aac.c revision 95536
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 95536 2002-04-27 01:31:17Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/file.h>
61#include <sys/signalvar.h>
62#include <sys/time.h>
63#include <sys/eventhandler.h>
64
65#include <machine/bus_memio.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68
69#include <dev/aac/aacreg.h>
70#include <dev/aac/aac_ioctl.h>
71#include <dev/aac/aacvar.h>
72#include <dev/aac/aac_tables.h>
73#include <dev/aac/aac_cam.h>
74
75static void	aac_startup(void *arg);
76static void	aac_add_container(struct aac_softc *sc,
77				  struct aac_mntinforesp *mir, int f);
78static void	aac_get_bus_info(struct aac_softc *sc);
79
80/* Command Processing */
81static void	aac_timeout(struct aac_softc *sc);
82static int	aac_start(struct aac_command *cm);
83static void	aac_complete(void *context, int pending);
84static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
85static void	aac_bio_complete(struct aac_command *cm);
86static int	aac_wait_command(struct aac_command *cm, int timeout);
87static void	aac_host_command(struct aac_softc *sc);
88static void	aac_host_response(struct aac_softc *sc);
89
90/* Command Buffer Management */
91static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
92				       int nseg, int error);
93static int	aac_alloc_commands(struct aac_softc *sc);
94static void	aac_free_commands(struct aac_softc *sc);
95static void	aac_map_command(struct aac_command *cm);
96static void	aac_unmap_command(struct aac_command *cm);
97
98/* Hardware Interface */
99static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
100			       int error);
101static int	aac_check_firmware(struct aac_softc *sc);
102static int	aac_init(struct aac_softc *sc);
103static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
104				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
105				 u_int32_t arg3, u_int32_t *sp);
106static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
107				struct aac_command *cm);
108static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
109				u_int32_t *fib_size, struct aac_fib **fib_addr);
110static int	aac_enqueue_response(struct aac_softc *sc, int queue,
111				     struct aac_fib *fib);
112
113/* Falcon/PPC interface */
114static int	aac_fa_get_fwstatus(struct aac_softc *sc);
115static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
116static int	aac_fa_get_istatus(struct aac_softc *sc);
117static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
118static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
119				   u_int32_t arg0, u_int32_t arg1,
120				   u_int32_t arg2, u_int32_t arg3);
121static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
122static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
123
124struct aac_interface aac_fa_interface = {
125	aac_fa_get_fwstatus,
126	aac_fa_qnotify,
127	aac_fa_get_istatus,
128	aac_fa_clear_istatus,
129	aac_fa_set_mailbox,
130	aac_fa_get_mailboxstatus,
131	aac_fa_set_interrupts
132};
133
134/* StrongARM interface */
135static int	aac_sa_get_fwstatus(struct aac_softc *sc);
136static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
137static int	aac_sa_get_istatus(struct aac_softc *sc);
138static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
139static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
140				   u_int32_t arg0, u_int32_t arg1,
141				   u_int32_t arg2, u_int32_t arg3);
142static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
143static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
144
145struct aac_interface aac_sa_interface = {
146	aac_sa_get_fwstatus,
147	aac_sa_qnotify,
148	aac_sa_get_istatus,
149	aac_sa_clear_istatus,
150	aac_sa_set_mailbox,
151	aac_sa_get_mailboxstatus,
152	aac_sa_set_interrupts
153};
154
155/* i960Rx interface */
156static int	aac_rx_get_fwstatus(struct aac_softc *sc);
157static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
158static int	aac_rx_get_istatus(struct aac_softc *sc);
159static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
160static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
161				   u_int32_t arg0, u_int32_t arg1,
162				   u_int32_t arg2, u_int32_t arg3);
163static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
164static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
165
166struct aac_interface aac_rx_interface = {
167	aac_rx_get_fwstatus,
168	aac_rx_qnotify,
169	aac_rx_get_istatus,
170	aac_rx_clear_istatus,
171	aac_rx_set_mailbox,
172	aac_rx_get_mailboxstatus,
173	aac_rx_set_interrupts
174};
175
176/* Debugging and Diagnostics */
177static void	aac_describe_controller(struct aac_softc *sc);
178static char	*aac_describe_code(struct aac_code_lookup *table,
179				   u_int32_t code);
180
181/* Management Interface */
182static d_open_t		aac_open;
183static d_close_t	aac_close;
184static d_ioctl_t	aac_ioctl;
185static d_poll_t		aac_poll;
186static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
187static void		aac_handle_aif(struct aac_softc *sc,
188					   struct aac_fib *fib);
189static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
190static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
191static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
192static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
193
194#define AAC_CDEV_MAJOR	150
195
196static struct cdevsw aac_cdevsw = {
197	aac_open,		/* open */
198	aac_close,		/* close */
199	noread,			/* read */
200	nowrite,		/* write */
201	aac_ioctl,		/* ioctl */
202	aac_poll,		/* poll */
203	nommap,			/* mmap */
204	nostrategy,		/* strategy */
205	"aac",			/* name */
206	AAC_CDEV_MAJOR,		/* major */
207	nodump,			/* dump */
208	nopsize,		/* psize */
209	0,			/* flags */
210#if __FreeBSD_version < 500005
211	-1,			/* bmaj */
212#endif
213};
214
215MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
216
217/* sysctl node */
218SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
219
220/*
221 * Device Interface
222 */
223
224/*
225 * Initialise the controller and softc
226 */
227int
228aac_attach(struct aac_softc *sc)
229{
230	int error, unit;
231
232	debug_called(1);
233
234	/*
235	 * Initialise per-controller queues.
236	 */
237	aac_initq_free(sc);
238	aac_initq_ready(sc);
239	aac_initq_busy(sc);
240	aac_initq_complete(sc);
241	aac_initq_bio(sc);
242
243#if __FreeBSD_version >= 500005
244	/*
245	 * Initialise command-completion task.
246	 */
247	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
248#endif
249
250	/* disable interrupts before we enable anything */
251	AAC_MASK_INTERRUPTS(sc);
252
253	/* mark controller as suspended until we get ourselves organised */
254	sc->aac_state |= AAC_STATE_SUSPEND;
255
256	/*
257	 * Check that the firmware on the card is supported.
258	 */
259	if ((error = aac_check_firmware(sc)) != 0)
260		return(error);
261
262	/*
263	 * Allocate command structures.
264	 */
265	if ((error = aac_alloc_commands(sc)) != 0)
266		return(error);
267
268	/* Init the sync fib lock */
269	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
270
271	/*
272	 * Initialise the adapter.
273	 */
274	if ((error = aac_init(sc)) != 0)
275		return(error);
276
277	/*
278	 * Print a little information about the controller.
279	 */
280	aac_describe_controller(sc);
281
282	/*
283	 * Register to probe our containers later.
284	 */
285	TAILQ_INIT(&sc->aac_container_tqh);
286	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
287
288	/*
289	 * Lock for the AIF queue
290	 */
291	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
292
293	sc->aac_ich.ich_func = aac_startup;
294	sc->aac_ich.ich_arg = sc;
295	if (config_intrhook_establish(&sc->aac_ich) != 0) {
296		device_printf(sc->aac_dev,
297			      "can't establish configuration hook\n");
298		return(ENXIO);
299	}
300
301	/*
302	 * Make the control device.
