acpi_cpu.c revision 239812
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/9/sys/dev/acpica/acpi_cpu.c 239812 2012-08-29 08:47:43Z avg $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sbuf.h>
42#include <sys/smp.h>
43
44#include <dev/pci/pcivar.h>
45#include <machine/atomic.h>
46#include <machine/bus.h>
47#if defined(__amd64__) || defined(__i386__)
48#include <machine/clock.h>
49#endif
50#include <sys/rman.h>
51
52#include <contrib/dev/acpica/include/acpi.h>
53#include <contrib/dev/acpica/include/accommon.h>
54
55#include <dev/acpica/acpivar.h>
56
57/*
58 * Support for ACPI Processor devices, including C[1-3] sleep states.
59 */
60
61/* Hooks for the ACPI CA debugging infrastructure */
62#define _COMPONENT	ACPI_PROCESSOR
63ACPI_MODULE_NAME("PROCESSOR")
64
65struct acpi_cx {
66    struct resource	*p_lvlx;	/* Register to read to enter state. */
67    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
68    uint32_t		 trans_lat;	/* Transition latency (usec). */
69    uint32_t		 power;		/* Power consumed (mW). */
70    int			 res_type;	/* Resource type for p_lvlx. */
71};
72#define MAX_CX_STATES	 8
73
74struct acpi_cpu_softc {
75    device_t		 cpu_dev;
76    ACPI_HANDLE		 cpu_handle;
77    struct pcpu		*cpu_pcpu;
78    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
79    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
80    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
81    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
82    int			 cpu_cx_count;	/* Number of valid Cx states. */
83    int			 cpu_prev_sleep;/* Last idle sleep duration. */
84    int			 cpu_features;	/* Child driver supported features. */
85    /* Runtime state. */
86    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
87    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
88    /* Values for sysctl. */
89    struct sysctl_ctx_list cpu_sysctl_ctx;
90    struct sysctl_oid	*cpu_sysctl_tree;
91    int			 cpu_cx_lowest;
92    int			 cpu_cx_lowest_lim;
93    char 		 cpu_cx_supported[64];
94    int			 cpu_rid;
95};
96
97struct acpi_cpu_device {
98    struct resource_list	ad_rl;
99};
100
101#define CPU_GET_REG(reg, width) 					\
102    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
103		      rman_get_bushandle((reg)), 0))
104#define CPU_SET_REG(reg, width, val)					\
105    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
106		       rman_get_bushandle((reg)), 0, (val)))
107
108#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
109
110#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
111
112#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
113#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
114
115#define PCI_VENDOR_INTEL	0x8086
116#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
117#define PCI_REVISION_A_STEP	0
118#define PCI_REVISION_B_STEP	1
119#define PCI_REVISION_4E		2
120#define PCI_REVISION_4M		3
121#define PIIX4_DEVACTB_REG	0x58
122#define PIIX4_BRLD_EN_IRQ0	(1<<0)
123#define PIIX4_BRLD_EN_IRQ	(1<<1)
124#define PIIX4_BRLD_EN_IRQ8	(1<<5)
125#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
126#define PIIX4_PCNTRL_BST_EN	(1<<10)
127
128/* Allow users to ignore processor orders in MADT. */
129static int cpu_unordered;
130TUNABLE_INT("debug.acpi.cpu_unordered", &cpu_unordered);
131SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
132    &cpu_unordered, 0,
133    "Do not use the MADT to match ACPI Processor objects to CPUs.");
134
135/* Platform hardware resource information. */
136static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
137static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
138static int		 cpu_quirks;	/* Indicate any hardware bugs. */
139
140/* Runtime state. */
141static int		 cpu_disable_idle; /* Disable entry to idle function */
142
143/* Values for sysctl. */
144static struct sysctl_ctx_list cpu_sysctl_ctx;
145static struct sysctl_oid *cpu_sysctl_tree;
146static int		 cpu_cx_generic;
147static int		 cpu_cx_lowest_lim;
148
149static device_t		*cpu_devices;
150static int		 cpu_ndevices;
151static struct acpi_cpu_softc **cpu_softc;
152ACPI_SERIAL_DECL(cpu, "ACPI CPU");
153
154static int	acpi_cpu_probe(device_t dev);
155static int	acpi_cpu_attach(device_t dev);
156static int	acpi_cpu_suspend(device_t dev);
157static int	acpi_cpu_resume(device_t dev);
158static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
159		    uint32_t *cpu_id);
160static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
161static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
162		    int unit);
163static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
164		    uintptr_t *result);
165static int	acpi_cpu_shutdown(device_t dev);
166static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
167static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
168static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
169static void	acpi_cpu_startup(void *arg);
170static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
171static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
172static void	acpi_cpu_idle(void);
173static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
174static int	acpi_cpu_quirks(void);
175static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
176static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
