aac.c revision 95966
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 95966 2002-05-03 00:07:50Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/file.h>
61#include <sys/signalvar.h>
62#include <sys/time.h>
63#include <sys/eventhandler.h>
64
65#include <machine/bus_memio.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68
69#include <dev/aac/aacreg.h>
70#include <dev/aac/aac_ioctl.h>
71#include <dev/aac/aacvar.h>
72#include <dev/aac/aac_tables.h>
73#include <dev/aac/aac_cam.h>
74
75static void	aac_startup(void *arg);
76static void	aac_add_container(struct aac_softc *sc,
77				  struct aac_mntinforesp *mir, int f);
78static void	aac_get_bus_info(struct aac_softc *sc);
79
80/* Command Processing */
81static void	aac_timeout(struct aac_softc *sc);
82static int	aac_start(struct aac_command *cm);
83static void	aac_complete(void *context, int pending);
84static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
85static void	aac_bio_complete(struct aac_command *cm);
86static int	aac_wait_command(struct aac_command *cm, int timeout);
87static void	aac_host_command(struct aac_softc *sc);
88static void	aac_host_response(struct aac_softc *sc);
89
90/* Command Buffer Management */
91static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
92				       int nseg, int error);
93static int	aac_alloc_commands(struct aac_softc *sc);
94static void	aac_free_commands(struct aac_softc *sc);
95static void	aac_map_command(struct aac_command *cm);
96static void	aac_unmap_command(struct aac_command *cm);
97
98/* Hardware Interface */
99static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
100			       int error);
101static int	aac_check_firmware(struct aac_softc *sc);
102static int	aac_init(struct aac_softc *sc);
103static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
104				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
105				 u_int32_t arg3, u_int32_t *sp);
106static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
107				struct aac_command *cm);
108static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
109				u_int32_t *fib_size, struct aac_fib **fib_addr);
110static int	aac_enqueue_response(struct aac_softc *sc, int queue,
111				     struct aac_fib *fib);
112
113/* Falcon/PPC interface */
114static int	aac_fa_get_fwstatus(struct aac_softc *sc);
115static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
116static int	aac_fa_get_istatus(struct aac_softc *sc);
117static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
118static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
119				   u_int32_t arg0, u_int32_t arg1,
120				   u_int32_t arg2, u_int32_t arg3);
121static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
122static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
123
124struct aac_interface aac_fa_interface = {
125	aac_fa_get_fwstatus,
126	aac_fa_qnotify,
127	aac_fa_get_istatus,
128	aac_fa_clear_istatus,
129	aac_fa_set_mailbox,
130	aac_fa_get_mailboxstatus,
131	aac_fa_set_interrupts
132};
133
134/* StrongARM interface */
135static int	aac_sa_get_fwstatus(struct aac_softc *sc);
136static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
137static int	aac_sa_get_istatus(struct aac_softc *sc);
138static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
139static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
140				   u_int32_t arg0, u_int32_t arg1,
141				   u_int32_t arg2, u_int32_t arg3);
142static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
143static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
144
145struct aac_interface aac_sa_interface = {
146	aac_sa_get_fwstatus,
147	aac_sa_qnotify,
148	aac_sa_get_istatus,
149	aac_sa_clear_istatus,
150	aac_sa_set_mailbox,
151	aac_sa_get_mailboxstatus,
152	aac_sa_set_interrupts
153};
154
155/* i960Rx interface */
156static int	aac_rx_get_fwstatus(struct aac_softc *sc);
157static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
158static int	aac_rx_get_istatus(struct aac_softc *sc);
159static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
160static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
161				   u_int32_t arg0, u_int32_t arg1,
162				   u_int32_t arg2, u_int32_t arg3);
163static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
164static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
165
166struct aac_interface aac_rx_interface = {
167	aac_rx_get_fwstatus,
168	aac_rx_qnotify,
169	aac_rx_get_istatus,
170	aac_rx_clear_istatus,
171	aac_rx_set_mailbox,
172	aac_rx_get_mailboxstatus,
173	aac_rx_set_interrupts
174};
175
176/* Debugging and Diagnostics */
177static void	aac_describe_controller(struct aac_softc *sc);
178static char	*aac_describe_code(struct aac_code_lookup *table,
179				   u_int32_t code);
180
181/* Management Interface */
182static d_open_t		aac_open;
183static d_close_t	aac_close;
184static d_ioctl_t	aac_ioctl;
185static d_poll_t		aac_poll;
186static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
187static void		aac_handle_aif(struct aac_softc *sc,
188					   struct aac_fib *fib);
189static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
190static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
191static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
192static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
193
194#define AAC_CDEV_MAJOR	150
195
196static struct cdevsw aac_cdevsw = {
197	aac_open,		/* open */
198	aac_close,		/* close */
199	noread,			/* read */
200	nowrite,		/* write */
201	aac_ioctl,		/* ioctl */
202	aac_poll,		/* poll */
203	nommap,			/* mmap */
204	nostrategy,		/* strategy */
205	"aac",			/* name */
206	AAC_CDEV_MAJOR,		/* major */
207	nodump,			/* dump */
208	nopsize,		/* psize */
209	0,			/* flags */
210#if __FreeBSD_version < 500005
211	-1,			/* bmaj */
212#endif
213};
214
215MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217/* sysctl node */
218SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220/*
221 * Device Interface
222 */
223
224/*
225 * Initialise the controller and softc
226 */
227int
228aac_attach(struct aac_softc *sc)
229{
230	int error, unit;
231
232	debug_called(1);
233
234	/*
235	 * Initialise per-controller queues.
236	 */
237	aac_initq_free(sc);
238	aac_initq_ready(sc);
239	aac_initq_busy(sc);
240	aac_initq_complete(sc);
241	aac_initq_bio(sc);
242
243#if __FreeBSD_version >= 500005
244	/*
245	 * Initialise command-completion task.
246	 */
247	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
248#endif
249
250	/* disable interrupts before we enable anything */
251	AAC_MASK_INTERRUPTS(sc);
252
253	/* mark controller as suspended until we get ourselves organised */
254	sc->aac_state |= AAC_STATE_SUSPEND;
255
256	/*
257	 * Check that the firmware on the card is supported.
258	 */
259	if ((error = aac_check_firmware(sc)) != 0)
260		return(error);
261
262	/*
263	 * Allocate command structures.
264	 */
265	if ((error = aac_alloc_commands(sc)) != 0)
266		return(error);
267
268	/* Init the sync fib lock */
269	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
270
271	/*
272	 * Initialise the adapter.
273	 */
274	if ((error = aac_init(sc)) != 0)
275		return(error);
276
277	/*
278	 * Print a little information about the controller.
279	 */
280	aac_describe_controller(sc);
281
282	/*
283	 * Register to probe our containers later.
284	 */
285	TAILQ_INIT(&sc->aac_container_tqh);
286	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
287
288	/*
289	 * Lock for the AIF queue
290	 */
291	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
292
293	sc->aac_ich.ich_func = aac_startup;
294	sc->aac_ich.ich_arg = sc;
295	if (config_intrhook_establish(&sc->aac_ich) != 0) {
296		device_printf(sc->aac_dev,
297			      "can't establish configuration hook\n");
298		return(ENXIO);
299	}
300
301	/*
302	 * Make the control device.
303	 */
304	unit = device_get_unit(sc->aac_dev);
305	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
306				 "aac%d", unit);
307#if __FreeBSD_version > 500005
308	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
309	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
310#endif
311	sc->aac_dev_t->si_drv1 = sc;
312
313	/* Create the AIF thread */
314#if __FreeBSD_version > 500005
315	if (kthread_create((void(*)(void *))aac_host_command, sc,
316			   &sc->aifthread, 0, "aac%daif", unit))
317#else
318	if (kthread_create((void(*)(void *))aac_host_command, sc,
319			   &sc->aifthread, "aac%daif", unit))
320#endif
321		panic("Could not create AIF thread\n");
322
323	/* Register the shutdown method to only be called post-dump */
324	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
325				   SHUTDOWN_PRI_DEFAULT)) == NULL)
326	device_printf(sc->aac_dev, "shutdown event registration failed\n");
327
328	/* Register with CAM for the non-DASD devices */
329	if (!(sc->quirks & AAC_QUIRK_NOCAM))
330		aac_get_bus_info(sc);
331
332	return(0);
333}
334
335/*
336 * Probe for containers, create disks.