303	 */
304	unit = device_get_unit(sc->aac_dev);
305	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
306				 "aac%d", unit);
307#if __FreeBSD_version > 500005
308	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
309	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
310#endif
311	sc->aac_dev_t->si_drv1 = sc;
312
313	/* Create the AIF thread */
314#if __FreeBSD_version > 500005
315	if (kthread_create((void(*)(void *))aac_host_command, sc,
316			   &sc->aifthread, 0, "aac%daif", unit))
317#else
318	if (kthread_create((void(*)(void *))aac_host_command, sc,
319			   &sc->aifthread, "aac%daif", unit))
320#endif
321		panic("Could not create AIF thread\n");
322
323	/* Register the shutdown method to only be called post-dump */
324	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
325				   SHUTDOWN_PRI_DEFAULT)) == NULL)
326	device_printf(sc->aac_dev, "shutdown event registration failed\n");
327
328	/* Register with CAM for the non-DASD devices */
329	if (!(sc->quirks & AAC_QUIRK_NOCAM))
330		aac_get_bus_info(sc);
331
332	return(0);
333}
334
335/*
336 * Probe for containers, create disks.
337 */
338static void
339aac_startup(void *arg)
340{
341	struct aac_softc *sc;
342	struct aac_fib *fib;
343	struct aac_mntinfo *mi;
344	struct aac_mntinforesp *mir = NULL;
345	int i = 0;
346
347	debug_called(1);
348
349	sc = (struct aac_softc *)arg;
350
351	/* disconnect ourselves from the intrhook chain */
352	config_intrhook_disestablish(&sc->aac_ich);
353
354	aac_alloc_sync_fib(sc, &fib, 0);
355	mi = (struct aac_mntinfo *)&fib->data[0];
356
357	/* loop over possible containers */
358	mi->Command = VM_NameServe;
359	mi->MntType = FT_FILESYS;
360	do {
361		/* request information on this container */
362		mi->MntCount = i;
363		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
364				 sizeof(struct aac_mntinfo))) {
365			debug(2, "error probing container %d", i);
366			continue;
367		}
368		/* check response size */
369
370		mir = (struct aac_mntinforesp *)&fib->data[0];
371		aac_add_container(sc, mir, 0);
372		i++;
373	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
374
375	aac_release_sync_fib(sc);
376
377	/* poke the bus to actually attach the child devices */
378	if (bus_generic_attach(sc->aac_dev))
379		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
380
381	/* mark the controller up */
382	sc->aac_state &= ~AAC_STATE_SUSPEND;
383
384	/* enable interrupts now */
385	AAC_UNMASK_INTERRUPTS(sc);
386
387	/* enable the timeout watchdog */
388	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
389}
390
391/*
392 * Create a device to respresent a new container
393 */
394static void
395aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
396{
397	struct aac_container *co;
398	device_t child;
399
400	/*
401	 * Check container volume type for validity.  Note that many of
402	 * the possible types may never show up.
403	 */
404	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
405		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
406		       M_NOWAIT);
407		if (co == NULL)
408			panic("Out of memory?!\n");
409		debug(1, "id %x  name '%.16s'  size %u  type %d",
410		      mir->MntTable[0].ObjectId,
411		      mir->MntTable[0].FileSystemName,
412		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
413
414		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
415			device_printf(sc->aac_dev, "device_add_child failed\n");
416		else
417			device_set_ivars(child, co);
418		device_set_desc(child, aac_describe_code(aac_container_types,
419				mir->MntTable[0].VolType));
420		co->co_disk = child;
421		co->co_found = f;
422		bcopy(&mir->MntTable[0], &co->co_mntobj,
423		      sizeof(struct aac_mntobj));
424		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
425		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
426		AAC_LOCK_RELEASE(&sc->aac_container_lock);
427	}
428}
429
430/*
431 * Free all of the resources associated with (sc)
432 *
433 * Should not be called if the controller is active.
434 */
435void
436aac_free(struct aac_softc *sc)
437{
438	debug_called(1);
439
440	/* remove the control device */
441	if (sc->aac_dev_t != NULL)
442		destroy_dev(sc->aac_dev_t);
443
444	/* throw away any FIB buffers, discard the FIB DMA tag */
445	if (sc->aac_fibs != NULL)
446		aac_free_commands(sc);
447	if (sc->aac_fib_dmat)
448		bus_dma_tag_destroy(sc->aac_fib_dmat);
449
450	/* destroy the common area */
451	if (sc->aac_common) {
452		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
453		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
454				sc->aac_common_dmamap);
455	}
456	if (sc->aac_common_dmat)
457		bus_dma_tag_destroy(sc->aac_common_dmat);
458
459	/* disconnect the interrupt handler */
460	if (sc->aac_intr)
461		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
462	if (sc->aac_irq != NULL)
463		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
464				     sc->aac_irq);
465
466	/* destroy data-transfer DMA tag */
467	if (sc->aac_buffer_dmat)
468		bus_dma_tag_destroy(sc->aac_buffer_dmat);
469
470	/* destroy the parent DMA tag */
471	if (sc->aac_parent_dmat)
472		bus_dma_tag_destroy(sc->aac_parent_dmat);
473
474	/* release the register window mapping */
475	if (sc->aac_regs_resource != NULL)
476		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
477				     sc->aac_regs_rid, sc->aac_regs_resource);
478}
479
480/*
481 * Disconnect from the controller completely, in preparation for unload.
482 */
483int
484aac_detach(device_t dev)
485{
486	struct aac_softc *sc;
487#if AAC_BROKEN
488	int error;
489#endif
490
491	debug_called(1);
492
493	sc = device_get_softc(dev);
494
495	if (sc->aac_state & AAC_STATE_OPEN)
496	return(EBUSY);
497
498#if AAC_BROKEN
499	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500		sc->aifflags |= AAC_AIFFLAGS_EXIT;
501		wakeup(sc->aifthread);
502		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
503	}
504
505	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506		panic("Cannot shutdown AIF thread\n");
507
508	if ((error = aac_shutdown(dev)))
509		return(error);
510
511	aac_free(sc);
512
513	return(0);
514#else
515	return (EBUSY);
516#endif
517}
518
519/*
520 * Bring the controller down to a dormant state and detach all child devices.
521 *
522 * This function is called before detach or system shutdown.
523 *
524 * Note that we can assume that the bioq on the controller is empty, as we won't
525 * allow shutdown if any device is open.
526 */
527int
528aac_shutdown(device_t dev)
529{
530	struct aac_softc *sc;
531	struct aac_fib *fib;
532	struct aac_close_command *cc;
533	int s;
534
535	debug_called(1);
536
537	sc = device_get_softc(dev);
538
539	s = splbio();
540
541	sc->aac_state |= AAC_STATE_SUSPEND;
542
543	/*
544	 * Send a Container shutdown followed by a HostShutdown FIB to the
545	 * controller to convince it that we don't want to talk to it anymore.
546	 * We've been closed and all I/O completed already
547	 */
548	device_printf(sc->aac_dev, "shutting down controller...");
549
550	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551	cc = (struct aac_close_command *)&fib->data[0];
552
553	cc->Command = VM_CloseAll;
554	cc->ContainerId = 0xffffffff;
555	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
556	    sizeof(struct aac_close_command)))
557		printf("FAILED.\n");
558	else {
559		fib->data[0] = 0;
560		/*
561		 * XXX Issuing this command to the controller makes it shut down
562		 * but also keeps it from coming back up without a reset of the
563		 * PCI bus.  This is not desirable if you are just unloading the
564		 * driver module with the intent to reload it later.
565		 */
566		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
567		    fib, 1)) {
568			printf("FAILED.\n");
569		} else {
570			printf("done.\n");
571		}
572	}
573
574	AAC_MASK_INTERRUPTS(sc);
575
576	splx(s);
577	return(0);
578}
579
580/*
581 * Bring the controller to a quiescent state, ready for system suspend.
