if_ale.c revision 185576
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ale/if_ale.c 185576 2008-12-03 08:56:01Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/module.h>
41#include <sys/rman.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_llc.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/atomic.h>
70#include <machine/bus.h>
71#include <machine/in_cksum.h>
72
73#include <dev/ale/if_alereg.h>
74#include <dev/ale/if_alevar.h>
75
76/* "device miibus" required.  See GENERIC if you get errors here. */
77#include "miibus_if.h"
78
79/* For more information about Tx checksum offload issues see ale_encap(). */
80#define	ALE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81#ifndef	IFCAP_VLAN_HWTSO
82#define	IFCAP_VLAN_HWTSO	0
83#endif
84
85MODULE_DEPEND(ale, pci, 1, 1, 1);
86MODULE_DEPEND(ale, ether, 1, 1, 1);
87MODULE_DEPEND(ale, miibus, 1, 1, 1);
88
89/* Tunables. */
90static int msi_disable = 0;
91static int msix_disable = 0;
92TUNABLE_INT("hw.ale.msi_disable", &msi_disable);
93TUNABLE_INT("hw.ale.msix_disable", &msix_disable);
94
95/*
96 * Devices supported by this driver.
97 */
98static struct ale_dev {
99	uint16_t	ale_vendorid;
100	uint16_t	ale_deviceid;
101	const char	*ale_name;
102} ale_devs[] = {
103    { VENDORID_ATHEROS, DEVICEID_ATHEROS_AR81XX,
104    "Atheros AR8121/AR8113/AR8114 PCIe Ethernet" },
105};
106
107static int	ale_attach(device_t);
108static int	ale_check_boundary(struct ale_softc *);
109static int	ale_detach(device_t);
110static int	ale_dma_alloc(struct ale_softc *);
111static void	ale_dma_free(struct ale_softc *);
112static void	ale_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int	ale_encap(struct ale_softc *, struct mbuf **);
114static void	ale_get_macaddr(struct ale_softc *);
115static void	ale_init(void *);
116static void	ale_init_locked(struct ale_softc *);
117static void	ale_init_rx_pages(struct ale_softc *);
118static void	ale_init_tx_ring(struct ale_softc *);
119static void	ale_int_task(void *, int);
120static int	ale_intr(void *);
121static int	ale_ioctl(struct ifnet *, u_long, caddr_t);
122static void	ale_link_task(void *, int);
123static void	ale_mac_config(struct ale_softc *);
124static int	ale_miibus_readreg(device_t, int, int);
125static void	ale_miibus_statchg(device_t);
126static int	ale_miibus_writereg(device_t, int, int, int);
127static int	ale_mediachange(struct ifnet *);
128static void	ale_mediastatus(struct ifnet *, struct ifmediareq *);
129static void	ale_phy_reset(struct ale_softc *);
130static int	ale_probe(device_t);
131static void	ale_reset(struct ale_softc *);
132static int	ale_resume(device_t);
133static void	ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
134    uint32_t, uint32_t *);
135static void	ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
136static int	ale_rxeof(struct ale_softc *sc, int);
137static void	ale_rxfilter(struct ale_softc *);
138static void	ale_rxvlan(struct ale_softc *);
139static void	ale_setlinkspeed(struct ale_softc *);
140static void	ale_setwol(struct ale_softc *);
141static int	ale_shutdown(device_t);
142static void	ale_start(struct ifnet *);
143static void	ale_stats_clear(struct ale_softc *);
144static void	ale_stats_update(struct ale_softc *);
145static void	ale_stop(struct ale_softc *);
146static void	ale_stop_mac(struct ale_softc *);
147static int	ale_suspend(device_t);
148static void	ale_sysctl_node(struct ale_softc *);
149static void	ale_tick(void *);
150static void	ale_tx_task(void *, int);
151static void	ale_txeof(struct ale_softc *);
152static void	ale_watchdog(struct ale_softc *);
153static int	sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154static int	sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS);
155static int	sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS);
156
157static device_method_t ale_methods[] = {
158	/* Device interface. */
159	DEVMETHOD(device_probe,		ale_probe),
160	DEVMETHOD(device_attach,	ale_attach),
161	DEVMETHOD(device_detach,	ale_detach),
162	DEVMETHOD(device_shutdown,	ale_shutdown),
163	DEVMETHOD(device_suspend,	ale_suspend),
164	DEVMETHOD(device_resume,	ale_resume),
165
166	/* MII interface. */
167	DEVMETHOD(miibus_readreg,	ale_miibus_readreg),
168	DEVMETHOD(miibus_writereg,	ale_miibus_writereg),
169	DEVMETHOD(miibus_statchg,	ale_miibus_statchg),
170
171	{ NULL, NULL }
172};
173
174static driver_t ale_driver = {
175	"ale",
176	ale_methods,
177	sizeof(struct ale_softc)
178};
179
180static devclass_t ale_devclass;
181
182DRIVER_MODULE(ale, pci, ale_driver, ale_devclass, 0, 0);
183DRIVER_MODULE(miibus, ale, miibus_driver, miibus_devclass, 0, 0);
184
185static struct resource_spec ale_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec ale_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec ale_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec ale_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205static int
206ale_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct ale_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	if (phy != sc->ale_phyaddr)
215		return (0);
216
217	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
220		DELAY(5);
221		v = CSR_READ_4(sc, ALE_MDIO);
222		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223			break;
224	}
225
226	if (i == 0) {
227		device_printf(sc->ale_dev, "phy read timeout : %d\n", reg);
228		return (0);
229	}
230
231	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232}
233
234static int
235ale_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct ale_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	if (phy != sc->ale_phyaddr)
244		return (0);
245
246	CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249	for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
250		DELAY(5);
251		v = CSR_READ_4(sc, ALE_MDIO);
252		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253			break;
254	}
255
256	if (i == 0)
257		device_printf(sc->ale_dev, "phy write timeout : %d\n", reg);
258
259	return (0);
260}
261
262static void
263ale_miibus_statchg(device_t dev)
264{
265	struct ale_softc *sc;
266
267	sc = device_get_softc(dev);
268
269	taskqueue_enqueue(taskqueue_swi, &sc->ale_link_task);
270}
271
272static void
273ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
274{
275	struct ale_softc *sc;
276	struct mii_data *mii;
277
278	sc = ifp->if_softc;
279	ALE_LOCK(sc);
280	mii = device_get_softc(sc->ale_miibus);
281
282	mii_pollstat(mii);
283	ALE_UNLOCK(sc);
284	ifmr->ifm_status = mii->mii_media_status;
285	ifmr->ifm_active = mii->mii_media_active;
286}
287
288static int
289ale_mediachange(struct ifnet *ifp)
290{
291	struct ale_softc *sc;
292	struct mii_data *mii;
293	struct mii_softc *miisc;
294	int error;
295
296	sc = ifp->if_softc;
297	ALE_LOCK(sc);
298	mii = device_get_softc(sc->ale_miibus);
299	if (mii->mii_instance != 0) {
300		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
301			mii_phy_reset(miisc);
302	}
303	error = mii_mediachg(mii);
304	ALE_UNLOCK(sc);
305
306	return (error);
307}
308
309static int
310ale_probe(device_t dev)
311{
312	struct ale_dev *sp;
313	int i;
314	uint16_t vendor, devid;
315
316	vendor = pci_get_vendor(dev);
317	devid = pci_get_device(dev);
318	sp = ale_devs;
319	for (i = 0; i < sizeof(ale_devs) / sizeof(ale_devs[0]); i++) {
320		if (vendor == sp->ale_vendorid &&
321		    devid == sp->ale_deviceid) {
322			device_set_desc(dev, sp->ale_name);
323			return (BUS_PROBE_DEFAULT);
324		}
325		sp++;
326	}
327
328	return (ENXIO);
329}
330
331static void
332ale_get_macaddr(struct ale_softc *sc)
333{
334	uint32_t ea[2], reg;
335	int i, vpdc;
336
337	reg = CSR_READ_4(sc, ALE_SPI_CTRL);
338	if ((reg & SPI_VPD_ENB) != 0) {
339		reg &= ~SPI_VPD_ENB;
340		CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
341	}
342
343	if (pci_find_extcap(sc->ale_dev, PCIY_VPD, &vpdc) == 0) {
344		/*
345		 * PCI VPD capability found, let TWSI reload EEPROM.
346		 * This will set ethernet address of controller.
347		 */
348		CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
349		    TWSI_CTRL_SW_LD_START);
350		for (i = 100; i > 0; i--) {
351			DELAY(1000);
352			reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
353			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
354				break;
355		}
356		if (i == 0)
357			device_printf(sc->ale_dev,
358			    "reloading EEPROM timeout!\n");
359	} else {
360		if (bootverbose)
361			device_printf(sc->ale_dev,
362			    "PCI VPD capability not found!\n");
363	}
364
365	ea[0] = CSR_READ_4(sc, ALE_PAR0);
366	ea[1] = CSR_READ_4(sc, ALE_PAR1);
367	sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
368	sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
369	sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
370	sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
371	sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
372	sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
373}
374
375static void
376ale_phy_reset(struct ale_softc *sc)
377{
378
379	/* Reset magic from Linux. */
380	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
381	    GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
382	    GPHY_CTRL_PHY_PLL_ON);
383	DELAY(1000);
384	CSR_WRITE_2(sc, ALE_GPHY_CTRL,
385	    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
386	    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
387	DELAY(1000);
388
389#define	ATPHY_DBG_ADDR		0x1D
390#define	ATPHY_DBG_DATA		0x1E
391
392	/* Enable hibernation mode. */
393	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
394	    ATPHY_DBG_ADDR, 0x0B);
395	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
396	    ATPHY_DBG_DATA, 0xBC00);
397	/* Set Class A/B for all modes. */
398	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
399	    ATPHY_DBG_ADDR, 0x00);
400	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
401	    ATPHY_DBG_DATA, 0x02EF);
402	/* Enable 10BT power saving. */
403	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
404	    ATPHY_DBG_ADDR, 0x12);
405	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
406	    ATPHY_DBG_DATA, 0x4C04);
407	/* Adjust 1000T power. */
408	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
409	    ATPHY_DBG_ADDR, 0x04);
410	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
411	    ATPHY_DBG_ADDR, 0x8BBB);
412	/* 10BT center tap voltage. */
413	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
414	    ATPHY_DBG_ADDR, 0x05);
415	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
416	    ATPHY_DBG_ADDR, 0x2C46);
417
418#undef	ATPHY_DBG_ADDR
419#undef	ATPHY_DBG_DATA
420	DELAY(1000);
421}
422
423static int
424ale_attach(device_t dev)
425{
426	struct ale_softc *sc;
427	struct ifnet *ifp;
428	uint16_t burst;
429	int error, i, msic, msixc, pmc;
430	uint32_t rxf_len, txf_len;
431
432	error = 0;
433	sc = device_get_softc(dev);
434	sc->ale_dev = dev;
435
436	mtx_init(&sc->ale_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
437	    MTX_DEF);
438	callout_init_mtx(&sc->ale_tick_ch, &sc->ale_mtx, 0);
439	TASK_INIT(&sc->ale_int_task, 0, ale_int_task, sc);
440	TASK_INIT(&sc->ale_link_task, 0, ale_link_task, sc);
441
442	/* Map the device. */
443	pci_enable_busmaster(dev);
444	sc->ale_res_spec = ale_res_spec_mem;
445	sc->ale_irq_spec = ale_irq_spec_legacy;
446	error = bus_alloc_resources(dev, sc->ale_res_spec, sc->ale_res);
447	if (error != 0) {
448		device_printf(dev, "cannot allocate memory resources.\n");
449		goto fail;
450	}
451
452	/* Set PHY address. */
453	sc->ale_phyaddr = ALE_PHY_ADDR;
454
455	/* Reset PHY. */
456	ale_phy_reset(sc);
457
458	/* Reset the ethernet controller. */
459	ale_reset(sc);
460
461	/* Get PCI and chip id/revision. */
462	sc->ale_rev = pci_get_revid(dev);
463	if (sc->ale_rev >= 0xF0) {
464		/* L2E Rev. B. AR8114 */
465		sc->ale_flags |= ALE_FLAG_FASTETHER;
466	} else {
467		if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
468			/* L1E AR8121 */
469			sc->ale_flags |= ALE_FLAG_JUMBO;
470		} else {
471			/* L2E Rev. A. AR8113 */
472			sc->ale_flags |= ALE_FLAG_FASTETHER;
473		}
474	}
475	/*
476	 * All known controllers seems to require 4 bytes alignment
477	 * of Tx buffers to make Tx checksum offload with custom
478	 * checksum generation method work.
479	 */
480	sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
481	/*
482	 * All known controllers seems to have issues on Rx checksum
483	 * offload for fragmented IP datagrams.
484	 */
485	sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
486	/*
487	 * Don't use Tx CMB. It is known to cause RRS update failure
488	 * under certain circumstances. Typical phenomenon of the
489	 * issue would be unexpected sequence number encountered in
490	 * Rx handler.
491	 */
492	sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
493	sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
494	    MASTER_CHIP_REV_SHIFT;
495	if (bootverbose) {
496		device_printf(dev, "PCI device revision : 0x%04x\n",
497		    sc->ale_rev);
498		device_printf(dev, "Chip id/revision : 0x%04x\n",
499		    sc->ale_chip_rev);
500	}
501	txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
502	rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
503	/*
504	 * Uninitialized hardware returns an invalid chip id/revision
505	 * as well as 0xFFFFFFFF for Tx/Rx fifo length.
