port and interrupt polarity
146185377Ssam * are set prior to call.
147185377Ssam */
148185377Ssamvoid
149185377Ssamar5212EnableRfKill(struct ath_hal *ah)
150185377Ssam{
151185377Ssam	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
152185377Ssam	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
153185377Ssam	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
154185377Ssam
155185377Ssam	/*
156185377Ssam	 * Configure the desired GPIO port for input
157185377Ssam	 * and enable baseband rf silence.
158185377Ssam	 */
159185377Ssam	ath_hal_gpioCfgInput(ah, select);
160185377Ssam	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
161185377Ssam	/*
162185377Ssam	 * If radio disable switch connection to GPIO bit x is enabled
163185377Ssam	 * program GPIO interrupt.
164185377Ssam	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
165185377Ssam	 * verified that it is a later version of eeprom, it has a place for
166185377Ssam	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
167185377Ssam	 * connection is present.
168185377Ssam	 */
169185377Ssam	ath_hal_gpioSetIntr(ah, select,
170185377Ssam	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
171185377Ssam}
172185377Ssam
173185377Ssam/*
174185377Ssam * Change the LED blinking pattern to correspond to the connectivity
175185377Ssam */
176185377Ssamvoid
177185377Ssamar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
178185377Ssam{
179185377Ssam	static const uint32_t ledbits[8] = {
180185377Ssam		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
181185377Ssam		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
182185377Ssam		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
183185377Ssam		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
184185377Ssam		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
185185377Ssam		AR_PCICFG_LEDCTL_NONE,
186185377Ssam		AR_PCICFG_LEDCTL_NONE,
187185377Ssam		AR_PCICFG_LEDCTL_NONE,
188185377Ssam	};
189185377Ssam	uint32_t bits;
190185377Ssam
191185377Ssam	bits = OS_REG_READ(ah, AR_PCICFG);
192185377Ssam	if (IS_2417(ah)) {
193185377Ssam		/*
194185377Ssam		 * Enable LED for Nala. There is a bit marked reserved
195185377Ssam		 * that must be set and we also turn on the power led.
196185377Ssam		 * Because we mark s/w LED control setting the control
197185377Ssam		 * status bits below is meangless (the driver must flash
198185377Ssam		 * the LED(s) using the GPIO lines).
199185377Ssam		 */
200185377Ssam		bits = (bits &~ AR_PCICFG_LEDMODE)
201185377Ssam		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
202185377Ssam#if 0
203185377Ssam		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
204185377Ssam#endif
205185377Ssam		     | 0x08000000;
206185377Ssam	}
207185377Ssam	bits = (bits &~ AR_PCICFG_LEDCTL)
208185377Ssam	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
209185377Ssam	OS_REG_WRITE(ah, AR_PCICFG, bits);
210185377Ssam}
211185377Ssam
212185377Ssam/*
213185377Ssam * Change association related fields programmed into the hardware.
214185377Ssam * Writing a valid BSSID to the hardware effectively enables the hardware
215185377Ssam * to synchronize its TSF to the correct beacons and receive frames coming
216185377Ssam * from that BSSID. It is called by the SME JOIN operation.
217185377Ssam */
218185377Ssamvoid
219185377Ssamar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
220185377Ssam{
221185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
222185377Ssam
223185377Ssam	/* XXX save bssid for possible re-use on reset */
224185377Ssam	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
225185377Ssam	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
226185377Ssam	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
227185377Ssam				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
228185377Ssam}
229185377Ssam
230185377Ssam/*
231185377Ssam * Get the current hardware tsf for stamlme
232185377Ssam */
233185377Ssamuint64_t
234185377Ssamar5212GetTsf64(struct ath_hal *ah)
235185377Ssam{
236185377Ssam	uint32_t low1, low2, u32;
237185377Ssam
238185377Ssam	/* sync multi-word read */
239185377Ssam	low1 = OS_REG_READ(ah, AR_TSF_L32);
240185377Ssam	u32 = OS_REG_READ(ah, AR_TSF_U32);
241185377Ssam	low2 = OS_REG_READ(ah, AR_TSF_L32);
242185377Ssam	if (low2 < low1) {	/* roll over */
243185377Ssam		/*
244185377Ssam		 * If we are not preempted this will work.  If we are
245185377Ssam		 * then we re-reading AR_TSF_U32 does no good as the
246185377Ssam		 * low bits will be meaningless.  Likewise reading
247185377Ssam		 * L32, U32, U32, then comparing the last two reads
248185380Ssam		 * to check for rollover doesn't help if preempted--so
249185380Ssam		 * we take this approach as it costs one less PCI read
250185380Ssam		 * which can be noticeable when doing things like
251185380Ssam		 * timestamping packets in monitor mode.