582 */
583int
584aac_suspend(device_t dev)
585{
586	struct aac_softc *sc;
587	int s;
588
589	debug_called(1);
590
591	sc = device_get_softc(dev);
592
593	s = splbio();
594
595	sc->aac_state |= AAC_STATE_SUSPEND;
596
597	AAC_MASK_INTERRUPTS(sc);
598	splx(s);
599	return(0);
600}
601
602/*
603 * Bring the controller back to a state ready for operation.
604 */
605int
606aac_resume(device_t dev)
607{
608	struct aac_softc *sc;
609
610	debug_called(1);
611
612	sc = device_get_softc(dev);
613
614	sc->aac_state &= ~AAC_STATE_SUSPEND;
615	AAC_UNMASK_INTERRUPTS(sc);
616	return(0);
617}
618
619/*
620 * Take an interrupt.
621 */
622void
623aac_intr(void *arg)
624{
625	struct aac_softc *sc;
626	u_int16_t reason;
627
628	debug_called(2);
629
630	sc = (struct aac_softc *)arg;
631
632	reason = AAC_GET_ISTATUS(sc);
633
634	/* controller wants to talk to the log */
635	if (reason & AAC_DB_PRINTF) {
636		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
637		aac_print_printf(sc);
638	}
639
640	/* controller has a message for us? */
641	if (reason & AAC_DB_COMMAND_READY) {
642		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
643		/* XXX What happens if the thread is already awake? */
644		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
645			sc->aifflags |= AAC_AIFFLAGS_PENDING;
646			wakeup(sc->aifthread);
647		}
648	}
649
650	/* controller has a response for us? */
651	if (reason & AAC_DB_RESPONSE_READY) {
652		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
653		aac_host_response(sc);
654	}
655
656	/*
657	 * spurious interrupts that we don't use - reset the mask and clear the
658	 * interrupts
659	 */
660	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
661		AAC_UNMASK_INTERRUPTS(sc);
662		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
663				  AAC_DB_RESPONSE_NOT_FULL);
664	}
665};
666
667/*
668 * Command Processing
669 */
670
671/*
672 * Start as much queued I/O as possible on the controller
673 */
674void
675aac_startio(struct aac_softc *sc)
676{
677	struct aac_command *cm;
678
679	debug_called(2);
680
681	for (;;) {
682		/*
683		 * Try to get a command that's been put off for lack of
684		 * resources
685		 */
686		cm = aac_dequeue_ready(sc);
687
688		/*
689		 * Try to build a command off the bio queue (ignore error
690		 * return)
691		 */
692		if (cm == NULL)
693			aac_bio_command(sc, &cm);
694
695		/* nothing to do? */
696		if (cm == NULL)
697			break;
698
699		/* try to give the command to the controller */
700		if (aac_start(cm) == EBUSY) {
701			/* put it on the ready queue for later */
702			aac_requeue_ready(cm);
703			break;
704		}
705	}
706}
707
708/*
709 * Deliver a command to the controller; allocate controller resources at the
710 * last moment when possible.
711 */
712static int
713aac_start(struct aac_command *cm)
714{
715	struct aac_softc *sc;
716	int error;
717
718	debug_called(2);
719
720	sc = cm->cm_sc;
721
722	/* get the command mapped */
723	aac_map_command(cm);
724
725	/* fix up the address values in the FIB */
726	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
727	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
728
729	/* save a pointer to the command for speedy reverse-lookup */
730	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
731							 * address issue */
732
733	/* put the FIB on the outbound queue */
734	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
735	return(error);
736}
737
738/*
739 * Handle notification of one or more FIBs coming from the controller.
740 */
741static void
742aac_host_command(struct aac_softc *sc)
743{
744	struct aac_fib *fib;
745	u_int32_t fib_size;
746	int size;
747
748	debug_called(2);
749
750	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
751
752	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
753		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
754			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
755
756		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
757		for (;;) {
758			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
759					    &fib_size, &fib))
760				break;	/* nothing to do */
761
762			AAC_PRINT_FIB(sc, fib);
763
764			switch (fib->Header.Command) {
765			case AifRequest:
766				aac_handle_aif(sc, fib);
767				break;
768			default:
769				device_printf(sc->aac_dev, "unknown command "
770					      "from controller\n");
771				break;
772			}
773
774			/* Return the AIF to the controller. */
775			if ((fib->Header.XferState == 0) ||
776			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
777				break;
778
779			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
780				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
781				*(AAC_FSAStatus*)fib->data = ST_OK;
782
783				/* XXX Compute the Size field? */
784				size = fib->Header.Size;
785				if (size > sizeof(struct aac_fib)) {
786					size = sizeof(struct aac_fib);
787					fib->Header.Size = size;
788				}
789				/*
790				 * Since we did not generate this command, it
791				 * cannot go through the normal
792				 * enqueue->startio chain.
793				 */
794				aac_enqueue_response(sc,
795						     AAC_ADAP_NORM_RESP_QUEUE,
796						     fib);
797			}
798		}
799	}
800	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
801	wakeup(sc->aac_dev);
802
803#if __FreeBSD_version > 500005
804	mtx_lock(&Giant);
805#endif
806	kthread_exit(0);
807}
808
809/*
810 * Handle notification of one or more FIBs completed by the controller
811 */
812static void
813aac_host_response(struct aac_softc *sc)
814{
815	struct aac_command *cm;
816	struct aac_fib *fib;
817	u_int32_t fib_size;
818
819	debug_called(2);
820
821	for (;;) {
822		/* look for completed FIBs on our queue */
823		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
824				    &fib))
825			break;	/* nothing to do */
826
827		/* get the command, unmap and queue for later processing */
828		cm = (struct aac_command *)fib->Header.SenderData;
829		if (cm == NULL) {
830			AAC_PRINT_FIB(sc, fib);
831		} else {
832			aac_remove_busy(cm);
833			aac_unmap_command(cm);		/* XXX defer? */
834			aac_enqueue_complete(cm);
835		}
836	}
837
838	/* handle completion processing */
839#if __FreeBSD_version >= 500005
840	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
841#else
842	aac_complete(sc, 0);
843#endif
844}
845
846/*
847 * Process completed commands.
848 */
849static void
850aac_complete(void *context, int pending)
851{
852	struct aac_softc *sc;
853	struct aac_command *cm;
854
855	debug_called(2);
856
857	sc = (struct aac_softc *)context;
858
859	/* pull completed commands off the queue */
860	for (;;) {
861		cm = aac_dequeue_complete(sc);
862		if (cm == NULL)
863			break;
864		cm->cm_flags |= AAC_CMD_COMPLETED;
865
866		/* is there a completion handler? */
867		if (cm->cm_complete != NULL) {
868			cm->cm_complete(cm);
869		} else {
870			/* assume that someone is sleeping on this command */
871			wakeup(cm);
872		}
873	}
874
875	/* see if we can start some more I/O */
876	aac_startio(sc);
877}
878
879/*
880 * Handle a bio submitted from a disk device.
881 */
882void
883aac_submit_bio(struct bio *bp)
884{
885	struct aac_disk *ad;
886	struct aac_softc *sc;
887
888	debug_called(2);
889
890	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
891	sc = ad->ad_controller;
892
893	/* queue the BIO and try to get some work done */
894	aac_enqueue_bio(sc, bp);
895	aac_startio(sc);
896}
897
898/*
899 * Get a bio and build a command to go with it.
