acpi_cpu.c revision 239813
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/9/sys/dev/acpica/acpi_cpu.c 239813 2012-08-29 08:58:10Z avg $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#if defined(__amd64__) || defined(__i386__)
48#include <machine/clock.h>
49#endif
50#include <sys/rman.h>
51
52#include <contrib/dev/acpica/include/acpi.h>
53#include <contrib/dev/acpica/include/accommon.h>
54
55#include <dev/acpica/acpivar.h>
56
57/*
58 * Support for ACPI Processor devices, including C[1-3] sleep states.
59 */
60
61/* Hooks for the ACPI CA debugging infrastructure */
62#define _COMPONENT	ACPI_PROCESSOR
63ACPI_MODULE_NAME("PROCESSOR")
64
65struct acpi_cx {
66    struct resource	*p_lvlx;	/* Register to read to enter state. */
67    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
68    uint32_t		 trans_lat;	/* Transition latency (usec). */
69    uint32_t		 power;		/* Power consumed (mW). */
70    int			 res_type;	/* Resource type for p_lvlx. */
71};
72#define MAX_CX_STATES	 8
73
74struct acpi_cpu_softc {
75    device_t		 cpu_dev;
76    ACPI_HANDLE		 cpu_handle;
77    struct pcpu		*cpu_pcpu;
78    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
79    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
80    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
81    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
82    int			 cpu_cx_count;	/* Number of valid Cx states. */
83    int			 cpu_prev_sleep;/* Last idle sleep duration. */
84    int			 cpu_features;	/* Child driver supported features. */
85    /* Runtime state. */
86    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
87    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
88    /* Values for sysctl. */
89    struct sysctl_ctx_list cpu_sysctl_ctx;
90    struct sysctl_oid	*cpu_sysctl_tree;
91    int			 cpu_cx_lowest;
92    int			 cpu_cx_lowest_lim;
93    char 		 cpu_cx_supported[64];
94    int			 cpu_rid;
95};
96
97struct acpi_cpu_device {
98    struct resource_list	ad_rl;
99};
100
101#define CPU_GET_REG(reg, width) 					\
102    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
103		      rman_get_bushandle((reg)), 0))
104#define CPU_SET_REG(reg, width, val)					\
105    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
106		       rman_get_bushandle((reg)), 0, (val)))
107
108#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
109
110#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
111
112#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
113#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
114
115#define PCI_VENDOR_INTEL	0x8086
116#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
117#define PCI_REVISION_A_STEP	0
118#define PCI_REVISION_B_STEP	1
119#define PCI_REVISION_4E		2
120#define PCI_REVISION_4M		3
121#define PIIX4_DEVACTB_REG	0x58
122#define PIIX4_BRLD_EN_IRQ0	(1<<0)
123#define PIIX4_BRLD_EN_IRQ	(1<<1)
124#define PIIX4_BRLD_EN_IRQ8	(1<<5)
125#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
126#define PIIX4_PCNTRL_BST_EN	(1<<10)
127
128/* Allow users to ignore processor orders in MADT. */
129static int cpu_unordered;
130TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
131SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
132    &cpu_unordered, 0,
133    "Do not use the MADT to match ACPI Processor objects to CPUs.");
134
135/* Platform hardware resource information. */
136static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
137static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
138static int		 cpu_quirks;	/* Indicate any hardware bugs. */
139
140/* Runtime state. */
141static int		 cpu_disable_idle; /* Disable entry to idle function */
142
143/* Values for sysctl. */
144static struct sysctl_ctx_list cpu_sysctl_ctx;
145static struct sysctl_oid *cpu_sysctl_tree;
146static int		 cpu_cx_generic;
147static int		 cpu_cx_lowest_lim;
148
149static device_t		*cpu_devices;
150static int		 cpu_ndevices;
151static struct acpi_cpu_softc **cpu_softc;
152ACPI_SERIAL_DECL(cpu, "ACPI CPU");
153
154static int	acpi_cpu_probe(device_t dev);
155static int	acpi_cpu_attach(device_t dev);
156static int	acpi_cpu_suspend(device_t dev);
157static int	acpi_cpu_resume(device_t dev);
158static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
159		    uint32_t *cpu_id);
160static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
161static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
162		    int unit);
163static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
164		    uintptr_t *result);
165static int	acpi_cpu_shutdown(device_t dev);
166static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
167static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
168static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
169static void	acpi_cpu_startup(void *arg);
170static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
171static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
172static void	acpi_cpu_idle(void);
173static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
174static int	acpi_cpu_quirks(void);
175static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
176static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
177static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