506	 */
507	if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
508	    rxf_len == 0xFFFFFFF) {
509		device_printf(dev,"chip revision : 0x%04x, %u Tx FIFO "
510		    "%u Rx FIFO -- not initialized?\n", sc->ale_chip_rev,
511		    txf_len, rxf_len);
512		error = ENXIO;
513		goto fail;
514	}
515	device_printf(dev, "%u Tx FIFO, %u Rx FIFO\n", txf_len, rxf_len);
516
517	/* Allocate IRQ resources. */
518	msixc = pci_msix_count(dev);
519	msic = pci_msi_count(dev);
520	if (bootverbose) {
521		device_printf(dev, "MSIX count : %d\n", msixc);
522		device_printf(dev, "MSI count : %d\n", msic);
523	}
524
525	/* Prefer MSIX over MSI. */
526	if (msix_disable == 0 || msi_disable == 0) {
527		if (msix_disable == 0 && msixc == ALE_MSIX_MESSAGES &&
528		    pci_alloc_msix(dev, &msixc) == 0) {
529			if (msic == ALE_MSIX_MESSAGES) {
530				device_printf(dev, "Using %d MSIX messages.\n",
531				    msixc);
532				sc->ale_flags |= ALE_FLAG_MSIX;
533				sc->ale_irq_spec = ale_irq_spec_msix;
534			} else
535				pci_release_msi(dev);
536		}
537		if (msi_disable == 0 && (sc->ale_flags & ALE_FLAG_MSIX) == 0 &&
538		    msic == ALE_MSI_MESSAGES &&
539		    pci_alloc_msi(dev, &msic) == 0) {
540			if (msic == ALE_MSI_MESSAGES) {
541				device_printf(dev, "Using %d MSI messages.\n",
542				    msic);
543				sc->ale_flags |= ALE_FLAG_MSI;
544				sc->ale_irq_spec = ale_irq_spec_msi;
545			} else
546				pci_release_msi(dev);
547		}
548	}
549
550	error = bus_alloc_resources(dev, sc->ale_irq_spec, sc->ale_irq);
551	if (error != 0) {
552		device_printf(dev, "cannot allocate IRQ resources.\n");
553		goto fail;
554	}
555
556	/* Get DMA parameters from PCIe device control register. */
557	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
558		sc->ale_flags |= ALE_FLAG_PCIE;
559		burst = pci_read_config(dev, i + 0x08, 2);
560		/* Max read request size. */
561		sc->ale_dma_rd_burst = ((burst >> 12) & 0x07) <<
562		    DMA_CFG_RD_BURST_SHIFT;
563		/* Max payload size. */
564		sc->ale_dma_wr_burst = ((burst >> 5) & 0x07) <<
565		    DMA_CFG_WR_BURST_SHIFT;
566		if (bootverbose) {
567			device_printf(dev, "Read request size : %d bytes.\n",
568			    128 << ((burst >> 12) & 0x07));
569			device_printf(dev, "TLP payload size : %d bytes.\n",
570			    128 << ((burst >> 5) & 0x07));
571		}
572	} else {
573		sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
574		sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
575	}
576
577	/* Create device sysctl node. */
578	ale_sysctl_node(sc);
579
580	if ((error = ale_dma_alloc(sc) != 0))
581		goto fail;
582
583	/* Load station address. */
584	ale_get_macaddr(sc);
585
586	ifp = sc->ale_ifp = if_alloc(IFT_ETHER);
587	if (ifp == NULL) {
588		device_printf(dev, "cannot allocate ifnet structure.\n");
589		error = ENXIO;
590		goto fail;
591	}
592
593	ifp->if_softc = sc;
594	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
595	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
596	ifp->if_ioctl = ale_ioctl;
597	ifp->if_start = ale_start;
598	ifp->if_init = ale_init;
599	ifp->if_snd.ifq_drv_maxlen = ALE_TX_RING_CNT - 1;
600	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
601	IFQ_SET_READY(&ifp->if_snd);
602	ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TXCSUM | IFCAP_TSO4;
603	ifp->if_hwassist = ALE_CSUM_FEATURES | CSUM_TSO;
604	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
605		sc->ale_flags |= ALE_FLAG_PMCAP;
606		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
607	}
608	ifp->if_capenable = ifp->if_capabilities;
609
610	/* Set up MII bus. */
611	if ((error = mii_phy_probe(dev, &sc->ale_miibus, ale_mediachange,
612	    ale_mediastatus)) != 0) {
613		device_printf(dev, "no PHY found!\n");
614		goto fail;
615	}
616
617	ether_ifattach(ifp, sc->ale_eaddr);
618
619	/* VLAN capability setup. */
620	ifp->if_capabilities |= IFCAP_VLAN_MTU;
621	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
622	ifp->if_capenable = ifp->if_capabilities;
623
624	/* Tell the upper layer(s) we support long frames. */
625	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
626
627	/* Create local taskq. */
628	TASK_INIT(&sc->ale_tx_task, 1, ale_tx_task, ifp);
629	sc->ale_tq = taskqueue_create_fast("ale_taskq", M_WAITOK,
630	    taskqueue_thread_enqueue, &sc->ale_tq);
631	if (sc->ale_tq == NULL) {
632		device_printf(dev, "could not create taskqueue.\n");
633		ether_ifdetach(ifp);
634		error = ENXIO;
635		goto fail;
636	}
637	taskqueue_start_threads(&sc->ale_tq, 1, PI_NET, "%s taskq",
638	    device_get_nameunit(sc->ale_dev));
639
640	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
641		msic = ALE_MSIX_MESSAGES;
642	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
643		msic = ALE_MSI_MESSAGES;
644	else
645		msic = 1;
646	for (i = 0; i < msic; i++) {
647		error = bus_setup_intr(dev, sc->ale_irq[i],
648		    INTR_TYPE_NET | INTR_MPSAFE, ale_intr, NULL, sc,
649		    &sc->ale_intrhand[i]);
650		if (error != 0)
651			break;
652	}
653	if (error != 0) {
654		device_printf(dev, "could not set up interrupt handler.\n");
655		taskqueue_free(sc->ale_tq);
656		sc->ale_tq = NULL;
657		ether_ifdetach(ifp);
658		goto fail;
659	}
660
661fail:
662	if (error != 0)
663		ale_detach(dev);
664
665	return (error);
666}
667
668static int
669ale_detach(device_t dev)
670{
671	struct ale_softc *sc;
672	struct ifnet *ifp;
673	int i, msic;
674
675	sc = device_get_softc(dev);
676
677	ifp = sc->ale_ifp;
678	if (device_is_attached(dev)) {
679		ALE_LOCK(sc);
680		sc->ale_flags |= ALE_FLAG_DETACH;
681		ale_stop(sc);
682		ALE_UNLOCK(sc);
683		callout_drain(&sc->ale_tick_ch);
684		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
685		taskqueue_drain(sc->ale_tq, &sc->ale_tx_task);
686		taskqueue_drain(taskqueue_swi, &sc->ale_link_task);
687		ether_ifdetach(ifp);
688	}
689
690	if (sc->ale_tq != NULL) {
691		taskqueue_drain(sc->ale_tq, &sc->ale_int_task);
692		taskqueue_free(sc->ale_tq);
693		sc->ale_tq = NULL;
694	}
695
696	if (sc->ale_miibus != NULL) {
697		device_delete_child(dev, sc->ale_miibus);
698		sc->ale_miibus = NULL;
699	}
700	bus_generic_detach(dev);
701	ale_dma_free(sc);
702
703	if (ifp != NULL) {
704		if_free(ifp);
705		sc->ale_ifp = NULL;
706	}
707
708	if ((sc->ale_flags & ALE_FLAG_MSIX) != 0)
709		msic = ALE_MSIX_MESSAGES;
710	else if ((sc->ale_flags & ALE_FLAG_MSI) != 0)
711		msic = ALE_MSI_MESSAGES;
712	else
713		msic = 1;
714	for (i = 0; i < msic; i++) {
715		if (sc->ale_intrhand[i] != NULL) {
716			bus_teardown_intr(dev, sc->ale_irq[i],
717			    sc->ale_intrhand[i]);
718			sc->ale_intrhand[i] = NULL;
719		}
720	}
721
722	bus_release_resources(dev, sc->ale_irq_spec, sc->ale_irq);
723	if ((sc->ale_flags & (ALE_FLAG_MSI | ALE_FLAG_MSIX)) != 0)
724		pci_release_msi(dev);
725	bus_release_resources(dev, sc->ale_res_spec, sc->ale_res);
726	mtx_destroy(&sc->ale_mtx);
727
728	return (0);
729}
730
731#define	ALE_SYSCTL_STAT_ADD32(c, h, n, p, d)	\
732	    SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
733
734#if __FreeBSD_version > 800000
735#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
736	    SYSCTL_ADD_QUAD(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
737#else
738#define	ALE_SYSCTL_STAT_ADD64(c, h, n, p, d)	\
739	    SYSCTL_ADD_ULONG(c, h, OID_AUTO, n, CTLFLAG_RD, p, d)
740#endif
741
742static void
743ale_sysctl_node(struct ale_softc *sc)
744{
745	struct sysctl_ctx_list *ctx;
746	struct sysctl_oid_list *child, *parent;
747	struct sysctl_oid *tree;
748	struct ale_hw_stats *stats;
749	int error;
750
751	stats = &sc->ale_stats;
752	ctx = device_get_sysctl_ctx(sc->ale_dev);
753	child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->ale_dev));
754
755	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_rx_mod",
756	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_rx_mod, 0,
757	    sysctl_hw_ale_int_mod, "I", "ale Rx interrupt moderation");
758	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_tx_mod",
759	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_int_tx_mod, 0,
760	    sysctl_hw_ale_int_mod, "I", "ale Tx interrupt moderation");
761	/* Pull in device tunables. */
762	sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
763	error = resource_int_value(device_get_name(sc->ale_dev),
764	    device_get_unit(sc->ale_dev), "int_rx_mod", &sc->ale_int_rx_mod);
765	if (error == 0) {
766		if (sc->ale_int_rx_mod < ALE_IM_TIMER_MIN ||
767		    sc->ale_int_rx_mod > ALE_IM_TIMER_MAX) {
768			device_printf(sc->ale_dev, "int_rx_mod value out of "
769			    "range; using default: %d\n",
770			    ALE_IM_RX_TIMER_DEFAULT);
771			sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
772		}
773	}
774	sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
775	error = resource_int_value(device_get_name(sc->ale_dev),
776	    device_get_unit(sc->ale_dev), "int_tx_mod", &sc->ale_int_tx_mod);
777	if (error == 0) {
778		if (sc->ale_int_tx_mod < ALE_IM_TIMER_MIN ||
779		    sc->ale_int_tx_mod > ALE_IM_TIMER_MAX) {
780			device_printf(sc->ale_dev, "int_tx_mod value out of "
781			    "range; using default: %d\n",
782			    ALE_IM_TX_TIMER_DEFAULT);
783			sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
784		}
785	}
786	SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "process_limit",
787	    CTLTYPE_INT | CTLFLAG_RW, &sc->ale_process_limit, 0,
788	    sysctl_hw_ale_proc_limit, "I",
789	    "max number of Rx events to process");
790	/* Pull in device tunables. */
791	sc->ale_process_limit = ALE_PROC_DEFAULT;
792	error = resource_int_value(device_get_name(sc->ale_dev),
793	    device_get_unit(sc->ale_dev), "process_limit",
794	    &sc->ale_process_limit);
795	if (error == 0) {
796		if (sc->ale_process_limit < ALE_PROC_MIN ||
797		    sc->ale_process_limit > ALE_PROC_MAX) {
798			device_printf(sc->ale_dev,
799			    "process_limit value out of range; "
800			    "using default: %d\n", ALE_PROC_DEFAULT);
801			sc->ale_process_limit = ALE_PROC_DEFAULT;
802		}
803	}
804
805	/* Misc statistics. */
806	ALE_SYSCTL_STAT_ADD32(ctx, child, "reset_brk_seq",
807	    &stats->reset_brk_seq,
808	    "Controller resets due to broken Rx sequnce number");
809
810	tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
811	    NULL, "ATE statistics");
812	parent = SYSCTL_CHILDREN(tree);
813
814	/* Rx statistics. */
815	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
816	    NULL, "Rx MAC statistics");
817	child = SYSCTL_CHILDREN(tree);
818	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
819	    &stats->rx_frames, "Good frames");
820	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
821	    &stats->rx_bcast_frames, "Good broadcast frames");
822	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
823	    &stats->rx_mcast_frames, "Good multicast frames");
824	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
825	    &stats->rx_pause_frames, "Pause control frames");
826	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
827	    &stats->rx_control_frames, "Control frames");
828	ALE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
829	    &stats->rx_crcerrs, "CRC errors");
830	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
831	    &stats->rx_lenerrs, "Frames with length mismatched");
832	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
833	    &stats->rx_bytes, "Good octets");
834	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
835	    &stats->rx_bcast_bytes, "Good broadcast octets");
836	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
837	    &stats->rx_mcast_bytes, "Good multicast octets");
838	ALE_SYSCTL_STAT_ADD32(ctx, child, "runts",
839	    &stats->rx_runts, "Too short frames");
840	ALE_SYSCTL_STAT_ADD32(ctx, child, "fragments",
841	    &stats->rx_fragments, "Fragmented frames");
842	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
843	    &stats->rx_pkts_64, "64 bytes frames");
844	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
845	    &stats->rx_pkts_65_127, "65 to 127 bytes frames");
846	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
847	    &stats->rx_pkts_128_255, "128 to 255 bytes frames");
848	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
849	    &stats->rx_pkts_256_511, "256 to 511 bytes frames");
850	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
851	    &stats->rx_pkts_512_1023, "512 to 1023 bytes frames");
852	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
853	    &stats->rx_pkts_1024_1518, "1024 to 1518 bytes frames");
854	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
855	    &stats->rx_pkts_1519_max, "1519 to max frames");
856	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
857	    &stats->rx_pkts_truncated, "Truncated frames due to MTU size");
858	ALE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
859	    &stats->rx_fifo_oflows, "FIFO overflows");
860	ALE_SYSCTL_STAT_ADD32(ctx, child, "rrs_errs",
861	    &stats->rx_rrs_errs, "Return status write-back errors");
862	ALE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
863	    &stats->rx_alignerrs, "Alignment errors");
864	ALE_SYSCTL_STAT_ADD32(ctx, child, "filtered",
865	    &stats->rx_pkts_filtered,
866	    "Frames dropped due to address filtering");
867
868	/* Tx statistics. */
869	tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
870	    NULL, "Tx MAC statistics");
871	child = SYSCTL_CHILDREN(tree);
872	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_frames",