252185377Ssam		 */
253185377Ssam		u32++;
254185377Ssam	}
255185377Ssam	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
256185377Ssam}
257185377Ssam
258185377Ssam/*
259185377Ssam * Get the current hardware tsf for stamlme
260185377Ssam */
261185377Ssamuint32_t
262185377Ssamar5212GetTsf32(struct ath_hal *ah)
263185377Ssam{
264185377Ssam	return OS_REG_READ(ah, AR_TSF_L32);
265185377Ssam}
266185377Ssam
267185377Ssam/*
268185377Ssam * Reset the current hardware tsf for stamlme.
269185377Ssam */
270185377Ssamvoid
271185377Ssamar5212ResetTsf(struct ath_hal *ah)
272185377Ssam{
273185377Ssam
274185377Ssam	uint32_t val = OS_REG_READ(ah, AR_BEACON);
275185377Ssam
276185377Ssam	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
277185377Ssam	/*
278185377Ssam	 * When resetting the TSF, write twice to the
279185377Ssam	 * corresponding register; each write to the RESET_TSF bit toggles
280185377Ssam	 * the internal signal to cause a reset of the TSF - but if the signal
281185377Ssam	 * is left high, it will reset the TSF on the next chip reset also!
282185377Ssam	 * writing the bit an even number of times fixes this issue
283185377Ssam	 */
284185377Ssam	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
285185377Ssam}
286185377Ssam
287185377Ssam/*
288185377Ssam * Set or clear hardware basic rate bit
289185377Ssam * Set hardware basic rate set if basic rate is found
290185377Ssam * and basic rate is equal or less than 2Mbps
291185377Ssam */
292185377Ssamvoid
293185377Ssamar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
294185377Ssam{
295187831Ssam	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
296185377Ssam	uint32_t reg;
297185377Ssam	uint8_t xset;
298185377Ssam	int i;
299185377Ssam
300187831Ssam	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
301185377Ssam		return;
302185377Ssam	xset = 0;
303185377Ssam	for (i = 0; i < rs->rs_count; i++) {
304185377Ssam		uint8_t rset = rs->rs_rates[i];
305185377Ssam		/* Basic rate defined? */
306185377Ssam		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
307185377Ssam			xset = rset;
308185377Ssam	}
309185377Ssam	/*
310185377Ssam	 * Set the h/w bit to reflect whether or not the basic
311185377Ssam	 * rate is found to be equal or less than 2Mbps.
312185377Ssam	 */
313185377Ssam	reg = OS_REG_READ(ah, AR_STA_ID1);
314185377Ssam	if (xset && xset/2 <= 2)
315185377Ssam		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
316185377Ssam	else
317185377Ssam		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
318185377Ssam}
319185377Ssam
320185377Ssam/*
321185377Ssam * Grab a semi-random value from hardware registers - may not
322185377Ssam * change often
323185377Ssam */
324185377Ssamuint32_t
325185377Ssamar5212GetRandomSeed(struct ath_hal *ah)
326185377Ssam{
327185377Ssam	uint32_t nf;
328185377Ssam
329185377Ssam	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
330185377Ssam	if (nf & 0x100)
331185377Ssam		nf = 0 - ((nf ^ 0x1ff) + 1);
332185377Ssam	return (OS_REG_READ(ah, AR_TSF_U32) ^
333185377Ssam		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
334185377Ssam}
335185377Ssam
336185377Ssam/*
337185377Ssam * Detect if our card is present
338185377Ssam */
339185377SsamHAL_BOOL
340185377Ssamar5212DetectCardPresent(struct ath_hal *ah)
341185377Ssam{
342185377Ssam	uint16_t macVersion, macRev;
343185377Ssam	uint32_t v;
344185377Ssam
345185377Ssam	/*
346185377Ssam	 * Read the Silicon Revision register and compare that
347185377Ssam	 * to what we read at attach time.  If the same, we say
348185377Ssam	 * a card/device is present.