900 */
901static int
902aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
903{
904	struct aac_command *cm;
905	struct aac_fib *fib;
906	struct aac_blockread *br;
907	struct aac_blockwrite *bw;
908	struct aac_disk *ad;
909	struct bio *bp;
910
911	debug_called(2);
912
913	/* get the resources we will need */
914	cm = NULL;
915	if ((bp = aac_dequeue_bio(sc)) == NULL)
916		goto fail;
917	if (aac_alloc_command(sc, &cm))	/* get a command */
918		goto fail;
919
920	/* fill out the command */
921	cm->cm_data = (void *)bp->bio_data;
922	cm->cm_datalen = bp->bio_bcount;
923	cm->cm_complete = aac_bio_complete;
924	cm->cm_private = bp;
925	cm->cm_timestamp = time_second;
926	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
927
928	/* build the FIB */
929	fib = cm->cm_fib;
930	fib->Header.XferState =
931	AAC_FIBSTATE_HOSTOWNED   |
932	AAC_FIBSTATE_INITIALISED |
933	AAC_FIBSTATE_FROMHOST	 |
934	AAC_FIBSTATE_REXPECTED   |
935	AAC_FIBSTATE_NORM;
936	fib->Header.Command = ContainerCommand;
937	fib->Header.Size = sizeof(struct aac_fib_header);
938
939	/* build the read/write request */
940	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
941	if (BIO_IS_READ(bp)) {
942		br = (struct aac_blockread *)&fib->data[0];
943		br->Command = VM_CtBlockRead;
944		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
945		br->BlockNumber = bp->bio_pblkno;
946		br->ByteCount = bp->bio_bcount;
947		fib->Header.Size += sizeof(struct aac_blockread);
948		cm->cm_sgtable = &br->SgMap;
949		cm->cm_flags |= AAC_CMD_DATAIN;
950	} else {
951		bw = (struct aac_blockwrite *)&fib->data[0];
952		bw->Command = VM_CtBlockWrite;
953		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
954		bw->BlockNumber = bp->bio_pblkno;
955		bw->ByteCount = bp->bio_bcount;
956		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
957		fib->Header.Size += sizeof(struct aac_blockwrite);
958		cm->cm_flags |= AAC_CMD_DATAOUT;
959		cm->cm_sgtable = &bw->SgMap;
960	}
961
962	*cmp = cm;
963	return(0);
964
965fail:
966	if (bp != NULL)
967		aac_enqueue_bio(sc, bp);
968	if (cm != NULL)
969		aac_release_command(cm);
970	return(ENOMEM);
971}
972
973/*
974 * Handle a bio-instigated command that has been completed.
975 */
976static void
977aac_bio_complete(struct aac_command *cm)
978{
979	struct aac_blockread_response *brr;
980	struct aac_blockwrite_response *bwr;
981	struct bio *bp;
982	AAC_FSAStatus status;
983
984	/* fetch relevant status and then release the command */
985	bp = (struct bio *)cm->cm_private;
986	if (BIO_IS_READ(bp)) {
987		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
988		status = brr->Status;
989	} else {
990		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
991		status = bwr->Status;
992	}
993	aac_release_command(cm);
994
995	/* fix up the bio based on status */
996	if (status == ST_OK) {
997		bp->bio_resid = 0;
998	} else {
999		bp->bio_error = EIO;
1000		bp->bio_flags |= BIO_ERROR;
1001		/* pass an error string out to the disk layer */
1002		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1003						    status);
1004	}
1005	aac_biodone(bp);
1006}
1007
1008/*
1009 * Submit a command to the controller, return when it completes.
1010 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1011 *     be stuck here forever.  At the same time, signals are not caught
1012 *     because there is a risk that a signal could wakeup the tsleep before
1013 *     the card has a chance to complete the command.  The passed in timeout
1014 *     is ignored for the same reason.  Since there is no way to cancel a
1015 *     command in progress, we should probably create a 'dead' queue where
1016 *     commands go that have been interrupted/timed-out/etc, that keeps them
1017 *     out of the free pool.  That way, if the card is just slow, it won't
1018 *     spam the memory of a command that has been recycled.
1019 */
1020static int
1021aac_wait_command(struct aac_command *cm, int timeout)
1022{
1023	int s, error = 0;
1024
1025	debug_called(2);
1026
1027	/* Put the command on the ready queue and get things going */
1028	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1029	aac_enqueue_ready(cm);
1030	aac_startio(cm->cm_sc);
1031	s = splbio();
1032	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1033		error = tsleep(cm, PRIBIO, "aacwait", 0);
1034	}
1035	splx(s);
1036	return(error);
1037}
1038
1039/*
1040 *Command Buffer Management
1041 */
1042
1043/*
1044 * Allocate a command.
1045 */
1046int
1047aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1048{
1049	struct aac_command *cm;
1050
1051	debug_called(3);
1052
1053	if ((cm = aac_dequeue_free(sc)) == NULL)
1054		return(ENOMEM);
1055
1056	*cmp = cm;
1057	return(0);
1058}
1059
1060/*
1061 * Release a command back to the freelist.
1062 */
1063void
1064aac_release_command(struct aac_command *cm)
1065{
1066	debug_called(3);
1067
1068	/* (re)initialise the command/FIB */
1069	cm->cm_sgtable = NULL;
1070	cm->cm_flags = 0;
1071	cm->cm_complete = NULL;
1072	cm->cm_private = NULL;
1073	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1074	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1075	cm->cm_fib->Header.Flags = 0;
1076	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1077
1078	/*
1079	 * These are duplicated in aac_start to cover the case where an
1080	 * intermediate stage may have destroyed them.  They're left
1081	 * initialised here for debugging purposes only.
1082	 */
1083	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1084	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1085
1086	aac_enqueue_free(cm);
1087}
1088
1089/*
1090 * Map helper for command/FIB allocation.
1091 */
1092static void
1093aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1094{
1095	struct aac_softc *sc;
1096
1097	sc = (struct aac_softc *)arg;
1098
1099	debug_called(3);
1100
1101	sc->aac_fibphys = segs[0].ds_addr;
1102}
1103
1104/*
1105 * Allocate and initialise commands/FIBs for this adapter.
1106 */
1107static int
1108aac_alloc_commands(struct aac_softc *sc)
1109{
1110	struct aac_command *cm;
1111	int i;
1112
1113	debug_called(1);
1114
1115	/* allocate the FIBs in DMAable memory and load them */
1116	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1117			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1118		return(ENOMEM);
1119	}
1120	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1121			AAC_FIB_COUNT * sizeof(struct aac_fib),
1122			aac_map_command_helper, sc, 0);
1123
1124	/* initialise constant fields in the command structure */
1125	for (i = 0; i < AAC_FIB_COUNT; i++) {
1126		cm = &sc->aac_command[i];
1127		cm->cm_sc = sc;
1128		cm->cm_fib = sc->aac_fibs + i;
1129		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1130
1131		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1132			aac_release_command(cm);
1133	}
1134	return(0);
1135}
1136
1137/*
1138 * Free FIBs owned by this adapter.
1139 */
1140static void
1141aac_free_commands(struct aac_softc *sc)
1142{
1143	int i;
1144
1145	debug_called(1);
1146
1147	for (i = 0; i < AAC_FIB_COUNT; i++)
1148		bus_dmamap_destroy(sc->aac_buffer_dmat,
1149				   sc->aac_command[i].cm_datamap);
1150
1151	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1152	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1153}
1154
1155/*
1156 * Command-mapping helper function - populate this command's s/g table.