873	    &stats->tx_frames, "Good frames");
874	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_bcast_frames",
875	    &stats->tx_bcast_frames, "Good broadcast frames");
876	ALE_SYSCTL_STAT_ADD32(ctx, child, "good_mcast_frames",
877	    &stats->tx_mcast_frames, "Good multicast frames");
878	ALE_SYSCTL_STAT_ADD32(ctx, child, "pause_frames",
879	    &stats->tx_pause_frames, "Pause control frames");
880	ALE_SYSCTL_STAT_ADD32(ctx, child, "control_frames",
881	    &stats->tx_control_frames, "Control frames");
882	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_defers",
883	    &stats->tx_excess_defer, "Frames with excessive derferrals");
884	ALE_SYSCTL_STAT_ADD32(ctx, child, "defers",
885	    &stats->tx_excess_defer, "Frames with derferrals");
886	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_octets",
887	    &stats->tx_bytes, "Good octets");
888	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_bcast_octets",
889	    &stats->tx_bcast_bytes, "Good broadcast octets");
890	ALE_SYSCTL_STAT_ADD64(ctx, child, "good_mcast_octets",
891	    &stats->tx_mcast_bytes, "Good multicast octets");
892	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_64",
893	    &stats->tx_pkts_64, "64 bytes frames");
894	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_65_127",
895	    &stats->tx_pkts_65_127, "65 to 127 bytes frames");
896	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_128_255",
897	    &stats->tx_pkts_128_255, "128 to 255 bytes frames");
898	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_256_511",
899	    &stats->tx_pkts_256_511, "256 to 511 bytes frames");
900	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_512_1023",
901	    &stats->tx_pkts_512_1023, "512 to 1023 bytes frames");
902	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1024_1518",
903	    &stats->tx_pkts_1024_1518, "1024 to 1518 bytes frames");
904	ALE_SYSCTL_STAT_ADD32(ctx, child, "frames_1519_max",
905	    &stats->tx_pkts_1519_max, "1519 to max frames");
906	ALE_SYSCTL_STAT_ADD32(ctx, child, "single_colls",
907	    &stats->tx_single_colls, "Single collisions");
908	ALE_SYSCTL_STAT_ADD32(ctx, child, "multi_colls",
909	    &stats->tx_multi_colls, "Multiple collisions");
910	ALE_SYSCTL_STAT_ADD32(ctx, child, "late_colls",
911	    &stats->tx_late_colls, "Late collisions");
912	ALE_SYSCTL_STAT_ADD32(ctx, child, "excess_colls",
913	    &stats->tx_excess_colls, "Excessive collisions");
914	ALE_SYSCTL_STAT_ADD32(ctx, child, "abort",
915	    &stats->tx_abort, "Aborted frames due to Excessive collisions");
916	ALE_SYSCTL_STAT_ADD32(ctx, child, "underruns",
917	    &stats->tx_underrun, "FIFO underruns");
918	ALE_SYSCTL_STAT_ADD32(ctx, child, "desc_underruns",
919	    &stats->tx_desc_underrun, "Descriptor write-back errors");
920	ALE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
921	    &stats->tx_lenerrs, "Frames with length mismatched");
922	ALE_SYSCTL_STAT_ADD32(ctx, child, "trunc_errs",
923	    &stats->tx_pkts_truncated, "Truncated frames due to MTU size");
924}
925
926#undef ALE_SYSCTL_STAT_ADD32
927#undef ALE_SYSCTL_STAT_ADD64
928
929struct ale_dmamap_arg {
930	bus_addr_t	ale_busaddr;
931};
932
933static void
934ale_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
935{
936	struct ale_dmamap_arg *ctx;
937
938	if (error != 0)
939		return;
940
941	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
942
943	ctx = (struct ale_dmamap_arg *)arg;
944	ctx->ale_busaddr = segs[0].ds_addr;
945}
946
947/*
948 * Tx descriptors/RXF0/CMB DMA blocks share ALE_DESC_ADDR_HI register
949 * which specifies high address region of DMA blocks. Therefore these
950 * blocks should have the same high address of given 4GB address
951 * space(i.e. crossing 4GB boundary is not allowed).
952 */
953static int
954ale_check_boundary(struct ale_softc *sc)
955{
956	bus_addr_t rx_cmb_end[ALE_RX_PAGES], tx_cmb_end;
957	bus_addr_t rx_page_end[ALE_RX_PAGES], tx_ring_end;
958
959	rx_page_end[0] = sc->ale_cdata.ale_rx_page[0].page_paddr +
960	    sc->ale_pagesize;
961	rx_page_end[1] = sc->ale_cdata.ale_rx_page[1].page_paddr +
962	    sc->ale_pagesize;
963	tx_ring_end = sc->ale_cdata.ale_tx_ring_paddr + ALE_TX_RING_SZ;
964	tx_cmb_end = sc->ale_cdata.ale_tx_cmb_paddr + ALE_TX_CMB_SZ;
965	rx_cmb_end[0] = sc->ale_cdata.ale_rx_page[0].cmb_paddr + ALE_RX_CMB_SZ;
966	rx_cmb_end[1] = sc->ale_cdata.ale_rx_page[1].cmb_paddr + ALE_RX_CMB_SZ;
967
968	if ((ALE_ADDR_HI(tx_ring_end) !=
969	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_ring_paddr)) ||
970	    (ALE_ADDR_HI(rx_page_end[0]) !=
971	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].page_paddr)) ||
972	    (ALE_ADDR_HI(rx_page_end[1]) !=
973	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].page_paddr)) ||
974	    (ALE_ADDR_HI(tx_cmb_end) !=
975	    ALE_ADDR_HI(sc->ale_cdata.ale_tx_cmb_paddr)) ||
976	    (ALE_ADDR_HI(rx_cmb_end[0]) !=
977	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[0].cmb_paddr)) ||
978	    (ALE_ADDR_HI(rx_cmb_end[1]) !=
979	    ALE_ADDR_HI(sc->ale_cdata.ale_rx_page[1].cmb_paddr)))
980		return (EFBIG);
981
982	if ((ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[0])) ||
983	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_page_end[1])) ||
984	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[0])) ||
985	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(rx_cmb_end[1])) ||
986	    (ALE_ADDR_HI(tx_ring_end) != ALE_ADDR_HI(tx_cmb_end)))
987		return (EFBIG);
988
989	return (0);
990}
991
992static int
993ale_dma_alloc(struct ale_softc *sc)
994{
995	struct ale_txdesc *txd;
996	bus_addr_t lowaddr;
997	struct ale_dmamap_arg ctx;
998	int error, guard_size, i;
999
1000	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
1001		guard_size = ALE_JUMBO_FRAMELEN;
1002	else
1003		guard_size = ALE_MAX_FRAMELEN;
1004	sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
1005	    ALE_RX_PAGE_ALIGN);
1006	lowaddr = BUS_SPACE_MAXADDR;
1007again:
1008	/* Create parent DMA tag. */
1009	error = bus_dma_tag_create(
1010	    bus_get_dma_tag(sc->ale_dev), /* parent */
1011	    1, 0,			/* alignment, boundary */
1012	    lowaddr,			/* lowaddr */
1013	    BUS_SPACE_MAXADDR,		/* highaddr */
1014	    NULL, NULL,			/* filter, filterarg */
1015	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1016	    0,				/* nsegments */
1017	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1018	    0,				/* flags */
1019	    NULL, NULL,			/* lockfunc, lockarg */
1020	    &sc->ale_cdata.ale_parent_tag);
1021	if (error != 0) {
1022		device_printf(sc->ale_dev,
1023		    "could not create parent DMA tag.\n");
1024		goto fail;
1025	}
1026
1027	/* Create DMA tag for Tx descriptor ring. */
1028	error = bus_dma_tag_create(
1029	    sc->ale_cdata.ale_parent_tag, /* parent */
1030	    ALE_TX_RING_ALIGN, 0,	/* alignment, boundary */
1031	    BUS_SPACE_MAXADDR,		/* lowaddr */
1032	    BUS_SPACE_MAXADDR,		/* highaddr */
1033	    NULL, NULL,			/* filter, filterarg */
1034	    ALE_TX_RING_SZ,		/* maxsize */
1035	    1,				/* nsegments */
1036	    ALE_TX_RING_SZ,		/* maxsegsize */
1037	    0,				/* flags */
1038	    NULL, NULL,			/* lockfunc, lockarg */
1039	    &sc->ale_cdata.ale_tx_ring_tag);
1040	if (error != 0) {
1041		device_printf(sc->ale_dev,
1042		    "could not create Tx ring DMA tag.\n");
1043		goto fail;
1044	}
1045
1046	/* Create DMA tag for Rx pages. */
1047	for (i = 0; i < ALE_RX_PAGES; i++) {
1048		error = bus_dma_tag_create(
1049		    sc->ale_cdata.ale_parent_tag, /* parent */
1050		    ALE_RX_PAGE_ALIGN, 0,	/* alignment, boundary */
1051		    BUS_SPACE_MAXADDR,		/* lowaddr */
1052		    BUS_SPACE_MAXADDR,		/* highaddr */
1053		    NULL, NULL,			/* filter, filterarg */
1054		    sc->ale_pagesize,		/* maxsize */
1055		    1,				/* nsegments */
1056		    sc->ale_pagesize,		/* maxsegsize */
1057		    0,				/* flags */
1058		    NULL, NULL,			/* lockfunc, lockarg */
1059		    &sc->ale_cdata.ale_rx_page[i].page_tag);
1060		if (error != 0) {
1061			device_printf(sc->ale_dev,
1062			    "could not create Rx page %d DMA tag.\n", i);
1063			goto fail;
1064		}
1065	}
1066
1067	/* Create DMA tag for Tx coalescing message block. */
1068	error = bus_dma_tag_create(
1069	    sc->ale_cdata.ale_parent_tag, /* parent */
1070	    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1071	    BUS_SPACE_MAXADDR,		/* lowaddr */
1072	    BUS_SPACE_MAXADDR,		/* highaddr */
1073	    NULL, NULL,			/* filter, filterarg */
1074	    ALE_TX_CMB_SZ,		/* maxsize */
1075	    1,				/* nsegments */
1076	    ALE_TX_CMB_SZ,		/* maxsegsize */
1077	    0,				/* flags */
1078	    NULL, NULL,			/* lockfunc, lockarg */
1079	    &sc->ale_cdata.ale_tx_cmb_tag);
1080	if (error != 0) {
1081		device_printf(sc->ale_dev,
1082		    "could not create Tx CMB DMA tag.\n");
1083		goto fail;
1084	}
1085
1086	/* Create DMA tag for Rx coalescing message block. */
1087	for (i = 0; i < ALE_RX_PAGES; i++) {
1088		error = bus_dma_tag_create(
1089		    sc->ale_cdata.ale_parent_tag, /* parent */
1090		    ALE_CMB_ALIGN, 0,		/* alignment, boundary */
1091		    BUS_SPACE_MAXADDR,		/* lowaddr */
1092		    BUS_SPACE_MAXADDR,		/* highaddr */
1093		    NULL, NULL,			/* filter, filterarg */
1094		    ALE_RX_CMB_SZ,		/* maxsize */
1095		    1,				/* nsegments */
1096		    ALE_RX_CMB_SZ,		/* maxsegsize */
1097		    0,				/* flags */
1098		    NULL, NULL,			/* lockfunc, lockarg */
1099		    &sc->ale_cdata.ale_rx_page[i].cmb_tag);
1100		if (error != 0) {
1101			device_printf(sc->ale_dev,
1102			    "could not create Rx page %d CMB DMA tag.\n", i);
1103			goto fail;
1104		}
1105	}
1106
1107	/* Allocate DMA'able memory and load the DMA map for Tx ring. */
1108	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_ring_tag,
1109	    (void **)&sc->ale_cdata.ale_tx_ring,
1110	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1111	    &sc->ale_cdata.ale_tx_ring_map);
1112	if (error != 0) {
1113		device_printf(sc->ale_dev,
1114		    "could not allocate DMA'able memory for Tx ring.\n");
1115		goto fail;
1116	}
1117	ctx.ale_busaddr = 0;
1118	error = bus_dmamap_load(sc->ale_cdata.ale_tx_ring_tag,
1119	    sc->ale_cdata.ale_tx_ring_map, sc->ale_cdata.ale_tx_ring,
1120	    ALE_TX_RING_SZ, ale_dmamap_cb, &ctx, 0);
1121	if (error != 0 || ctx.ale_busaddr == 0) {
1122		device_printf(sc->ale_dev,
1123		    "could not load DMA'able memory for Tx ring.\n");
1124		goto fail;
1125	}
1126	sc->ale_cdata.ale_tx_ring_paddr = ctx.ale_busaddr;
1127
1128	/* Rx pages. */
1129	for (i = 0; i < ALE_RX_PAGES; i++) {
1130		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].page_tag,
1131		    (void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
1132		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1133		    &sc->ale_cdata.ale_rx_page[i].page_map);
1134		if (error != 0) {
1135			device_printf(sc->ale_dev,
1136			    "could not allocate DMA'able memory for "
1137			    "Rx page %d.\n", i);
1138			goto fail;
1139		}
1140		ctx.ale_busaddr = 0;
1141		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].page_tag,
1142		    sc->ale_cdata.ale_rx_page[i].page_map,
1143		    sc->ale_cdata.ale_rx_page[i].page_addr,
1144		    sc->ale_pagesize, ale_dmamap_cb, &ctx, 0);
1145		if (error != 0 || ctx.ale_busaddr == 0) {
1146			device_printf(sc->ale_dev,
1147			    "could not load DMA'able memory for "
1148			    "Rx page %d.\n", i);
1149			goto fail;
1150		}
1151		sc->ale_cdata.ale_rx_page[i].page_paddr = ctx.ale_busaddr;
1152	}
1153
1154	/* Tx CMB. */
1155	error = bus_dmamem_alloc(sc->ale_cdata.ale_tx_cmb_tag,
1156	    (void **)&sc->ale_cdata.ale_tx_cmb,
1157	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1158	    &sc->ale_cdata.ale_tx_cmb_map);
1159	if (error != 0) {
1160		device_printf(sc->ale_dev,
1161		    "could not allocate DMA'able memory for Tx CMB.\n");
1162		goto fail;
1163	}
1164	ctx.ale_busaddr = 0;
1165	error = bus_dmamap_load(sc->ale_cdata.ale_tx_cmb_tag,
1166	    sc->ale_cdata.ale_tx_cmb_map, sc->ale_cdata.ale_tx_cmb,
1167	    ALE_TX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1168	if (error != 0 || ctx.ale_busaddr == 0) {
1169		device_printf(sc->ale_dev,
1170		    "could not load DMA'able memory for Tx CMB.\n");
1171		goto fail;
1172	}
1173	sc->ale_cdata.ale_tx_cmb_paddr = ctx.ale_busaddr;
1174
1175	/* Rx CMB. */
1176	for (i = 0; i < ALE_RX_PAGES; i++) {
1177		error = bus_dmamem_alloc(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1178		    (void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
1179		    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1180		    &sc->ale_cdata.ale_rx_page[i].cmb_map);
1181		if (error != 0) {
1182			device_printf(sc->ale_dev, "could not allocate "
1183			    "DMA'able memory for Rx page %d CMB.\n", i);
1184			goto fail;
1185		}
1186		ctx.ale_busaddr = 0;
1187		error = bus_dmamap_load(sc->ale_cdata.ale_rx_page[i].cmb_tag,
1188		    sc->ale_cdata.ale_rx_page[i].cmb_map,
1189		    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1190		    ALE_RX_CMB_SZ, ale_dmamap_cb, &ctx, 0);
1191		if (error != 0 || ctx.ale_busaddr == 0) {
1192			device_printf(sc->ale_dev, "could not load DMA'able "
1193			    "memory for Rx page %d CMB.\n", i);
1194			goto fail;
1195		}
1196		sc->ale_cdata.ale_rx_page[i].cmb_paddr = ctx.ale_busaddr;
1197	}
1198
1199	/*
1200	 * Tx descriptors/RXF0/CMB DMA blocks share the same
1201	 * high address region of 64bit DMA address space.