337 */
338static void
339aac_startup(void *arg)
340{
341	struct aac_softc *sc;
342	struct aac_fib *fib;
343	struct aac_mntinfo *mi;
344	struct aac_mntinforesp *mir = NULL;
345	int i = 0;
346
347	debug_called(1);
348
349	sc = (struct aac_softc *)arg;
350
351	/* disconnect ourselves from the intrhook chain */
352	config_intrhook_disestablish(&sc->aac_ich);
353
354	aac_alloc_sync_fib(sc, &fib, 0);
355	mi = (struct aac_mntinfo *)&fib->data[0];
356
357	/* loop over possible containers */
358	do {
359		/* request information on this container */
360		bzero(mi, sizeof(struct aac_mntinfo));
361		mi->Command = VM_NameServe;
362		mi->MntType = FT_FILESYS;
363		mi->MntCount = i;
364		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
365				 sizeof(struct aac_mntinfo))) {
366			debug(2, "error probing container %d", i);
367			continue;
368		}
369
370		mir = (struct aac_mntinforesp *)&fib->data[0];
371		aac_add_container(sc, mir, 0);
372		i++;
373	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
374
375	aac_release_sync_fib(sc);
376
377	/* poke the bus to actually attach the child devices */
378	if (bus_generic_attach(sc->aac_dev))
379		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
380
381	/* mark the controller up */
382	sc->aac_state &= ~AAC_STATE_SUSPEND;
383
384	/* enable interrupts now */
385	AAC_UNMASK_INTERRUPTS(sc);
386
387	/* enable the timeout watchdog */
388	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
389}
390
391/*
392 * Create a device to respresent a new container
393 */
394static void
395aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
396{
397	struct aac_container *co;
398	device_t child;
399
400	/*
401	 * Check container volume type for validity.  Note that many of
402	 * the possible types may never show up.
403	 */
404	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
405		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
406		       M_NOWAIT);
407		if (co == NULL)
408			panic("Out of memory?!\n");
409		debug(1, "id %x  name '%.16s'  size %u  type %d",
410		      mir->MntTable[0].ObjectId,
411		      mir->MntTable[0].FileSystemName,
412		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
413
414		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
415			device_printf(sc->aac_dev, "device_add_child failed\n");
416		else
417			device_set_ivars(child, co);
418		device_set_desc(child, aac_describe_code(aac_container_types,
419				mir->MntTable[0].VolType));
420		co->co_disk = child;
421		co->co_found = f;
422		bcopy(&mir->MntTable[0], &co->co_mntobj,
423		      sizeof(struct aac_mntobj));
424		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
425		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
426		AAC_LOCK_RELEASE(&sc->aac_container_lock);
427	}
428}
429
430/*
431 * Free all of the resources associated with (sc)
432 *
433 * Should not be called if the controller is active.
434 */
435void
436aac_free(struct aac_softc *sc)
437{
438	debug_called(1);
439
440	/* remove the control device */
441	if (sc->aac_dev_t != NULL)
442		destroy_dev(sc->aac_dev_t);
443
444	/* throw away any FIB buffers, discard the FIB DMA tag */
445	if (sc->aac_fibs != NULL)
446		aac_free_commands(sc);
447	if (sc->aac_fib_dmat)
448		bus_dma_tag_destroy(sc->aac_fib_dmat);
449
450	/* destroy the common area */
451	if (sc->aac_common) {
452		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
453		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
454				sc->aac_common_dmamap);
455	}
456	if (sc->aac_common_dmat)
457		bus_dma_tag_destroy(sc->aac_common_dmat);
458
459	/* disconnect the interrupt handler */
460	if (sc->aac_intr)
461		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
462	if (sc->aac_irq != NULL)
463		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
464				     sc->aac_irq);
465
466	/* destroy data-transfer DMA tag */
467	if (sc->aac_buffer_dmat)
468		bus_dma_tag_destroy(sc->aac_buffer_dmat);
469
470	/* destroy the parent DMA tag */
471	if (sc->aac_parent_dmat)
472		bus_dma_tag_destroy(sc->aac_parent_dmat);
473
474	/* release the register window mapping */
475	if (sc->aac_regs_resource != NULL)
476		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
477				     sc->aac_regs_rid, sc->aac_regs_resource);
478}
479
480/*
481 * Disconnect from the controller completely, in preparation for unload.
482 */
483int
484aac_detach(device_t dev)
485{
486	struct aac_softc *sc;
487#if AAC_BROKEN
488	int error;
489#endif
490
491	debug_called(1);
492
493	sc = device_get_softc(dev);
494
495	if (sc->aac_state & AAC_STATE_OPEN)
496	return(EBUSY);
497
498#if AAC_BROKEN
499	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500		sc->aifflags |= AAC_AIFFLAGS_EXIT;
501		wakeup(sc->aifthread);
502		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
503	}
504
505	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506		panic("Cannot shutdown AIF thread\n");
507
508	if ((error = aac_shutdown(dev)))
509		return(error);
510
511	aac_free(sc);
512
513	return(0);
514#else
515	return (EBUSY);
516#endif
517}
518
519/*
520 * Bring the controller down to a dormant state and detach all child devices.
521 *
522 * This function is called before detach or system shutdown.
523 *
524 * Note that we can assume that the bioq on the controller is empty, as we won't
525 * allow shutdown if any device is open.
526 */
527int
528aac_shutdown(device_t dev)
529{
530	struct aac_softc *sc;
531	struct aac_fib *fib;
532	struct aac_close_command *cc;
533	int s;
534
535	debug_called(1);
536
537	sc = device_get_softc(dev);
538
539	s = splbio();
540
541	sc->aac_state |= AAC_STATE_SUSPEND;
542
543	/*
544	 * Send a Container shutdown followed by a HostShutdown FIB to the
545	 * controller to convince it that we don't want to talk to it anymore.
546	 * We've been closed and all I/O completed already
547	 */
548	device_printf(sc->aac_dev, "shutting down controller...");
549
550	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551	cc = (struct aac_close_command *)&fib->data[0];
552
553	bzero(cc, sizeof(struct aac_close_command));
554	cc->Command = VM_CloseAll;
555	cc->ContainerId = 0xffffffff;
556	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557	    sizeof(struct aac_close_command)))
558		printf("FAILED.\n");
559	else {
560		fib->data[0] = 0;
561		/*
562		 * XXX Issuing this command to the controller makes it shut down
563		 * but also keeps it from coming back up without a reset of the
564		 * PCI bus.  This is not desirable if you are just unloading the
565		 * driver module with the intent to reload it later.
566		 */
567		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568		    fib, 1)) {
569			printf("FAILED.\n");
570		} else {
571			printf("done.\n");
572		}
573	}
574
575	AAC_MASK_INTERRUPTS(sc);
576
577	splx(s);
578	return(0);
579}
580
581/*
582 * Bring the controller to a quiescent state, ready for system suspend.
583 */
584int
585aac_suspend(device_t dev)
586{
587	struct aac_softc *sc;
588	int s;
589
590	debug_called(1);
591
592	sc = device_get_softc(dev);
593
594	s = splbio();
595
596	sc->aac_state |= AAC_STATE_SUSPEND;
597
598	AAC_MASK_INTERRUPTS(sc);
599	splx(s);
600	return(0);
601}
602
603/*
604 * Bring the controller back to a state ready for operation.
605 */
606int
607aac_resume(device_t dev)
608{
609	struct aac_softc *sc;
610
611	debug_called(1);
612
613	sc = device_get_softc(dev);
614
615	sc->aac_state &= ~AAC_STATE_SUSPEND;
616	AAC_UNMASK_INTERRUPTS(sc);
617	return(0);
618}
619
620/*
621 * Take an interrupt.
622 */
623void
624aac_intr(void *arg)
625{
626	struct aac_softc *sc;
627	u_int16_t reason;
628
629	debug_called(2);
630
631	sc = (struct aac_softc *)arg;
632
633	reason = AAC_GET_ISTATUS(sc);
634
635	/* controller wants to talk to the log */
636	if (reason & AAC_DB_PRINTF) {
637		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
638		aac_print_printf(sc);
639	}
640
641	/* controller has a message for us? */
642	if (reason & AAC_DB_COMMAND_READY) {
643		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
644		/* XXX What happens if the thread is already awake? */
645		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
646			sc->aifflags |= AAC_AIFFLAGS_PENDING;
647			wakeup(sc->aifthread);
648		}
649	}
650
651	/* controller has a response for us? */
652	if (reason & AAC_DB_RESPONSE_READY) {
653		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
654		aac_host_response(sc);
655	}
656
657	/*
658	 * spurious interrupts that we don't use - reset the mask and clear the
659	 * interrupts
660	 */
661	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
662		AAC_UNMASK_INTERRUPTS(sc);
663		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
664				  AAC_DB_RESPONSE_NOT_FULL);
665	}
666};
667
668/*
669 * Command Processing
670 */
671
672/*
673 * Start as much queued I/O as possible on the controller
674 */
675void
676aac_startio(struct aac_softc *sc)
677{
678	struct aac_command *cm;
679
680	debug_called(2);
681
682	for (;;) {
683		/*
684		 * Try to get a command that's been put off for lack of
685		 * resources
686		 */
687		cm = aac_dequeue_ready(sc);
688
689		/*
690		 * Try to build a command off the bio queue (ignore error
691		 * return)
692		 */
693		if (cm == NULL)
694			aac_bio_command(sc, &cm);
695
696		/* nothing to do? */
697		if (cm == NULL)
698			break;
699
700		/* try to give the command to the controller */
701		if (aac_start(cm) == EBUSY) {
702			/* put it on the ready queue for later */
703			aac_requeue_ready(cm);
704			break;
705		}
706	}
707}
708
709/*
710 * Deliver a command to the controller; allocate controller resources at the
711 * last moment when possible.
712 */
713static int
714aac_start(struct aac_command *cm)
715{
716	struct aac_softc *sc;
717	int error;
718
719	debug_called(2);
720
721	sc = cm->cm_sc;
722
723	/* get the command mapped */
724	aac_map_command(cm);
725
726	/* fix up the address values in the FIB */
727	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
728	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
729
730	/* save a pointer to the command for speedy reverse-lookup */
731	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
732							 * address issue */
733
734	/* put the FIB on the outbound queue */
735	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
736	return(error);
737}
738
739/*
740 * Handle notification of one or more FIBs coming from the controller.