349185377Ssam	 */
350185377Ssam	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
351185377Ssam	macVersion = v >> AR_SREV_ID_S;
352185377Ssam	macRev = v & AR_SREV_REVISION;
353185377Ssam	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
354185377Ssam		AH_PRIVATE(ah)->ah_macRev == macRev);
355185377Ssam}
356185377Ssam
357185377Ssamvoid
358185377Ssamar5212EnableMibCounters(struct ath_hal *ah)
359185377Ssam{
360185377Ssam	/* NB: this just resets the mib counter machinery */
361185377Ssam	OS_REG_WRITE(ah, AR_MIBC,
362185377Ssam	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
363185377Ssam}
364185377Ssam
365185377Ssamvoid
366185377Ssamar5212DisableMibCounters(struct ath_hal *ah)
367185377Ssam{
368185377Ssam	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
369185377Ssam}
370185377Ssam
371185377Ssam/*
372185377Ssam * Update MIB Counters
373185377Ssam */
374185377Ssamvoid
375185377Ssamar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
376185377Ssam{
377185377Ssam	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
378185377Ssam	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
379185377Ssam	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
380185377Ssam	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
381185377Ssam	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
382185377Ssam}
383185377Ssam
384185377Ssam/*
385185377Ssam * Detect if the HW supports spreading a CCK signal on channel 14
386185377Ssam */
387185377SsamHAL_BOOL
388185377Ssamar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
389185377Ssam{
390185377Ssam	return AH_TRUE;
391185377Ssam}
392185377Ssam
393185377Ssam/*
394185377Ssam * Get the rssi of frame curently being received.
395185377Ssam */
396185377Ssamuint32_t
397185377Ssamar5212GetCurRssi(struct ath_hal *ah)
398185377Ssam{
399185377Ssam	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
400185377Ssam}
401185377Ssam
402185377Ssamu_int
403185377Ssamar5212GetDefAntenna(struct ath_hal *ah)
404185377Ssam{
405185377Ssam	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
406185377Ssam}
407185377Ssam
408185377Ssamvoid
409185377Ssamar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
410185377Ssam{
411185377Ssam	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
412185377Ssam}
413185377Ssam
414185377SsamHAL_ANT_SETTING
415185377Ssamar5212GetAntennaSwitch(struct ath_hal *ah)
416185377Ssam{
417185380Ssam	return AH5212(ah)->ah_antControl;
418185377Ssam}
419185377Ssam
420185377SsamHAL_BOOL
421185380Ssamar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
422185377Ssam{
423185380Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
424187831Ssam	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
425185377Ssam
426187831Ssam	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
427185380Ssam		/* PHY powered off, just stash settings */
428185380Ssam		ahp->ah_antControl = setting;
429185380Ssam		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
430185377Ssam		return AH_TRUE;
431185377Ssam	}
432187831Ssam	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
433185377Ssam}
434185377Ssam
435185377SsamHAL_BOOL
436185377Ssamar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
437185377Ssam{
438185377Ssam	return AH_TRUE;
439185377Ssam}
440185377Ssam
441185377SsamHAL_BOOL
442185377Ssamar5212SetSifsTime(struct ath_hal *ah, u_int us)
443185377Ssam{
444185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
445185377Ssam
446185377Ssam	if (us > ath_hal_mac_usec(ah, 0xffff)) {
447185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
448185377Ssam		    __func__, us);
449185377Ssam		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
450185377Ssam		return AH_FALSE;
451185377Ssam	} else {
452185377Ssam		/* convert to system clocks */
453185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
454187831Ssam		ahp->ah_slottime = us;
455185377Ssam		return AH_TRUE;
456185377Ssam	}
457185377Ssam}
458185377Ssam
459185377Ssamu_int
460185377Ssamar5212GetSifsTime(struct ath_hal *ah)
461185377Ssam{
462185377Ssam	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
463185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
464185377Ssam}
465185377Ssam
466185377SsamHAL_BOOL
467185377Ssamar5212SetSlotTime(struct ath_hal *ah, u_int us)
468185377Ssam{
469185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
470185377Ssam
471185377Ssam	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
472185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
473185377Ssam		    __func__, us);
474185377Ssam		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
475185377Ssam		return AH_FALSE;
476185377Ssam	} else {
477185377Ssam		/* convert to system clocks */
478185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
479185377Ssam		ahp->ah_slottime = us;
480185377Ssam		return AH_TRUE;
481185377Ssam	}
482185377Ssam}
483185377Ssam
484185377Ssamu_int
485185377Ssamar5212GetSlotTime(struct ath_hal *ah)
486185377Ssam{
487185377Ssam	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
488185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
489185377Ssam}
490185377Ssam
491185377SsamHAL_BOOL
492185377Ssamar5212SetAckTimeout(struct ath_hal *ah, u_int us)
493185377Ssam{
494185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
495185377Ssam
496185377Ssam	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
497185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
498185377Ssam		    __func__, us);
499185377Ssam		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