1202	 */
1203	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1204	    (error = ale_check_boundary(sc)) != 0) {
1205		device_printf(sc->ale_dev, "4GB boundary crossed, "
1206		    "switching to 32bit DMA addressing mode.\n");
1207		ale_dma_free(sc);
1208		/*
1209		 * Limit max allowable DMA address space to 32bit
1210		 * and try again.
1211		 */
1212		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1213		goto again;
1214	}
1215
1216	/*
1217	 * Create Tx buffer parent tag.
1218	 * AR81xx allows 64bit DMA addressing of Tx buffers so it
1219	 * needs separate parent DMA tag as parent DMA address space
1220	 * could be restricted to be within 32bit address space by
1221	 * 4GB boundary crossing.
1222	 */
1223	error = bus_dma_tag_create(
1224	    bus_get_dma_tag(sc->ale_dev), /* parent */
1225	    1, 0,			/* alignment, boundary */
1226	    BUS_SPACE_MAXADDR,		/* lowaddr */
1227	    BUS_SPACE_MAXADDR,		/* highaddr */
1228	    NULL, NULL,			/* filter, filterarg */
1229	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1230	    0,				/* nsegments */
1231	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1232	    0,				/* flags */
1233	    NULL, NULL,			/* lockfunc, lockarg */
1234	    &sc->ale_cdata.ale_buffer_tag);
1235	if (error != 0) {
1236		device_printf(sc->ale_dev,
1237		    "could not create parent buffer DMA tag.\n");
1238		goto fail;
1239	}
1240
1241	/* Create DMA tag for Tx buffers. */
1242	error = bus_dma_tag_create(
1243	    sc->ale_cdata.ale_buffer_tag, /* parent */
1244	    1, 0,			/* alignment, boundary */
1245	    BUS_SPACE_MAXADDR,		/* lowaddr */
1246	    BUS_SPACE_MAXADDR,		/* highaddr */
1247	    NULL, NULL,			/* filter, filterarg */
1248	    ALE_TSO_MAXSIZE,		/* maxsize */
1249	    ALE_MAXTXSEGS,		/* nsegments */
1250	    ALE_TSO_MAXSEGSIZE,		/* maxsegsize */
1251	    0,				/* flags */
1252	    NULL, NULL,			/* lockfunc, lockarg */
1253	    &sc->ale_cdata.ale_tx_tag);
1254	if (error != 0) {
1255		device_printf(sc->ale_dev, "could not create Tx DMA tag.\n");
1256		goto fail;
1257	}
1258
1259	/* Create DMA maps for Tx buffers. */
1260	for (i = 0; i < ALE_TX_RING_CNT; i++) {
1261		txd = &sc->ale_cdata.ale_txdesc[i];
1262		txd->tx_m = NULL;
1263		txd->tx_dmamap = NULL;
1264		error = bus_dmamap_create(sc->ale_cdata.ale_tx_tag, 0,
1265		    &txd->tx_dmamap);
1266		if (error != 0) {
1267			device_printf(sc->ale_dev,
1268			    "could not create Tx dmamap.\n");
1269			goto fail;
1270		}
1271	}
1272
1273fail:
1274	return (error);
1275}
1276
1277static void
1278ale_dma_free(struct ale_softc *sc)
1279{
1280	struct ale_txdesc *txd;
1281	int i;
1282
1283	/* Tx buffers. */
1284	if (sc->ale_cdata.ale_tx_tag != NULL) {
1285		for (i = 0; i < ALE_TX_RING_CNT; i++) {
1286			txd = &sc->ale_cdata.ale_txdesc[i];
1287			if (txd->tx_dmamap != NULL) {
1288				bus_dmamap_destroy(sc->ale_cdata.ale_tx_tag,
1289				    txd->tx_dmamap);
1290				txd->tx_dmamap = NULL;
1291			}
1292		}
1293		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_tag);
1294		sc->ale_cdata.ale_tx_tag = NULL;
1295	}
1296	/* Tx descriptor ring. */
1297	if (sc->ale_cdata.ale_tx_ring_tag != NULL) {
1298		if (sc->ale_cdata.ale_tx_ring_map != NULL)
1299			bus_dmamap_unload(sc->ale_cdata.ale_tx_ring_tag,
1300			    sc->ale_cdata.ale_tx_ring_map);
1301		if (sc->ale_cdata.ale_tx_ring_map != NULL &&
1302		    sc->ale_cdata.ale_tx_ring != NULL)
1303			bus_dmamem_free(sc->ale_cdata.ale_tx_ring_tag,
1304			    sc->ale_cdata.ale_tx_ring,
1305			    sc->ale_cdata.ale_tx_ring_map);
1306		sc->ale_cdata.ale_tx_ring = NULL;
1307		sc->ale_cdata.ale_tx_ring_map = NULL;
1308		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_ring_tag);
1309		sc->ale_cdata.ale_tx_ring_tag = NULL;
1310	}
1311	/* Rx page block. */
1312	for (i = 0; i < ALE_RX_PAGES; i++) {
1313		if (sc->ale_cdata.ale_rx_page[i].page_tag != NULL) {
1314			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
1315				bus_dmamap_unload(
1316				    sc->ale_cdata.ale_rx_page[i].page_tag,
1317				    sc->ale_cdata.ale_rx_page[i].page_map);
1318			if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
1319			    sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
1320				bus_dmamem_free(
1321				    sc->ale_cdata.ale_rx_page[i].page_tag,
1322				    sc->ale_cdata.ale_rx_page[i].page_addr,
1323				    sc->ale_cdata.ale_rx_page[i].page_map);
1324			sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
1325			sc->ale_cdata.ale_rx_page[i].page_map = NULL;
1326			bus_dma_tag_destroy(
1327			    sc->ale_cdata.ale_rx_page[i].page_tag);
1328			sc->ale_cdata.ale_rx_page[i].page_tag = NULL;
1329		}
1330	}
1331	/* Rx CMB. */
1332	for (i = 0; i < ALE_RX_PAGES; i++) {
1333		if (sc->ale_cdata.ale_rx_page[i].cmb_tag != NULL) {
1334			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
1335				bus_dmamap_unload(
1336				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1337				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1338			if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
1339			    sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
1340				bus_dmamem_free(
1341				    sc->ale_cdata.ale_rx_page[i].cmb_tag,
1342				    sc->ale_cdata.ale_rx_page[i].cmb_addr,
1343				    sc->ale_cdata.ale_rx_page[i].cmb_map);
1344			sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
1345			sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
1346			bus_dma_tag_destroy(
1347			    sc->ale_cdata.ale_rx_page[i].cmb_tag);
1348			sc->ale_cdata.ale_rx_page[i].cmb_tag = NULL;
1349		}
1350	}
1351	/* Tx CMB. */
1352	if (sc->ale_cdata.ale_tx_cmb_tag != NULL) {
1353		if (sc->ale_cdata.ale_tx_cmb_map != NULL)
1354			bus_dmamap_unload(sc->ale_cdata.ale_tx_cmb_tag,
1355			    sc->ale_cdata.ale_tx_cmb_map);
1356		if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
1357		    sc->ale_cdata.ale_tx_cmb != NULL)
1358			bus_dmamem_free(sc->ale_cdata.ale_tx_cmb_tag,
1359			    sc->ale_cdata.ale_tx_cmb,
1360			    sc->ale_cdata.ale_tx_cmb_map);
1361		sc->ale_cdata.ale_tx_cmb = NULL;
1362		sc->ale_cdata.ale_tx_cmb_map = NULL;
1363		bus_dma_tag_destroy(sc->ale_cdata.ale_tx_cmb_tag);
1364		sc->ale_cdata.ale_tx_cmb_tag = NULL;
1365	}
1366	if (sc->ale_cdata.ale_buffer_tag != NULL) {
1367		bus_dma_tag_destroy(sc->ale_cdata.ale_buffer_tag);
1368		sc->ale_cdata.ale_buffer_tag = NULL;
1369	}
1370	if (sc->ale_cdata.ale_parent_tag != NULL) {
1371		bus_dma_tag_destroy(sc->ale_cdata.ale_parent_tag);
1372		sc->ale_cdata.ale_parent_tag = NULL;
1373	}
1374}
1375
1376static int
1377ale_shutdown(device_t dev)
1378{
1379
1380	return (ale_suspend(dev));
1381}
1382
1383/*
1384 * Note, this driver resets the link speed to 10/100Mbps by
1385 * restarting auto-negotiation in suspend/shutdown phase but we
1386 * don't know whether that auto-negotiation would succeed or not
1387 * as driver has no control after powering off/suspend operation.
1388 * If the renegotiation fail WOL may not work. Running at 1Gbps
1389 * will draw more power than 375mA at 3.3V which is specified in
1390 * PCI specification and that would result in complete
1391 * shutdowning power to ethernet controller.
1392 *
1393 * TODO
1394 * Save current negotiated media speed/duplex/flow-control to
1395 * softc and restore the same link again after resuming. PHY
1396 * handling such as power down/resetting to 100Mbps may be better
1397 * handled in suspend method in phy driver.
1398 */
1399static void
1400ale_setlinkspeed(struct ale_softc *sc)
1401{
1402	struct mii_data *mii;
1403	int aneg, i;
1404
1405	mii = device_get_softc(sc->ale_miibus);
1406	mii_pollstat(mii);
1407	aneg = 0;
1408	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
1409	    (IFM_ACTIVE | IFM_AVALID)) {
1410		switch IFM_SUBTYPE(mii->mii_media_active) {
1411		case IFM_10_T:
1412		case IFM_100_TX:
1413			return;
1414		case IFM_1000_T:
1415			aneg++;
1416			break;
1417		default:
1418			break;
1419		}
1420	}
1421	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr, MII_100T2CR, 0);
1422	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1423	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
1424	ale_miibus_writereg(sc->ale_dev, sc->ale_phyaddr,
1425	    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1426	DELAY(1000);
1427	if (aneg != 0) {
1428		/*
1429		 * Poll link state until ale(4) get a 10/100Mbps link.
1430		 */
1431		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1432			mii_pollstat(mii);
1433			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
1434			    == (IFM_ACTIVE | IFM_AVALID)) {
1435				switch (IFM_SUBTYPE(
1436				    mii->mii_media_active)) {
1437				case IFM_10_T:
1438				case IFM_100_TX:
1439					ale_mac_config(sc);
1440					return;
1441				default:
1442					break;
1443				}
1444			}
1445			ALE_UNLOCK(sc);
1446			pause("alelnk", hz);
1447			ALE_LOCK(sc);
1448		}
1449		if (i == MII_ANEGTICKS_GIGE)
1450			device_printf(sc->ale_dev,
1451			    "establishing a link failed, WOL may not work!");
1452	}
1453	/*
1454	 * No link, force MAC to have 100Mbps, full-duplex link.
1455	 * This is the last resort and may/may not work.