741 */
742static void
743aac_host_command(struct aac_softc *sc)
744{
745	struct aac_fib *fib;
746	u_int32_t fib_size;
747	int size;
748
749	debug_called(2);
750
751	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
752
753	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
754		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
755			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
756
757		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
758		for (;;) {
759			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
760					    &fib_size, &fib))
761				break;	/* nothing to do */
762
763			AAC_PRINT_FIB(sc, fib);
764
765			switch (fib->Header.Command) {
766			case AifRequest:
767				aac_handle_aif(sc, fib);
768				break;
769			default:
770				device_printf(sc->aac_dev, "unknown command "
771					      "from controller\n");
772				break;
773			}
774
775			/* Return the AIF to the controller. */
776			if ((fib->Header.XferState == 0) ||
777			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
778				break;
779
780			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
781				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
782				*(AAC_FSAStatus*)fib->data = ST_OK;
783
784				/* XXX Compute the Size field? */
785				size = fib->Header.Size;
786				if (size > sizeof(struct aac_fib)) {
787					size = sizeof(struct aac_fib);
788					fib->Header.Size = size;
789				}
790				/*
791				 * Since we did not generate this command, it
792				 * cannot go through the normal
793				 * enqueue->startio chain.
794				 */
795				aac_enqueue_response(sc,
796						     AAC_ADAP_NORM_RESP_QUEUE,
797						     fib);
798			}
799		}
800	}
801	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
802	wakeup(sc->aac_dev);
803
804#if __FreeBSD_version > 500005
805	mtx_lock(&Giant);
806#endif
807	kthread_exit(0);
808}
809
810/*
811 * Handle notification of one or more FIBs completed by the controller
812 */
813static void
814aac_host_response(struct aac_softc *sc)
815{
816	struct aac_command *cm;
817	struct aac_fib *fib;
818	u_int32_t fib_size;
819
820	debug_called(2);
821
822	for (;;) {
823		/* look for completed FIBs on our queue */
824		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
825				    &fib))
826			break;	/* nothing to do */
827
828		/* get the command, unmap and queue for later processing */
829		cm = (struct aac_command *)fib->Header.SenderData;
830		if (cm == NULL) {
831			AAC_PRINT_FIB(sc, fib);
832		} else {
833			aac_remove_busy(cm);
834			aac_unmap_command(cm);		/* XXX defer? */
835			aac_enqueue_complete(cm);
836		}
837	}
838
839	/* handle completion processing */
840#if __FreeBSD_version >= 500005
841	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
842#else
843	aac_complete(sc, 0);
844#endif
845}
846
847/*
848 * Process completed commands.
849 */
850static void
851aac_complete(void *context, int pending)
852{
853	struct aac_softc *sc;
854	struct aac_command *cm;
855
856	debug_called(2);
857
858	sc = (struct aac_softc *)context;
859
860	/* pull completed commands off the queue */
861	for (;;) {
862		cm = aac_dequeue_complete(sc);
863		if (cm == NULL)
864			break;
865		cm->cm_flags |= AAC_CMD_COMPLETED;
866
867		/* is there a completion handler? */
868		if (cm->cm_complete != NULL) {
869			cm->cm_complete(cm);
870		} else {
871			/* assume that someone is sleeping on this command */
872			wakeup(cm);
873		}
874	}
875
876	/* see if we can start some more I/O */
877	aac_startio(sc);
878}
879
880/*
881 * Handle a bio submitted from a disk device.
882 */
883void
884aac_submit_bio(struct bio *bp)
885{
886	struct aac_disk *ad;
887	struct aac_softc *sc;
888
889	debug_called(2);
890
891	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
892	sc = ad->ad_controller;
893
894	/* queue the BIO and try to get some work done */
895	aac_enqueue_bio(sc, bp);
896	aac_startio(sc);
897}
898
899/*
900 * Get a bio and build a command to go with it.
901 */
902static int
903aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
904{
905	struct aac_command *cm;
906	struct aac_fib *fib;
907	struct aac_blockread *br;
908	struct aac_blockwrite *bw;
909	struct aac_disk *ad;
910	struct bio *bp;
911
912	debug_called(2);
913
914	/* get the resources we will need */
915	cm = NULL;
916	if ((bp = aac_dequeue_bio(sc)) == NULL)
917		goto fail;
918	if (aac_alloc_command(sc, &cm))	/* get a command */
919		goto fail;
920
921	/* fill out the command */
922	cm->cm_data = (void *)bp->bio_data;
923	cm->cm_datalen = bp->bio_bcount;
924	cm->cm_complete = aac_bio_complete;
925	cm->cm_private = bp;
926	cm->cm_timestamp = time_second;
927	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
928
929	/* build the FIB */
930	fib = cm->cm_fib;
931	fib->Header.XferState =
932	AAC_FIBSTATE_HOSTOWNED   |
933	AAC_FIBSTATE_INITIALISED |
934	AAC_FIBSTATE_FROMHOST	 |
935	AAC_FIBSTATE_REXPECTED   |
936	AAC_FIBSTATE_NORM;
937	fib->Header.Command = ContainerCommand;
938	fib->Header.Size = sizeof(struct aac_fib_header);
939
940	/* build the read/write request */
941	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
942	if (BIO_IS_READ(bp)) {
943		br = (struct aac_blockread *)&fib->data[0];
944		br->Command = VM_CtBlockRead;
945		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946		br->BlockNumber = bp->bio_pblkno;
947		br->ByteCount = bp->bio_bcount;
948		fib->Header.Size += sizeof(struct aac_blockread);
949		cm->cm_sgtable = &br->SgMap;
950		cm->cm_flags |= AAC_CMD_DATAIN;
951	} else {
952		bw = (struct aac_blockwrite *)&fib->data[0];
953		bw->Command = VM_CtBlockWrite;
954		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955		bw->BlockNumber = bp->bio_pblkno;
956		bw->ByteCount = bp->bio_bcount;
957		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
958		fib->Header.Size += sizeof(struct aac_blockwrite);
959		cm->cm_flags |= AAC_CMD_DATAOUT;
960		cm->cm_sgtable = &bw->SgMap;
961	}
962
963	*cmp = cm;
964	return(0);
965
966fail:
967	if (bp != NULL)
968		aac_enqueue_bio(sc, bp);
969	if (cm != NULL)
970		aac_release_command(cm);
971	return(ENOMEM);
972}
973
974/*
975 * Handle a bio-instigated command that has been completed.
976 */
977static void
978aac_bio_complete(struct aac_command *cm)
979{
980	struct aac_blockread_response *brr;
981	struct aac_blockwrite_response *bwr;
982	struct bio *bp;
983	AAC_FSAStatus status;
984
985	/* fetch relevant status and then release the command */
986	bp = (struct bio *)cm->cm_private;
987	if (BIO_IS_READ(bp)) {
988		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
989		status = brr->Status;
990	} else {
991		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
992		status = bwr->Status;
993	}
994	aac_release_command(cm);
995
996	/* fix up the bio based on status */
997	if (status == ST_OK) {
998		bp->bio_resid = 0;
999	} else {
1000		bp->bio_error = EIO;
1001		bp->bio_flags |= BIO_ERROR;
1002		/* pass an error string out to the disk layer */
1003		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1004						    status);
1005	}
1006	aac_biodone(bp);
1007}
1008
1009/*
1010 * Submit a command to the controller, return when it completes.
1011 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1012 *     be stuck here forever.  At the same time, signals are not caught
1013 *     because there is a risk that a signal could wakeup the tsleep before
1014 *     the card has a chance to complete the command.  The passed in timeout
1015 *     is ignored for the same reason.  Since there is no way to cancel a
1016 *     command in progress, we should probably create a 'dead' queue where
1017 *     commands go that have been interrupted/timed-out/etc, that keeps them
1018 *     out of the free pool.  That way, if the card is just slow, it won't
1019 *     spam the memory of a command that has been recycled.
1020 */
1021static int
1022aac_wait_command(struct aac_command *cm, int timeout)
1023{
1024	int s, error = 0;
1025
1026	debug_called(2);
1027
1028	/* Put the command on the ready queue and get things going */
1029	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1030	aac_enqueue_ready(cm);
1031	aac_startio(cm->cm_sc);
1032	s = splbio();
1033	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1034		error = tsleep(cm, PRIBIO, "aacwait", 0);
1035	}
1036	splx(s);
1037	return(error);
1038}
1039
1040/*
1041 *Command Buffer Management
1042 */
1043
1044/*
1045 * Allocate a command.
1046 */
1047int
1048aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1049{
1050	struct aac_command *cm;
1051
1052	debug_called(3);
1053
1054	if ((cm = aac_dequeue_free(sc)) == NULL)
1055		return(ENOMEM);
1056
1057	*cmp = cm;
1058	return(0);
1059}
1060
1061/*
1062 * Release a command back to the freelist.