500185377Ssam		return AH_FALSE;
501185377Ssam	} else {
502185377Ssam		/* convert to system clocks */
503185377Ssam		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
504185377Ssam			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
505185377Ssam		ahp->ah_acktimeout = us;
506185377Ssam		return AH_TRUE;
507185377Ssam	}
508185377Ssam}
509185377Ssam
510185377Ssamu_int
511185377Ssamar5212GetAckTimeout(struct ath_hal *ah)
512185377Ssam{
513185377Ssam	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
514185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
515185377Ssam}
516185377Ssam
517185377Ssamu_int
518185377Ssamar5212GetAckCTSRate(struct ath_hal *ah)
519185377Ssam{
520185377Ssam	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
521185377Ssam}
522185377Ssam
523185377SsamHAL_BOOL
524185377Ssamar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
525185377Ssam{
526185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
527185377Ssam
528185377Ssam	if (high) {
529185377Ssam		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
530185377Ssam		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
531185377Ssam	} else {
532185377Ssam		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
533185377Ssam		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
534185377Ssam	}
535185377Ssam	return AH_TRUE;
536185377Ssam}
537185377Ssam
538185377SsamHAL_BOOL
539185377Ssamar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
540185377Ssam{
541185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
542185377Ssam
543185377Ssam	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
544185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
545185377Ssam		    __func__, us);
546185377Ssam		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
547185377Ssam		return AH_FALSE;
548185377Ssam	} else {
549185377Ssam		/* convert to system clocks */
550185377Ssam		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
551185377Ssam			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
552185377Ssam		ahp->ah_ctstimeout = us;
553185377Ssam		return AH_TRUE;
554185377Ssam	}
555185377Ssam}
556185377Ssam
557185377Ssamu_int
558185377Ssamar5212GetCTSTimeout(struct ath_hal *ah)
559185377Ssam{
560185377Ssam	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
561185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
562185377Ssam}
563185377Ssam
564185377Ssam/* Setup decompression for given key index */
565185377SsamHAL_BOOL
566185377Ssamar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
567185377Ssam{
568185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
569185377Ssam
570185377Ssam        if (keyidx >= HAL_DECOMP_MASK_SIZE)
571185377Ssam                return HAL_EINVAL;
572185377Ssam        OS_REG_WRITE(ah, AR_DCM_A, keyidx);
573185377Ssam        OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
574185377Ssam        ahp->ah_decompMask[keyidx] = en;
575185377Ssam
576185377Ssam        return AH_TRUE;
577185377Ssam}
578185377Ssam
579185377Ssam/* Setup coverage class */
580185377Ssamvoid
581185377Ssamar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
582185377Ssam{
583185377Ssam	uint32_t slot, timeout, eifs;
584185377Ssam	u_int clkRate;
585185377Ssam
586185377Ssam	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
587185377Ssam
588185377Ssam	if (now) {
589185377Ssam		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
590185377Ssam			return;
591185377Ssam
592185377Ssam		/* Don't apply coverage class to non A channels */
593187831Ssam		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
594185377Ssam			return;
595185377Ssam
596185377Ssam		/* Get core clock rate */
597185377Ssam		clkRate = ath_hal_mac_clks(ah, 1);
598185377Ssam
599185377Ssam		/* Compute EIFS */
600185377Ssam		slot = coverageclass * 3 * clkRate;
601185377Ssam		eifs = coverageclass * 6 * clkRate;
602187831Ssam		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
603185377Ssam			slot += IFS_SLOT_HALF_RATE;
604185377Ssam			eifs += IFS_EIFS_HALF_RATE;
605187831Ssam		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
606185377Ssam			slot += IFS_SLOT_QUARTER_RATE;
607185377Ssam			eifs += IFS_EIFS_QUARTER_RATE;
608185377Ssam		} else { /* full rate */
609185377Ssam			slot += IFS_SLOT_FULL_RATE;
610185377Ssam			eifs += IFS_EIFS_FULL_RATE;
611185377Ssam		}
612185377Ssam
613185377Ssam		/*
614185377Ssam		 * Add additional time for air propagation for ACK and CTS
615185377Ssam		 * timeouts. This value is in core clocks.
616185377Ssam  		 */
617185377Ssam		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
618185377Ssam
619185377Ssam		/*
620185377Ssam		 * Write the values: slot, eifs, ack/cts timeouts.
621185377Ssam		 */
622185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
623185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
624185377Ssam		OS_REG_WRITE(ah, AR_TIME_OUT,
625185377Ssam			  SM(timeout, AR_TIME_OUT_CTS)
626185377Ssam			| SM(timeout, AR_TIME_OUT_ACK));
627185377Ssam	}
628185377Ssam}
629185377Ssam
630185377Ssamvoid
631185377Ssamar5212SetPCUConfig(struct ath_hal *ah)
632185377Ssam{
633185377Ssam	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
634185377Ssam}
635185377Ssam
636185377Ssam/*
637185377Ssam * Return whether an external 32KHz crystal should be used
638185377Ssam * to reduce power consumption when sleeping.  We do so if
639185377Ssam * the crystal is present (obtained from EEPROM) and if we
640185377Ssam * are not running as an AP and are configured to use it.