1456	 */
1457	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1458	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1459	ale_mac_config(sc);
1460}
1461
1462static void
1463ale_setwol(struct ale_softc *sc)
1464{
1465	struct ifnet *ifp;
1466	uint32_t reg, pmcs;
1467	uint16_t pmstat;
1468	int pmc;
1469
1470	ALE_LOCK_ASSERT(sc);
1471
1472	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) != 0) {
1473		/* Disable WOL. */
1474		CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
1475		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1476		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1477		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1478		/* Force PHY power down. */
1479		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1480		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1481		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_PHY_PLL_ON |
1482		    GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_IDDQ |
1483		    GPHY_CTRL_PCLK_SEL_DIS | GPHY_CTRL_PWDOWN_HW);
1484		return;
1485	}
1486
1487	ifp = sc->ale_ifp;
1488	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1489		if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
1490			ale_setlinkspeed(sc);
1491	}
1492
1493	pmcs = 0;
1494	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1495		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1496	CSR_WRITE_4(sc, ALE_WOL_CFG, pmcs);
1497	reg = CSR_READ_4(sc, ALE_MAC_CFG);
1498	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC | MAC_CFG_ALLMULTI |
1499	    MAC_CFG_BCAST);
1500	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1501		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1502	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1503		reg |= MAC_CFG_RX_ENB;
1504	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
1505
1506	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1507		/* WOL disabled, PHY power down. */
1508		reg = CSR_READ_4(sc, ALE_PCIE_PHYMISC);
1509		reg |= PCIE_PHYMISC_FORCE_RCV_DET;
1510		CSR_WRITE_4(sc, ALE_PCIE_PHYMISC, reg);
1511		CSR_WRITE_2(sc, ALE_GPHY_CTRL,
1512		    GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN |
1513		    GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
1514		    GPHY_CTRL_PHY_IDDQ | GPHY_CTRL_PCLK_SEL_DIS |
1515		    GPHY_CTRL_PWDOWN_HW);
1516	}
1517	/* Request PME. */
1518	pmstat = pci_read_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, 2);
1519	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1520	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1521		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1522	pci_write_config(sc->ale_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1523}
1524
1525static int
1526ale_suspend(device_t dev)
1527{
1528	struct ale_softc *sc;
1529
1530	sc = device_get_softc(dev);
1531
1532	ALE_LOCK(sc);
1533	ale_stop(sc);
1534	ale_setwol(sc);
1535	ALE_UNLOCK(sc);
1536
1537	return (0);
1538}
1539
1540static int
1541ale_resume(device_t dev)
1542{
1543	struct ale_softc *sc;
1544	struct ifnet *ifp;
1545	int pmc;
1546	uint16_t cmd, pmstat;
1547
1548	sc = device_get_softc(dev);
1549
1550	ALE_LOCK(sc);
1551	/*
1552	 * Clear INTx emulation disable for hardwares that
1553	 * is set in resume event. From Linux.
1554	 */
1555	cmd = pci_read_config(sc->ale_dev, PCIR_COMMAND, 2);
1556	if ((cmd & 0x0400) != 0) {
1557		cmd &= ~0x0400;
1558		pci_write_config(sc->ale_dev, PCIR_COMMAND, cmd, 2);
1559	}
1560	if (pci_find_extcap(sc->ale_dev, PCIY_PMG, &pmc) == 0) {
1561		/* Disable PME and clear PME status. */
1562		pmstat = pci_read_config(sc->ale_dev,
1563		    pmc + PCIR_POWER_STATUS, 2);
1564		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1565			pmstat &= ~PCIM_PSTAT_PMEENABLE;
1566			pci_write_config(sc->ale_dev,
1567			    pmc + PCIR_POWER_STATUS, pmstat, 2);
1568		}
1569	}
1570	/* Reset PHY. */
1571	ale_phy_reset(sc);
1572	ifp = sc->ale_ifp;
1573	if ((ifp->if_flags & IFF_UP) != 0) {
1574		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1575		ale_init_locked(sc);
1576	}
1577	ALE_UNLOCK(sc);
1578
1579	return (0);
1580}
1581
1582static int
1583ale_encap(struct ale_softc *sc, struct mbuf **m_head)
1584{
1585	struct ale_txdesc *txd, *txd_last;
1586	struct tx_desc *desc;
1587	struct mbuf *m;
1588	struct ip *ip;
1589	struct tcphdr *tcp;
1590	bus_dma_segment_t txsegs[ALE_MAXTXSEGS];
1591	bus_dmamap_t map;
1592	uint32_t cflags, ip_off, poff, vtag;
1593	int error, i, nsegs, prod, si;
1594
1595	ALE_LOCK_ASSERT(sc);
1596
1597	M_ASSERTPKTHDR((*m_head));
1598
1599	m = *m_head;
1600	ip = NULL;
1601	tcp = NULL;
1602	cflags = vtag = 0;
1603	ip_off = poff = 0;
1604	if ((m->m_pkthdr.csum_flags & (ALE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1605		/*
1606		 * AR81xx requires offset of TCP/UDP payload in its Tx
1607		 * descriptor to perform hardware Tx checksum offload.
1608		 * Additionally, TSO requires IP/TCP header size and
1609		 * modification of IP/TCP header in order to make TSO
1610		 * engine work. This kind of operation takes many CPU
1611		 * cycles on FreeBSD so fast host CPU is required to
1612		 * get smooth TSO performance.
1613		 */
1614		struct ether_header *eh;
1615
1616		if (M_WRITABLE(m) == 0) {
1617			/* Get a writable copy. */
1618			m = m_dup(*m_head, M_DONTWAIT);
1619			/* Release original mbufs. */
1620			m_freem(*m_head);
1621			if (m == NULL) {
1622				*m_head = NULL;
1623				return (ENOBUFS);
1624			}
1625			*m_head = m;
1626		}
1627
1628		/*
1629		 * Buggy-controller requires 4 byte aligned Tx buffer
1630		 * to make custom checksum offload work.
1631		 */
1632		if ((sc->ale_flags & ALE_FLAG_TXCSUM_BUG) != 0 &&
1633		    (m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0 &&
1634		    (mtod(m, intptr_t) & 3) != 0) {
1635			m = m_defrag(*m_head, M_DONTWAIT);
1636			if (m == NULL) {
1637				*m_head = NULL;
1638				return (ENOBUFS);
1639			}
1640			*m_head = m;
1641		}
1642
1643		ip_off = sizeof(struct ether_header);
1644		m = m_pullup(m, ip_off);
1645		if (m == NULL) {
1646			*m_head = NULL;
1647			return (ENOBUFS);
1648		}
1649		eh = mtod(m, struct ether_header *);
1650		/*
1651		 * Check if hardware VLAN insertion is off.
1652		 * Additional check for LLC/SNAP frame?
1653		 */
1654		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1655			ip_off = sizeof(struct ether_vlan_header);
1656			m = m_pullup(m, ip_off);
1657			if (m == NULL) {
1658				*m_head = NULL;
1659				return (ENOBUFS);
1660			}
1661		}
1662		m = m_pullup(m, ip_off + sizeof(struct ip));
1663		if (m == NULL) {
1664			*m_head = NULL;
1665			return (ENOBUFS);
1666		}
1667		ip = (struct ip *)(mtod(m, char *) + ip_off);
1668		poff = ip_off + (ip->ip_hl << 2);
1669		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1670			/*
1671			 * XXX
1672			 * AR81xx requires the first descriptor should
1673			 * not include any TCP playload for TSO case.
1674			 * (i.e. ethernet header + IP + TCP header only)
1675			 * m_pullup(9) above will ensure this too.
1676			 * However it's not correct if the first mbuf
1677			 * of the chain does not use cluster.
1678			 */
1679			m = m_pullup(m, poff + sizeof(struct tcphdr));
1680			if (m == NULL) {
1681				*m_head = NULL;
1682				return (ENOBUFS);
1683			}
1684			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1685			/*
1686			 * AR81xx requires IP/TCP header size and offset as
1687			 * well as TCP pseudo checksum which complicates
1688			 * TSO configuration. I guess this comes from the
1689			 * adherence to Microsoft NDIS Large Send
1690			 * specification which requires insertion of
1691			 * pseudo checksum by upper stack. The pseudo
1692			 * checksum that NDIS refers to doesn't include
1693			 * TCP payload length so ale(4) should recompute
1694			 * the pseudo checksum here. Hopefully this wouldn't
1695			 * be much burden on modern CPUs.
1696			 * Reset IP checksum and recompute TCP pseudo
1697			 * checksum as NDIS specification said.
1698			 */
1699			ip->ip_sum = 0;
1700			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1701			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1702		}
1703		*m_head = m;
1704	}
1705
1706	si = prod = sc->ale_cdata.ale_tx_prod;
1707	txd = &sc->ale_cdata.ale_txdesc[prod];
1708	txd_last = txd;
1709	map = txd->tx_dmamap;
1710
1711	error =  bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1712	    *m_head, txsegs, &nsegs, 0);
1713	if (error == EFBIG) {
1714		m = m_collapse(*m_head, M_DONTWAIT, ALE_MAXTXSEGS);
1715		if (m == NULL) {
1716			m_freem(*m_head);
1717			*m_head = NULL;
1718			return (ENOMEM);
1719		}
1720		*m_head = m;
1721		error = bus_dmamap_load_mbuf_sg(sc->ale_cdata.ale_tx_tag, map,
1722		    *m_head, txsegs, &nsegs, 0);
1723		if (error != 0) {
1724			m_freem(*m_head);
1725			*m_head = NULL;
1726			return (error);
1727		}
1728	} else if (error != 0)
1729		return (error);
1730	if (nsegs == 0) {
1731		m_freem(*m_head);
1732		*m_head = NULL;
1733		return (EIO);
1734	}
1735
1736	/* Check descriptor overrun. */
1737	if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
1738		bus_dmamap_unload(sc->ale_cdata.ale_tx_tag, map);
1739		return (ENOBUFS);
1740	}
1741	bus_dmamap_sync(sc->ale_cdata.ale_tx_tag, map, BUS_DMASYNC_PREWRITE);
1742
1743	m = *m_head;
1744	/* Configure Tx checksum offload. */
1745	if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
1746		/*
1747		 * AR81xx supports Tx custom checksum offload feature
1748		 * that offloads single 16bit checksum computation.
1749		 * So you can choose one among IP, TCP and UDP.
1750		 * Normally driver sets checksum start/insertion
1751		 * position from the information of TCP/UDP frame as
1752		 * TCP/UDP checksum takes more time than that of IP.
1753		 * However it seems that custom checksum offload
1754		 * requires 4 bytes aligned Tx buffers due to hardware
1755		 * bug.
1756		 * AR81xx also supports explicit Tx checksum computation
1757		 * if it is told that the size of IP header and TCP
1758		 * header(for UDP, the header size does not matter
1759		 * because it's fixed length). However with this scheme
1760		 * TSO does not work so you have to choose one either
1761		 * TSO or explicit Tx checksum offload. I chosen TSO
1762		 * plus custom checksum offload with work-around which
1763		 * will cover most common usage for this consumer
1764		 * ethernet controller. The work-around takes a lot of
1765		 * CPU cycles if Tx buffer is not aligned on 4 bytes
1766		 * boundary, though.
1767		 */
1768		cflags |= ALE_TD_CXSUM;
1769		/* Set checksum start offset. */
1770		cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
1771		/* Set checksum insertion position of TCP/UDP. */
1772		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1773		    ALE_TD_CSUM_XSUMOFFSET_SHIFT);
1774	}
1775
1776	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1777		/* Request TSO and set MSS. */
1778		cflags |= ALE_TD_TSO;
1779		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz << ALE_TD_MSS_SHIFT);
1780		/* Set IP/TCP header size. */
1781		cflags |= ip->ip_hl << ALE_TD_IPHDR_LEN_SHIFT;
1782		cflags |= tcp->th_off << ALE_TD_TCPHDR_LEN_SHIFT;
1783	}
1784
1785	/* Configure VLAN hardware tag insertion. */
1786	if ((m->m_flags & M_VLANTAG) != 0) {
1787		vtag = ALE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1788		vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
1789		cflags |= ALE_TD_INSERT_VLAN_TAG;
1790	}
1791
1792	desc = NULL;
1793	for (i = 0; i < nsegs; i++) {
1794		desc = &sc->ale_cdata.ale_tx_ring[prod];
1795		desc->addr = htole64(txsegs[i].ds_addr);
1796		desc->len = htole32(ALE_TX_BYTES(txsegs[i].ds_len) | vtag);
1797		desc->flags = htole32(cflags);
1798		sc->ale_cdata.ale_tx_cnt++;
1799		ALE_DESC_INC(prod, ALE_TX_RING_CNT);
1800	}
1801	/* Update producer index. */
1802	sc->ale_cdata.ale_tx_prod = prod;
1803	/* Set TSO header on the first descriptor. */
1804	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1805		desc = &sc->ale_cdata.ale_tx_ring[si];
1806		desc->flags |= htole32(ALE_TD_TSO_HDR);
1807	}
1808
1809	/* Finally set EOP on the last descriptor. */
1810	prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
1811	desc = &sc->ale_cdata.ale_tx_ring[prod];
1812	desc->flags |= htole32(ALE_TD_EOP);
1813
1814	/* Swap dmamap of the first and the last. */
1815	txd = &sc->ale_cdata.ale_txdesc[prod];
1816	map = txd_last->tx_dmamap;
1817	txd_last->tx_dmamap = txd->tx_dmamap;
1818	txd->tx_dmamap = map;
1819	txd->tx_m = m;
1820
1821	/* Sync descriptors. */
1822	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
1823	    sc->ale_cdata.ale_tx_ring_map,
1824	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1825
1826	return (0);
1827}
1828
1829static void
1830ale_tx_task(void *arg, int pending)
1831{
1832	struct ifnet *ifp;
1833
1834	ifp = (struct ifnet *)arg;
1835	ale_start(ifp);
1836}
1837
1838static void
1839ale_start(struct ifnet *ifp)
1840{
1841        struct ale_softc *sc;
1842        struct mbuf *m_head;
1843	int enq;
1844
1845	sc = ifp->if_softc;
1846
1847	ALE_LOCK(sc);
1848
1849	/* Reclaim transmitted frames. */
1850	if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
1851		ale_txeof(sc);
1852
1853	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1854	    IFF_DRV_RUNNING || (sc->ale_flags & ALE_FLAG_LINK) == 0) {
1855		ALE_UNLOCK(sc);
1856		return;
1857	}
1858
1859	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1860		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1861		if (m_head == NULL)
1862			break;
1863		/*
1864		 * Pack the data into the transmit ring. If we
1865		 * don't have room, set the OACTIVE flag and wait
1866		 * for the NIC to drain the ring.