1063 */
1064void
1065aac_release_command(struct aac_command *cm)
1066{
1067	debug_called(3);
1068
1069	/* (re)initialise the command/FIB */
1070	cm->cm_sgtable = NULL;
1071	cm->cm_flags = 0;
1072	cm->cm_complete = NULL;
1073	cm->cm_private = NULL;
1074	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1075	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1076	cm->cm_fib->Header.Flags = 0;
1077	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1078
1079	/*
1080	 * These are duplicated in aac_start to cover the case where an
1081	 * intermediate stage may have destroyed them.  They're left
1082	 * initialised here for debugging purposes only.
1083	 */
1084	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1085	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1086
1087	aac_enqueue_free(cm);
1088}
1089
1090/*
1091 * Map helper for command/FIB allocation.
1092 */
1093static void
1094aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1095{
1096	struct aac_softc *sc;
1097
1098	sc = (struct aac_softc *)arg;
1099
1100	debug_called(3);
1101
1102	sc->aac_fibphys = segs[0].ds_addr;
1103}
1104
1105/*
1106 * Allocate and initialise commands/FIBs for this adapter.
1107 */
1108static int
1109aac_alloc_commands(struct aac_softc *sc)
1110{
1111	struct aac_command *cm;
1112	int i;
1113
1114	debug_called(1);
1115
1116	/* allocate the FIBs in DMAable memory and load them */
1117	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1118			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1119		return(ENOMEM);
1120	}
1121	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1122			AAC_FIB_COUNT * sizeof(struct aac_fib),
1123			aac_map_command_helper, sc, 0);
1124
1125	/* initialise constant fields in the command structure */
1126	for (i = 0; i < AAC_FIB_COUNT; i++) {
1127		cm = &sc->aac_command[i];
1128		cm->cm_sc = sc;
1129		cm->cm_fib = sc->aac_fibs + i;
1130		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1131
1132		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1133			aac_release_command(cm);
1134	}
1135	return(0);
1136}
1137
1138/*
1139 * Free FIBs owned by this adapter.
1140 */
1141static void
1142aac_free_commands(struct aac_softc *sc)
1143{
1144	int i;
1145
1146	debug_called(1);
1147
1148	for (i = 0; i < AAC_FIB_COUNT; i++)
1149		bus_dmamap_destroy(sc->aac_buffer_dmat,
1150				   sc->aac_command[i].cm_datamap);
1151
1152	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1153	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1154}
1155
1156/*
1157 * Command-mapping helper function - populate this command's s/g table.
1158 */
1159static void
1160aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1161{
1162	struct aac_command *cm;
1163	struct aac_fib *fib;
1164	struct aac_sg_table *sg;
1165	int i;
1166
1167	debug_called(3);
1168
1169	cm = (struct aac_command *)arg;
1170	fib = cm->cm_fib;
1171
1172	/* find the s/g table */
1173	sg = cm->cm_sgtable;
1174
1175	/* copy into the FIB */
1176	if (sg != NULL) {
1177		sg->SgCount = nseg;
1178		for (i = 0; i < nseg; i++) {
1179			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1180			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1181		}
1182		/* update the FIB size for the s/g count */
1183		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1184	}
1185
1186}
1187
1188/*
1189 * Map a command into controller-visible space.
1190 */
1191static void
1192aac_map_command(struct aac_command *cm)
1193{
1194	struct aac_softc *sc;
1195
1196	debug_called(2);
1197
1198	sc = cm->cm_sc;
1199
1200	/* don't map more than once */
1201	if (cm->cm_flags & AAC_CMD_MAPPED)
1202		return;
1203
1204	if (cm->cm_datalen != 0) {
1205		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1206				cm->cm_data, cm->cm_datalen,
1207				aac_map_command_sg, cm, 0);
1208
1209	if (cm->cm_flags & AAC_CMD_DATAIN)
1210		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1211				BUS_DMASYNC_PREREAD);
1212	if (cm->cm_flags & AAC_CMD_DATAOUT)
1213		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1214				BUS_DMASYNC_PREWRITE);
1215	}
1216	cm->cm_flags |= AAC_CMD_MAPPED;
1217}
1218
1219/*
1220 * Unmap a command from controller-visible space.
1221 */
1222static void
1223aac_unmap_command(struct aac_command *cm)
1224{
1225	struct aac_softc *sc;
1226
1227	debug_called(2);
1228
1229	sc = cm->cm_sc;
1230
1231	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1232		return;
1233
1234	if (cm->cm_datalen != 0) {
1235		if (cm->cm_flags & AAC_CMD_DATAIN)
1236			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1237					BUS_DMASYNC_POSTREAD);
1238		if (cm->cm_flags & AAC_CMD_DATAOUT)
1239			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1240					BUS_DMASYNC_POSTWRITE);
1241
1242		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1243	}
1244	cm->cm_flags &= ~AAC_CMD_MAPPED;
1245}
1246
1247/*
1248 * Hardware Interface
1249 */
1250
1251/*
1252 * Initialise the adapter.
1253 */
1254static void
1255aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1256{
1257	struct aac_softc *sc;
1258
1259	debug_called(1);
1260
1261	sc = (struct aac_softc *)arg;
1262
1263	sc->aac_common_busaddr = segs[0].ds_addr;
1264}
1265
1266/*
1267 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1268 * firmware version 1.x are not compatible with this driver.
1269 */
1270static int
1271aac_check_firmware(struct aac_softc *sc)
1272{
1273	u_int32_t major, minor;
1274
1275	debug_called(1);
1276
1277	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1278		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1279				     NULL)) {
1280			device_printf(sc->aac_dev,
1281				      "Error reading firmware version\n");
1282			return (EIO);
1283		}
1284
1285		/* These numbers are stored as ASCII! */
1286		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1287		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1288		if (major == 1) {
1289			device_printf(sc->aac_dev,
1290			    "Firmware version %d.%d is not supported.\n",
1291			    major, minor);
1292			return (EINVAL);
1293		}
1294	}
1295
1296	return (0);
1297}
1298
1299static int
1300aac_init(struct aac_softc *sc)
1301{
1302	struct aac_adapter_init	*ip;
1303	time_t then;
1304	u_int32_t code;
1305	u_int8_t *qaddr;
1306
1307	debug_called(1);
1308
1309	/*
1310	 * First wait for the adapter to come ready.
1311	 */
1312	then = time_second;
1313	do {
1314		code = AAC_GET_FWSTATUS(sc);
1315		if (code & AAC_SELF_TEST_FAILED) {
1316			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1317			return(ENXIO);
1318		}
1319		if (code & AAC_KERNEL_PANIC) {
1320			device_printf(sc->aac_dev,
1321				      "FATAL: controller kernel panic\n");
1322			return(ENXIO);
1323		}
1324		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1325			device_printf(sc->aac_dev,
1326				      "FATAL: controller not coming ready, "
1327					   "status %x\n", code);
1328			return(ENXIO);
1329		}
1330	} while (!(code & AAC_UP_AND_RUNNING));
1331
1332	/*
1333	 * Create DMA tag for the common structure and allocate it.
1334	 */
1335	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1336			       1, 0,			/* algnmnt, boundary */
1337			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1338			       BUS_SPACE_MAXADDR, 	/* highaddr */
1339			       NULL, NULL, 		/* filter, filterarg */
1340			       sizeof(struct aac_common), /* maxsize */
1341			       1,			/* nsegments */
1342			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1343			       0,			/* flags */
1344			       &sc->aac_common_dmat)) {
1345		device_printf(sc->aac_dev,
1346			      "can't allocate common structure DMA tag\n");
1347		return(ENOMEM);
1348	}
1349	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1350			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1351		device_printf(sc->aac_dev, "can't allocate common structure\n");
1352		return(ENOMEM);
1353	}
1354	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1355			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1356			sc, 0);
1357	bzero(sc->aac_common, sizeof(*sc->aac_common));
1358
1359	/*
1360	 * Fill in the init structure.  This tells the adapter about the
1361	 * physical location of various important shared data structures.
1362	 */
1363	ip = &sc->aac_common->ac_init;
1364	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1365
1366	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1367					 offsetof(struct aac_common, ac_fibs);
1368	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1369	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1370	ip->AdapterFibAlign = sizeof(struct aac_fib);
1371
1372	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1373				  offsetof(struct aac_common, ac_printf);
1374	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1375
1376	ip->HostPhysMemPages = 0;		/* not used? */
1377	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1378
1379	/*
1380	 * Initialise FIB queues.  Note that it appears that the layout of the
1381	 * indexes and the segmentation of the entries may be mandated by the
1382	 * adapter, which is only told about the base of the queue index fields.
1383	 *
1384	 * The initial values of the indices are assumed to inform the adapter
1385	 * of the sizes of the respective queues, and theoretically it could
1386	 * work out the entire layout of the queue structures from this.  We
1387	 * take the easy route and just lay this area out like everyone else
1388	 * does.
1389	 *
1390	 * The Linux driver uses a much more complex scheme whereby several
1391	 * header records are kept for each queue.  We use a couple of generic
1392	 * list manipulation functions which 'know' the size of each list by
1393	 * virtue of a table.