177static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
178static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
179
180static device_method_t acpi_cpu_methods[] = {
181    /* Device interface */
182    DEVMETHOD(device_probe,	acpi_cpu_probe),
183    DEVMETHOD(device_attach,	acpi_cpu_attach),
184    DEVMETHOD(device_detach,	bus_generic_detach),
185    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
186    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
187    DEVMETHOD(device_resume,	acpi_cpu_resume),
188
189    /* Bus interface */
190    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
191    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
192    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
193    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
194    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
195    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
196    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
197    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
198    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
199    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
200    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
201
202    DEVMETHOD_END
203};
204
205static driver_t acpi_cpu_driver = {
206    "cpu",
207    acpi_cpu_methods,
208    sizeof(struct acpi_cpu_softc),
209};
210
211static devclass_t acpi_cpu_devclass;
212DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
213MODULE_DEPEND(cpu, acpi, 1, 1, 1);
214
215static int
216acpi_cpu_probe(device_t dev)
217{
218    int			   acpi_id, cpu_id;
219    ACPI_BUFFER		   buf;
220    ACPI_HANDLE		   handle;
221    ACPI_OBJECT		   *obj;
222    ACPI_STATUS		   status;
223
224    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR)
225	return (ENXIO);
226
227    handle = acpi_get_handle(dev);
228    if (cpu_softc == NULL)
229	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
230	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
231
232    /* Get our Processor object. */
233    buf.Pointer = NULL;
234    buf.Length = ACPI_ALLOCATE_BUFFER;
235    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
236    if (ACPI_FAILURE(status)) {
237	device_printf(dev, "probe failed to get Processor obj - %s\n",
238		      AcpiFormatException(status));
239	return (ENXIO);
240    }
241    obj = (ACPI_OBJECT *)buf.Pointer;
242    if (obj->Type != ACPI_TYPE_PROCESSOR) {
243	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
244	AcpiOsFree(obj);
245	return (ENXIO);
246    }
247
248    /*
249     * Find the processor associated with our unit.  We could use the
250     * ProcId as a key, however, some boxes do not have the same values
251     * in their Processor object as the ProcId values in the MADT.
252     */
253    acpi_id = obj->Processor.ProcId;
254    AcpiOsFree(obj);
255    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
256	return (ENXIO);
257
258    /*
259     * Check if we already probed this processor.  We scan the bus twice
260     * so it's possible we've already seen this one.
261     */
262    if (cpu_softc[cpu_id] != NULL)
263	return (ENXIO);
264
265    /* Mark this processor as in-use and save our derived id for attach. */
266    cpu_softc[cpu_id] = (void *)1;
267    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
268    device_set_desc(dev, "ACPI CPU");
269
270    return (0);
271}
272
273static int
274acpi_cpu_attach(device_t dev)
275{
276    ACPI_BUFFER		   buf;
277    ACPI_OBJECT		   arg[4], *obj;
278    ACPI_OBJECT_LIST	   arglist;
279    struct pcpu		   *pcpu_data;
280    struct acpi_cpu_softc *sc;
281    struct acpi_softc	  *acpi_sc;
282    ACPI_STATUS		   status;
283    u_int		   features;
284    int			   cpu_id, drv_count, i;
285    driver_t 		  **drivers;
286    uint32_t		   cap_set[3];
287
288    /* UUID needed by _OSC evaluation */
289    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
290				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
291				       0x58, 0x71, 0x39, 0x53 };
292
293    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
294
295    sc = device_get_softc(dev);
296    sc->cpu_dev = dev;
297    sc->cpu_handle = acpi_get_handle(dev);
298    cpu_id = (int)(intptr_t)acpi_get_private(dev);
299    cpu_softc[cpu_id] = sc;
300    pcpu_data = pcpu_find(cpu_id);
301    pcpu_data->pc_device = dev;
302    sc->cpu_pcpu = pcpu_data;
303    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
304    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
305
306    buf.Pointer = NULL;
307    buf.Length = ACPI_ALLOCATE_BUFFER;
308    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
309    if (ACPI_FAILURE(status)) {
310	device_printf(dev, "attach failed to get Processor obj - %s\n",
311		      AcpiFormatException(status));
312	return (ENXIO);
313    }
314    obj = (ACPI_OBJECT *)buf.Pointer;
315    sc->cpu_p_blk = obj->Processor.PblkAddress;
316    sc->cpu_p_blk_len = obj->Processor.PblkLength;
317    sc->cpu_acpi_id = obj->Processor.ProcId;
318    AcpiOsFree(obj);
319    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
320		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
321
322    /*
323     * If this is the first cpu we attach, create and initialize the generic
324     * resources that will be used by all acpi cpu devices.
