ar5212_keycache.c revision 204644
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5212/ar5212_keycache.c 204644 2010-03-03 17:32:32Z rpaulo $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23
24#include "ar5212/ar5212.h"
25#include "ar5212/ar5212reg.h"
26#include "ar5212/ar5212desc.h"
27
28/*
29 * Note: The key cache hardware requires that each double-word
30 * pair be written in even/odd order (since the destination is
31 * a 64-bit register).  Don't reorder the writes in this code
32 * w/o considering this!
33 */
34#define	KEY_XOR			0xaa
35
36#define	IS_MIC_ENABLED(ah) \
37	(AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
38
39/*
40 * Return the size of the hardware key cache.
41 */
42uint32_t
43ar5212GetKeyCacheSize(struct ath_hal *ah)
44{
45	return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
46}
47
48/*
49 * Return true if the specific key cache entry is valid.
50 */
51HAL_BOOL
52ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
53{
54	if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
55		uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
56		if (val & AR_KEYTABLE_VALID)
57			return AH_TRUE;
58	}
59	return AH_FALSE;
60}
61
62/*
63 * Clear the specified key cache entry and any associated MIC entry.
64 */
65HAL_BOOL
66ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
67{
68	uint32_t keyType;
69
70	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
71		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
72		    __func__, entry);
73		return AH_FALSE;
74	}
75	keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
76
77	/* XXX why not clear key type/valid bit first? */
78	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
79	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
80	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
81	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
82	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
83	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
84	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
85	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
86	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
87		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
88
89		HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
90		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
91		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
92		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
93		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
94		/* NB: key type and MAC are known to be ok */
95	}
96	return AH_TRUE;
97}
98
99/*
100 * Sets the mac part of the specified key cache entry (and any
101 * associated MIC entry) and mark them valid.
102 */
103HAL_BOOL
104ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
105{
106	uint32_t macHi, macLo;
107
108	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
109		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
110		    __func__, entry);
111		return AH_FALSE;
112	}
113	/*
114	 * Set MAC address -- shifted right by 1.  MacLo is
115	 * the 4 MSBs, and MacHi is the 2 LSBs.
116	 */
117	if (mac != AH_NULL) {
118		macHi = (mac[5] << 8) | mac[4];
119		macLo = (mac[3] << 24)| (mac[2] << 16)
120		      | (mac[1] << 8) | mac[0];
121		macLo >>= 1;
122		macLo |= (macHi & 1) << 31;	/* carry */
123		macHi >>= 1;
124	} else {
125		macLo = macHi = 0;
126	}
127	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
128	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
129	return AH_TRUE;
130}
131
132/*
133 * Sets the contents of the specified key cache entry
134 * and any associated MIC entry.
135 */
136HAL_BOOL
137ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
138                       const HAL_KEYVAL *k, const uint8_t *mac,
139                       int xorKey)
140{
141	struct ath_hal_5212 *ahp = AH5212(ah);
142	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
143	uint32_t key0, key1, key2, key3, key4;
144	uint32_t keyType;
145	uint32_t xorMask = xorKey ?
146		(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
147
148	if (entry >= pCap->halKeyCacheSize) {
149		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
150		    __func__, entry);
151		return AH_FALSE;
152	}
153	switch (k->kv_type) {
154	case HAL_CIPHER_AES_OCB:
155		keyType = AR_KEYTABLE_TYPE_AES;
156		break;
157	case HAL_CIPHER_AES_CCM:
158		if (!pCap->halCipherAesCcmSupport) {
159			HALDEBUG(ah, HAL_DEBUG_ANY,
160			    "%s: AES-CCM not supported by mac rev 0x%x\n",
161			    __func__, AH_PRIVATE(ah)->ah_macRev);
162			return AH_FALSE;
163		}
164		keyType = AR_KEYTABLE_TYPE_CCM;
165		break;
166	case HAL_CIPHER_TKIP:
167		keyType = AR_KEYTABLE_TYPE_TKIP;
168		if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
169			HALDEBUG(ah, HAL_DEBUG_ANY,
170			    "%s: entry %u inappropriate for TKIP\n",
171			    __func__, entry);
172			return AH_FALSE;
173		}
174		break;
175	case HAL_CIPHER_WEP:
176		if (k->kv_len < 40 / NBBY) {
177			HALDEBUG(ah, HAL_DEBUG_ANY,
178			    "%s: WEP key length %u too small\n",
179			    __func__, k->kv_len);
180			return AH_FALSE;
181		}
182		if (k->kv_len <= 40 / NBBY)
183			keyType = AR_KEYTABLE_TYPE_40;
184		else if (k->kv_len <= 104 / NBBY)
185			keyType = AR_KEYTABLE_TYPE_104;
186		else
187			keyType = AR_KEYTABLE_TYPE_128;
188		break;
189	case HAL_CIPHER_CLR:
190		keyType = AR_KEYTABLE_TYPE_CLR;
191		break;
192	default:
193		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
194		    __func__, k->kv_type);
195		return AH_FALSE;
196	}
197
198	key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
199	key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
200	key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
201	key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
202	key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
203	if (k->kv_len <= 104 / NBBY)
204		key4 &= 0xff;
205
206	/*
207	 * Note: key cache hardware requires that each double-word
208	 * pair be written in even/odd order (since the destination is
209	 * a 64-bit register).  Don't reorder these writes w/o
210	 * considering this!
211	 */
212	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
213		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
214		uint32_t mic0, mic1, mic2, mic3, mic4;
215
216		/*
217		 * Invalidate the encrypt/decrypt key until the MIC
218		 * key is installed so pending rx frames will fail
219		 * with decrypt errors rather than a MIC error.
220		 */
221		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
222		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
223		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
224		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
225		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
226		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
227		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
228
229
230		/*
231		 * Write MIC entry according to new or old key layout.
232		 * The MISC_MODE register is assumed already set so
233		 * these writes will be handled properly (happens on
234		 * attach and at every reset).
235		 */
236		/* RX mic */
237		mic0 = LE_READ_4(k->kv_mic+0);
238		mic2 = LE_READ_4(k->kv_mic+4);
239		if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
240			/*
241			 * Both RX and TX mic values can be combined into
242			 * one cache slot entry:
243			 *  8*N + 800         31:0    RX Michael key 0
244			 *  8*N + 804         15:0    TX Michael key 0 [31:16]
245			 *  8*N + 808         31:0    RX Michael key 1
246			 *  8*N + 80C         15:0    TX Michael key 0 [15:0]
247			 *  8*N + 810         31:0    TX Michael key 1
248			 *  8*N + 814         15:0    reserved
249			 *  8*N + 818         31:0    reserved
250			 *  8*N + 81C         14:0    reserved
251			 *                    15      key valid == 0
252			 */
253			/* TX mic */
254			mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
255			mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
256			mic4 = LE_READ_4(k->kv_txmic+4);
257		} else {
258			mic1 = mic3 = mic4 = 0;
259		}
260		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
261		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
262		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
263		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
264		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
265		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
266			AR_KEYTABLE_TYPE_CLR);
267		/* NB: MIC key is not marked valid and has no MAC address */
268		OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
269		OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
270
271		/* correct intentionally corrupted key */
272		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
273		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
274	} else {
275		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
276		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
277		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
278		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
279		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
280		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
281
282		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
283	}
284	return AH_TRUE;
285}
286