178static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
179
180static device_method_t acpi_cpu_methods[] = {
181    /* Device interface */
182    DEVMETHOD(device_probe,	acpi_cpu_probe),
183    DEVMETHOD(device_attach,	acpi_cpu_attach),
184    DEVMETHOD(device_detach,	bus_generic_detach),
185    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
186    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
187    DEVMETHOD(device_resume,	acpi_cpu_resume),
188
189    /* Bus interface */
190    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
191    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
192    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
193    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
194    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
195    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
196    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
197    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
198    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
199    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
200    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
201
202    DEVMETHOD_END
203};
204
205static driver_t acpi_cpu_driver = {
206    "cpu",
207    acpi_cpu_methods,
208    sizeof(struct acpi_cpu_softc),
209};
210
211static devclass_t acpi_cpu_devclass;
212DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
213MODULE_DEPEND(cpu, acpi, 1, 1, 1);
214
215static int
216acpi_cpu_probe(device_t dev)
217{
218    int			   acpi_id, cpu_id;
219    ACPI_BUFFER		   buf;
220    ACPI_HANDLE		   handle;
221    ACPI_OBJECT		   *obj;
222    ACPI_STATUS		   status;
223
224    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
225	return (ENXIO);
226
227    handle = acpi_get_handle(dev);
228    if (cpu_softc == NULL)
229	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
230	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
231
232    /* Get our Processor object. */
233    buf.Pointer = NULL;
234    buf.Length = ACPI_ALLOCATE_BUFFER;
235    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
236    if (ACPI_FAILURE(status)) {
237	device_printf(dev, "probe failed to get Processor obj - %s\n",
238		      AcpiFormatException(status));
239	return (ENXIO);
240    }
241    obj = (ACPI_OBJECT *)buf.Pointer;
242    if (obj->Type != ACPI_TYPE_PROCESSOR) {
243	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
244	AcpiOsFree(obj);
245	return (ENXIO);
246    }
247
248    /*
249     * Find the processor associated with our unit.  We could use the
250     * ProcId as a key, however, some boxes do not have the same values
251     * in their Processor object as the ProcId values in the MADT.
252     */
253    acpi_id = obj->Processor.ProcId;
254    AcpiOsFree(obj);
255    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
256	return (ENXIO);
257
258    /*
259     * Check if we already probed this processor.  We scan the bus twice
260     * so it's possible we've already seen this one.
261     */
262    if (cpu_softc[cpu_id] != NULL)
263	return (ENXIO);
264
265    /* Mark this processor as in-use and save our derived id for attach. */
266    cpu_softc[cpu_id] = (void *)1;
267    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
268    device_set_desc(dev, "ACPI CPU");
269
270    return (0);
271}
272
273static int
274acpi_cpu_attach(device_t dev)
275{
276    ACPI_BUFFER		   buf;
277    ACPI_OBJECT		   arg[4], *obj;
278    ACPI_OBJECT_LIST	   arglist;
279    struct pcpu		   *pcpu_data;
280    struct acpi_cpu_softc *sc;
281    struct acpi_softc	  *acpi_sc;
282    ACPI_STATUS		   status;
283    u_int		   features;
284    int			   cpu_id, drv_count, i;
285    driver_t 		  **drivers;
286    uint32_t		   cap_set[3];
287
288    /* UUID needed by _OSC evaluation */
289    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
290				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
291				       0x58, 0x71, 0x39, 0x53 };
292
293    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
294
295    sc = device_get_softc(dev);
296    sc->cpu_dev = dev;
297    sc->cpu_handle = acpi_get_handle(dev);
298    cpu_id = (int)(intptr_t)acpi_get_private(dev);
299    cpu_softc[cpu_id] = sc;
300    pcpu_data = pcpu_find(cpu_id);
301    pcpu_data->pc_device = dev;
302    sc->cpu_pcpu = pcpu_data;
303    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
304    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
305
306    buf.Pointer = NULL;
307    buf.Length = ACPI_ALLOCATE_BUFFER;
308    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
309    if (ACPI_FAILURE(status)) {
310	device_printf(dev, "attach failed to get Processor obj - %s\n",
311		      AcpiFormatException(status));
312	return (ENXIO);
313    }
314    obj = (ACPI_OBJECT *)buf.Pointer;
315    sc->cpu_p_blk = obj->Processor.PblkAddress;
316    sc->cpu_p_blk_len = obj->Processor.PblkLength;
317    sc->cpu_acpi_id = obj->Processor.ProcId;
318    AcpiOsFree(obj);
319    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
320		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
321
322    /*
323     * If this is the first cpu we attach, create and initialize the generic
324     * resources that will be used by all acpi cpu devices.