325     */
326    if (device_get_unit(dev) == 0) {
327	/* Assume we won't be using generic Cx mode by default */
328	cpu_cx_generic = FALSE;
329
330	/* Install hw.acpi.cpu sysctl tree */
331	acpi_sc = acpi_device_get_parent_softc(dev);
332	sysctl_ctx_init(&cpu_sysctl_ctx);
333	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
334	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
335	    CTLFLAG_RD, 0, "node for CPU children");
336
337	/* Queue post cpu-probing task handler */
338	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
339    }
340
341    /*
342     * Before calling any CPU methods, collect child driver feature hints
343     * and notify ACPI of them.  We support unified SMP power control
344     * so advertise this ourselves.  Note this is not the same as independent
345     * SMP control where each CPU can have different settings.
346     */
347    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3;
348    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
349	for (i = 0; i < drv_count; i++) {
350	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
351		sc->cpu_features |= features;
352	}
353	free(drivers, M_TEMP);
354    }
355
356    /*
357     * CPU capabilities are specified in
358     * Intel Processor Vendor-Specific ACPI Interface Specification.
359     */
360    if (sc->cpu_features) {
361	arglist.Pointer = arg;
362	arglist.Count = 4;
363	arg[0].Type = ACPI_TYPE_BUFFER;
364	arg[0].Buffer.Length = sizeof(cpu_oscuuid);
365	arg[0].Buffer.Pointer = cpu_oscuuid;	/* UUID */
366	arg[1].Type = ACPI_TYPE_INTEGER;
367	arg[1].Integer.Value = 1;		/* revision */
368	arg[2].Type = ACPI_TYPE_INTEGER;
369	arg[2].Integer.Value = 1;		/* count */
370	arg[3].Type = ACPI_TYPE_BUFFER;
371	arg[3].Buffer.Length = sizeof(cap_set);	/* Capabilities buffer */
372	arg[3].Buffer.Pointer = (uint8_t *)cap_set;
373	cap_set[0] = 0;				/* status */
374	cap_set[1] = sc->cpu_features;
375	status = AcpiEvaluateObject(sc->cpu_handle, "_OSC", &arglist, NULL);
376	if (ACPI_SUCCESS(status)) {
377	    if (cap_set[0] != 0)
378		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
379	}
380	else {
381	    arglist.Pointer = arg;
382	    arglist.Count = 1;
383	    arg[0].Type = ACPI_TYPE_BUFFER;
384	    arg[0].Buffer.Length = sizeof(cap_set);
385	    arg[0].Buffer.Pointer = (uint8_t *)cap_set;
386	    cap_set[0] = 1; /* revision */
387	    cap_set[1] = 1; /* number of capabilities integers */
388	    cap_set[2] = sc->cpu_features;
389	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
390	}
391    }
392
393    /* Probe for Cx state support. */
394    acpi_cpu_cx_probe(sc);
395
396    return (0);
397}
398
399static void
400acpi_cpu_postattach(void *unused __unused)
401{
402    device_t *devices;
403    int err;
404    int i, n;
405
406    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
407    if (err != 0) {
408	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
409	return;
410    }
411    for (i = 0; i < n; i++)
412	bus_generic_probe(devices[i]);
413    for (i = 0; i < n; i++)
414	bus_generic_attach(devices[i]);
415    free(devices, M_TEMP);
416}
417
418SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
419    acpi_cpu_postattach, NULL);
420
421/*
422 * Disable any entry to the idle function during suspend and re-enable it
423 * during resume.
424 */
425static int
426acpi_cpu_suspend(device_t dev)
427{
428    int error;
429
430    error = bus_generic_suspend(dev);
431    if (error)
432	return (error);
433    cpu_disable_idle = TRUE;
434    return (0);
435}
436
437static int
438acpi_cpu_resume(device_t dev)
439{
440
441    cpu_disable_idle = FALSE;
442    return (bus_generic_resume(dev));
443}
444
445/*
446 * Find the processor associated with a given ACPI ID.  By default,
447 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
448 * processor.  Some systems have inconsistent ASL and MADT however.
449 * For these systems the cpu_unordered tunable can be set in which
450 * case we assume that Processor objects are listed in the same order
451 * in both the MADT and ASL.
452 */
453static int
454acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
455{
456    struct pcpu	*pc;
457    uint32_t	 i, idx;
458
459    KASSERT(acpi_id != NULL, ("Null acpi_id"));
460    KASSERT(cpu_id != NULL, ("Null cpu_id"));
461    idx = device_get_unit(dev);
462
463    /*
464     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
465     * UP box) use the ACPI ID from the first processor we find.