641185377Ssam */
642185377SsamHAL_BOOL
643185377Ssamar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
644185377Ssam{
645185377Ssam	if (opmode != HAL_M_HOSTAP) {
646185377Ssam		struct ath_hal_5212 *ahp = AH5212(ah);
647185377Ssam		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
648185377Ssam		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
649185377Ssam		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
650185377Ssam	} else
651185377Ssam		return AH_FALSE;
652185377Ssam}
653185377Ssam
654185377Ssam/*
655185377Ssam * If 32KHz clock exists, use it to lower power consumption during sleep
656185377Ssam *
657185377Ssam * Note: If clock is set to 32 KHz, delays on accessing certain
658185377Ssam *       baseband registers (27-31, 124-127) are required.
659185377Ssam */
660185377Ssamvoid
661185377Ssamar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
662185377Ssam{
663185377Ssam	if (ar5212Use32KHzclock(ah, opmode)) {
664185377Ssam		/*
665185377Ssam		 * Enable clocks to be turned OFF in BB during sleep
666185377Ssam		 * and also enable turning OFF 32MHz/40MHz Refclk
667185377Ssam		 * from A2.
668185377Ssam		 */
669185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
670185380Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
671185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
672185377Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
673185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
674185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
675185377Ssam
676185377Ssam		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
677185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
678185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
679185377Ssam			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
680185377Ssam			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
681185377Ssam			/* # Set sleep clock rate to 32 KHz. */
682185377Ssam			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
683185377Ssam		} else {
684185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
685185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
686185377Ssam			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
687185377Ssam			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
688185377Ssam			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
689185377Ssam		}
690185377Ssam	} else {
691185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
692185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
693185377Ssam
694185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
695185377Ssam
696185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
697185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
698185377Ssam
699185377Ssam		if (IS_2417(ah))
700185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
701185377Ssam		else if (IS_HB63(ah))
702185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
703185377Ssam		else
704185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
705185377Ssam		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
706185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
707185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
708185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
709185380Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
710185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
711185377Ssam	}
712185377Ssam}
713185377Ssam
714185377Ssam/*
715185377Ssam * If 32KHz clock exists, turn it off and turn back on the 32Mhz
716185377Ssam */
717185377Ssamvoid
718185377Ssamar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
719185377Ssam{
720185377Ssam	if (ar5212Use32KHzclock(ah, opmode)) {
721185377Ssam		/* # Set sleep clock rate back to 32 MHz. */
722185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
723185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
724185377Ssam
725185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
726185380Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
727185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
728185377Ssam
729185377Ssam		/*
730185377Ssam		 * Restore BB registers to power-on defaults
731185377Ssam		 */
732185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
733185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
734185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
735185377Ssam		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
736185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
737185380Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
738185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
739185377Ssam	}
740185377Ssam}
741185377Ssam
742185377Ssam/*
743185377Ssam * Adjust NF based on statistical values for 5GHz frequencies.
744185377Ssam * Default method: this may be overridden by the rf backend.
745185377Ssam */
746185377Ssamint16_t
747185377Ssamar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
748185377Ssam{
749185377Ssam	static const struct {
750185377Ssam		uint16_t freqLow;
751185377Ssam		int16_t	  adjust;
752185377Ssam	} adjustDef[] = {
753185377Ssam		{ 5790,	11 },	/* NB: ordered high -> low */
754185377Ssam		{ 5730, 10 },
755185377Ssam		{ 5690,  9 },
756185377Ssam		{ 5660,  8 },
757185377Ssam		{ 5610,  7 },
758185377Ssam		{ 5530,  5 },
759185377Ssam		{ 5450,  4 },
760185377Ssam		{ 5379,  2 },
761185377Ssam		{ 5209,  0 },
762185377Ssam		{ 3000,  1 },
763185377Ssam		{    0,  0 },
764185377Ssam	};
765185377Ssam	int i;
766185377Ssam
767185377Ssam	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
768185377Ssam		;
769185377Ssam	return adjustDef[i].adjust;
770185377Ssam}
771185377Ssam
772185377SsamHAL_STATUS
773185377Ssamar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
774185377Ssam	uint32_t capability, uint32_t *result)
775185377Ssam{
776185377Ssam#define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
777185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
778185377Ssam	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
779185377Ssam	const struct ar5212AniState *ani;
780185377Ssam
781185377Ssam	switch (type) {
782185377Ssam	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
783185377Ssam		switch (capability) {
784185377Ssam		case HAL_CIPHER_AES_CCM:
785185377Ssam			return pCap->halCipherAesCcmSupport ?