325     */
326    if (device_get_unit(dev) == 0) {
327	/* Assume we won't be using generic Cx mode by default */
328	cpu_cx_generic = FALSE;
329
330	/* Install hw.acpi.cpu sysctl tree */
331	acpi_sc = acpi_device_get_parent_softc(dev);
332	sysctl_ctx_init(&cpu_sysctl_ctx);
333	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
334	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
335	    CTLFLAG_RD, 0, "node for CPU children");
336
337	/* Queue post cpu-probing task handler */
338	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
339    }
340
341    /*
342     * Before calling any CPU methods, collect child driver feature hints
343     * and notify ACPI of them.  We support unified SMP power control
344     * so advertise this ourselves.  Note this is not the same as independent
345     * SMP control where each CPU can have different settings.
346     */
347    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
348    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
349	for (i = 0; i < drv_count; i++) {
350	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
351		sc->cpu_features |= features;
352	}
353	free(drivers, M_TEMP);
354    }
355
356    /*
357     * CPU capabilities are specified in
358     * Intel Processor Vendor-Specific ACPI Interface Specification.
359     */
360    if (sc->cpu_features) {
361	arglist.Pointer = arg;
362	arglist.Count = 4;
363	arg[0].Type = ACPI_TYPE_BUFFER;
364	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
365	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
366	arg[1].Type = ACPI_TYPE_INTEGER;
367	arg[1].Integer.Value = 1;		/* revision */
368	arg[2].Type = ACPI_TYPE_INTEGER;
369	arg[2].Integer.Value = 1;		/* count */
370	arg[3].Type = ACPI_TYPE_BUFFER;
371	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
372	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
373	cap_set[0] = 0;				/* status */
374	cap_set[1] = sc->cpu_features;
375	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
376	if (ACPI_SUCCESS(status)) {
377	    if (cap_set[0] != 0)
378		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
379	}
380	else {
381	    arglist.Pointer = arg;
382	    arglist.Count = 1;
383	    arg[0].Type = ACPI_TYPE_BUFFER;
384	    arg[0].Buffer.Length = sizeof(cap_set);
385	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
386	    cap_set[0] = 1; /* revision */
387	    cap_set[1] = 1; /* number of capabilities integers */
388	    cap_set[2] = sc->cpu_features;
389	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
390	}
391    }
392
393    /* Probe for Cx state support. */
394    acpi_cpu_cx_probe(sc);
395
396    return (0);
397}
398
399static void
400acpi_cpu_postattach(void *unused __unused)
401{
402    device_t *devices;
403    int err;
404    int i, n;
405
406    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
407    if (err != 0) {
408	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
409	return;
410    }
411    for (i = 0; i < n; i++)
412	bus_generic_probe(devices[i]);
413    for (i = 0; i < n; i++)
414	bus_generic_attach(devices[i]);
415    free(devices, M_TEMP);
416}
417
418SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
419    acpi_cpu_postattach, NULL);
420
421/*
422 * Disable any entry to the idle function during suspend and re-enable it
423 * during resume.
424 */
425static int
426acpi_cpu_suspend(device_t dev)
427{
428    int error;
429
430    error = bus_generic_suspend(dev);
431    if (error)
432	return (error);
433    cpu_disable_idle = TRUE;
434    return (0);
435}
436
437static int
438acpi_cpu_resume(device_t dev)
439{
440
441    cpu_disable_idle = FALSE;
442    return (bus_generic_resume(dev));
443}
444
445/*
446 * Find the processor associated with a given ACPI ID.  By default,
447 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
448 * processor.  Some systems have inconsistent ASL and MADT however.
449 * For these systems the cpu_unordered tunable can be set in which
450 * case we assume that Processor objects are listed in the same order
451 * in both the MADT and ASL.
452 */
453static int
454acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
455{
456    struct pcpu	*pc;
457    uint32_t	 i, idx;
458
459    KASSERT(acpi_id != NULL, ("Null acpi_id"));
460    KASSERT(cpu_id != NULL, ("Null cpu_id"));
461    idx = device_get_unit(dev);
462
463    /*
464     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
465     * UP box) use the ACPI ID from the first processor we find.
466     */
467    if (idx == 0 && mp_ncpus == 1) {
468	pc = pcpu_find(0);
469	if (pc->pc_acpi_id == 0xffffffff)
470	    pc->pc_acpi_id = *acpi_id;
471	*cpu_id = 0;
472	return (0);
473    }
474
475    CPU_FOREACH(i) {
476	pc = pcpu_find(i);
477	KASSERT(pc != NULL, ("no pcpu data for %d", i));
478	if (cpu_unordered) {
479	    if (idx-- == 0) {
480		/*
481		 * If pc_acpi_id doesn't match the ACPI ID from the
482		 * ASL, prefer the MADT-derived value.