466     */
467    if (idx == 0 && mp_ncpus == 1) {
468	pc = pcpu_find(0);
469	if (pc->pc_acpi_id == 0xffffffff)
470	    pc->pc_acpi_id = *acpi_id;
471	*cpu_id = 0;
472	return (0);
473    }
474
475    CPU_FOREACH(i) {
476	pc = pcpu_find(i);
477	KASSERT(pc != NULL, ("no pcpu data for %d", i));
478	if (cpu_unordered) {
479	    if (idx-- == 0) {
480		/*
481		 * If pc_acpi_id doesn't match the ACPI ID from the
482		 * ASL, prefer the MADT-derived value.
483		 */
484		if (pc->pc_acpi_id != *acpi_id)
485		    *acpi_id = pc->pc_acpi_id;
486		*cpu_id = pc->pc_cpuid;
487		return (0);
488	    }
489	} else {
490	    if (pc->pc_acpi_id == *acpi_id) {
491		if (bootverbose)
492		    device_printf(dev,
493			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
494			acpi_name(acpi_get_handle(dev)), *acpi_id,
495			pc->pc_cpuid);
496		*cpu_id = pc->pc_cpuid;
497		return (0);
498	    }
499	}
500    }
501
502    if (bootverbose)
503	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
504	    acpi_name(acpi_get_handle(dev)), *acpi_id);
505
506    return (ESRCH);
507}
508
509static struct resource_list *
510acpi_cpu_get_rlist(device_t dev, device_t child)
511{
512    struct acpi_cpu_device *ad;
513
514    ad = device_get_ivars(child);
515    if (ad == NULL)
516	return (NULL);
517    return (&ad->ad_rl);
518}
519
520static device_t
521acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
522{
523    struct acpi_cpu_device *ad;
524    device_t child;
525
526    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
527	return (NULL);
528
529    resource_list_init(&ad->ad_rl);
530
531    child = device_add_child_ordered(dev, order, name, unit);
532    if (child != NULL)
533	device_set_ivars(child, ad);
534    else
535	free(ad, M_TEMP);
536    return (child);
537}
538
539static int
540acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
541{
542    struct acpi_cpu_softc *sc;
543
544    sc = device_get_softc(dev);
545    switch (index) {
546    case ACPI_IVAR_HANDLE:
547	*result = (uintptr_t)sc->cpu_handle;
548	break;
549    case CPU_IVAR_PCPU:
550	*result = (uintptr_t)sc->cpu_pcpu;
551	break;
552#if defined(__amd64__) || defined(__i386__)
553    case CPU_IVAR_NOMINAL_MHZ:
554	if (tsc_is_invariant) {
555	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
556	    break;
557	}
558	/* FALLTHROUGH */
559#endif
560    default:
561	return (ENOENT);
562    }
563    return (0);
564}
565
566static int
567acpi_cpu_shutdown(device_t dev)
568{
569    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
570
571    /* Allow children to shutdown first. */
572    bus_generic_shutdown(dev);
573
574    /*
575     * Disable any entry to the idle function.  There is a small race where
576     * an idle thread have passed this check but not gone to sleep.  This
577     * is ok since device_shutdown() does not free the softc, otherwise
578     * we'd have to be sure all threads were evicted before returning.
579     */
580    cpu_disable_idle = TRUE;
581
582    return_VALUE (0);
583}
584
585static void
586acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
587{
588    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
589
590    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
591    sc->cpu_prev_sleep = 1000000;
592    sc->cpu_cx_lowest = 0;
593    sc->cpu_cx_lowest_lim = 0;
594
595    /*
596     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
597     * any, we'll revert to generic FADT/P_BLK Cx control method which will
598     * be handled by acpi_cpu_startup. We need to defer to after having
599     * probed all the cpus in the system before probing for generic Cx
600     * states as we may already have found cpus with valid _CST packages
601     */
602    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
603	/*
604	 * We were unable to find a _CST package for this cpu or there
605	 * was an error parsing it. Switch back to generic mode.
606	 */
607	cpu_cx_generic = TRUE;
608	if (bootverbose)
609	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
610    }
611
612    /*
613     * TODO: _CSD Package should be checked here.
614     */
615}
616
617static void
618acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
619{
620    ACPI_GENERIC_ADDRESS	 gas;
621    struct acpi_cx		*cx_ptr;
622
623    sc->cpu_cx_count = 0;
624    cx_ptr = sc->cpu_cx_states;
625
626    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
627    sc->cpu_prev_sleep = 1000000;
628
629    /* C1 has been required since just after ACPI 1.0 */
630    cx_ptr->type = ACPI_STATE_C1;
631    cx_ptr->trans_lat = 0;
632    cx_ptr++;
633    sc->cpu_cx_count++;
634
635    /*
636     * The spec says P_BLK must be 6 bytes long.  However, some systems
637     * use it to indicate a fractional set of features present so we
638     * take 5 as C2.  Some may also have a value of 7 to indicate
639     * another C3 but most use _CST for this (as required) and having
640     * "only" C1-C3 is not a hardship.