1157 */
1158static void
1159aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1160{
1161	struct aac_command *cm;
1162	struct aac_fib *fib;
1163	struct aac_sg_table *sg;
1164	int i;
1165
1166	debug_called(3);
1167
1168	cm = (struct aac_command *)arg;
1169	fib = cm->cm_fib;
1170
1171	/* find the s/g table */
1172	sg = cm->cm_sgtable;
1173
1174	/* copy into the FIB */
1175	if (sg != NULL) {
1176		sg->SgCount = nseg;
1177		for (i = 0; i < nseg; i++) {
1178			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1179			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1180		}
1181		/* update the FIB size for the s/g count */
1182		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1183	}
1184
1185}
1186
1187/*
1188 * Map a command into controller-visible space.
1189 */
1190static void
1191aac_map_command(struct aac_command *cm)
1192{
1193	struct aac_softc *sc;
1194
1195	debug_called(2);
1196
1197	sc = cm->cm_sc;
1198
1199	/* don't map more than once */
1200	if (cm->cm_flags & AAC_CMD_MAPPED)
1201		return;
1202
1203	if (cm->cm_datalen != 0) {
1204		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1205				cm->cm_data, cm->cm_datalen,
1206				aac_map_command_sg, cm, 0);
1207
1208	if (cm->cm_flags & AAC_CMD_DATAIN)
1209		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1210				BUS_DMASYNC_PREREAD);
1211	if (cm->cm_flags & AAC_CMD_DATAOUT)
1212		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1213				BUS_DMASYNC_PREWRITE);
1214	}
1215	cm->cm_flags |= AAC_CMD_MAPPED;
1216}
1217
1218/*
1219 * Unmap a command from controller-visible space.
1220 */
1221static void
1222aac_unmap_command(struct aac_command *cm)
1223{
1224	struct aac_softc *sc;
1225
1226	debug_called(2);
1227
1228	sc = cm->cm_sc;
1229
1230	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1231		return;
1232
1233	if (cm->cm_datalen != 0) {
1234		if (cm->cm_flags & AAC_CMD_DATAIN)
1235			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1236					BUS_DMASYNC_POSTREAD);
1237		if (cm->cm_flags & AAC_CMD_DATAOUT)
1238			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1239					BUS_DMASYNC_POSTWRITE);
1240
1241		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1242	}
1243	cm->cm_flags &= ~AAC_CMD_MAPPED;
1244}
1245
1246/*
1247 * Hardware Interface
1248 */
1249
1250/*
1251 * Initialise the adapter.
1252 */
1253static void
1254aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1255{
1256	struct aac_softc *sc;
1257
1258	debug_called(1);
1259
1260	sc = (struct aac_softc *)arg;
1261
1262	sc->aac_common_busaddr = segs[0].ds_addr;
1263}
1264
1265/*
1266 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1267 * firmware version 1.x are not compatible with this driver.
1268 */
1269static int
1270aac_check_firmware(struct aac_softc *sc)
1271{
1272	u_int32_t major, minor;
1273
1274	debug_called(1);
1275
1276	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1277		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1278				     NULL)) {
1279			device_printf(sc->aac_dev,
1280				      "Error reading firmware version\n");
1281			return (EIO);
1282		}
1283
1284		/* These numbers are stored as ASCII! */
1285		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1286		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1287		if (major == 1) {
1288			device_printf(sc->aac_dev,
1289			    "Firmware version %d.%d is not supported.\n",
1290			    major, minor);
1291			return (EINVAL);
1292		}
1293	}
1294
1295	return (0);
1296}
1297
1298static int
1299aac_init(struct aac_softc *sc)
1300{
1301	struct aac_adapter_init	*ip;
1302	time_t then;
1303	u_int32_t code;
1304	u_int8_t *qaddr;
1305
1306	debug_called(1);
1307
1308	/*
1309	 * First wait for the adapter to come ready.
1310	 */
1311	then = time_second;
1312	do {
1313		code = AAC_GET_FWSTATUS(sc);
1314		if (code & AAC_SELF_TEST_FAILED) {
1315			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1316			return(ENXIO);
1317		}
1318		if (code & AAC_KERNEL_PANIC) {
1319			device_printf(sc->aac_dev,
1320				      "FATAL: controller kernel panic\n");
1321			return(ENXIO);
1322		}
1323		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1324			device_printf(sc->aac_dev,
1325				      "FATAL: controller not coming ready, "
1326					   "status %x\n", code);
1327			return(ENXIO);
1328		}
1329	} while (!(code & AAC_UP_AND_RUNNING));
1330
1331	/*
1332	 * Create DMA tag for the common structure and allocate it.
1333	 */
1334	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1335			       1, 0,			/* algnmnt, boundary */
1336			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1337			       BUS_SPACE_MAXADDR, 	/* highaddr */
1338			       NULL, NULL, 		/* filter, filterarg */
1339			       sizeof(struct aac_common), /* maxsize */
1340			       1,			/* nsegments */
1341			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1342			       0,			/* flags */
1343			       &sc->aac_common_dmat)) {
1344		device_printf(sc->aac_dev,
1345			      "can't allocate common structure DMA tag\n");
1346		return(ENOMEM);
1347	}
1348	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1349			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1350		device_printf(sc->aac_dev, "can't allocate common structure\n");
1351		return(ENOMEM);
1352	}
1353	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1354			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1355			sc, 0);
1356	bzero(sc->aac_common, sizeof(*sc->aac_common));
1357
1358	/*
1359	 * Fill in the init structure.  This tells the adapter about the
1360	 * physical location of various important shared data structures.
1361	 */
1362	ip = &sc->aac_common->ac_init;
1363	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1364
1365	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1366					 offsetof(struct aac_common, ac_fibs);
1367	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1368	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1369	ip->AdapterFibAlign = sizeof(struct aac_fib);
1370
1371	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1372				  offsetof(struct aac_common, ac_printf);
1373	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1374
1375	ip->HostPhysMemPages = 0;		/* not used? */
1376	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1377
1378	/*
1379	 * Initialise FIB queues.  Note that it appears that the layout of the
1380	 * indexes and the segmentation of the entries may be mandated by the
1381	 * adapter, which is only told about the base of the queue index fields.
1382	 *
1383	 * The initial values of the indices are assumed to inform the adapter
1384	 * of the sizes of the respective queues, and theoretically it could
1385	 * work out the entire layout of the queue structures from this.  We
1386	 * take the easy route and just lay this area out like everyone else
1387	 * does.
1388	 *
1389	 * The Linux driver uses a much more complex scheme whereby several
1390	 * header records are kept for each queue.  We use a couple of generic
1391	 * list manipulation functions which 'know' the size of each list by
1392	 * virtue of a table.
1393	 */
1394	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1395	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1396	sc->aac_queues = (struct aac_queue_table *)qaddr;
1397	ip->CommHeaderAddress = sc->aac_common_busaddr +
1398				((u_int32_t)sc->aac_queues -
1399				(u_int32_t)sc->aac_common);
1400	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1401
1402	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1403		AAC_HOST_NORM_CMD_ENTRIES;
1404	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1405		AAC_HOST_NORM_CMD_ENTRIES;
1406	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1407		AAC_HOST_HIGH_CMD_ENTRIES;
1408	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1409		AAC_HOST_HIGH_CMD_ENTRIES;
1410	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1411		AAC_ADAP_NORM_CMD_ENTRIES;
1412	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1413		AAC_ADAP_NORM_CMD_ENTRIES;
1414	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1415		AAC_ADAP_HIGH_CMD_ENTRIES;
1416	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1417		AAC_ADAP_HIGH_CMD_ENTRIES;
1418	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1419		AAC_HOST_NORM_RESP_ENTRIES;
1420	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1421		AAC_HOST_NORM_RESP_ENTRIES;
1422	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1423		AAC_HOST_HIGH_RESP_ENTRIES;
1424	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1425		AAC_HOST_HIGH_RESP_ENTRIES;
1426	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1427		AAC_ADAP_NORM_RESP_ENTRIES;
1428	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1429		AAC_ADAP_NORM_RESP_ENTRIES;
1430	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1431		AAC_ADAP_HIGH_RESP_ENTRIES;
1432	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1433		AAC_ADAP_HIGH_RESP_ENTRIES;
1434	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1435		&sc->aac_queues->qt_HostNormCmdQueue[0];
1436	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1437		&sc->aac_queues->qt_HostHighCmdQueue[0];
1438	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1439		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1440	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1441		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1442	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1443		&sc->aac_queues->qt_HostNormRespQueue[0];
1444	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1445		&sc->aac_queues->qt_HostHighRespQueue[0];
1446	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1447		&sc->aac_queues->qt_AdapNormRespQueue[0];
1448	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1449		&sc->aac_queues->qt_AdapHighRespQueue[0];
1450
1451	/*
1452	 * Do controller-type-specific initialisation
1453	 */
1454	switch (sc->aac_hwif) {
1455	case AAC_HWIF_I960RX:
1456		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1457		break;
1458	}
1459
1460	/*
1461	 * Give the init structure to the controller.