483		 */
484		if (pc->pc_acpi_id != *acpi_id)
485		    *acpi_id = pc->pc_acpi_id;
486		*cpu_id = pc->pc_cpuid;
487		return (0);
488	    }
489	} else {
490	    if (pc->pc_acpi_id == *acpi_id) {
491		if (bootverbose)
492		    device_printf(dev,
493			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
494			acpi_name(acpi_get_handle(dev)), *acpi_id,
495			pc->pc_cpuid);
496		*cpu_id = pc->pc_cpuid;
497		return (0);
498	    }
499	}
500    }
501
502    if (bootverbose)
503	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
504	    acpi_name(acpi_get_handle(dev)), *acpi_id);
505
506    return (ESRCH);
507}
508
509static struct resource_list *
510acpi_cpu_get_rlist(device_t dev, device_t child)
511{
512    struct acpi_cpu_device *ad;
513
514    ad = device_get_ivars(child);
515    if (ad == NULL)
516	return (NULL);
517    return (&ad->ad_rl);
518}
519
520static device_t
521acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
522{
523    struct acpi_cpu_device *ad;
524    device_t child;
525
526    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
527	return (NULL);
528
529    resource_list_init(&ad->ad_rl);
530
531    child = device_add_child_ordered(dev, order, name, unit);
532    if (child != NULL)
533	device_set_ivars(child, ad);
534    else
535	free(ad, M_TEMP);
536    return (child);
537}
538
539static int
540acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
541{
542    struct acpi_cpu_softc *sc;
543
544    sc = device_get_softc(dev);
545    switch (index) {
546    case ACPI_IVAR_HANDLE:
547	*result = (uintptr_t)sc->cpu_handle;
548	break;
549    case CPU_IVAR_PCPU:
550	*result = (uintptr_t)sc->cpu_pcpu;
551	break;
552#if defined(__amd64__) || defined(__i386__)
553    case CPU_IVAR_NOMINAL_MHZ:
554	if (tsc_is_invariant) {
555	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
556	    break;
557	}
558	/* FALLTHROUGH */
559#endif
560    default:
561	return (ENOENT);
562    }
563    return (0);
564}
565
566static int
567acpi_cpu_shutdown(device_t dev)
568{
569    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
570
571    /* Allow children to shutdown first. */
572    bus_generic_shutdown(dev);
573
574    /*
575     * Disable any entry to the idle function.  There is a small race where
576     * an idle thread have passed this check but not gone to sleep.  This
577     * is ok since device_shutdown() does not free the softc, otherwise
578     * we'd have to be sure all threads were evicted before returning.
579     */
580    cpu_disable_idle = TRUE;
581
582    return_VALUE (0);
583}
584
585static void
586acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
587{
588    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
589
590    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
591    sc->cpu_prev_sleep = 1000000;
592    sc->cpu_cx_lowest = 0;
593    sc->cpu_cx_lowest_lim = 0;
594
595    /*
596     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
597     * any, we'll revert to generic FADT/P_BLK Cx control method which will
598     * be handled by acpi_cpu_startup. We need to defer to after having
599     * probed all the cpus in the system before probing for generic Cx
600     * states as we may already have found cpus with valid _CST packages
601     */
602    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
603	/*
604	 * We were unable to find a _CST package for this cpu or there
605	 * was an error parsing it. Switch back to generic mode.
606	 */
607	cpu_cx_generic = TRUE;
608	if (bootverbose)
609	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
610    }
611
612    /*
613     * TODO: _CSD Package should be checked here.
614     */
615}
616
617static void
618acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
619{
620    ACPI_GENERIC_ADDRESS	 gas;
621    struct acpi_cx		*cx_ptr;
622
623    sc->cpu_cx_count = 0;
624    cx_ptr = sc->cpu_cx_states;
625
626    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
627    sc->cpu_prev_sleep = 1000000;
628
629    /* C1 has been required since just after ACPI 1.0 */
630    cx_ptr->type = ACPI_STATE_C1;
631    cx_ptr->trans_lat = 0;
632    cx_ptr++;
633    sc->cpu_non_c3 = sc->cpu_cx_count;
634    sc->cpu_cx_count++;
635
636    /*
637     * The spec says P_BLK must be 6 bytes long.  However, some systems
638     * use it to indicate a fractional set of features present so we
639     * take 5 as C2.  Some may also have a value of 7 to indicate
640     * another C3 but most use _CST for this (as required) and having
641     * "only" C1-C3 is not a hardship.