641     */
642    if (sc->cpu_p_blk_len < 5)
643	return;
644
645    /* Validate and allocate resources for C2 (P_LVL2). */
646    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
647    gas.BitWidth = 8;
648    if (AcpiGbl_FADT.C2Latency <= 100) {
649	gas.Address = sc->cpu_p_blk + 4;
650	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid,
651	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
652	if (cx_ptr->p_lvlx != NULL) {
653	    sc->cpu_rid++;
654	    cx_ptr->type = ACPI_STATE_C2;
655	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
656	    cx_ptr++;
657	    sc->cpu_cx_count++;
658	}
659    }
660    if (sc->cpu_p_blk_len < 6)
661	return;
662
663    /* Validate and allocate resources for C3 (P_LVL3). */
664    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
665	gas.Address = sc->cpu_p_blk + 5;
666	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &sc->cpu_rid, &gas,
667	    &cx_ptr->p_lvlx, RF_SHAREABLE);
668	if (cx_ptr->p_lvlx != NULL) {
669	    sc->cpu_rid++;
670	    cx_ptr->type = ACPI_STATE_C3;
671	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
672	    cx_ptr++;
673	    sc->cpu_cx_count++;
674	    cpu_can_deep_sleep = 1;
675	}
676    }
677}
678
679/*
680 * Parse a _CST package and set up its Cx states.  Since the _CST object
681 * can change dynamically, our notify handler may call this function
682 * to clean up and probe the new _CST package.
683 */
684static int
685acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
686{
687    struct	 acpi_cx *cx_ptr;
688    ACPI_STATUS	 status;
689    ACPI_BUFFER	 buf;
690    ACPI_OBJECT	*top;
691    ACPI_OBJECT	*pkg;
692    uint32_t	 count;
693    int		 i;
694
695    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
696
697    buf.Pointer = NULL;
698    buf.Length = ACPI_ALLOCATE_BUFFER;
699    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
700    if (ACPI_FAILURE(status))
701	return (ENXIO);
702
703    /* _CST is a package with a count and at least one Cx package. */
704    top = (ACPI_OBJECT *)buf.Pointer;
705    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
706	device_printf(sc->cpu_dev, "invalid _CST package\n");
707	AcpiOsFree(buf.Pointer);
708	return (ENXIO);
709    }
710    if (count != top->Package.Count - 1) {
711	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
712	       count, top->Package.Count - 1);
713	count = top->Package.Count - 1;
714    }
715    if (count > MAX_CX_STATES) {
716	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
717	count = MAX_CX_STATES;
718    }
719
720    sc->cpu_non_c3 = 0;
721    sc->cpu_cx_count = 0;
722    cx_ptr = sc->cpu_cx_states;
723
724    /*
725     * C1 has been required since just after ACPI 1.0.
726     * Reserve the first slot for it.
727     */
728    cx_ptr->type = ACPI_STATE_C0;
729    cx_ptr++;
730    sc->cpu_cx_count++;
731
732    /* Set up all valid states. */
733    for (i = 0; i < count; i++) {
734	pkg = &top->Package.Elements[i + 1];
735	if (!ACPI_PKG_VALID(pkg, 4) ||
736	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
737	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
738	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
739
740	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
741	    continue;
742	}
743
744	/* Validate the state to see if we should use it. */
745	switch (cx_ptr->type) {
746	case ACPI_STATE_C1:
747	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
748		/* This is the first C1 state.  Use the reserved slot. */
749		sc->cpu_cx_states[0] = *cx_ptr;
750	    } else {
751		sc->cpu_non_c3 = sc->cpu_cx_count;
752		cx_ptr++;
753		sc->cpu_cx_count++;
754	    }
755	    continue;
756	case ACPI_STATE_C2:
757	    sc->cpu_non_c3 = sc->cpu_cx_count;
758	    break;
759	case ACPI_STATE_C3:
760	default:
761	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
762		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
763				 "acpi_cpu%d: C3[%d] not available.\n",
764				 device_get_unit(sc->cpu_dev), i));
765		continue;
766	    } else
767		cpu_can_deep_sleep = 1;
768	    break;
769	}
770
771#ifdef notyet
772	/* Free up any previous register. */
773	if (cx_ptr->p_lvlx != NULL) {
774	    bus_release_resource(sc->cpu_dev, 0, 0, cx_ptr->p_lvlx);
775	    cx_ptr->p_lvlx = NULL;
776	}
777#endif
778
779	/* Allocate the control register for C2 or C3. */
780	acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type, &sc->cpu_rid,
781	    &cx_ptr->p_lvlx, RF_SHAREABLE);
782	if (cx_ptr->p_lvlx) {
783	    sc->cpu_rid++;
784	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
785			     "acpi_cpu%d: Got C%d - %d latency\n",
786			     device_get_unit(sc->cpu_dev), cx_ptr->type,
787			     cx_ptr->trans_lat));
788	    cx_ptr++;
789	    sc->cpu_cx_count++;
790	}
791    }
792    AcpiOsFree(buf.Pointer);
793
794    /* If C1 state was not found, we need one now. */
795    cx_ptr = sc->cpu_cx_states;
796    if (cx_ptr->type == ACPI_STATE_C0) {
797	cx_ptr->type = ACPI_STATE_C1;
798	cx_ptr->trans_lat = 0;
799    }
800
801    return (0);
802}
803
804/*
805 * Call this *after* all CPUs have been attached.