1462	 */
1463	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1464			     sc->aac_common_busaddr +
1465			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1466			     NULL)) {
1467		device_printf(sc->aac_dev,
1468			      "error establishing init structure\n");
1469		return(EIO);
1470	}
1471
1472	return(0);
1473}
1474
1475/*
1476 * Send a synchronous command to the controller and wait for a result.
1477 */
1478static int
1479aac_sync_command(struct aac_softc *sc, u_int32_t command,
1480		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1481		 u_int32_t *sp)
1482{
1483	time_t then;
1484	u_int32_t status;
1485
1486	debug_called(3);
1487
1488	/* populate the mailbox */
1489	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1490
1491	/* ensure the sync command doorbell flag is cleared */
1492	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1493
1494	/* then set it to signal the adapter */
1495	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1496
1497	/* spin waiting for the command to complete */
1498	then = time_second;
1499	do {
1500		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1501			debug(2, "timed out");
1502			return(EIO);
1503		}
1504	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1505
1506	/* clear the completion flag */
1507	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1508
1509	/* get the command status */
1510	status = AAC_GET_MAILBOXSTATUS(sc);
1511	if (sp != NULL)
1512		*sp = status;
1513	return(0);
1514}
1515
1516/*
1517 * Grab the sync fib area.
1518 */
1519int
1520aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1521{
1522
1523	/*
1524	 * If the force flag is set, the system is shutting down, or in
1525	 * trouble.  Ignore the mutex.
1526	 */
1527	if (!(flags & AAC_SYNC_LOCK_FORCE))
1528		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1529
1530	*fib = &sc->aac_common->ac_sync_fib;
1531
1532	return (1);
1533}
1534
1535/*
1536 * Release the sync fib area.
1537 */
1538void
1539aac_release_sync_fib(struct aac_softc *sc)
1540{
1541
1542	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1543}
1544
1545/*
1546 * Send a synchronous FIB to the controller and wait for a result.
1547 */
1548int
1549aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1550		 struct aac_fib *fib, u_int16_t datasize)
1551{
1552	debug_called(3);
1553
1554	if (datasize > AAC_FIB_DATASIZE)
1555		return(EINVAL);
1556
1557	/*
1558	 * Set up the sync FIB
1559	 */
1560	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1561				AAC_FIBSTATE_INITIALISED |
1562				AAC_FIBSTATE_EMPTY;
1563	fib->Header.XferState |= xferstate;
1564	fib->Header.Command = command;
1565	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1566	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1567	fib->Header.SenderSize = sizeof(struct aac_fib);
1568	fib->Header.SenderFibAddress = (u_int32_t)fib;
1569	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1570					 offsetof(struct aac_common,
1571						  ac_sync_fib);
1572
1573	/*
1574	 * Give the FIB to the controller, wait for a response.
1575	 */
1576	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1577			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1578		debug(2, "IO error");
1579		return(EIO);
1580	}
1581
1582	return (0);
1583}
1584
1585/*
1586 * Adapter-space FIB queue manipulation
1587 *
1588 * Note that the queue implementation here is a little funky; neither the PI or
1589 * CI will ever be zero.  This behaviour is a controller feature.
1590 */
1591static struct {
1592	int		size;
1593	int		notify;
1594} aac_qinfo[] = {
1595	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1596	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1597	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1598	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1599	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1600	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1601	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1602	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1603};
1604
1605/*
1606 * Atomically insert an entry into the nominated queue, returns 0 on success or
1607 * EBUSY if the queue is full.
1608 *
1609 * Note: it would be more efficient to defer notifying the controller in
1610 *	 the case where we may be inserting several entries in rapid succession,
1611 *	 but implementing this usefully may be difficult (it would involve a
1612 *	 separate queue/notify interface).
1613 */
1614static int
1615aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1616{
1617	u_int32_t pi, ci;
1618	int s, error;
1619	u_int32_t fib_size;
1620	u_int32_t fib_addr;
1621
1622	debug_called(3);
1623
1624	fib_size = cm->cm_fib->Header.Size;
1625	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1626
1627	s = splbio();
1628
1629	/* get the producer/consumer indices */
1630	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1631	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1632
1633	/* wrap the queue? */
1634	if (pi >= aac_qinfo[queue].size)
1635		pi = 0;
1636
1637	/* check for queue full */
1638	if ((pi + 1) == ci) {
1639		error = EBUSY;
1640		goto out;
1641	}
1642
1643	/* populate queue entry */
1644	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1645	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1646
1647	/* update producer index */
1648	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1649
1650	/*
1651	 * To avoid a race with its completion interrupt, place this command on
1652	 * the busy queue prior to advertising it to the controller.
1653	 */
1654	aac_enqueue_busy(cm);
1655
1656	/* notify the adapter if we know how */
1657	if (aac_qinfo[queue].notify != 0)
1658		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1659
1660	error = 0;
1661
1662out:
1663	splx(s);
1664	return(error);
1665}
1666
1667/*
1668 * Atomically remove one entry from the nominated queue, returns 0 on
1669 * success or ENOENT if the queue is empty.
1670 */
1671static int
1672aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1673		struct aac_fib **fib_addr)
1674{
1675	u_int32_t pi, ci;
1676	int s, error;
1677	int notify;
1678
1679	debug_called(3);
1680
1681	s = splbio();
1682
1683	/* get the producer/consumer indices */
1684	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1685	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1686
1687	/* check for queue empty */
1688	if (ci == pi) {
1689		error = ENOENT;
1690		goto out;
1691	}
1692
1693	notify = 0;
1694	if (ci == pi + 1)
1695		notify++;
1696
1697	/* wrap the queue? */
1698	if (ci >= aac_qinfo[queue].size)
1699		ci = 0;
1700
1701	/* fetch the entry */
1702	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1703	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1704				       ci)->aq_fib_addr;
1705
1706	/* update consumer index */
1707	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1708
1709	/* if we have made the queue un-full, notify the adapter */
1710	if (notify && (aac_qinfo[queue].notify != 0))
1711		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1712	error = 0;
1713
1714out:
1715	splx(s);
1716	return(error);
1717}
1718
1719/*
1720 * Put our response to an Adapter Initialed Fib on the response queue
1721 */
1722static int
1723aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1724{
1725	u_int32_t pi, ci;
1726	int s, error;
1727	u_int32_t fib_size;
1728	u_int32_t fib_addr;
1729
1730	debug_called(1);
1731
1732	/* Tell the adapter where the FIB is */
1733	fib_size = fib->Header.Size;
1734	fib_addr = fib->Header.SenderFibAddress;
1735	fib->Header.ReceiverFibAddress = fib_addr;
1736
1737	s = splbio();
1738
1739	/* get the producer/consumer indices */
1740	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1741	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1742
1743	/* wrap the queue? */
1744	if (pi >= aac_qinfo[queue].size)
1745		pi = 0;
1746
1747	/* check for queue full */
1748	if ((pi + 1) == ci) {
1749		error = EBUSY;
1750		goto out;
1751	}
1752
1753	/* populate queue entry */
1754	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1755	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1756
1757	/* update producer index */
1758	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1759
1760	/* notify the adapter if we know how */
1761	if (aac_qinfo[queue].notify != 0)
1762		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1763
1764	error = 0;
1765
1766out:
1767	splx(s);
1768	return(error);
1769}
1770
1771/*
1772 * Check for commands that have been outstanding for a suspiciously long time,
1773 * and complain about them.