642     */
643    if (sc->cpu_p_blk_len < 5)
644	return;
645
646    /* Validate and allocate resources for C2 (P_LVL2). */
647    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
648    gas.BitWidth = 8;
649    if (AcpiGbl_FADT.C2Latency <= 100) {
650	gas.Address = sc->cpu_p_blk + 4;
651	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
652	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
653	if (cx_ptr->p_lvlx != NULL) {
654	    sc->cpu_rid++;
655	    cx_ptr->type = ACPI_STATE_C2;
656	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
657	    cx_ptr++;
658	    sc->cpu_non_c3 = sc->cpu_cx_count;
659	    sc->cpu_cx_count++;
660	}
661    }
662    if (sc->cpu_p_blk_len < 6)
663	return;
664
665    /* Validate and allocate resources for C3 (P_LVL3). */
666    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
667	gas.Address = sc->cpu_p_blk + 5;
668	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
669	    &cx_ptr->p_lvlx, RF_SHAREABLE);
670	if (cx_ptr->p_lvlx != NULL) {
671	    sc->cpu_rid++;
672	    cx_ptr->type = ACPI_STATE_C3;
673	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
674	    cx_ptr++;
675	    sc->cpu_cx_count++;
676	    cpu_can_deep_sleep = 1;
677	}
678    }
679}
680
681/*
682 * Parse a _CST package and set up its Cx states.  Since the _CST object
683 * can change dynamically, our notify handler may call this function
684 * to clean up and probe the new _CST package.
685 */
686static int
687acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
688{
689    struct	 acpi_cx *cx_ptr;
690    ACPI_STATUS	 status;
691    ACPI_BUFFER	 buf;
692    ACPI_OBJECT	*top;
693    ACPI_OBJECT	*pkg;
694    uint32_t	 count;
695    int		 i;
696
697    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
698
699    buf.Pointer = NULL;
700    buf.Length = ACPI_ALLOCATE_BUFFER;
701    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
702    if (ACPI_FAILURE(status))
703	return (ENXIO);
704
705    /* _CST is a package with a count and at least one Cx package. */
706    top = (ACPI_OBJECT *)buf.Pointer;
707    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
708	device_printf(sc->cpu_dev, "invalid _CST package\n");
709	AcpiOsFree(buf.Pointer);
710	return (ENXIO);
711    }
712    if (count != top->Package.Count - 1) {
713	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
714	       count, top->Package.Count - 1);
715	count = top->Package.Count - 1;
716    }
717    if (count > MAX_CX_STATES) {
718	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
719	count = MAX_CX_STATES;
720    }
721
722    sc->cpu_non_c3 = 0;
723    sc->cpu_cx_count = 0;
724    cx_ptr = sc->cpu_cx_states;
725
726    /*
727     * C1 has been required since just after ACPI 1.0.
728     * Reserve the first slot for it.
729     */
730    cx_ptr->type = ACPI_STATE_C0;
731    cx_ptr++;
732    sc->cpu_cx_count++;
733
734    /* Set up all valid states. */
735    for (i = 0; i < count; i++) {
736	pkg = &top->Package.Elements[i + 1];
737	if (!ACPI_PKG_VALID(pkg, 4) ||
738	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
739	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
740	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
741
742	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
743	    continue;
744	}
745
746	/* Validate the state to see if we should use it. */
747	switch (cx_ptr->type) {
748	case ACPI_STATE_C1:
749	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
750		/* This is the first C1 state.  Use the reserved slot. */
751		sc->cpu_cx_states[0] = *cx_ptr;
752	    } else {
753		sc->cpu_non_c3 = sc->cpu_cx_count;
754		cx_ptr++;
755		sc->cpu_cx_count++;
756	    }
757	    continue;
758	case ACPI_STATE_C2:
759	    sc->cpu_non_c3 = sc->cpu_cx_count;
760	    break;
761	case ACPI_STATE_C3:
762	default:
763	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
764		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
765				 "acpi_cpu%d: C3[%d] not available.\n",
766				 device_get_unit(sc->cpu_dev), i));
767		continue;
768	    } else
769		cpu_can_deep_sleep = 1;
770	    break;
771	}
772
773#ifdef notyet
774	/* Free up any previous register. */
775	if (cx_ptr->p_lvlx != NULL) {
776	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
777	    cx_ptr->p_lvlx = NULL;
778	}
779#endif
780
781	/* Allocate the control register for C2 or C3. */
782	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
783	    &cx_ptr->p_lvlx, RF_SHAREABLE);
784	if (cx_ptr->p_lvlx) {
785	    sc->cpu_rid++;
786	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
787			     "acpi_cpu%d: Got C%d - %d latency\n",
788			     device_get_unit(sc->cpu_dev), cx_ptr->type,
789			     cx_ptr->trans_lat));
790	    cx_ptr++;
791	    sc->cpu_cx_count++;
792	}
793    }
794    AcpiOsFree(buf.Pointer);
795
796    /* If C1 state was not found, we need one now. */
797    cx_ptr = sc->cpu_cx_states;
798    if (cx_ptr->type == ACPI_STATE_C0) {
799	cx_ptr->type = ACPI_STATE_C1;
800	cx_ptr->trans_lat = 0;
801    }
802
803    return (0);
804}
805
806/*
807 * Call this *after* all CPUs have been attached.