1867		 */
1868		if (ale_encap(sc, &m_head)) {
1869			if (m_head == NULL)
1870				break;
1871			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1872			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1873			break;
1874		}
1875
1876		enq++;
1877		/*
1878		 * If there's a BPF listener, bounce a copy of this frame
1879		 * to him.
1880		 */
1881		ETHER_BPF_MTAP(ifp, m_head);
1882	}
1883
1884	if (enq > 0) {
1885		/* Kick. */
1886		CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
1887		    sc->ale_cdata.ale_tx_prod);
1888		/* Set a timeout in case the chip goes out to lunch. */
1889		sc->ale_watchdog_timer = ALE_TX_TIMEOUT;
1890	}
1891
1892	ALE_UNLOCK(sc);
1893}
1894
1895static void
1896ale_watchdog(struct ale_softc *sc)
1897{
1898	struct ifnet *ifp;
1899
1900	ALE_LOCK_ASSERT(sc);
1901
1902	if (sc->ale_watchdog_timer == 0 || --sc->ale_watchdog_timer)
1903		return;
1904
1905	ifp = sc->ale_ifp;
1906	if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
1907		if_printf(sc->ale_ifp, "watchdog timeout (lost link)\n");
1908		ifp->if_oerrors++;
1909		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1910		ale_init_locked(sc);
1911		return;
1912	}
1913	if_printf(sc->ale_ifp, "watchdog timeout -- resetting\n");
1914	ifp->if_oerrors++;
1915	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1916	ale_init_locked(sc);
1917	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1918		taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
1919}
1920
1921static int
1922ale_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1923{
1924	struct ale_softc *sc;
1925	struct ifreq *ifr;
1926	struct mii_data *mii;
1927	int error, mask;
1928
1929	sc = ifp->if_softc;
1930	ifr = (struct ifreq *)data;
1931	error = 0;
1932	switch (cmd) {
1933	case SIOCSIFMTU:
1934		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > ALE_JUMBO_MTU ||
1935		    ((sc->ale_flags & ALE_FLAG_JUMBO) == 0 &&
1936		    ifr->ifr_mtu > ETHERMTU))
1937			error = EINVAL;
1938		else if (ifp->if_mtu != ifr->ifr_mtu) {
1939			ALE_LOCK(sc);
1940			ifp->if_mtu = ifr->ifr_mtu;
1941			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1942				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1943				ale_init_locked(sc);
1944			}
1945			ALE_UNLOCK(sc);
1946		}
1947		break;
1948	case SIOCSIFFLAGS:
1949		ALE_LOCK(sc);
1950		if ((ifp->if_flags & IFF_UP) != 0) {
1951			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1952				if (((ifp->if_flags ^ sc->ale_if_flags)
1953				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1954					ale_rxfilter(sc);
1955			} else {
1956				if ((sc->ale_flags & ALE_FLAG_DETACH) == 0)
1957					ale_init_locked(sc);
1958			}
1959		} else {
1960			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1961				ale_stop(sc);
1962		}
1963		sc->ale_if_flags = ifp->if_flags;
1964		ALE_UNLOCK(sc);
1965		break;
1966	case SIOCADDMULTI:
1967	case SIOCDELMULTI:
1968		ALE_LOCK(sc);
1969		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1970			ale_rxfilter(sc);
1971		ALE_UNLOCK(sc);
1972		break;
1973	case SIOCSIFMEDIA:
1974	case SIOCGIFMEDIA:
1975		mii = device_get_softc(sc->ale_miibus);
1976		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1977		break;
1978	case SIOCSIFCAP:
1979		ALE_LOCK(sc);
1980		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1981		if ((mask & IFCAP_TXCSUM) != 0 &&
1982		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1983			ifp->if_capenable ^= IFCAP_TXCSUM;
1984			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1985				ifp->if_hwassist |= ALE_CSUM_FEATURES;
1986			else
1987				ifp->if_hwassist &= ~ALE_CSUM_FEATURES;
1988		}
1989		if ((mask & IFCAP_RXCSUM) != 0 &&
1990		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0)
1991			ifp->if_capenable ^= IFCAP_RXCSUM;
1992		if ((mask & IFCAP_TSO4) != 0 &&
1993		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1994			ifp->if_capenable ^= IFCAP_TSO4;
1995			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1996				ifp->if_hwassist |= CSUM_TSO;
1997			else
1998				ifp->if_hwassist &= ~CSUM_TSO;
1999		}
2000
2001		if ((mask & IFCAP_WOL_MCAST) != 0 &&
2002		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
2003			ifp->if_capenable ^= IFCAP_WOL_MCAST;
2004		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
2005		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
2006			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2007
2008		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2009		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2010			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2011			ale_rxvlan(sc);
2012		}
2013		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
2014		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
2015			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
2016		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2017		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2018			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2019		/*
2020		 * VLAN hardware tagging is required to do checksum
2021		 * offload or TSO on VLAN interface. Checksum offload
2022		 * on VLAN interface also requires hardware checksum
2023		 * offload of parent interface.
2024		 */
2025		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
2026			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
2027		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2028			ifp->if_capenable &=
2029			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
2030		ALE_UNLOCK(sc);
2031		VLAN_CAPABILITIES(ifp);
2032		break;
2033	default:
2034		error = ether_ioctl(ifp, cmd, data);
2035		break;
2036	}
2037
2038	return (error);
2039}
2040
2041static void
2042ale_mac_config(struct ale_softc *sc)
2043{
2044	struct mii_data *mii;
2045	uint32_t reg;
2046
2047	ALE_LOCK_ASSERT(sc);
2048
2049	mii = device_get_softc(sc->ale_miibus);
2050	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2051	reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
2052	    MAC_CFG_SPEED_MASK);
2053	/* Reprogram MAC with resolved speed/duplex. */
2054	switch (IFM_SUBTYPE(mii->mii_media_active)) {
2055	case IFM_10_T:
2056	case IFM_100_TX:
2057		reg |= MAC_CFG_SPEED_10_100;
2058		break;
2059	case IFM_1000_T:
2060		reg |= MAC_CFG_SPEED_1000;
2061		break;
2062	}
2063	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
2064		reg |= MAC_CFG_FULL_DUPLEX;
2065#ifdef notyet
2066		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
2067			reg |= MAC_CFG_TX_FC;
2068		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2069			reg |= MAC_CFG_RX_FC;
2070#endif
2071	}
2072	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2073}
2074
2075static void
2076ale_link_task(void *arg, int pending)
2077{
2078	struct ale_softc *sc;
2079	struct mii_data *mii;
2080	struct ifnet *ifp;
2081	uint32_t reg;
2082
2083	sc = (struct ale_softc *)arg;
2084
2085	ALE_LOCK(sc);
2086	mii = device_get_softc(sc->ale_miibus);
2087	ifp = sc->ale_ifp;
2088	if (mii == NULL || ifp == NULL ||
2089	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2090		ALE_UNLOCK(sc);
2091		return;
2092	}
2093
2094	sc->ale_flags &= ~ALE_FLAG_LINK;
2095	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
2096	    (IFM_ACTIVE | IFM_AVALID)) {
2097		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2098		case IFM_10_T:
2099		case IFM_100_TX:
2100			sc->ale_flags |= ALE_FLAG_LINK;
2101			break;
2102		case IFM_1000_T:
2103			if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
2104				sc->ale_flags |= ALE_FLAG_LINK;
2105			break;
2106		default:
2107			break;
2108		}
2109	}
2110
2111	/* Stop Rx/Tx MACs. */
2112	ale_stop_mac(sc);
2113
2114	/* Program MACs with resolved speed/duplex/flow-control. */
2115	if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
2116		ale_mac_config(sc);
2117		/* Reenable Tx/Rx MACs. */
2118		reg = CSR_READ_4(sc, ALE_MAC_CFG);
2119		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2120		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2121	}
2122
2123	ALE_UNLOCK(sc);
2124}
2125
2126static void
2127ale_stats_clear(struct ale_softc *sc)
2128{
2129	struct smb sb;
2130	uint32_t *reg;
2131	int i;
2132
2133	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2134		CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2135		i += sizeof(uint32_t);
2136	}
2137	/* Read Tx statistics. */
2138	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2139		CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2140		i += sizeof(uint32_t);
2141	}
2142}
2143
2144static void
2145ale_stats_update(struct ale_softc *sc)
2146{
2147	struct ale_hw_stats *stat;
2148	struct smb sb, *smb;
2149	struct ifnet *ifp;
2150	uint32_t *reg;
2151	int i;
2152
2153	ALE_LOCK_ASSERT(sc);
2154
2155	ifp = sc->ale_ifp;
2156	stat = &sc->ale_stats;
2157	smb = &sb;
2158
2159	/* Read Rx statistics. */
2160	for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
2161		*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
2162		i += sizeof(uint32_t);
2163	}
2164	/* Read Tx statistics. */
2165	for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
2166		*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
2167		i += sizeof(uint32_t);
2168	}
2169
2170	/* Rx stats. */
2171	stat->rx_frames += smb->rx_frames;
2172	stat->rx_bcast_frames += smb->rx_bcast_frames;
2173	stat->rx_mcast_frames += smb->rx_mcast_frames;
2174	stat->rx_pause_frames += smb->rx_pause_frames;
2175	stat->rx_control_frames += smb->rx_control_frames;
2176	stat->rx_crcerrs += smb->rx_crcerrs;
2177	stat->rx_lenerrs += smb->rx_lenerrs;
2178	stat->rx_bytes += smb->rx_bytes;
2179	stat->rx_runts += smb->rx_runts;
2180	stat->rx_fragments += smb->rx_fragments;
2181	stat->rx_pkts_64 += smb->rx_pkts_64;
2182	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2183	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2184	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2185	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2186	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2187	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2188	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2189	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2190	stat->rx_rrs_errs += smb->rx_rrs_errs;
2191	stat->rx_alignerrs += smb->rx_alignerrs;
2192	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2193	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2194	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2195
2196	/* Tx stats. */
2197	stat->tx_frames += smb->tx_frames;
2198	stat->tx_bcast_frames += smb->tx_bcast_frames;
2199	stat->tx_mcast_frames += smb->tx_mcast_frames;
2200	stat->tx_pause_frames += smb->tx_pause_frames;
2201	stat->tx_excess_defer += smb->tx_excess_defer;
2202	stat->tx_control_frames += smb->tx_control_frames;
2203	stat->tx_deferred += smb->tx_deferred;
2204	stat->tx_bytes += smb->tx_bytes;
2205	stat->tx_pkts_64 += smb->tx_pkts_64;
2206	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2207	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2208	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2209	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2210	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2211	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2212	stat->tx_single_colls += smb->tx_single_colls;
2213	stat->tx_multi_colls += smb->tx_multi_colls;
2214	stat->tx_late_colls += smb->tx_late_colls;
2215	stat->tx_excess_colls += smb->tx_excess_colls;
2216	stat->tx_abort += smb->tx_abort;
2217	stat->tx_underrun += smb->tx_underrun;
2218	stat->tx_desc_underrun += smb->tx_desc_underrun;
2219	stat->tx_lenerrs += smb->tx_lenerrs;
2220	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2221	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2222	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2223
2224	/* Update counters in ifnet. */
2225	ifp->if_opackets += smb->tx_frames;
2226
2227	ifp->if_collisions += smb->tx_single_colls +
2228	    smb->tx_multi_colls * 2 + smb->tx_late_colls +
2229	    smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
2230
2231	/*
2232	 * XXX
2233	 * tx_pkts_truncated counter looks suspicious. It constantly
2234	 * increments with no sign of Tx errors. This may indicate
2235	 * the counter name is not correct one so I've removed the
2236	 * counter in output errors.
