ar5212_keycache.c revision 185377
1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $Id: ar5212_keycache.c,v 1.4 2008/11/10 04:08:03 sam Exp $
18 */
19#include "opt_ah.h"
20
21#ifdef AH_SUPPORT_AR5212
22
23#include "ah.h"
24#include "ah_internal.h"
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212desc.h"
29
30/*
31 * Note: The key cache hardware requires that each double-word
32 * pair be written in even/odd order (since the destination is
33 * a 64-bit register).  Don't reorder the writes in this code
34 * w/o considering this!
35 */
36#define	KEY_XOR			0xaa
37
38#define	IS_MIC_ENABLED(ah) \
39	(AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_CRPT_MIC_ENABLE)
40
41/*
42 * Return the size of the hardware key cache.
43 */
44uint32_t
45ar5212GetKeyCacheSize(struct ath_hal *ah)
46{
47	return AH_PRIVATE(ah)->ah_caps.halKeyCacheSize;
48}
49
50/*
51 * Return true if the specific key cache entry is valid.
52 */
53HAL_BOOL
54ar5212IsKeyCacheEntryValid(struct ath_hal *ah, uint16_t entry)
55{
56	if (entry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
57		uint32_t val = OS_REG_READ(ah, AR_KEYTABLE_MAC1(entry));
58		if (val & AR_KEYTABLE_VALID)
59			return AH_TRUE;
60	}
61	return AH_FALSE;
62}
63
64/*
65 * Clear the specified key cache entry and any associated MIC entry.
66 */
67HAL_BOOL
68ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
69{
70	uint32_t keyType;
71
72	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
73		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
74		    __func__, entry);
75		return AH_FALSE;
76	}
77	keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));
78
79	/* XXX why not clear key type/valid bit first? */
80	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
81	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
82	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
83	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
84	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
85	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
86	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
87	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
88	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
89		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
90
91		HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
92		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
93		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
94		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
95		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
96		/* NB: key type and MAC are known to be ok */
97	}
98	return AH_TRUE;
99}
100
101/*
102 * Sets the mac part of the specified key cache entry (and any
103 * associated MIC entry) and mark them valid.
104 */
105HAL_BOOL
106ar5212SetKeyCacheEntryMac(struct ath_hal *ah, uint16_t entry, const uint8_t *mac)
107{
108	uint32_t macHi, macLo;
109
110	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
111		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
112		    __func__, entry);
113		return AH_FALSE;
114	}
115	/*
116	 * Set MAC address -- shifted right by 1.  MacLo is
117	 * the 4 MSBs, and MacHi is the 2 LSBs.
118	 */
119	if (mac != AH_NULL) {
120		macHi = (mac[5] << 8) | mac[4];
121		macLo = (mac[3] << 24)| (mac[2] << 16)
122		      | (mac[1] << 8) | mac[0];
123		macLo >>= 1;
124		macLo |= (macHi & 1) << 31;	/* carry */
125		macHi >>= 1;
126	} else {
127		macLo = macHi = 0;
128	}
129	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
130	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
131	return AH_TRUE;
132}
133
134/*
135 * Sets the contents of the specified key cache entry
136 * and any associated MIC entry.
137 */
138HAL_BOOL
139ar5212SetKeyCacheEntry(struct ath_hal *ah, uint16_t entry,
140                       const HAL_KEYVAL *k, const uint8_t *mac,
141                       int xorKey)
142{
143	struct ath_hal_5212 *ahp = AH5212(ah);
144	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
145	uint32_t key0, key1, key2, key3, key4;
146	uint32_t keyType;
147	uint32_t xorMask = xorKey ?