808 */
809static void
810acpi_cpu_startup(void *arg)
811{
812    struct acpi_cpu_softc *sc;
813    int i;
814
815    /* Get set of CPU devices */
816    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
817
818    /*
819     * Setup any quirks that might necessary now that we have probed
820     * all the CPUs
821     */
822    acpi_cpu_quirks();
823
824    if (cpu_cx_generic) {
825	/*
826	 * We are using generic Cx mode, probe for available Cx states
827	 * for all processors.
828	 */
829	for (i = 0; i < cpu_ndevices; i++) {
830	    sc = device_get_softc(cpu_devices[i]);
831	    acpi_cpu_generic_cx_probe(sc);
832	}
833    } else {
834	/*
835	 * We are using _CST mode, remove C3 state if necessary.
836	 * As we now know for sure that we will be using _CST mode
837	 * install our notify handler.
838	 */
839	for (i = 0; i < cpu_ndevices; i++) {
840	    sc = device_get_softc(cpu_devices[i]);
841	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
842		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
843	    }
844	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
845		acpi_cpu_notify, sc);
846	}
847    }
848
849    /* Perform Cx final initialization. */
850    for (i = 0; i < cpu_ndevices; i++) {
851	sc = device_get_softc(cpu_devices[i]);
852	acpi_cpu_startup_cx(sc);
853    }
854
855    /* Add a sysctl handler to handle global Cx lowest setting */
856    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
857	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
858	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
859	"Global lowest Cx sleep state to use");
860
861    /* Take over idling from cpu_idle_default(). */
862    cpu_cx_lowest_lim = 0;
863    cpu_disable_idle = FALSE;
864    cpu_idle_hook = acpi_cpu_idle;
865}
866
867static void
868acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
869{
870    struct sbuf sb;
871    int i;
872
873    /*
874     * Set up the list of Cx states
875     */
876    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
877	SBUF_FIXEDLEN);
878    for (i = 0; i < sc->cpu_cx_count; i++)
879	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
880    sbuf_trim(&sb);
881    sbuf_finish(&sb);
882}
883
884static void
885acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
886{
887    acpi_cpu_cx_list(sc);
888
889    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
890		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
891		      OID_AUTO, "cx_supported", CTLFLAG_RD,
892		      sc->cpu_cx_supported, 0,
893		      "Cx/microsecond values for supported Cx states");
894    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
895		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
896		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
897		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
898		    "lowest Cx sleep state to use");
899    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
900		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
901		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
902		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
903		    "percent usage for each Cx state");
904
905#ifdef notyet
906    /* Signal platform that we can handle _CST notification. */
907    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
908	ACPI_LOCK(acpi);
909	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
910	ACPI_UNLOCK(acpi);
911    }
912#endif
913}
914
915/*
916 * Idle the CPU in the lowest state possible.  This function is called with
917 * interrupts disabled.  Note that once it re-enables interrupts, a task
918 * switch can occur so do not access shared data (i.e. the softc) after
919 * interrupts are re-enabled.
920 */
921static void
922acpi_cpu_idle()
923{
924    struct	acpi_cpu_softc *sc;
925    struct	acpi_cx *cx_next;
926    uint32_t	start_time, end_time;
927    int		bm_active, cx_next_idx, i;
928
929    /* If disabled, return immediately. */
930    if (cpu_disable_idle) {
931	ACPI_ENABLE_IRQS();
932	return;
933    }
934
935    /*
936     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
937     * since there is no ACPI processor object for this CPU.  This occurs
938     * for logical CPUs in the HTT case.