1394	 */
1395	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1396	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1397	sc->aac_queues = (struct aac_queue_table *)qaddr;
1398	ip->CommHeaderAddress = sc->aac_common_busaddr +
1399				((u_int32_t)sc->aac_queues -
1400				(u_int32_t)sc->aac_common);
1401	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1402
1403	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1404		AAC_HOST_NORM_CMD_ENTRIES;
1405	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1406		AAC_HOST_NORM_CMD_ENTRIES;
1407	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1408		AAC_HOST_HIGH_CMD_ENTRIES;
1409	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1410		AAC_HOST_HIGH_CMD_ENTRIES;
1411	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1412		AAC_ADAP_NORM_CMD_ENTRIES;
1413	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1414		AAC_ADAP_NORM_CMD_ENTRIES;
1415	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1416		AAC_ADAP_HIGH_CMD_ENTRIES;
1417	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1418		AAC_ADAP_HIGH_CMD_ENTRIES;
1419	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1420		AAC_HOST_NORM_RESP_ENTRIES;
1421	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1422		AAC_HOST_NORM_RESP_ENTRIES;
1423	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1424		AAC_HOST_HIGH_RESP_ENTRIES;
1425	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1426		AAC_HOST_HIGH_RESP_ENTRIES;
1427	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1428		AAC_ADAP_NORM_RESP_ENTRIES;
1429	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1430		AAC_ADAP_NORM_RESP_ENTRIES;
1431	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1432		AAC_ADAP_HIGH_RESP_ENTRIES;
1433	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1434		AAC_ADAP_HIGH_RESP_ENTRIES;
1435	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1436		&sc->aac_queues->qt_HostNormCmdQueue[0];
1437	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1438		&sc->aac_queues->qt_HostHighCmdQueue[0];
1439	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1440		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1441	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1442		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1443	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1444		&sc->aac_queues->qt_HostNormRespQueue[0];
1445	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1446		&sc->aac_queues->qt_HostHighRespQueue[0];
1447	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1448		&sc->aac_queues->qt_AdapNormRespQueue[0];
1449	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1450		&sc->aac_queues->qt_AdapHighRespQueue[0];
1451
1452	/*
1453	 * Do controller-type-specific initialisation
1454	 */
1455	switch (sc->aac_hwif) {
1456	case AAC_HWIF_I960RX:
1457		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1458		break;
1459	}
1460
1461	/*
1462	 * Give the init structure to the controller.
1463	 */
1464	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1465			     sc->aac_common_busaddr +
1466			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1467			     NULL)) {
1468		device_printf(sc->aac_dev,
1469			      "error establishing init structure\n");
1470		return(EIO);
1471	}
1472
1473	return(0);
1474}
1475
1476/*
1477 * Send a synchronous command to the controller and wait for a result.
1478 */
1479static int
1480aac_sync_command(struct aac_softc *sc, u_int32_t command,
1481		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1482		 u_int32_t *sp)
1483{
1484	time_t then;
1485	u_int32_t status;
1486
1487	debug_called(3);
1488
1489	/* populate the mailbox */
1490	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1491
1492	/* ensure the sync command doorbell flag is cleared */
1493	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1494
1495	/* then set it to signal the adapter */
1496	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1497
1498	/* spin waiting for the command to complete */
1499	then = time_second;
1500	do {
1501		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1502			debug(2, "timed out");
1503			return(EIO);
1504		}
1505	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1506
1507	/* clear the completion flag */
1508	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1509
1510	/* get the command status */
1511	status = AAC_GET_MAILBOXSTATUS(sc);
1512	if (sp != NULL)
1513		*sp = status;
1514	return(0);
1515}
1516
1517/*
1518 * Grab the sync fib area.
1519 */
1520int
1521aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1522{
1523
1524	/*
1525	 * If the force flag is set, the system is shutting down, or in
1526	 * trouble.  Ignore the mutex.
1527	 */
1528	if (!(flags & AAC_SYNC_LOCK_FORCE))
1529		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1530
1531	*fib = &sc->aac_common->ac_sync_fib;
1532
1533	return (1);
1534}
1535
1536/*
1537 * Release the sync fib area.
1538 */
1539void
1540aac_release_sync_fib(struct aac_softc *sc)
1541{
1542
1543	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1544}
1545
1546/*
1547 * Send a synchronous FIB to the controller and wait for a result.
1548 */
1549int
1550aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1551		 struct aac_fib *fib, u_int16_t datasize)
1552{
1553	debug_called(3);
1554
1555	if (datasize > AAC_FIB_DATASIZE)
1556		return(EINVAL);
1557
1558	/*
1559	 * Set up the sync FIB
1560	 */
1561	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1562				AAC_FIBSTATE_INITIALISED |
1563				AAC_FIBSTATE_EMPTY;
1564	fib->Header.XferState |= xferstate;
1565	fib->Header.Command = command;
1566	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1567	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1568	fib->Header.SenderSize = sizeof(struct aac_fib);
1569	fib->Header.SenderFibAddress = (u_int32_t)fib;
1570	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1571					 offsetof(struct aac_common,
1572						  ac_sync_fib);
1573
1574	/*
1575	 * Give the FIB to the controller, wait for a response.
1576	 */
1577	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1578			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1579		debug(2, "IO error");
1580		return(EIO);
1581	}
1582
1583	return (0);
1584}
1585
1586/*
1587 * Adapter-space FIB queue manipulation
1588 *
1589 * Note that the queue implementation here is a little funky; neither the PI or
1590 * CI will ever be zero.  This behaviour is a controller feature.
1591 */
1592static struct {
1593	int		size;
1594	int		notify;
1595} aac_qinfo[] = {
1596	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1597	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1598	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1599	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1600	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1601	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1602	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1603	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1604};
1605
1606/*
1607 * Atomically insert an entry into the nominated queue, returns 0 on success or
1608 * EBUSY if the queue is full.
1609 *
1610 * Note: it would be more efficient to defer notifying the controller in
1611 *	 the case where we may be inserting several entries in rapid succession,
1612 *	 but implementing this usefully may be difficult (it would involve a
1613 *	 separate queue/notify interface).
1614 */
1615static int
1616aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1617{
1618	u_int32_t pi, ci;
1619	int s, error;
1620	u_int32_t fib_size;
1621	u_int32_t fib_addr;
1622
1623	debug_called(3);
1624
1625	fib_size = cm->cm_fib->Header.Size;
1626	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1627
1628	s = splbio();
1629
1630	/* get the producer/consumer indices */
1631	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1632	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1633
1634	/* wrap the queue? */
1635	if (pi >= aac_qinfo[queue].size)
1636		pi = 0;
1637
1638	/* check for queue full */
1639	if ((pi + 1) == ci) {
1640		error = EBUSY;
1641		goto out;
1642	}
1643
1644	/* populate queue entry */
1645	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1646	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1647
1648	/* update producer index */
1649	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1650
1651	/*
1652	 * To avoid a race with its completion interrupt, place this command on
1653	 * the busy queue prior to advertising it to the controller.
1654	 */
1655	aac_enqueue_busy(cm);
1656
1657	/* notify the adapter if we know how */
1658	if (aac_qinfo[queue].notify != 0)
1659		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1660
1661	error = 0;
1662
1663out:
1664	splx(s);
1665	return(error);
1666}
1667
1668/*
1669 * Atomically remove one entry from the nominated queue, returns 0 on
1670 * success or ENOENT if the queue is empty.
1671 */
1672static int
1673aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1674		struct aac_fib **fib_addr)
1675{
1676	u_int32_t pi, ci;
1677	int s, error;
1678	int notify;
1679
1680	debug_called(3);
1681
1682	s = splbio();
1683
1684	/* get the producer/consumer indices */
1685	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1686	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1687
1688	/* check for queue empty */
1689	if (ci == pi) {
1690		error = ENOENT;
1691		goto out;
1692	}
1693
1694	notify = 0;
1695	if (ci == pi + 1)
1696		notify++;
1697
1698	/* wrap the queue? */
1699	if (ci >= aac_qinfo[queue].size)
1700		ci = 0;
1701
1702	/* fetch the entry */
1703	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1704	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1705				       ci)->aq_fib_addr;
1706
1707	/* update consumer index */
1708	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1709
1710	/* if we have made the queue un-full, notify the adapter */
1711	if (notify && (aac_qinfo[queue].notify != 0))
1712		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1713	error = 0;
1714
1715out:
1716	splx(s);
1717	return(error);
1718}
1719
1720/*
1721 * Put our response to an Adapter Initialed Fib on the response queue
1722 */
1723static int
1724aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1725{
1726	u_int32_t pi, ci;
1727	int s, error;
1728	u_int32_t fib_size;
1729	u_int32_t fib_addr;
1730
1731	debug_called(1);
1732
1733	/* Tell the adapter where the FIB is */
1734	fib_size = fib->Header.Size;
1735	fib_addr = fib->Header.SenderFibAddress;
1736	fib->Header.ReceiverFibAddress = fib_addr;
1737
1738	s = splbio();
1739
1740	/* get the producer/consumer indices */
1741	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1742	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1743
1744	/* wrap the queue? */
1745	if (pi >= aac_qinfo[queue].size)
1746		pi = 0;
1747
1748	/* check for queue full */
1749	if ((pi + 1) == ci) {
1750		error = EBUSY;
1751		goto out;
1752	}
1753
1754	/* populate queue entry */
1755	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1756	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1757
1758	/* update producer index */
1759	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1760
1761	/* notify the adapter if we know how */
1762	if (aac_qinfo[queue].notify != 0)
1763		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1764
1765	error = 0;
1766
1767out:
1768	splx(s);
1769	return(error);
1770}
1771
1772/*
1773 * Check for commands that have been outstanding for a suspiciously long time,
1774 * and complain about them.