806 */
807static void
808acpi_cpu_startup(void *arg)
809{
810    struct acpi_cpu_softc *sc;
811    int i;
812
813    /* Get set of CPU devices */
814    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
815
816    /*
817     * Setup any quirks that might necessary now that we have probed
818     * all the CPUs
819     */
820    acpi_cpu_quirks();
821
822    if (cpu_cx_generic) {
823	/*
824	 * We are using generic Cx mode, probe for available Cx states
825	 * for all processors.
826	 */
827	for (i = 0; i < cpu_ndevices; i++) {
828	    sc = device_get_softc(cpu_devices[i]);
829	    acpi_cpu_generic_cx_probe(sc);
830	}
831    } else {
832	/*
833	 * We are using _CST mode, remove C3 state if necessary.
834	 * As we now know for sure that we will be using _CST mode
835	 * install our notify handler.
836	 */
837	for (i = 0; i < cpu_ndevices; i++) {
838	    sc = device_get_softc(cpu_devices[i]);
839	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
840		sc->cpu_cx_count = sc->cpu_non_c3 + 1;
841	    }
842	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
843		acpi_cpu_notify, sc);
844	}
845    }
846
847    /* Perform Cx final initialization. */
848    for (i = 0; i < cpu_ndevices; i++) {
849	sc = device_get_softc(cpu_devices[i]);
850	acpi_cpu_startup_cx(sc);
851    }
852
853    /* Add a sysctl handler to handle global Cx lowest setting */
854    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
855	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
856	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
857	"Global lowest Cx sleep state to use");
858
859    /* Take over idling from cpu_idle_default(). */
860    cpu_cx_lowest_lim = 0;
861    cpu_disable_idle = FALSE;
862    cpu_idle_hook = acpi_cpu_idle;
863}
864
865static void
866acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
867{
868    struct sbuf sb;
869    int i;
870
871    /*
872     * Set up the list of Cx states
873     */
874    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
875	SBUF_FIXEDLEN);
876    for (i = 0; i < sc->cpu_cx_count; i++)
877	sbuf_printf(&sb, "C%d/%d ", i + 1, sc->cpu_cx_states[i].trans_lat);
878    sbuf_trim(&sb);
879    sbuf_finish(&sb);
880}
881
882static void
883acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
884{
885    acpi_cpu_cx_list(sc);
886
887    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
888		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
889		      OID_AUTO, "cx_supported", CTLFLAG_RD,
890		      sc->cpu_cx_supported, 0,
891		      "Cx/microsecond values for supported Cx states");
892    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
893		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
894		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
895		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
896		    "lowest Cx sleep state to use");
897    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
898		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
899		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
900		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
901		    "percent usage for each Cx state");
902
903#ifdef notyet
904    /* Signal platform that we can handle _CST notification. */
905    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
906	ACPI_LOCK(acpi);
907	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
908	ACPI_UNLOCK(acpi);
909    }
910#endif
911}
912
913/*
914 * Idle the CPU in the lowest state possible.  This function is called with
915 * interrupts disabled.  Note that once it re-enables interrupts, a task
916 * switch can occur so do not access shared data (i.e. the softc) after
917 * interrupts are re-enabled.
918 */
919static void
920acpi_cpu_idle()
921{
922    struct	acpi_cpu_softc *sc;
923    struct	acpi_cx *cx_next;
924    uint32_t	start_time, end_time;
925    int		bm_active, cx_next_idx, i;
926
927    /* If disabled, return immediately. */
928    if (cpu_disable_idle) {
929	ACPI_ENABLE_IRQS();
930	return;
931    }
932
933    /*
934     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
935     * since there is no ACPI processor object for this CPU.  This occurs
936     * for logical CPUs in the HTT case.