939     */
940    sc = cpu_softc[PCPU_GET(cpuid)];
941    if (sc == NULL) {
942	acpi_cpu_c1();
943	return;
944    }
945
946    /* Find the lowest state that has small enough latency. */
947    cx_next_idx = 0;
948    if (cpu_disable_deep_sleep)
949	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
950    else
951	i = sc->cpu_cx_lowest;
952    for (; i >= 0; i--) {
953	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
954	    cx_next_idx = i;
955	    break;
956	}
957    }
958
959    /*
960     * Check for bus master activity.  If there was activity, clear
961     * the bit and use the lowest non-C3 state.  Note that the USB
962     * driver polling for new devices keeps this bit set all the
963     * time if USB is loaded.
964     */
965    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
966	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
967	if (bm_active != 0) {
968	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
969	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
970	}
971    }
972
973    /* Select the next state and update statistics. */
974    cx_next = &sc->cpu_cx_states[cx_next_idx];
975    sc->cpu_cx_stats[cx_next_idx]++;
976    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
977
978    /*
979     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
980     * precisely calculate the time spent in C1 since the place we wake up
981     * is an ISR.  Assume we slept no more then half of quantum, unless
982     * we are called inside critical section, delaying context switch.
983     */
984    if (cx_next->type == ACPI_STATE_C1) {
985	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
986	acpi_cpu_c1();
987	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
988        end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
989        if (curthread->td_critnest == 0)
990		end_time = min(end_time, 500000 / hz);
991	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
992	return;
993    }
994
995    /*
996     * For C3, disable bus master arbitration and enable bus master wake
997     * if BM control is available, otherwise flush the CPU cache.
998     */
999    if (cx_next->type == ACPI_STATE_C3) {
1000	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1001	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1002	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1003	} else
1004	    ACPI_FLUSH_CPU_CACHE();
1005    }
1006
1007    /*
1008     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1009     * Use the ACPI timer for measuring sleep time.  Since we need to
1010     * get the time very close to the CPU start/stop clock logic, this
1011     * is the only reliable time source.
1012     */
1013    AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1014    CPU_GET_REG(cx_next->p_lvlx, 1);
1015
1016    /*
1017     * Read the end time twice.  Since it may take an arbitrary time
1018     * to enter the idle state, the first read may be executed before
1019     * the processor has stopped.  Doing it again provides enough
1020     * margin that we are certain to have a correct value.
1021     */
1022    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1023    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1024
1025    /* Enable bus master arbitration and disable bus master wakeup. */
1026    if (cx_next->type == ACPI_STATE_C3 &&
1027	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1028	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1029	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1030    }
1031    ACPI_ENABLE_IRQS();
1032
1033    /* Find the actual time asleep in microseconds. */
1034    end_time = acpi_TimerDelta(end_time, start_time);
1035    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1036}
1037
1038/*
1039 * Re-evaluate the _CST object when we are notified that it changed.
1040 *
1041 * XXX Re-evaluation disabled until locking is done.
1042 */
1043static void
1044acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1045{
1046    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1047
1048    if (notify != ACPI_NOTIFY_CX_STATES)
1049	return;
1050
1051    /* Update the list of Cx states. */
1052    acpi_cpu_cx_cst(sc);
1053    acpi_cpu_cx_list(sc);
1054
1055    ACPI_SERIAL_BEGIN(cpu);
1056    acpi_cpu_set_cx_lowest(sc);
1057    ACPI_SERIAL_END(cpu);
1058}
1059
1060static int
1061acpi_cpu_quirks(void)
1062{
1063    device_t acpi_dev;
1064    uint32_t val;
1065
1066    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1067
1068    /*
1069     * Bus mastering arbitration control is needed to keep caches coherent
1070     * while sleeping in C3.  If it's not present but a working flush cache
1071     * instruction is present, flush the caches before entering C3 instead.
1072     * Otherwise, just disable C3 completely.
1073     */
1074    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1075	AcpiGbl_FADT.Pm2ControlLength == 0) {
1076	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1077	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1078	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1079	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1080		"acpi_cpu: no BM control, using flush cache method\n"));
1081	} else {
1082	    cpu_quirks |= CPU_QUIRK_NO_C3;
1083	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1084		"acpi_cpu: no BM control, C3 not available\n"));
1085	}
1086    }
1087
1088    /*
1089     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1090     * the expensive flush cache instruction.
1091     */
1092    if (cpu_cx_generic && mp_ncpus > 1) {
1093	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1094	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1095	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1096    }
1097
1098    /* Look for various quirks of the PIIX4 part. */
1099    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1100    if (acpi_dev != NULL) {
1101	switch (pci_get_revid(acpi_dev)) {
1102	/*
1103	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1104	 * do not report the BMIDE status to the BM status register and
1105	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1106	 * works around the BMIDE bug by reading the BM status directly
1107	 * but we take the simpler approach of disabling C3 for these
1108	 * parts.