1775 */
1776static void
1777aac_timeout(struct aac_softc *sc)
1778{
1779	int s;
1780	struct aac_command *cm;
1781	time_t deadline;
1782
1783#if 0
1784	/* simulate an interrupt to handle possibly-missed interrupts */
1785	/*
1786	 * XXX This was done to work around another bug which has since been
1787	 * fixed.  It is dangerous anyways because you don't want multiple
1788	 * threads in the interrupt handler at the same time!  If calling
1789	 * is deamed neccesary in the future, proper mutexes must be used.
1790	 */
1791	s = splbio();
1792	aac_intr(sc);
1793	splx(s);
1794
1795	/* kick the I/O queue to restart it in the case of deadlock */
1796	aac_startio(sc);
1797#endif
1798
1799	/*
1800	 * traverse the busy command list, bitch about late commands once
1801	 * only.
1802	 */
1803	deadline = time_second - AAC_CMD_TIMEOUT;
1804	s = splbio();
1805	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1806		if ((cm->cm_timestamp  < deadline)
1807			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1808			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1809			device_printf(sc->aac_dev,
1810				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1811				      cm, (int)(time_second-cm->cm_timestamp));
1812			AAC_PRINT_FIB(sc, cm->cm_fib);
1813		}
1814	}
1815	splx(s);
1816
1817	/* reset the timer for next time */
1818	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1819	return;
1820}
1821
1822/*
1823 * Interface Function Vectors
1824 */
1825
1826/*
1827 * Read the current firmware status word.
1828 */
1829static int
1830aac_sa_get_fwstatus(struct aac_softc *sc)
1831{
1832	debug_called(3);
1833
1834	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1835}
1836
1837static int
1838aac_rx_get_fwstatus(struct aac_softc *sc)
1839{
1840	debug_called(3);
1841
1842	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1843}
1844
1845static int
1846aac_fa_get_fwstatus(struct aac_softc *sc)
1847{
1848	int val;
1849
1850	debug_called(3);
1851
1852	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1853	return (val);
1854}
1855
1856/*
1857 * Notify the controller of a change in a given queue
1858 */
1859
1860static void
1861aac_sa_qnotify(struct aac_softc *sc, int qbit)
1862{
1863	debug_called(3);
1864
1865	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1866}
1867
1868static void
1869aac_rx_qnotify(struct aac_softc *sc, int qbit)
1870{
1871	debug_called(3);
1872
1873	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1874}
1875
1876static void
1877aac_fa_qnotify(struct aac_softc *sc, int qbit)
1878{
1879	debug_called(3);
1880
1881	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1882	AAC_FA_HACK(sc);
1883}
1884
1885/*
1886 * Get the interrupt reason bits
1887 */
1888static int
1889aac_sa_get_istatus(struct aac_softc *sc)
1890{
1891	debug_called(3);
1892
1893	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1894}
1895
1896static int
1897aac_rx_get_istatus(struct aac_softc *sc)
1898{
1899	debug_called(3);
1900
1901	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1902}
1903
1904static int
1905aac_fa_get_istatus(struct aac_softc *sc)
1906{
1907	int val;
1908
1909	debug_called(3);
1910
1911	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1912	return (val);
1913}
1914
1915/*
1916 * Clear some interrupt reason bits
1917 */
1918static void
1919aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1920{
1921	debug_called(3);
1922
1923	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1924}
1925
1926static void
1927aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1928{
1929	debug_called(3);
1930
1931	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1932}
1933
1934static void
1935aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1936{
1937	debug_called(3);
1938
1939	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1940	AAC_FA_HACK(sc);
1941}
1942
1943/*
1944 * Populate the mailbox and set the command word
1945 */
1946static void
1947aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1948		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1949{
1950	debug_called(4);
1951
1952	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1953	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1954	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1955	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1956	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1957}
1958
1959static void
1960aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1961		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1962{
1963	debug_called(4);
1964
1965	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1966	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1967	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1968	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1969	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1970}
1971
1972static void
1973aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1974		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1975{
1976	debug_called(4);
1977
1978	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
1979	AAC_FA_HACK(sc);
1980	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
1981	AAC_FA_HACK(sc);
1982	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
1983	AAC_FA_HACK(sc);
1984	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
1985	AAC_FA_HACK(sc);
1986	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
1987	AAC_FA_HACK(sc);
1988}
1989
1990/*
1991 * Fetch the immediate command status word
1992 */
1993static int
1994aac_sa_get_mailboxstatus(struct aac_softc *sc)
1995{
1996	debug_called(4);
1997
1998	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1999}
2000
2001static int
2002aac_rx_get_mailboxstatus(struct aac_softc *sc)
2003{
2004	debug_called(4);
2005
2006	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2007}
2008
2009static int
2010aac_fa_get_mailboxstatus(struct aac_softc *sc)
2011{
2012	int val;
2013
2014	debug_called(4);
2015
2016	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2017	return (val);
2018}
2019
2020/*
2021 * Set/clear interrupt masks
2022 */
2023static void
2024aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2025{
2026	debug(2, "%sable interrupts", enable ? "en" : "dis");
2027
2028	if (enable) {
2029		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2030	} else {
2031		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2032	}
2033}
2034
2035static void
2036aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2037{
2038	debug(2, "%sable interrupts", enable ? "en" : "dis");
2039
2040	if (enable) {
2041		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2042	} else {
2043		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2044	}
2045}
2046
2047static void
2048aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2049{
2050	debug(2, "%sable interrupts", enable ? "en" : "dis");
2051
2052	if (enable) {
2053		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2054		AAC_FA_HACK(sc);
2055	} else {
2056		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2057		AAC_FA_HACK(sc);
2058	}
2059}
2060
2061/*
2062 * Debugging and Diagnostics
2063 */
2064
2065/*
2066 * Print some information about the controller.
2067 */
2068static void
2069aac_describe_controller(struct aac_softc *sc)
2070{
2071	struct aac_fib *fib;
2072	struct aac_adapter_info	*info;
2073
2074	debug_called(2);
2075
2076	aac_alloc_sync_fib(sc, &fib, 0);
2077
2078	fib->data[0] = 0;
2079	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2080		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2081		aac_release_sync_fib(sc);
2082		return;
2083	}
2084	info = (struct aac_adapter_info *)&fib->data[0];
2085
2086	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2087		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2088		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2089		      aac_describe_code(aac_battery_platform,
2090					info->batteryPlatform));
2091
2092	/* save the kernel revision structure for later use */
2093	sc->aac_revision = info->KernelRevision;
2094	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2095		      info->KernelRevision.external.comp.major,
2096		      info->KernelRevision.external.comp.minor,
2097		      info->KernelRevision.external.comp.dash,
2098		      info->KernelRevision.buildNumber,
2099		      (u_int32_t)(info->SerialNumber & 0xffffff));
2100
2101	aac_release_sync_fib(sc);
2102}
2103
2104/*
2105 * Look up a text description of a numeric error code and return a pointer to
2106 * same.
2107 */
2108static char *
2109aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2110{
2111	int i;
2112
2113	for (i = 0; table[i].string != NULL; i++)
2114		if (table[i].code == code)
2115			return(table[i].string);
2116	return(table[i + 1].string);
2117}
2118
2119/*
2120 * Management Interface
2121 */
2122
2123static int
2124aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2125{
2126	struct aac_softc *sc;
2127
2128	debug_called(2);
2129
2130	sc = dev->si_drv1;
2131
2132	/* Check to make sure the device isn't already open */
2133	if (sc->aac_state & AAC_STATE_OPEN) {
2134		return EBUSY;
2135	}
2136	sc->aac_state |= AAC_STATE_OPEN;
2137
2138	return 0;
2139}
2140
2141static int
2142aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2143{
2144	struct aac_softc *sc;
2145
2146	debug_called(2);
2147
2148	sc = dev->si_drv1;
2149
2150	/* Mark this unit as no longer open  */
2151	sc->aac_state &= ~AAC_STATE_OPEN;
2152
2153	return 0;
2154}
2155
2156static int
2157aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2158{
2159	union aac_statrequest *as;
2160	struct aac_softc *sc;
2161	int error = 0;
2162	int i;
2163
2164	debug_called(2);
2165
2166	as = (union aac_statrequest *)arg;
2167	sc = dev->si_drv1;
2168
2169	switch (cmd) {
2170	case AACIO_STATS:
2171		switch (as->as_item) {
2172		case AACQ_FREE:
2173		case AACQ_BIO:
2174		case AACQ_READY:
2175		case AACQ_BUSY:
2176		case AACQ_COMPLETE:
2177			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2178			      sizeof(struct aac_qstat));
2179			break;
2180		default:
2181			error = ENOENT;
2182			break;
2183		}
2184	break;
2185
2186	case FSACTL_SENDFIB:
2187		arg = *(caddr_t*)arg;
2188	case FSACTL_LNX_SENDFIB:
2189		debug(1, "FSACTL_SENDFIB");
2190		error = aac_ioctl_sendfib(sc, arg);
2191		break;
2192	case FSACTL_AIF_THREAD:
2193	case FSACTL_LNX_AIF_THREAD:
2194		debug(1, "FSACTL_AIF_THREAD");
2195		error = EINVAL;
2196		break;
2197	case FSACTL_OPEN_GET_ADAPTER_FIB:
2198		arg = *(caddr_t*)arg;
2199	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2200		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2201		/*
2202		 * Pass the caller out an AdapterFibContext.