786185377Ssam				HAL_OK : HAL_ENOTSUPP;
787185377Ssam		case HAL_CIPHER_AES_OCB:
788185377Ssam		case HAL_CIPHER_TKIP:
789185377Ssam		case HAL_CIPHER_WEP:
790185377Ssam		case HAL_CIPHER_MIC:
791185377Ssam		case HAL_CIPHER_CLR:
792185377Ssam			return HAL_OK;
793185377Ssam		default:
794185377Ssam			return HAL_ENOTSUPP;
795185377Ssam		}
796185377Ssam	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
797185377Ssam		switch (capability) {
798185377Ssam		case 0:			/* hardware capability */
799185377Ssam			return HAL_OK;
800185377Ssam		case 1:
801185377Ssam			return (ahp->ah_staId1Defaults &
802185377Ssam			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
803185377Ssam		}
804185907Ssam		return HAL_EINVAL;
805185377Ssam	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
806185377Ssam		switch (capability) {
807185377Ssam		case 0:			/* hardware capability */
808185377Ssam			return pCap->halTkipMicTxRxKeySupport ?
809185377Ssam				HAL_ENXIO : HAL_OK;
810185377Ssam		case 1:			/* current setting */
811185377Ssam			return (ahp->ah_miscMode &
812185377Ssam			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
813185377Ssam		}
814185377Ssam		return HAL_EINVAL;
815185377Ssam	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
816185377Ssam		/* XXX move to capability bit */
817185377Ssam		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
818185377Ssam		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
819185377Ssam		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
820185377Ssam	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
821185377Ssam		switch (capability) {
822185377Ssam		case 0:			/* hardware capability */
823185377Ssam			return HAL_OK;
824185377Ssam		case 1:			/* current setting */
825185380Ssam			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
826185377Ssam		}
827185377Ssam		return HAL_EINVAL;
828185377Ssam	case HAL_CAP_DIAG:
829185377Ssam		*result = AH_PRIVATE(ah)->ah_diagreg;
830185377Ssam		return HAL_OK;
831185377Ssam	case HAL_CAP_TPC:
832185377Ssam		switch (capability) {
833185377Ssam		case 0:			/* hardware capability */
834185377Ssam			return HAL_OK;
835185377Ssam		case 1:
836185377Ssam			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
837185377Ssam		}
838185377Ssam		return HAL_OK;
839185377Ssam	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
840185377Ssam		switch (capability) {
841185377Ssam		case HAL_CAP_RADAR:
842185377Ssam			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
843185377Ssam			    HAL_OK: HAL_ENXIO;
844185377Ssam		case HAL_CAP_AR:
845185377Ssam			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
846185377Ssam			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
847185377Ssam			       HAL_OK: HAL_ENXIO;
848185377Ssam		}
849185377Ssam		return HAL_ENXIO;
850185377Ssam	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
851185377Ssam		switch (capability) {
852185377Ssam		case 0:			/* hardware capability */
853185377Ssam			return HAL_OK;
854185377Ssam		case 1:
855185377Ssam			return (ahp->ah_staId1Defaults &
856185377Ssam			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
857185377Ssam		}
858185377Ssam		return HAL_EINVAL;
859185377Ssam	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
860185377Ssam		switch (capability) {
861185377Ssam		case 0:			/* hardware capability */
862185377Ssam			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
863185377Ssam		case 1:
864185377Ssam			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
865185377Ssam				HAL_OK : HAL_ENXIO;
866185377Ssam		}
867185377Ssam		return HAL_EINVAL;
868185377Ssam	case HAL_CAP_TPC_ACK:
869185377Ssam		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
870185377Ssam		return HAL_OK;
871185377Ssam	case HAL_CAP_TPC_CTS:
872185377Ssam		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
873185377Ssam		return HAL_OK;
874185377Ssam	case HAL_CAP_INTMIT:		/* interference mitigation */
875185377Ssam		switch (capability) {
876185377Ssam		case 0:			/* hardware capability */
877185377Ssam			return HAL_OK;
878185377Ssam		case 1:
879185377Ssam			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
880185377Ssam				HAL_OK : HAL_ENXIO;
881185377Ssam		case 2:			/* HAL_ANI_NOISE_IMMUNITY_LEVEL */
882185377Ssam		case 3:			/* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
883185377Ssam		case 4:			/* HAL_ANI_CCK_WEAK_SIGNAL_THR */
884185377Ssam		case 5:			/* HAL_ANI_FIRSTEP_LEVEL */
885185377Ssam		case 6:			/* HAL_ANI_SPUR_IMMUNITY_LEVEL */
886185377Ssam			ani = ar5212AniGetCurrentState(ah);