148		(KEY_XOR << 24 | KEY_XOR << 16 | KEY_XOR << 8 | KEY_XOR) : 0;
149
150	if (entry >= pCap->halKeyCacheSize) {
151		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
152		    __func__, entry);
153		return AH_FALSE;
154	}
155	switch (k->kv_type) {
156	case HAL_CIPHER_AES_OCB:
157		keyType = AR_KEYTABLE_TYPE_AES;
158		break;
159	case HAL_CIPHER_AES_CCM:
160		if (!pCap->halCipherAesCcmSupport) {
161			HALDEBUG(ah, HAL_DEBUG_ANY,
162			    "%s: AES-CCM not supported by mac rev 0x%x\n",
163			    __func__, AH_PRIVATE(ah)->ah_macRev);
164			return AH_FALSE;
165		}
166		keyType = AR_KEYTABLE_TYPE_CCM;
167		break;
168	case HAL_CIPHER_TKIP:
169		keyType = AR_KEYTABLE_TYPE_TKIP;
170		if (IS_MIC_ENABLED(ah) && entry+64 >= pCap->halKeyCacheSize) {
171			HALDEBUG(ah, HAL_DEBUG_ANY,
172			    "%s: entry %u inappropriate for TKIP\n",
173			    __func__, entry);
174			return AH_FALSE;
175		}
176		break;
177	case HAL_CIPHER_WEP:
178		if (k->kv_len < 40 / NBBY) {
179			HALDEBUG(ah, HAL_DEBUG_ANY,
180			    "%s: WEP key length %u too small\n",
181			    __func__, k->kv_len);
182			return AH_FALSE;
183		}
184		if (k->kv_len <= 40 / NBBY)
185			keyType = AR_KEYTABLE_TYPE_40;
186		else if (k->kv_len <= 104 / NBBY)
187			keyType = AR_KEYTABLE_TYPE_104;
188		else
189			keyType = AR_KEYTABLE_TYPE_128;
190		break;
191	case HAL_CIPHER_CLR:
192		keyType = AR_KEYTABLE_TYPE_CLR;
193		break;
194	default:
195		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cipher %u not supported\n",
196		    __func__, k->kv_type);
197		return AH_FALSE;
198	}
199
200	key0 = LE_READ_4(k->kv_val+0) ^ xorMask;
201	key1 = (LE_READ_2(k->kv_val+4) ^ xorMask) & 0xffff;
202	key2 = LE_READ_4(k->kv_val+6) ^ xorMask;
203	key3 = (LE_READ_2(k->kv_val+10) ^ xorMask) & 0xffff;
204	key4 = LE_READ_4(k->kv_val+12) ^ xorMask;
205	if (k->kv_len <= 104 / NBBY)
206		key4 &= 0xff;
207
208	/*
209	 * Note: key cache hardware requires that each double-word
210	 * pair be written in even/odd order (since the destination is
211	 * a 64-bit register).  Don't reorder these writes w/o
212	 * considering this!
213	 */
214	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
215		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */
216		uint32_t mic0, mic1, mic2, mic3, mic4;
217
218		/*
219		 * Invalidate the encrypt/decrypt key until the MIC
220		 * key is installed so pending rx frames will fail
221		 * with decrypt errors rather than a MIC error.
222		 */
223		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
224		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
225		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
226		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
227		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
228		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
229		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
230
231
232		/*
233		 * Write MIC entry according to new or old key layout.
234		 * The MISC_MODE register is assumed already set so
235		 * these writes will be handled properly (happens on
236		 * attach and at every reset).
237		 */
238		/* RX mic */
239		mic0 = LE_READ_4(k->kv_mic+0);
240		mic2 = LE_READ_4(k->kv_mic+4);
241		if (ahp->ah_miscMode & AR_MISC_MODE_MIC_NEW_LOC_ENABLE) {
242			/*
243			 * Both RX and TX mic values can be combined into
244			 * one cache slot entry:
245			 *  8*N + 800         31:0    RX Michael key 0
246			 *  8*N + 804         15:0    TX Michael key 0 [31:16]
247			 *  8*N + 808         31:0    RX Michael key 1
248			 *  8*N + 80C         15:0    TX Michael key 0 [15:0]
249			 *  8*N + 810         31:0    TX Michael key 1
250			 *  8*N + 814         15:0    reserved
251			 *  8*N + 818         31:0    reserved
252			 *  8*N + 81C         14:0    reserved
253			 *                    15      key valid == 0
254			 */
255			/* TX mic */
256			mic1 = LE_READ_2(k->kv_txmic+2) & 0xffff;
257			mic3 = LE_READ_2(k->kv_txmic+0) & 0xffff;
258			mic4 = LE_READ_4(k->kv_txmic+4);
259		} else {
260			mic1 = mic3 = mic4 = 0;
261		}
262		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
263		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
264		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
265		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
266		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
267		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
268			AR_KEYTABLE_TYPE_CLR);
269		/* NB: MIC key is not marked valid and has no MAC address */
270		OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
271		OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
272
273		/* correct intentionally corrupted key */
274		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
275		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
276	} else {
277		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
278		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
279		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
280		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
281		OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
282		OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
283
284		(void) ar5212SetKeyCacheEntryMac(ah, entry, mac);
285	}
286	return AH_TRUE;
287}
288#endif /* AH_SUPPORT_AR5212 */
289