937     */
938    sc = cpu_softc[PCPU_GET(cpuid)];
939    if (sc == NULL) {
940	acpi_cpu_c1();
941	return;
942    }
943
944    /* Find the lowest state that has small enough latency. */
945    cx_next_idx = 0;
946    if (cpu_disable_deep_sleep)
947	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
948    else
949	i = sc->cpu_cx_lowest;
950    for (; i >= 0; i--) {
951	if (sc->cpu_cx_states[i].trans_lat * 3 <= sc->cpu_prev_sleep) {
952	    cx_next_idx = i;
953	    break;
954	}
955    }
956
957    /*
958     * Check for bus master activity.  If there was activity, clear
959     * the bit and use the lowest non-C3 state.  Note that the USB
960     * driver polling for new devices keeps this bit set all the
961     * time if USB is loaded.
962     */
963    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
964	AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
965	if (bm_active != 0) {
966	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
967	    cx_next_idx = min(cx_next_idx, sc->cpu_non_c3);
968	}
969    }
970
971    /* Select the next state and update statistics. */
972    cx_next = &sc->cpu_cx_states[cx_next_idx];
973    sc->cpu_cx_stats[cx_next_idx]++;
974    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
975
976    /*
977     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
978     * precisely calculate the time spent in C1 since the place we wake up
979     * is an ISR.  Assume we slept no more then half of quantum, unless
980     * we are called inside critical section, delaying context switch.
981     */
982    if (cx_next->type == ACPI_STATE_C1) {
983	AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
984	acpi_cpu_c1();
985	AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
986        end_time = PM_USEC(acpi_TimerDelta(end_time, start_time));
987        if (curthread->td_critnest == 0)
988		end_time = min(end_time, 500000 / hz);
989	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
990	return;
991    }
992
993    /*
994     * For C3, disable bus master arbitration and enable bus master wake
995     * if BM control is available, otherwise flush the CPU cache.
996     */
997    if (cx_next->type == ACPI_STATE_C3) {
998	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
999	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1000	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1001	} else
1002	    ACPI_FLUSH_CPU_CACHE();
1003    }
1004
1005    /*
1006     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1007     * Use the ACPI timer for measuring sleep time.  Since we need to
1008     * get the time very close to the CPU start/stop clock logic, this
1009     * is the only reliable time source.
1010     */
1011    AcpiHwRead(&start_time, &AcpiGbl_FADT.XPmTimerBlock);
1012    CPU_GET_REG(cx_next->p_lvlx, 1);
1013
1014    /*
1015     * Read the end time twice.  Since it may take an arbitrary time
1016     * to enter the idle state, the first read may be executed before
1017     * the processor has stopped.  Doing it again provides enough
1018     * margin that we are certain to have a correct value.
1019     */
1020    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1021    AcpiHwRead(&end_time, &AcpiGbl_FADT.XPmTimerBlock);
1022
1023    /* Enable bus master arbitration and disable bus master wakeup. */
1024    if (cx_next->type == ACPI_STATE_C3 &&
1025	(cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1026	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1027	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1028    }
1029    ACPI_ENABLE_IRQS();
1030
1031    /* Find the actual time asleep in microseconds. */
1032    end_time = acpi_TimerDelta(end_time, start_time);
1033    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1034}
1035
1036/*
1037 * Re-evaluate the _CST object when we are notified that it changed.
1038 *
1039 * XXX Re-evaluation disabled until locking is done.
1040 */
1041static void
1042acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1043{
1044    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1045
1046    if (notify != ACPI_NOTIFY_CX_STATES)
1047	return;
1048
1049    /* Update the list of Cx states. */
1050    acpi_cpu_cx_cst(sc);
1051    acpi_cpu_cx_list(sc);
1052
1053    ACPI_SERIAL_BEGIN(cpu);
1054    acpi_cpu_set_cx_lowest(sc);
1055    ACPI_SERIAL_END(cpu);
1056}
1057
1058static int
1059acpi_cpu_quirks(void)
1060{
1061    device_t acpi_dev;
1062    uint32_t val;
1063
1064    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1065
1066    /*
1067     * Bus mastering arbitration control is needed to keep caches coherent
1068     * while sleeping in C3.  If it's not present but a working flush cache
1069     * instruction is present, flush the caches before entering C3 instead.
1070     * Otherwise, just disable C3 completely.
1071     */
1072    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1073	AcpiGbl_FADT.Pm2ControlLength == 0) {
1074	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1075	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1076	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1077	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1078		"acpi_cpu: no BM control, using flush cache method\n"));
1079	} else {
1080	    cpu_quirks |= CPU_QUIRK_NO_C3;
1081	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1082		"acpi_cpu: no BM control, C3 not available\n"));
1083	}
1084    }
1085
1086    /*
1087     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1088     * the expensive flush cache instruction.
1089     */
1090    if (cpu_cx_generic && mp_ncpus > 1) {
1091	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1092	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1093	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1094    }
1095
1096    /* Look for various quirks of the PIIX4 part. */
1097    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1098    if (acpi_dev != NULL) {
1099	switch (pci_get_revid(acpi_dev)) {
1100	/*
1101	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1102	 * do not report the BMIDE status to the BM status register and
1103	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1104	 * works around the BMIDE bug by reading the BM status directly
1105	 * but we take the simpler approach of disabling C3 for these
1106	 * parts.