1774 */
1775static void
1776aac_timeout(struct aac_softc *sc)
1777{
1778	int s;
1779	struct aac_command *cm;
1780	time_t deadline;
1781
1782#if 0
1783	/* simulate an interrupt to handle possibly-missed interrupts */
1784	/*
1785	 * XXX This was done to work around another bug which has since been
1786	 * fixed.  It is dangerous anyways because you don't want multiple
1787	 * threads in the interrupt handler at the same time!  If calling
1788	 * is deamed neccesary in the future, proper mutexes must be used.
1789	 */
1790	s = splbio();
1791	aac_intr(sc);
1792	splx(s);
1793
1794	/* kick the I/O queue to restart it in the case of deadlock */
1795	aac_startio(sc);
1796#endif
1797
1798	/*
1799	 * traverse the busy command list, bitch about late commands once
1800	 * only.
1801	 */
1802	deadline = time_second - AAC_CMD_TIMEOUT;
1803	s = splbio();
1804	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1805		if ((cm->cm_timestamp  < deadline)
1806			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1807			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1808			device_printf(sc->aac_dev,
1809				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1810				      cm, (int)(time_second-cm->cm_timestamp));
1811			AAC_PRINT_FIB(sc, cm->cm_fib);
1812		}
1813	}
1814	splx(s);
1815
1816	/* reset the timer for next time */
1817	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1818	return;
1819}
1820
1821/*
1822 * Interface Function Vectors
1823 */
1824
1825/*
1826 * Read the current firmware status word.
1827 */
1828static int
1829aac_sa_get_fwstatus(struct aac_softc *sc)
1830{
1831	debug_called(3);
1832
1833	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1834}
1835
1836static int
1837aac_rx_get_fwstatus(struct aac_softc *sc)
1838{
1839	debug_called(3);
1840
1841	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1842}
1843
1844static int
1845aac_fa_get_fwstatus(struct aac_softc *sc)
1846{
1847	int val;
1848
1849	debug_called(3);
1850
1851	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1852	return (val);
1853}
1854
1855/*
1856 * Notify the controller of a change in a given queue
1857 */
1858
1859static void
1860aac_sa_qnotify(struct aac_softc *sc, int qbit)
1861{
1862	debug_called(3);
1863
1864	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1865}
1866
1867static void
1868aac_rx_qnotify(struct aac_softc *sc, int qbit)
1869{
1870	debug_called(3);
1871
1872	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1873}
1874
1875static void
1876aac_fa_qnotify(struct aac_softc *sc, int qbit)
1877{
1878	debug_called(3);
1879
1880	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1881	AAC_FA_HACK(sc);
1882}
1883
1884/*
1885 * Get the interrupt reason bits
1886 */
1887static int
1888aac_sa_get_istatus(struct aac_softc *sc)
1889{
1890	debug_called(3);
1891
1892	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1893}
1894
1895static int
1896aac_rx_get_istatus(struct aac_softc *sc)
1897{
1898	debug_called(3);
1899
1900	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1901}
1902
1903static int
1904aac_fa_get_istatus(struct aac_softc *sc)
1905{
1906	int val;
1907
1908	debug_called(3);
1909
1910	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1911	return (val);
1912}
1913
1914/*
1915 * Clear some interrupt reason bits
1916 */
1917static void
1918aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1919{
1920	debug_called(3);
1921
1922	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1923}
1924
1925static void
1926aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1927{
1928	debug_called(3);
1929
1930	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1931}
1932
1933static void
1934aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1935{
1936	debug_called(3);
1937
1938	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1939	AAC_FA_HACK(sc);
1940}
1941
1942/*
1943 * Populate the mailbox and set the command word
1944 */
1945static void
1946aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1947		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1948{
1949	debug_called(4);
1950
1951	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1952	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1953	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1954	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1955	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1956}
1957
1958static void
1959aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1960		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1961{
1962	debug_called(4);
1963
1964	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1965	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1966	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1967	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1968	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1969}
1970
1971static void
1972aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1973		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1974{
1975	debug_called(4);
1976
1977	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
1978	AAC_FA_HACK(sc);
1979	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
1980	AAC_FA_HACK(sc);
1981	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
1982	AAC_FA_HACK(sc);
1983	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
1984	AAC_FA_HACK(sc);
1985	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
1986	AAC_FA_HACK(sc);
1987}
1988
1989/*
1990 * Fetch the immediate command status word
1991 */
1992static int
1993aac_sa_get_mailboxstatus(struct aac_softc *sc)
1994{
1995	debug_called(4);
1996
1997	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1998}
1999
2000static int
2001aac_rx_get_mailboxstatus(struct aac_softc *sc)
2002{
2003	debug_called(4);
2004
2005	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2006}
2007
2008static int
2009aac_fa_get_mailboxstatus(struct aac_softc *sc)
2010{
2011	int val;
2012
2013	debug_called(4);
2014
2015	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2016	return (val);
2017}
2018
2019/*
2020 * Set/clear interrupt masks
2021 */
2022static void
2023aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2024{
2025	debug(2, "%sable interrupts", enable ? "en" : "dis");
2026
2027	if (enable) {
2028		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2029	} else {
2030		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2031	}
2032}
2033
2034static void
2035aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2036{
2037	debug(2, "%sable interrupts", enable ? "en" : "dis");
2038
2039	if (enable) {
2040		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2041	} else {
2042		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2043	}
2044}
2045
2046static void
2047aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2048{
2049	debug(2, "%sable interrupts", enable ? "en" : "dis");
2050
2051	if (enable) {
2052		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2053		AAC_FA_HACK(sc);
2054	} else {
2055		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2056		AAC_FA_HACK(sc);
2057	}
2058}
2059
2060/*
2061 * Debugging and Diagnostics
2062 */
2063
2064/*
2065 * Print some information about the controller.
2066 */
2067static void
2068aac_describe_controller(struct aac_softc *sc)
2069{
2070	struct aac_fib *fib;
2071	struct aac_adapter_info	*info;
2072
2073	debug_called(2);
2074
2075	aac_alloc_sync_fib(sc, &fib, 0);
2076
2077	fib->data[0] = 0;
2078	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2079		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2080		aac_release_sync_fib(sc);
2081		return;
2082	}
2083	info = (struct aac_adapter_info *)&fib->data[0];
2084
2085	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2086		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2087		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2088		      aac_describe_code(aac_battery_platform,
2089					info->batteryPlatform));
2090
2091	/* save the kernel revision structure for later use */
2092	sc->aac_revision = info->KernelRevision;
2093	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2094		      info->KernelRevision.external.comp.major,
2095		      info->KernelRevision.external.comp.minor,
2096		      info->KernelRevision.external.comp.dash,
2097		      info->KernelRevision.buildNumber,
2098		      (u_int32_t)(info->SerialNumber & 0xffffff));
2099
2100	aac_release_sync_fib(sc);
2101}
2102
2103/*
2104 * Look up a text description of a numeric error code and return a pointer to
2105 * same.