887185377Ssam			if (ani == AH_NULL)
888185377Ssam				return HAL_ENXIO;
889185377Ssam			switch (capability) {
890185377Ssam			case 2:	*result = ani->noiseImmunityLevel; break;
891185377Ssam			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
892185377Ssam			case 4: *result = ani->cckWeakSigThreshold; break;
893185377Ssam			case 5: *result = ani->firstepLevel; break;
894185377Ssam			case 6: *result = ani->spurImmunityLevel; break;
895185377Ssam			}
896185377Ssam			return HAL_OK;
897185377Ssam		}
898185377Ssam		return HAL_EINVAL;
899185377Ssam	default:
900185377Ssam		return ath_hal_getcapability(ah, type, capability, result);
901185377Ssam	}
902185377Ssam#undef MACVERSION
903185377Ssam}
904185377Ssam
905185377SsamHAL_BOOL
906185377Ssamar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
907185377Ssam	uint32_t capability, uint32_t setting, HAL_STATUS *status)
908185377Ssam{
909185377Ssam#define	N(a)	(sizeof(a)/sizeof(a[0]))
910185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
911185377Ssam	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
912185377Ssam	uint32_t v;
913185377Ssam
914185377Ssam	switch (type) {
915185377Ssam	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
916185377Ssam		if (setting)
917185377Ssam			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
918185377Ssam		else
919185377Ssam			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
920185377Ssam		return AH_TRUE;
921185377Ssam	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
922185377Ssam		if (!pCap->halTkipMicTxRxKeySupport)
923185377Ssam			return AH_FALSE;
924185377Ssam		/* NB: true =>'s use split key cache layout */
925185377Ssam		if (setting)
926185377Ssam			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
927185377Ssam		else
928185377Ssam			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
929185377Ssam		/* NB: write here so keys can be setup w/o a reset */
930185377Ssam		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
931185377Ssam		return AH_TRUE;
932185377Ssam	case HAL_CAP_DIVERSITY:
933185380Ssam		if (ahp->ah_phyPowerOn) {
934185380Ssam			v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
935185380Ssam			if (setting)
936185380Ssam				v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
937185380Ssam			else
938185380Ssam				v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
939185380Ssam			OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
940185380Ssam		}
941185380Ssam		ahp->ah_diversity = (setting != 0);
942185377Ssam		return AH_TRUE;
943185377Ssam	case HAL_CAP_DIAG:		/* hardware diagnostic support */
944185377Ssam		/*
945185377Ssam		 * NB: could split this up into virtual capabilities,
946185377Ssam		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
947185377Ssam		 *     seems worth the additional complexity.
948185377Ssam		 */
949185377Ssam		AH_PRIVATE(ah)->ah_diagreg = setting;
950185377Ssam		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
951185377Ssam		return AH_TRUE;
952185377Ssam	case HAL_CAP_TPC:
953185377Ssam		ahp->ah_tpcEnabled = (setting != 0);
954185377Ssam		return AH_TRUE;
955185377Ssam	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
956185377Ssam		if (setting)
957185377Ssam			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
958185377Ssam		else
959185377Ssam			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
960185377Ssam		return AH_TRUE;
961185377Ssam	case HAL_CAP_TPC_ACK:
962185377Ssam	case HAL_CAP_TPC_CTS:
963185377Ssam		setting += ahp->ah_txPowerIndexOffset;
964185377Ssam		if (setting > 63)
965185377Ssam			setting = 63;
966185377Ssam		if (type == HAL_CAP_TPC_ACK) {
967185377Ssam			ahp->ah_macTPC &= AR_TPC_ACK;
968185377Ssam			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
969185377Ssam		} else {
970185377Ssam			ahp->ah_macTPC &= AR_TPC_CTS;
971185377Ssam			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
972185377Ssam		}
973185377Ssam		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
974185377Ssam		return AH_TRUE;
975185377Ssam	case HAL_CAP_INTMIT: {		/* interference mitigation */
976185377Ssam		static const HAL_ANI_CMD cmds[] = {
977185377Ssam			HAL_ANI_PRESENT,
978185377Ssam			HAL_ANI_MODE,
979185377Ssam			HAL_ANI_NOISE_IMMUNITY_LEVEL,
980185377Ssam			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
981185377Ssam			HAL_ANI_CCK_WEAK_SIGNAL_THR,
982185377Ssam			HAL_ANI_FIRSTEP_LEVEL,
983185377Ssam			HAL_ANI_SPUR_IMMUNITY_LEVEL,
984185377Ssam		};
985185377Ssam		return capability < N(cmds) ?