2203		 *
2204		 * Note that because we only support one opener, we
2205		 * basically ignore this.  Set the caller's context to a magic
2206		 * number just in case.
2207		 *
2208		 * The Linux code hands the driver a pointer into kernel space,
2209		 * and then trusts it when the caller hands it back.  Aiee!
2210		 * Here, we give it the proc pointer of the per-adapter aif
2211		 * thread. It's only used as a sanity check in other calls.
2212		 */
2213		i = (int)sc->aifthread;
2214		error = copyout(&i, arg, sizeof(i));
2215		break;
2216	case FSACTL_GET_NEXT_ADAPTER_FIB:
2217		arg = *(caddr_t*)arg;
2218	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2219		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2220		error = aac_getnext_aif(sc, arg);
2221		break;
2222	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2223	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2224		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2225		/* don't do anything here */
2226		break;
2227	case FSACTL_MINIPORT_REV_CHECK:
2228		arg = *(caddr_t*)arg;
2229	case FSACTL_LNX_MINIPORT_REV_CHECK:
2230		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2231		error = aac_rev_check(sc, arg);
2232		break;
2233	case FSACTL_QUERY_DISK:
2234		arg = *(caddr_t*)arg;
2235	case FSACTL_LNX_QUERY_DISK:
2236		debug(1, "FSACTL_QUERY_DISK");
2237		error = aac_query_disk(sc, arg);
2238			break;
2239	case FSACTL_DELETE_DISK:
2240	case FSACTL_LNX_DELETE_DISK:
2241		/*
2242		 * We don't trust the underland to tell us when to delete a
2243		 * container, rather we rely on an AIF coming from the
2244		 * controller
2245		 */
2246		error = 0;
2247		break;
2248	default:
2249		debug(1, "unsupported cmd 0x%lx\n", cmd);
2250		error = EINVAL;
2251		break;
2252	}
2253	return(error);
2254}
2255
2256static int
2257aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2258{
2259	struct aac_softc *sc;
2260	int revents;
2261
2262	sc = dev->si_drv1;
2263	revents = 0;
2264
2265	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2266	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2267		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2268			revents |= poll_events & (POLLIN | POLLRDNORM);
2269	}
2270	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2271
2272	if (revents == 0) {
2273		if (poll_events & (POLLIN | POLLRDNORM))
2274			selrecord(td, &sc->rcv_select);
2275	}
2276
2277	return (revents);
2278}
2279
2280/*
2281 * Send a FIB supplied from userspace
2282 */
2283static int
2284aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2285{
2286	struct aac_command *cm;
2287	int size, error;
2288
2289	debug_called(2);
2290
2291	cm = NULL;
2292
2293	/*
2294	 * Get a command
2295	 */
2296	if (aac_alloc_command(sc, &cm)) {
2297		error = EBUSY;
2298		goto out;
2299	}
2300
2301	/*
2302	 * Fetch the FIB header, then re-copy to get data as well.
2303	 */
2304	if ((error = copyin(ufib, cm->cm_fib,
2305			    sizeof(struct aac_fib_header))) != 0)
2306		goto out;
2307	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2308	if (size > sizeof(struct aac_fib)) {
2309		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2310			      size, sizeof(struct aac_fib));
2311		size = sizeof(struct aac_fib);
2312	}
2313	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2314		goto out;
2315	cm->cm_fib->Header.Size = size;
2316	cm->cm_timestamp = time_second;
2317
2318	/*
2319	 * Pass the FIB to the controller, wait for it to complete.
2320	 */
2321	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2322		printf("aac_wait_command return %d\n", error);
2323		goto out;
2324	}
2325
2326	/*
2327	 * Copy the FIB and data back out to the caller.
2328	 */
2329	size = cm->cm_fib->Header.Size;
2330	if (size > sizeof(struct aac_fib)) {
2331		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2332			      size, sizeof(struct aac_fib));
2333		size = sizeof(struct aac_fib);
2334	}
2335	error = copyout(cm->cm_fib, ufib, size);
2336
2337out:
2338	if (cm != NULL) {
2339		aac_release_command(cm);
2340	}
2341	return(error);
2342}
2343
2344/*
2345 * Handle an AIF sent to us by the controller; queue it for later reference.
2346 * If the queue fills up, then drop the older entries.
2347 */
2348static void
2349aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2350{
2351	struct aac_aif_command *aif;
2352	struct aac_container *co, *co_next;
2353	struct aac_mntinfo *mi;
2354	struct aac_mntinforesp *mir = NULL;
2355	u_int16_t rsize;
2356	int next, found;
2357	int added = 0, i = 0;
2358
2359	debug_called(2);
2360
2361	aif = (struct aac_aif_command*)&fib->data[0];
2362	aac_print_aif(sc, aif);
2363
2364	/* Is it an event that we should care about? */
2365	switch (aif->command) {
2366	case AifCmdEventNotify:
2367		switch (aif->data.EN.type) {
2368		case AifEnAddContainer:
2369		case AifEnDeleteContainer:
2370			/*
2371			 * A container was added or deleted, but the message
2372			 * doesn't tell us anything else!  Re-enumerate the
2373			 * containers and sort things out.
2374			 */
2375			aac_alloc_sync_fib(sc, &fib, 0);
2376			mi = (struct aac_mntinfo *)&fib->data[0];
2377			do {
2378				/*
2379				 * Ask the controller for its containers one at
2380				 * a time.
2381				 * XXX What if the controller's list changes
2382				 * midway through this enumaration?
2383				 * XXX This should be done async.
2384				 */
2385				bzero(mi, sizeof(struct aac_mntinfo));
2386				mi->Command = VM_NameServe;
2387				mi->MntType = FT_FILESYS;
2388				mi->MntCount = i;
2389				rsize = sizeof(mir);
2390				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2391						 sizeof(struct aac_mntinfo))) {
2392					debug(2, "Error probing container %d\n",
2393					      i);
2394					continue;
2395				}
2396				mir = (struct aac_mntinforesp *)&fib->data[0];
2397				/*
2398				 * Check the container against our list.
2399				 * co->co_found was already set to 0 in a
2400				 * previous run.
2401				 */
2402				if ((mir->Status == ST_OK) &&
2403				    (mir->MntTable[0].VolType != CT_NONE)) {
2404					found = 0;
2405					TAILQ_FOREACH(co,
2406						      &sc->aac_container_tqh,
2407						      co_link) {
2408						if (co->co_mntobj.ObjectId ==
2409						    mir->MntTable[0].ObjectId) {
2410							co->co_found = 1;
2411							found = 1;
2412							break;
2413						}
2414					}
2415					/*
2416					 * If the container matched, continue
2417					 * in the list.
2418					 */
2419					if (found) {
2420						i++;
2421						continue;
2422					}
2423
2424					/*
2425					 * This is a new container.  Do all the
2426					 * appropriate things to set it up.						 */
2427					aac_add_container(sc, mir, 1);
2428					added = 1;
2429				}
2430				i++;
2431			} while ((i < mir->MntRespCount) &&
2432				 (i < AAC_MAX_CONTAINERS));
2433			aac_release_sync_fib(sc);
2434
2435			/*
2436			 * Go through our list of containers and see which ones
2437			 * were not marked 'found'.  Since the controller didn't
2438			 * list them they must have been deleted.  Do the
2439			 * appropriate steps to destroy the device.  Also reset
2440			 * the co->co_found field.
2441			 */
2442			co = TAILQ_FIRST(&sc->aac_container_tqh);
2443			while (co != NULL) {
2444				if (co->co_found == 0) {
2445					device_delete_child(sc->aac_dev,
2446							    co->co_disk);
2447					co_next = TAILQ_NEXT(co, co_link);
2448					AAC_LOCK_ACQUIRE(&sc->
2449							aac_container_lock);
2450					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2451						     co_link);
2452					AAC_LOCK_RELEASE(&sc->
2453							 aac_container_lock);
2454					FREE(co, M_AACBUF);
2455					co = co_next;
2456				} else {
2457					co->co_found = 0;
2458					co = TAILQ_NEXT(co, co_link);
2459				}
2460			}
2461
2462			/* Attach the newly created containers */
2463			if (added)
2464				bus_generic_attach(sc->aac_dev);
2465
2466				break;
2467
2468		default:
2469			break;
2470		}
2471
2472	default:
2473		break;
2474	}
2475
2476	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2477	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2479	if (next != sc->aac_aifq_tail) {
2480		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2481		sc->aac_aifq_head = next;
2482
2483		/* On the off chance that someone is sleeping for an aif... */
2484		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2485			wakeup(sc->aac_aifq);
2486		/* Wakeup any poll()ers */
2487		selwakeup(&sc->rcv_select);
2488	}
2489	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2490
2491	return;
2492}
2493
2494/*
2495 * Linux Management Interface
2496 * This is soon to be removed!