2237	 */
2238	ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
2239	    smb->tx_underrun;
2240
2241	ifp->if_ipackets += smb->rx_frames;
2242
2243	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2244	    smb->rx_runts + smb->rx_pkts_truncated +
2245	    smb->rx_fifo_oflows + smb->rx_rrs_errs +
2246	    smb->rx_alignerrs;
2247}
2248
2249static int
2250ale_intr(void *arg)
2251{
2252	struct ale_softc *sc;
2253	uint32_t status;
2254
2255	sc = (struct ale_softc *)arg;
2256
2257	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2258	if ((status & ALE_INTRS) == 0)
2259		return (FILTER_STRAY);
2260	/* Disable interrupts. */
2261	CSR_WRITE_4(sc, ALE_INTR_STATUS, INTR_DIS_INT);
2262	taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2263
2264	return (FILTER_HANDLED);
2265}
2266
2267static void
2268ale_int_task(void *arg, int pending)
2269{
2270	struct ale_softc *sc;
2271	struct ifnet *ifp;
2272	uint32_t status;
2273	int more;
2274
2275	sc = (struct ale_softc *)arg;
2276
2277	status = CSR_READ_4(sc, ALE_INTR_STATUS);
2278	more = atomic_readandclear_int(&sc->ale_morework);
2279	if (more != 0)
2280		status |= INTR_RX_PKT;
2281	if ((status & ALE_INTRS) == 0)
2282		goto done;
2283
2284	/* Acknowledge interrupts but still disable interrupts. */
2285	CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
2286
2287	ifp = sc->ale_ifp;
2288	more = 0;
2289	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2290		more = ale_rxeof(sc, sc->ale_process_limit);
2291		if (more == EAGAIN)
2292			atomic_set_int(&sc->ale_morework, 1);
2293		else if (more == EIO) {
2294			ALE_LOCK(sc);
2295			sc->ale_stats.reset_brk_seq++;
2296			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2297			ale_init_locked(sc);
2298			ALE_UNLOCK(sc);
2299			return;
2300		}
2301
2302		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2303			if ((status & INTR_DMA_RD_TO_RST) != 0)
2304				device_printf(sc->ale_dev,
2305				    "DMA read error! -- resetting\n");
2306			if ((status & INTR_DMA_WR_TO_RST) != 0)
2307				device_printf(sc->ale_dev,
2308				    "DMA write error! -- resetting\n");
2309			ALE_LOCK(sc);
2310			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2311			ale_init_locked(sc);
2312			ALE_UNLOCK(sc);
2313			return;
2314		}
2315		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2316			taskqueue_enqueue(sc->ale_tq, &sc->ale_tx_task);
2317	}
2318
2319	if (more == EAGAIN ||
2320	    (CSR_READ_4(sc, ALE_INTR_STATUS) & ALE_INTRS) != 0) {
2321		taskqueue_enqueue(sc->ale_tq, &sc->ale_int_task);
2322		return;
2323	}
2324
2325done:
2326	/* Re-enable interrupts. */
2327	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
2328}
2329
2330static void
2331ale_txeof(struct ale_softc *sc)
2332{
2333	struct ifnet *ifp;
2334	struct ale_txdesc *txd;
2335	uint32_t cons, prod;
2336	int prog;
2337
2338	ALE_LOCK_ASSERT(sc);
2339
2340	ifp = sc->ale_ifp;
2341
2342	if (sc->ale_cdata.ale_tx_cnt == 0)
2343		return;
2344
2345	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2346	    sc->ale_cdata.ale_tx_ring_map,
2347	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2348	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
2349		bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2350		    sc->ale_cdata.ale_tx_cmb_map,
2351		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2352		prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
2353	} else
2354		prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
2355	cons = sc->ale_cdata.ale_tx_cons;
2356	/*
2357	 * Go through our Tx list and free mbufs for those
2358	 * frames which have been transmitted.
2359	 */
2360	for (prog = 0; cons != prod; prog++,
2361	    ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
2362		if (sc->ale_cdata.ale_tx_cnt <= 0)
2363			break;
2364		prog++;
2365		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2366		sc->ale_cdata.ale_tx_cnt--;
2367		txd = &sc->ale_cdata.ale_txdesc[cons];
2368		if (txd->tx_m != NULL) {
2369			/* Reclaim transmitted mbufs. */
2370			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2371			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2372			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2373			    txd->tx_dmamap);
2374			m_freem(txd->tx_m);
2375			txd->tx_m = NULL;
2376		}
2377	}
2378
2379	if (prog > 0) {
2380		sc->ale_cdata.ale_tx_cons = cons;
2381		/*
2382		 * Unarm watchdog timer only when there is no pending
2383		 * Tx descriptors in queue.
2384		 */
2385		if (sc->ale_cdata.ale_tx_cnt == 0)
2386			sc->ale_watchdog_timer = 0;
2387	}
2388}
2389
2390static void
2391ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
2392    uint32_t length, uint32_t *prod)
2393{
2394	struct ale_rx_page *rx_page;
2395
2396	rx_page = *page;
2397	/* Update consumer position. */
2398	rx_page->cons += roundup(length + sizeof(struct rx_rs),
2399	    ALE_RX_PAGE_ALIGN);
2400	if (rx_page->cons >= ALE_RX_PAGE_SZ) {
2401		/*
2402		 * End of Rx page reached, let hardware reuse
2403		 * this page.
2404		 */
2405		rx_page->cons = 0;
2406		*rx_page->cmb_addr = 0;
2407		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2408		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2409		CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
2410		    RXF_VALID);
2411		/* Switch to alternate Rx page. */
2412		sc->ale_cdata.ale_rx_curp ^= 1;
2413		rx_page = *page =
2414		    &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2415		/* Page flipped, sync CMB and Rx page. */
2416		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2417		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2418		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2419		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2420		/* Sync completed, cache updated producer index. */
2421		*prod = *rx_page->cmb_addr;
2422	}
2423}
2424
2425
2426/*
2427 * It seems that AR81xx controller can compute partial checksum.
2428 * The partial checksum value can be used to accelerate checksum
2429 * computation for fragmented TCP/UDP packets. Upper network stack
2430 * already takes advantage of the partial checksum value in IP
2431 * reassembly stage. But I'm not sure the correctness of the
2432 * partial hardware checksum assistance due to lack of data sheet.
2433 * In addition, the Rx feature of controller that requires copying
2434 * for every frames effectively nullifies one of most nice offload
2435 * capability of controller.
2436 */
2437static void
2438ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
2439{
2440	struct ifnet *ifp;
2441	struct ip *ip;
2442	char *p;
2443
2444	ifp = sc->ale_ifp;
2445	m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2446	if ((status & ALE_RD_IPCSUM_NOK) == 0)
2447		m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2448
2449	if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
2450		if (((status & ALE_RD_IPV4_FRAG) == 0) &&
2451		    ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
2452		    ((status & ALE_RD_TCP_UDPCSUM_NOK) == 0)) {
2453			m->m_pkthdr.csum_flags |=
2454			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2455			m->m_pkthdr.csum_data = 0xffff;
2456		}
2457	} else {
2458		if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0 &&
2459		    (status & ALE_RD_TCP_UDPCSUM_NOK) == 0) {
2460			p = mtod(m, char *);
2461			p += ETHER_HDR_LEN;
2462			if ((status & ALE_RD_802_3) != 0)
2463				p += LLC_SNAPFRAMELEN;
2464			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0 &&
2465			    (status & ALE_RD_VLAN) != 0)
2466				p += ETHER_VLAN_ENCAP_LEN;
2467			ip = (struct ip *)p;
2468			if (ip->ip_off != 0 && (status & ALE_RD_IPV4_DF) == 0)
2469				return;
2470			m->m_pkthdr.csum_flags |= CSUM_DATA_VALID |
2471			    CSUM_PSEUDO_HDR;
2472			m->m_pkthdr.csum_data = 0xffff;
2473		}
2474	}
2475	/*
2476	 * Don't mark bad checksum for TCP/UDP frames
2477	 * as fragmented frames may always have set
2478	 * bad checksummed bit of frame status.
2479	 */
2480}
2481
2482/* Process received frames. */
2483static int
2484ale_rxeof(struct ale_softc *sc, int count)
2485{
2486	struct ale_rx_page *rx_page;
2487	struct rx_rs *rs;
2488	struct ifnet *ifp;
2489	struct mbuf *m;
2490	uint32_t length, prod, seqno, status, vtags;
2491	int prog;
2492
2493	ifp = sc->ale_ifp;
2494	rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
2495	bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
2496	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2497	bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
2498	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2499	/*
2500	 * Don't directly access producer index as hardware may
2501	 * update it while Rx handler is in progress. It would
2502	 * be even better if there is a way to let hardware
2503	 * know how far driver processed its received frames.
2504	 * Alternatively, hardware could provide a way to disable
2505	 * CMB updates until driver acknowledges the end of CMB
2506	 * access.
2507	 */
2508	prod = *rx_page->cmb_addr;
2509	for (prog = 0; prog < count; prog++) {
2510		if (rx_page->cons >= prod)
2511			break;
2512		rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
2513		seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
2514		if (sc->ale_cdata.ale_rx_seqno != seqno) {
2515			/*
2516			 * Normally I believe this should not happen unless
2517			 * severe driver bug or corrupted memory. However
2518			 * it seems to happen under certain conditions which
2519			 * is triggered by abrupt Rx events such as initiation
2520			 * of bulk transfer of remote host. It's not easy to
2521			 * reproduce this and I doubt it could be related
2522			 * with FIFO overflow of hardware or activity of Tx
2523			 * CMB updates. I also remember similar behaviour
2524			 * seen on RealTek 8139 which uses resembling Rx
2525			 * scheme.
2526			 */
2527			if (bootverbose)
2528				device_printf(sc->ale_dev,
2529				    "garbled seq: %u, expected: %u -- "
2530				    "resetting!\n", seqno,
2531				    sc->ale_cdata.ale_rx_seqno);
2532			return (EIO);
2533		}
2534		/* Frame received. */
2535		sc->ale_cdata.ale_rx_seqno++;
2536		length = ALE_RX_BYTES(le32toh(rs->length));
2537		status = le32toh(rs->flags);
2538		if ((status & ALE_RD_ERROR) != 0) {
2539			/*
2540			 * We want to pass the following frames to upper
2541			 * layer regardless of error status of Rx return
2542			 * status.
2543			 *
2544			 *  o IP/TCP/UDP checksum is bad.
2545			 *  o frame length and protocol specific length
2546			 *     does not match.
2547			 */
2548			if ((status & (ALE_RD_CRC | ALE_RD_CODE |
2549			    ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
2550			    ALE_RD_TRUNC)) != 0) {
2551				ale_rx_update_page(sc, &rx_page, length, &prod);
2552				continue;
2553			}
2554		}
2555		/*
2556		 * m_devget(9) is major bottle-neck of ale(4)(It comes
2557		 * from hardware limitation). For jumbo frames we could
2558		 * get a slightly better performance if driver use
2559		 * m_getjcl(9) with proper buffer size argument. However
2560		 * that would make code more complicated and I don't
2561		 * think users would expect good Rx performance numbers
2562		 * on these low-end consumer ethernet controller.
2563		 */
2564		m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
2565		    ETHER_ALIGN, ifp, NULL);
2566		if (m == NULL) {
2567			ifp->if_iqdrops++;
2568			ale_rx_update_page(sc, &rx_page, length, &prod);
2569			continue;
2570		}
2571		if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2572		    (status & ALE_RD_IPV4) != 0)
2573			ale_rxcsum(sc, m, status);
2574		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2575		    (status & ALE_RD_VLAN) != 0) {
2576			vtags = ALE_RX_VLAN(le32toh(rs->vtags));
2577			m->m_pkthdr.ether_vtag = ALE_RX_VLAN_TAG(vtags);
2578			m->m_flags |= M_VLANTAG;
2579		}
2580
2581		/* Pass it to upper layer. */
2582		(*ifp->if_input)(ifp, m);
2583
2584		ale_rx_update_page(sc, &rx_page, length, &prod);
2585	}
2586
2587	return (count > 0 ? 0 : EAGAIN);
2588}
2589
2590static void
2591ale_tick(void *arg)
2592{
2593	struct ale_softc *sc;
2594	struct mii_data *mii;
2595
2596	sc = (struct ale_softc *)arg;
2597
2598	ALE_LOCK_ASSERT(sc);
2599
2600	mii = device_get_softc(sc->ale_miibus);
2601	mii_tick(mii);
2602	ale_stats_update(sc);
2603	/*
2604	 * Reclaim Tx buffers that have been transferred. It's not
2605	 * needed here but it would release allocated mbuf chains
2606	 * faster and limit the maximum delay to a hz.
2607	 */
2608	ale_txeof(sc);
2609	ale_watchdog(sc);
2610	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2611}
2612
2613static void
2614ale_reset(struct ale_softc *sc)
2615{
2616	uint32_t reg;
2617	int i;
2618
2619	/* Initialize PCIe module. From Linux. */
2620	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2621
2622	CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
2623	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2624		DELAY(10);
2625		if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
2626			break;
2627	}
2628	if (i == 0)
2629		device_printf(sc->ale_dev, "master reset timeout!\n");
2630
2631	for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
2632		if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
2633			break;
2634		DELAY(10);
2635	}
2636
2637	if (i == 0)
2638		device_printf(sc->ale_dev, "reset timeout(0x%08x)!\n", reg);
2639}
2640
2641static void
2642ale_init(void *xsc)
2643{
2644	struct ale_softc *sc;
2645
2646	sc = (struct ale_softc *)xsc;
2647	ALE_LOCK(sc);
2648	ale_init_locked(sc);
2649	ALE_UNLOCK(sc);
2650}
2651
2652static void
2653ale_init_locked(struct ale_softc *sc)
2654{
2655	struct ifnet *ifp;
2656	struct mii_data *mii;
2657	uint8_t eaddr[ETHER_ADDR_LEN];
2658	bus_addr_t paddr;
2659	uint32_t reg, rxf_hi, rxf_lo;
2660
2661	ALE_LOCK_ASSERT(sc);
2662
2663	ifp = sc->ale_ifp;
2664	mii = device_get_softc(sc->ale_miibus);
2665
2666	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2667		return;
2668	/*
2669	 * Cancel any pending I/O.
2670	 */
2671	ale_stop(sc);
2672	/*
2673	 * Reset the chip to a known state.
2674	 */
2675	ale_reset(sc);
2676	/* Initialize Tx descriptors, DMA memory blocks. */
2677	ale_init_rx_pages(sc);
2678	ale_init_tx_ring(sc);
2679
2680	/* Reprogram the station address. */
2681	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2682	CSR_WRITE_4(sc, ALE_PAR0,
2683	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2684	CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
2685	/*
2686	 * Clear WOL status and disable all WOL feature as WOL
2687	 * would interfere Rx operation under normal environments.
2688	 */
2689	CSR_READ_4(sc, ALE_WOL_CFG);
2690	CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
2691	/*
2692	 * Set Tx descriptor/RXF0/CMB base addresses. They share
2693	 * the same high address part of DMAable region.