1107	 *
1108	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1109	 * Livelock") from the January 2002 PIIX4 specification update.
1110	 * Applies to all PIIX4 models.
1111	 *
1112	 * Also, make sure that all interrupts cause a "Stop Break"
1113	 * event to exit from C2 state.
1114	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1115	 * should be set to zero, otherwise it causes C2 to short-sleep.
1116	 * PIIX4 doesn't properly support C3 and bus master activity
1117	 * need not break out of C2.
1118	 */
1119	case PCI_REVISION_A_STEP:
1120	case PCI_REVISION_B_STEP:
1121	case PCI_REVISION_4E:
1122	case PCI_REVISION_4M:
1123	    cpu_quirks |= CPU_QUIRK_NO_C3;
1124	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1125		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1126
1127	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1128	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1129		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1130		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1131	    	val |= PIIX4_STOP_BREAK_MASK;
1132		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1133	    }
1134	    AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1135	    if (val) {
1136		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1137		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1138		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1139	    }
1140	    break;
1141	default:
1142	    break;
1143	}
1144    }
1145
1146    return (0);
1147}
1148
1149static int
1150acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1151{
1152    struct acpi_cpu_softc *sc;
1153    struct sbuf	 sb;
1154    char	 buf[128];
1155    int		 i;
1156    uintmax_t	 fract, sum, whole;
1157
1158    sc = (struct acpi_cpu_softc *) arg1;
1159    sum = 0;
1160    for (i = 0; i < sc->cpu_cx_count; i++)
1161	sum += sc->cpu_cx_stats[i];
1162    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1163    for (i = 0; i < sc->cpu_cx_count; i++) {
1164	if (sum > 0) {
1165	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1166	    fract = (whole % sum) * 100;
1167	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1168		(u_int)(fract / sum));
1169	} else
1170	    sbuf_printf(&sb, "0.00%% ");
1171    }
1172    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1173    sbuf_trim(&sb);
1174    sbuf_finish(&sb);
1175    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1176    sbuf_delete(&sb);
1177
1178    return (0);
1179}
1180
1181static int
1182acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1183{
1184    int i;
1185
1186    ACPI_SERIAL_ASSERT(cpu);
1187    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1188
1189    /* If not disabling, cache the new lowest non-C3 state. */
1190    sc->cpu_non_c3 = 0;
1191    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1192	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1193	    sc->cpu_non_c3 = i;
1194	    break;
1195	}
1196    }
1197
1198    /* Reset the statistics counters. */
1199    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1200    return (0);
1201}
1202
1203static int
1204acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1205{
1206    struct	 acpi_cpu_softc *sc;
1207    char	 state[8];
1208    int		 val, error;
1209
1210    sc = (struct acpi_cpu_softc *) arg1;
1211    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1212    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1213    if (error != 0 || req->newptr == NULL)
1214	return (error);
1215    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1216	return (EINVAL);
1217    if (strcasecmp(state, "Cmax") == 0)
1218	val = MAX_CX_STATES;
1219    else {
1220	val = (int) strtol(state + 1, NULL, 10);
1221	if (val < 1 || val > MAX_CX_STATES)
1222	    return (EINVAL);
1223    }
1224
1225    ACPI_SERIAL_BEGIN(cpu);
1226    sc->cpu_cx_lowest_lim = val - 1;
1227    acpi_cpu_set_cx_lowest(sc);
1228    ACPI_SERIAL_END(cpu);
1229
1230    return (0);
1231}
1232
1233static int
1234acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1235{
1236    struct	acpi_cpu_softc *sc;
1237    char	state[8];
1238    int		val, error, i;
1239
1240    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1241    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1242    if (error != 0 || req->newptr == NULL)
1243	return (error);
1244    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1245	return (EINVAL);
1246    if (strcasecmp(state, "Cmax") == 0)
1247	val = MAX_CX_STATES;
1248    else {
1249	val = (int) strtol(state + 1, NULL, 10);
1250	if (val < 1 || val > MAX_CX_STATES)
1251	    return (EINVAL);
1252    }
1253
1254    /* Update the new lowest useable Cx state for all CPUs. */
1255    ACPI_SERIAL_BEGIN(cpu);
1256    cpu_cx_lowest_lim = val - 1;
1257    for (i = 0; i < cpu_ndevices; i++) {
1258	sc = device_get_softc(cpu_devices[i]);
1259	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1260	acpi_cpu_set_cx_lowest(sc);
1261    }
1262    ACPI_SERIAL_END(cpu);
1263
1264    return (0);
1265}
1266