2497 */
2498
2499#ifdef AAC_COMPAT_LINUX
2500
2501#include <sys/proc.h>
2502#include <machine/../linux/linux.h>
2503#include <machine/../linux/linux_proto.h>
2504#include <compat/linux/linux_ioctl.h>
2505
2506/* There are multiple ioctl number ranges that need to be handled */
2507#define AAC_LINUX_IOCTL_MIN  0x0000
2508#define AAC_LINUX_IOCTL_MAX  0x21ff
2509
2510static linux_ioctl_function_t aac_linux_ioctl;
2511static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2512						 AAC_LINUX_IOCTL_MIN,
2513						 AAC_LINUX_IOCTL_MAX};
2514
2515SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2516	  linux_ioctl_register_handler, &aac_handler);
2517SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2518	  linux_ioctl_unregister_handler, &aac_handler);
2519
2520MODULE_DEPEND(aac, linux, 1, 1, 1);
2521
2522static int
2523aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2524{
2525	struct file *fp;
2526	u_long cmd;
2527	int error;
2528
2529	debug_called(2);
2530
2531	if ((error = fget(td, args->fd, &fp)) != 0)
2532		return (error);
2533	cmd = args->cmd;
2534
2535	/*
2536	 * Pass the ioctl off to our standard handler.
2537	 */
2538	error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2539	fdrop(fp, td);
2540	return (error);
2541}
2542
2543#endif
2544
2545/*
2546 * Return the Revision of the driver to userspace and check to see if the
2547 * userspace app is possibly compatible.  This is extremely bogus since
2548 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2549 * returning what the card reported.
2550 */
2551static int
2552aac_rev_check(struct aac_softc *sc, caddr_t udata)
2553{
2554	struct aac_rev_check rev_check;
2555	struct aac_rev_check_resp rev_check_resp;
2556	int error = 0;
2557
2558	debug_called(2);
2559
2560	/*
2561	 * Copyin the revision struct from userspace
2562	 */
2563	if ((error = copyin(udata, (caddr_t)&rev_check,
2564			sizeof(struct aac_rev_check))) != 0) {
2565		return error;
2566	}
2567
2568	debug(2, "Userland revision= %d\n",
2569	      rev_check.callingRevision.buildNumber);
2570
2571	/*
2572	 * Doctor up the response struct.
2573	 */
2574	rev_check_resp.possiblyCompatible = 1;
2575	rev_check_resp.adapterSWRevision.external.ul =
2576	    sc->aac_revision.external.ul;
2577	rev_check_resp.adapterSWRevision.buildNumber =
2578	    sc->aac_revision.buildNumber;
2579
2580	return(copyout((caddr_t)&rev_check_resp, udata,
2581			sizeof(struct aac_rev_check_resp)));
2582}
2583
2584/*
2585 * Pass the caller the next AIF in their queue
2586 */
2587static int
2588aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2589{
2590	struct get_adapter_fib_ioctl agf;
2591	int error, s;
2592
2593	debug_called(2);
2594
2595	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2596
2597		/*
2598		 * Check the magic number that we gave the caller.
2599		 */
2600		if (agf.AdapterFibContext != (int)sc->aifthread) {
2601			error = EFAULT;
2602		} else {
2603
2604			s = splbio();
2605			error = aac_return_aif(sc, agf.AifFib);
2606
2607			if ((error == EAGAIN) && (agf.Wait)) {
2608				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2609				while (error == EAGAIN) {
2610					error = tsleep(sc->aac_aifq, PRIBIO |
2611						       PCATCH, "aacaif", 0);
2612					if (error == 0)
2613						error = aac_return_aif(sc,
2614						    agf.AifFib);
2615				}
2616				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2617			}
2618		splx(s);
2619		}
2620	}
2621	return(error);
2622}
2623
2624/*
2625 * Hand the next AIF off the top of the queue out to userspace.
2626 */
2627static int
2628aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2629{
2630	int error;
2631
2632	debug_called(2);
2633
2634	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2635	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2636		error = EAGAIN;
2637	} else {
2638		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2639				sizeof(struct aac_aif_command));
2640		if (error)
2641			printf("aac_return_aif: copyout returned %d\n", error);
2642		if (!error)
2643			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2644					    AAC_AIFQ_LENGTH;
2645	}
2646	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2647	return(error);
2648}
2649
2650/*
2651 * Give the userland some information about the container.  The AAC arch
2652 * expects the driver to be a SCSI passthrough type driver, so it expects
2653 * the containers to have b:t:l numbers.  Fake it.
2654 */
2655static int
2656aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2657{
2658	struct aac_query_disk query_disk;
2659	struct aac_container *co;
2660	struct aac_disk	*disk;
2661	int error, id;
2662
2663	debug_called(2);
2664
2665	disk = NULL;
2666
2667	error = copyin(uptr, (caddr_t)&query_disk,
2668		       sizeof(struct aac_query_disk));
2669	if (error)
2670		return (error);
2671
2672	id = query_disk.ContainerNumber;
2673	if (id == -1)
2674		return (EINVAL);
2675
2676	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2677	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2678		if (co->co_mntobj.ObjectId == id)
2679			break;
2680		}
2681
2682		if (co == NULL) {
2683			query_disk.Valid = 0;
2684			query_disk.Locked = 0;
2685			query_disk.Deleted = 1;		/* XXX is this right? */
2686		} else {
2687			disk = device_get_softc(co->co_disk);
2688			query_disk.Valid = 1;
2689			query_disk.Locked =
2690			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2691			query_disk.Deleted = 0;
2692			query_disk.Bus = device_get_unit(sc->aac_dev);
2693			query_disk.Target = disk->unit;
2694			query_disk.Lun = 0;
2695			query_disk.UnMapped = 0;
2696			bcopy(disk->ad_dev_t->si_name,
2697			      &query_disk.diskDeviceName[0], 10);
2698		}
2699	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2700
2701	error = copyout((caddr_t)&query_disk, uptr,
2702			sizeof(struct aac_query_disk));
2703
2704	return (error);
2705}
2706
2707static void
2708aac_get_bus_info(struct aac_softc *sc)
2709{
2710	struct aac_fib *fib;
2711	struct aac_ctcfg *c_cmd;
2712	struct aac_ctcfg_resp *c_resp;
2713	struct aac_vmioctl *vmi;
2714	struct aac_vmi_businf_resp *vmi_resp;
2715	struct aac_getbusinf businfo;
2716	struct aac_cam_inf *caminf;
2717	device_t child;
2718	int i, found, error;
2719
2720	aac_alloc_sync_fib(sc, &fib, 0);
2721	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2722	bzero(c_cmd, sizeof(struct aac_ctcfg));
2723
2724	c_cmd->Command = VM_ContainerConfig;
2725	c_cmd->cmd = CT_GET_SCSI_METHOD;
2726	c_cmd->param = 0;
2727
2728	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2729	    sizeof(struct aac_ctcfg));
2730	if (error) {
2731		device_printf(sc->aac_dev, "Error %d sending "
2732		    "VM_ContainerConfig command\n", error);
2733		aac_release_sync_fib(sc);
2734		return;
2735	}
2736
2737	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2738	if (c_resp->Status != ST_OK) {
2739		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2740		    c_resp->Status);
2741		aac_release_sync_fib(sc);
2742		return;
2743	}
2744
2745	sc->scsi_method_id = c_resp->param;
2746
2747	vmi = (struct aac_vmioctl *)&fib->data[0];
2748	bzero(vmi, sizeof(struct aac_vmioctl));
2749
2750	vmi->Command = VM_Ioctl;
2751	vmi->ObjType = FT_DRIVE;
2752	vmi->MethId = sc->scsi_method_id;
2753	vmi->ObjId = 0;
2754	vmi->IoctlCmd = GetBusInfo;
2755
2756	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2757	    sizeof(struct aac_vmioctl));
2758	if (error) {
2759		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2760		    error);
2761		aac_release_sync_fib(sc);
2762		return;
2763	}
2764
2765	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2766	if (vmi_resp->Status != ST_OK) {
2767		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2768		    vmi_resp->Status);
2769		aac_release_sync_fib(sc);
2770		return;
2771	}
2772
2773	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2774	aac_release_sync_fib(sc);
2775
2776	found = 0;
2777	for (i = 0; i < businfo.BusCount; i++) {
2778		if (businfo.BusValid[i] != AAC_BUS_VALID)
2779			continue;
2780
2781		MALLOC(caminf, struct aac_cam_inf *,
2782		    sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2783		if (caminf == NULL)
2784			continue;
2785
2786		child = device_add_child(sc->aac_dev, "aacp", -1);
2787		if (child == NULL) {
2788			device_printf(sc->aac_dev, "device_add_child failed\n");
2789			continue;
2790		}
2791
2792		caminf->TargetsPerBus = businfo.TargetsPerBus;
2793		caminf->BusNumber = i;
2794		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2795		caminf->aac_sc = sc;
2796
2797		device_set_ivars(child, caminf);
2798		device_set_desc(child, "SCSI Passthrough Bus");
2799
2800		found = 1;
2801	}
2802
2803	if (found)
2804		bus_generic_attach(sc->aac_dev);
2805
2806	return;
2807}
2808