2694	 */
2695	paddr = sc->ale_cdata.ale_tx_ring_paddr;
2696	CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
2697	CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
2698	CSR_WRITE_4(sc, ALE_TPD_CNT,
2699	    (ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
2700	/* Set Rx page base address, note we use single queue. */
2701	paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
2702	CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
2703	paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
2704	CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
2705	/* Set Tx/Rx CMB addresses. */
2706	paddr = sc->ale_cdata.ale_tx_cmb_paddr;
2707	CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
2708	paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
2709	CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
2710	paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
2711	CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
2712	/* Mark RXF0 is valid. */
2713	CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
2714	CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
2715	/*
2716	 * No need to initialize RFX1/RXF2/RXF3. We don't use
2717	 * multi-queue yet.
2718	 */
2719
2720	/* Set Rx page size, excluding guard frame size. */
2721	CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
2722	/* Tell hardware that we're ready to load DMA blocks. */
2723	CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
2724
2725	/* Set Rx/Tx interrupt trigger threshold. */
2726	CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
2727	    (4 << INT_TRIG_TX_THRESH_SHIFT));
2728	/*
2729	 * XXX
2730	 * Set interrupt trigger timer, its purpose and relation
2731	 * with interrupt moderation mechanism is not clear yet.
2732	 */
2733	CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
2734	    ((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
2735	    (ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
2736
2737	/* Configure interrupt moderation timer. */
2738	reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
2739	reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
2740	CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
2741	reg = CSR_READ_4(sc, ALE_MASTER_CFG);
2742	reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
2743	reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
2744	if (ALE_USECS(sc->ale_int_rx_mod) != 0)
2745		reg |= MASTER_IM_RX_TIMER_ENB;
2746	if (ALE_USECS(sc->ale_int_tx_mod) != 0)
2747		reg |= MASTER_IM_TX_TIMER_ENB;
2748	CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
2749	CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
2750
2751	/* Set Maximum frame size of controller. */
2752	if (ifp->if_mtu < ETHERMTU)
2753		sc->ale_max_frame_size = ETHERMTU;
2754	else
2755		sc->ale_max_frame_size = ifp->if_mtu;
2756	sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
2757	    ETHER_CRC_LEN;
2758	CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
2759	/* Configure IPG/IFG parameters. */
2760	CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
2761	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
2762	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2763	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2764	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
2765	/* Set parameters for half-duplex media. */
2766	CSR_WRITE_4(sc, ALE_HDPX_CFG,
2767	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2768	    HDPX_CFG_LCOL_MASK) |
2769	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2770	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2771	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2772	    HDPX_CFG_ABEBT_MASK) |
2773	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2774	    HDPX_CFG_JAMIPG_MASK));
2775
2776	/* Configure Tx jumbo frame parameters. */
2777	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2778		if (ifp->if_mtu < ETHERMTU)
2779			reg = sc->ale_max_frame_size;
2780		else if (ifp->if_mtu < 6 * 1024)
2781			reg = (sc->ale_max_frame_size * 2) / 3;
2782		else
2783			reg = sc->ale_max_frame_size / 2;
2784		CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
2785		    roundup(reg, TX_JUMBO_THRESH_UNIT) >>
2786		    TX_JUMBO_THRESH_UNIT_SHIFT);
2787	}
2788	/* Configure TxQ. */
2789	reg = 0;
2790	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
2791		reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
2792		    << TXQ_CFG_TX_FIFO_BURST_SHIFT;
2793	reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2794	    TXQ_CFG_TPD_BURST_MASK;
2795	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
2796
2797	/* Configure Rx jumbo frame & flow control parameters. */
2798	if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
2799		reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
2800		CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
2801		    (((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
2802		    RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
2803		    ((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
2804		    RX_JUMBO_LKAH_MASK));
2805		reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
2806		rxf_hi = (reg * 7) / 10;
2807		rxf_lo = (reg * 3)/ 10;
2808		CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
2809		    ((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
2810		    RX_FIFO_PAUSE_THRESH_LO_MASK) |
2811		    ((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
2812		     RX_FIFO_PAUSE_THRESH_HI_MASK));
2813	}
2814
2815	/* Disable RSS. */
2816	CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
2817	CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
2818
2819	/* Configure RxQ. */
2820	CSR_WRITE_4(sc, ALE_RXQ_CFG,
2821	    RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2822
2823	/* Configure DMA parameters. */
2824	reg = 0;
2825	if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
2826		reg |= DMA_CFG_TXCMB_ENB;
2827	CSR_WRITE_4(sc, ALE_DMA_CFG,
2828	    DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
2829	    sc->ale_dma_rd_burst | reg |
2830	    sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
2831	    ((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
2832	    DMA_CFG_RD_DELAY_CNT_MASK) |
2833	    ((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
2834	    DMA_CFG_WR_DELAY_CNT_MASK));
2835
2836	/*
2837	 * Hardware can be configured to issue SMB interrupt based
2838	 * on programmed interval. Since there is a callout that is
2839	 * invoked for every hz in driver we use that instead of
2840	 * relying on periodic SMB interrupt.
2841	 */
2842	CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
2843	/* Clear MAC statistics. */
2844	ale_stats_clear(sc);
2845
2846	/*
2847	 * Configure Tx/Rx MACs.
2848	 *  - Auto-padding for short frames.
2849	 *  - Enable CRC generation.
2850	 *  Actual reconfiguration of MAC for resolved speed/duplex
2851	 *  is followed after detection of link establishment.
2852	 *  AR81xx always does checksum computation regardless of
2853	 *  MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
2854	 *  cause Rx handling issue for fragmented IP datagrams due
2855	 *  to silicon bug.
2856	 */
2857	reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
2858	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2859	    MAC_CFG_PREAMBLE_MASK);
2860	if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
2861		reg |= MAC_CFG_SPEED_10_100;
2862	else
2863		reg |= MAC_CFG_SPEED_1000;
2864	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2865
2866	/* Set up the receive filter. */
2867	ale_rxfilter(sc);
2868	ale_rxvlan(sc);
2869
2870	/* Acknowledge all pending interrupts and clear it. */
2871	CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
2872	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2873	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
2874
2875	sc->ale_flags &= ~ALE_FLAG_LINK;
2876	/* Switch to the current media. */
2877	mii_mediachg(mii);
2878
2879	callout_reset(&sc->ale_tick_ch, hz, ale_tick, sc);
2880
2881	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2882	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2883}
2884
2885static void
2886ale_stop(struct ale_softc *sc)
2887{
2888	struct ifnet *ifp;
2889	struct ale_txdesc *txd;
2890	uint32_t reg;
2891	int i;
2892
2893	ALE_LOCK_ASSERT(sc);
2894	/*
2895	 * Mark the interface down and cancel the watchdog timer.
2896	 */
2897	ifp = sc->ale_ifp;
2898	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2899	sc->ale_flags &= ~ALE_FLAG_LINK;
2900	callout_stop(&sc->ale_tick_ch);
2901	sc->ale_watchdog_timer = 0;
2902	ale_stats_update(sc);
2903	/* Disable interrupts. */
2904	CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
2905	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2906	/* Disable queue processing and DMA. */
2907	reg = CSR_READ_4(sc, ALE_TXQ_CFG);
2908	reg &= ~TXQ_CFG_ENB;
2909	CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
2910	reg = CSR_READ_4(sc, ALE_RXQ_CFG);
2911	reg &= ~RXQ_CFG_ENB;
2912	CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
2913	reg = CSR_READ_4(sc, ALE_DMA_CFG);
2914	reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
2915	CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
2916	DELAY(1000);
2917	/* Stop Rx/Tx MACs. */
2918	ale_stop_mac(sc);
2919	/* Disable interrupts which might be touched in taskq handler. */
2920	CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
2921
2922	/*
2923	 * Free TX mbufs still in the queues.
2924	 */
2925	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2926		txd = &sc->ale_cdata.ale_txdesc[i];
2927		if (txd->tx_m != NULL) {
2928			bus_dmamap_sync(sc->ale_cdata.ale_tx_tag,
2929			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2930			bus_dmamap_unload(sc->ale_cdata.ale_tx_tag,
2931			    txd->tx_dmamap);
2932			m_freem(txd->tx_m);
2933			txd->tx_m = NULL;
2934		}
2935        }
2936}
2937
2938static void
2939ale_stop_mac(struct ale_softc *sc)
2940{
2941	uint32_t reg;
2942	int i;
2943
2944	ALE_LOCK_ASSERT(sc);
2945
2946	reg = CSR_READ_4(sc, ALE_MAC_CFG);
2947	if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
2948		reg &= ~MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2949		CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
2950	}
2951
2952	for (i = ALE_TIMEOUT; i > 0; i--) {
2953		reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
2954		if (reg == 0)
2955			break;
2956		DELAY(10);
2957	}
2958	if (i == 0)
2959		device_printf(sc->ale_dev,
2960		    "could not disable Tx/Rx MAC(0x%08x)!\n", reg);
2961}
2962
2963static void
2964ale_init_tx_ring(struct ale_softc *sc)
2965{
2966	struct ale_txdesc *txd;
2967	int i;
2968
2969	ALE_LOCK_ASSERT(sc);
2970
2971	sc->ale_cdata.ale_tx_prod = 0;
2972	sc->ale_cdata.ale_tx_cons = 0;
2973	sc->ale_cdata.ale_tx_cnt = 0;
2974
2975	bzero(sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ);
2976	bzero(sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ);
2977	for (i = 0; i < ALE_TX_RING_CNT; i++) {
2978		txd = &sc->ale_cdata.ale_txdesc[i];
2979		txd->tx_m = NULL;
2980	}
2981	*sc->ale_cdata.ale_tx_cmb = 0;
2982	bus_dmamap_sync(sc->ale_cdata.ale_tx_cmb_tag,
2983	    sc->ale_cdata.ale_tx_cmb_map,
2984	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2985	bus_dmamap_sync(sc->ale_cdata.ale_tx_ring_tag,
2986	    sc->ale_cdata.ale_tx_ring_map,
2987	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2988}
2989
2990static void
2991ale_init_rx_pages(struct ale_softc *sc)
2992{
2993	struct ale_rx_page *rx_page;
2994	int i;
2995
2996	ALE_LOCK_ASSERT(sc);
2997
2998	atomic_set_int(&sc->ale_morework, 0);
2999	sc->ale_cdata.ale_rx_seqno = 0;
3000	sc->ale_cdata.ale_rx_curp = 0;
3001
3002	for (i = 0; i < ALE_RX_PAGES; i++) {
3003		rx_page = &sc->ale_cdata.ale_rx_page[i];
3004		bzero(rx_page->page_addr, sc->ale_pagesize);
3005		bzero(rx_page->cmb_addr, ALE_RX_CMB_SZ);
3006		rx_page->cons = 0;
3007		*rx_page->cmb_addr = 0;
3008		bus_dmamap_sync(rx_page->page_tag, rx_page->page_map,
3009		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3010		bus_dmamap_sync(rx_page->cmb_tag, rx_page->cmb_map,
3011		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3012	}
3013}
3014
3015static void
3016ale_rxvlan(struct ale_softc *sc)
3017{
3018	struct ifnet *ifp;
3019	uint32_t reg;
3020
3021	ALE_LOCK_ASSERT(sc);
3022
3023	ifp = sc->ale_ifp;
3024	reg = CSR_READ_4(sc, ALE_MAC_CFG);
3025	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3026	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3027		reg |= MAC_CFG_VLAN_TAG_STRIP;
3028	CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
3029}
3030
3031static void
3032ale_rxfilter(struct ale_softc *sc)
3033{
3034	struct ifnet *ifp;
3035	struct ifmultiaddr *ifma;
3036	uint32_t crc;
3037	uint32_t mchash[2];
3038	uint32_t rxcfg;
3039
3040	ALE_LOCK_ASSERT(sc);
3041
3042	ifp = sc->ale_ifp;
3043
3044	rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
3045	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3046	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3047		rxcfg |= MAC_CFG_BCAST;
3048	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3049		if ((ifp->if_flags & IFF_PROMISC) != 0)
3050			rxcfg |= MAC_CFG_PROMISC;
3051		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3052			rxcfg |= MAC_CFG_ALLMULTI;
3053		CSR_WRITE_4(sc, ALE_MAR0, 0xFFFFFFFF);
3054		CSR_WRITE_4(sc, ALE_MAR1, 0xFFFFFFFF);
3055		CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3056		return;
3057	}
3058
3059	/* Program new filter. */
3060	bzero(mchash, sizeof(mchash));
3061
3062	IF_ADDR_LOCK(ifp);
3063	TAILQ_FOREACH(ifma, &sc->ale_ifp->if_multiaddrs, ifma_link) {
3064		if (ifma->ifma_addr->sa_family != AF_LINK)
3065			continue;
3066		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3067		    ifma->ifma_addr), ETHER_ADDR_LEN);
3068		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3069	}
3070	IF_ADDR_UNLOCK(ifp);
3071
3072	CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
3073	CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
3074	CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
3075}
3076
3077static int
3078sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3079{
3080	int error, value;
3081
3082	if (arg1 == NULL)
3083		return (EINVAL);
3084	value = *(int *)arg1;
3085	error = sysctl_handle_int(oidp, &value, 0, req);
3086	if (error || req->newptr == NULL)
3087		return (error);
3088	if (value < low || value > high)
3089		return (EINVAL);
3090        *(int *)arg1 = value;
3091
3092        return (0);
3093}
3094
3095static int
3096sysctl_hw_ale_proc_limit(SYSCTL_HANDLER_ARGS)
3097{
3098	return (sysctl_int_range(oidp, arg1, arg2, req,
3099	    ALE_PROC_MIN, ALE_PROC_MAX));
3100}
3101
3102static int
3103sysctl_hw_ale_int_mod(SYSCTL_HANDLER_ARGS)
3104{
3105
3106	return (sysctl_int_range(oidp, arg1, arg2, req,
3107	    ALE_IM_TIMER_MIN, ALE_IM_TIMER_MAX));
3108}
3109