1109	 *
1110	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1111	 * Livelock") from the January 2002 PIIX4 specification update.
1112	 * Applies to all PIIX4 models.
1113	 *
1114	 * Also, make sure that all interrupts cause a "Stop Break"
1115	 * event to exit from C2 state.
1116	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1117	 * should be set to zero, otherwise it causes C2 to short-sleep.
1118	 * PIIX4 doesn't properly support C3 and bus master activity
1119	 * need not break out of C2.
1120	 */
1121	case PCI_REVISION_A_STEP:
1122	case PCI_REVISION_B_STEP:
1123	case PCI_REVISION_4E:
1124	case PCI_REVISION_4M:
1125	    cpu_quirks |= CPU_QUIRK_NO_C3;
1126	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1127		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1128
1129	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1130	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1131		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1132		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1133	    	val |= PIIX4_STOP_BREAK_MASK;
1134		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1135	    }
1136	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1137	    if (val) {
1138		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1139		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1140		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1141	    }
1142	    break;
1143	default:
1144	    break;
1145	}
1146    }
1147
1148    return (0);
1149}
1150
1151static int
1152acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1153{
1154    struct acpi_cpu_softc *sc;
1155    struct sbuf	 sb;
1156    char	 buf[128];
1157    int		 i;
1158    uintmax_t	 fract, sum, whole;
1159
1160    sc = (struct acpi_cpu_softc *) arg1;
1161    sum = 0;
1162    for (i = 0; i < sc->cpu_cx_count; i++)
1163	sum += sc->cpu_cx_stats[i];
1164    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1165    for (i = 0; i < sc->cpu_cx_count; i++) {
1166	if (sum > 0) {
1167	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1168	    fract = (whole % sum) * 100;
1169	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1170		(u_int)(fract / sum));
1171	} else
1172	    sbuf_printf(&sb, "0.00%% ");
1173    }
1174    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1175    sbuf_trim(&sb);
1176    sbuf_finish(&sb);
1177    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1178    sbuf_delete(&sb);
1179
1180    return (0);
1181}
1182
1183static int
1184acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1185{
1186    int i;
1187
1188    ACPI_SERIAL_ASSERT(cpu);
1189    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1190
1191    /* If not disabling, cache the new lowest non-C3 state. */
1192    sc->cpu_non_c3 = 0;
1193    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1194	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1195	    sc->cpu_non_c3 = i;
1196	    break;
1197	}
1198    }
1199
1200    /* Reset the statistics counters. */
1201    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1202    return (0);
1203}
1204
1205static int
1206acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1207{
1208    struct	 acpi_cpu_softc *sc;
1209    char	 state[8];
1210    int		 val, error;
1211
1212    sc = (struct acpi_cpu_softc *) arg1;
1213    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1214    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1215    if (error != 0 || req->newptr == NULL)
1216	return (error);
1217    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1218	return (EINVAL);
1219    if (strcasecmp(state, "Cmax") == 0)
1220	val = MAX_CX_STATES;
1221    else {
1222	val = (int) strtol(state + 1, NULL, 10);
1223	if (val < 1 || val > MAX_CX_STATES)
1224	    return (EINVAL);
1225    }
1226
1227    ACPI_SERIAL_BEGIN(cpu);
1228    sc->cpu_cx_lowest_lim = val - 1;
1229    acpi_cpu_set_cx_lowest(sc);
1230    ACPI_SERIAL_END(cpu);
1231
1232    return (0);
1233}
1234
1235static int
1236acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1237{
1238    struct	acpi_cpu_softc *sc;
1239    char	state[8];
1240    int		val, error, i;
1241
1242    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1243    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1244    if (error != 0 || req->newptr == NULL)
1245	return (error);
1246    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1247	return (EINVAL);
1248    if (strcasecmp(state, "Cmax") == 0)
1249	val = MAX_CX_STATES;
1250    else {
1251	val = (int) strtol(state + 1, NULL, 10);
1252	if (val < 1 || val > MAX_CX_STATES)
1253	    return (EINVAL);
1254    }
1255
1256    /* Update the new lowest useable Cx state for all CPUs. */
1257    ACPI_SERIAL_BEGIN(cpu);
1258    cpu_cx_lowest_lim = val - 1;
1259    for (i = 0; i < cpu_ndevices; i++) {
1260	sc = device_get_softc(cpu_devices[i]);
1261	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1262	acpi_cpu_set_cx_lowest(sc);
1263    }
1264    ACPI_SERIAL_END(cpu);
1265
1266    return (0);
1267}
1268