986185377Ssam			ar5212AniControl(ah, cmds[capability], setting) :
987185377Ssam			AH_FALSE;
988185377Ssam	}
989185377Ssam	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
990185377Ssam		if (pCap->halTsfAddSupport) {
991185377Ssam			if (setting)
992185377Ssam				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
993185377Ssam			else
994185377Ssam				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
995185377Ssam			return AH_TRUE;
996185377Ssam		}
997185377Ssam		/* fall thru... */
998185377Ssam	default:
999185377Ssam		return ath_hal_setcapability(ah, type, capability,
1000185377Ssam				setting, status);
1001185377Ssam	}
1002185377Ssam#undef N
1003185377Ssam}
1004185377Ssam
1005185377SsamHAL_BOOL
1006185377Ssamar5212GetDiagState(struct ath_hal *ah, int request,
1007185377Ssam	const void *args, uint32_t argsize,
1008185377Ssam	void **result, uint32_t *resultsize)
1009185377Ssam{
1010185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
1011185377Ssam
1012185377Ssam	(void) ahp;
1013185377Ssam	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1014185377Ssam		return AH_TRUE;
1015185377Ssam	switch (request) {
1016185377Ssam	case HAL_DIAG_EEPROM:
1017185377Ssam	case HAL_DIAG_EEPROM_EXP_11A:
1018185377Ssam	case HAL_DIAG_EEPROM_EXP_11B:
1019185377Ssam	case HAL_DIAG_EEPROM_EXP_11G:
1020185377Ssam	case HAL_DIAG_RFGAIN:
1021185377Ssam		return ath_hal_eepromDiag(ah, request,
1022185377Ssam		    args, argsize, result, resultsize);
1023185377Ssam	case HAL_DIAG_RFGAIN_CURSTEP:
1024185377Ssam		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1025185377Ssam		*resultsize = (*result == AH_NULL) ?
1026185377Ssam			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1027185377Ssam		return AH_TRUE;
1028185377Ssam	case HAL_DIAG_PCDAC:
1029185377Ssam		*result = ahp->ah_pcdacTable;
1030185377Ssam		*resultsize = ahp->ah_pcdacTableSize;
1031185377Ssam		return AH_TRUE;
1032185377Ssam	case HAL_DIAG_TXRATES:
1033185377Ssam		*result = &ahp->ah_ratesArray[0];
1034185377Ssam		*resultsize = sizeof(ahp->ah_ratesArray);
1035185377Ssam		return AH_TRUE;
1036185377Ssam	case HAL_DIAG_ANI_CURRENT:
1037185377Ssam		*result = ar5212AniGetCurrentState(ah);
1038185377Ssam		*resultsize = (*result == AH_NULL) ?
1039185377Ssam			0 : sizeof(struct ar5212AniState);
1040185377Ssam		return AH_TRUE;
1041185377Ssam	case HAL_DIAG_ANI_STATS:
1042185377Ssam		*result = ar5212AniGetCurrentStats(ah);
1043185377Ssam		*resultsize = (*result == AH_NULL) ?
1044185377Ssam			0 : sizeof(struct ar5212Stats);
1045185377Ssam		return AH_TRUE;
1046185377Ssam	case HAL_DIAG_ANI_CMD:
1047185377Ssam		if (argsize != 2*sizeof(uint32_t))
1048185377Ssam			return AH_FALSE;
1049185377Ssam		ar5212AniControl(ah, ((const uint32_t *)args)[0],
1050185377Ssam			((const uint32_t *)args)[1]);
1051185377Ssam		return AH_TRUE;
1052185377Ssam	case HAL_DIAG_ANI_PARAMS:
1053185377Ssam		/*
1054185377Ssam		 * NB: We assume struct ar5212AniParams is identical
1055185377Ssam		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1056185377Ssam		 * to handle it here
1057185377Ssam		 */
1058185377Ssam		if (argsize == 0 && args == AH_NULL) {
1059185377Ssam			struct ar5212AniState *aniState =
1060185377Ssam			    ar5212AniGetCurrentState(ah);
1061185377Ssam			if (aniState == AH_NULL)
1062185377Ssam				return AH_FALSE;
1063185377Ssam			*result = __DECONST(void *, aniState->params);
1064185377Ssam			*resultsize = sizeof(struct ar5212AniParams);
1065185377Ssam			return AH_TRUE;
1066185377Ssam		} else {
1067185377Ssam			if (argsize != sizeof(struct ar5212AniParams))
1068185377Ssam				return AH_FALSE;
1069185377Ssam			return ar5212AniSetParams(ah, args, args);
1070185377Ssam		}
1071185377Ssam	}
1072185377Ssam	return AH_FALSE;
1073185377Ssam}
1074