2106 */
2107static char *
2108aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2109{
2110	int i;
2111
2112	for (i = 0; table[i].string != NULL; i++)
2113		if (table[i].code == code)
2114			return(table[i].string);
2115	return(table[i + 1].string);
2116}
2117
2118/*
2119 * Management Interface
2120 */
2121
2122static int
2123aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2124{
2125	struct aac_softc *sc;
2126
2127	debug_called(2);
2128
2129	sc = dev->si_drv1;
2130
2131	/* Check to make sure the device isn't already open */
2132	if (sc->aac_state & AAC_STATE_OPEN) {
2133		return EBUSY;
2134	}
2135	sc->aac_state |= AAC_STATE_OPEN;
2136
2137	return 0;
2138}
2139
2140static int
2141aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2142{
2143	struct aac_softc *sc;
2144
2145	debug_called(2);
2146
2147	sc = dev->si_drv1;
2148
2149	/* Mark this unit as no longer open  */
2150	sc->aac_state &= ~AAC_STATE_OPEN;
2151
2152	return 0;
2153}
2154
2155static int
2156aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2157{
2158	union aac_statrequest *as;
2159	struct aac_softc *sc;
2160	int error = 0;
2161	int i;
2162
2163	debug_called(2);
2164
2165	as = (union aac_statrequest *)arg;
2166	sc = dev->si_drv1;
2167
2168	switch (cmd) {
2169	case AACIO_STATS:
2170		switch (as->as_item) {
2171		case AACQ_FREE:
2172		case AACQ_BIO:
2173		case AACQ_READY:
2174		case AACQ_BUSY:
2175		case AACQ_COMPLETE:
2176			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2177			      sizeof(struct aac_qstat));
2178			break;
2179		default:
2180			error = ENOENT;
2181			break;
2182		}
2183	break;
2184
2185	case FSACTL_SENDFIB:
2186		arg = *(caddr_t*)arg;
2187	case FSACTL_LNX_SENDFIB:
2188		debug(1, "FSACTL_SENDFIB");
2189		error = aac_ioctl_sendfib(sc, arg);
2190		break;
2191	case FSACTL_AIF_THREAD:
2192	case FSACTL_LNX_AIF_THREAD:
2193		debug(1, "FSACTL_AIF_THREAD");
2194		error = EINVAL;
2195		break;
2196	case FSACTL_OPEN_GET_ADAPTER_FIB:
2197		arg = *(caddr_t*)arg;
2198	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2199		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2200		/*
2201		 * Pass the caller out an AdapterFibContext.
2202		 *
2203		 * Note that because we only support one opener, we
2204		 * basically ignore this.  Set the caller's context to a magic
2205		 * number just in case.
2206		 *
2207		 * The Linux code hands the driver a pointer into kernel space,
2208		 * and then trusts it when the caller hands it back.  Aiee!
2209		 * Here, we give it the proc pointer of the per-adapter aif
2210		 * thread. It's only used as a sanity check in other calls.
2211		 */
2212		i = (int)sc->aifthread;
2213		error = copyout(&i, arg, sizeof(i));
2214		break;
2215	case FSACTL_GET_NEXT_ADAPTER_FIB:
2216		arg = *(caddr_t*)arg;
2217	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2218		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2219		error = aac_getnext_aif(sc, arg);
2220		break;
2221	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2222	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2223		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2224		/* don't do anything here */
2225		break;
2226	case FSACTL_MINIPORT_REV_CHECK:
2227		arg = *(caddr_t*)arg;
2228	case FSACTL_LNX_MINIPORT_REV_CHECK:
2229		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2230		error = aac_rev_check(sc, arg);
2231		break;
2232	case FSACTL_QUERY_DISK:
2233		arg = *(caddr_t*)arg;
2234	case FSACTL_LNX_QUERY_DISK:
2235		debug(1, "FSACTL_QUERY_DISK");
2236		error = aac_query_disk(sc, arg);
2237			break;
2238	case FSACTL_DELETE_DISK:
2239	case FSACTL_LNX_DELETE_DISK:
2240		/*
2241		 * We don't trust the underland to tell us when to delete a
2242		 * container, rather we rely on an AIF coming from the
2243		 * controller
2244		 */
2245		error = 0;
2246		break;
2247	default:
2248		debug(1, "unsupported cmd 0x%lx\n", cmd);
2249		error = EINVAL;
2250		break;
2251	}
2252	return(error);
2253}
2254
2255static int
2256aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2257{
2258	struct aac_softc *sc;
2259	int revents;
2260
2261	sc = dev->si_drv1;
2262	revents = 0;
2263
2264	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2265	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2266		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2267			revents |= poll_events & (POLLIN | POLLRDNORM);
2268	}
2269	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2270
2271	if (revents == 0) {
2272		if (poll_events & (POLLIN | POLLRDNORM))
2273			selrecord(td, &sc->rcv_select);
2274	}
2275
2276	return (revents);
2277}
2278
2279/*
2280 * Send a FIB supplied from userspace
2281 */
2282static int
2283aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2284{
2285	struct aac_command *cm;
2286	int size, error;
2287
2288	debug_called(2);
2289
2290	cm = NULL;
2291
2292	/*
2293	 * Get a command
2294	 */
2295	if (aac_alloc_command(sc, &cm)) {
2296		error = EBUSY;
2297		goto out;
2298	}
2299
2300	/*
2301	 * Fetch the FIB header, then re-copy to get data as well.
2302	 */
2303	if ((error = copyin(ufib, cm->cm_fib,
2304			    sizeof(struct aac_fib_header))) != 0)
2305		goto out;
2306	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2307	if (size > sizeof(struct aac_fib)) {
2308		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2309			      size, sizeof(struct aac_fib));
2310		size = sizeof(struct aac_fib);
2311	}
2312	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2313		goto out;
2314	cm->cm_fib->Header.Size = size;
2315	cm->cm_timestamp = time_second;
2316
2317	/*
2318	 * Pass the FIB to the controller, wait for it to complete.
2319	 */
2320	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2321		printf("aac_wait_command return %d\n", error);
2322		goto out;
2323	}
2324
2325	/*
2326	 * Copy the FIB and data back out to the caller.
2327	 */
2328	size = cm->cm_fib->Header.Size;
2329	if (size > sizeof(struct aac_fib)) {
2330		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2331			      size, sizeof(struct aac_fib));
2332		size = sizeof(struct aac_fib);
2333	}
2334	error = copyout(cm->cm_fib, ufib, size);
2335
2336out:
2337	if (cm != NULL) {
2338		aac_release_command(cm);
2339	}
2340	return(error);
2341}
2342
2343/*
2344 * Handle an AIF sent to us by the controller; queue it for later reference.
2345 * If the queue fills up, then drop the older entries.
2346 */
2347static void
2348aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2349{
2350	struct aac_aif_command *aif;
2351	struct aac_container *co, *co_next;
2352	struct aac_mntinfo *mi;
2353	struct aac_mntinforesp *mir = NULL;
2354	u_int16_t rsize;
2355	int next, found;
2356	int added = 0, i = 0;
2357
2358	debug_called(2);
2359
2360	aif = (struct aac_aif_command*)&fib->data[0];
2361	aac_print_aif(sc, aif);
2362
2363	/* Is it an event that we should care about? */
2364	switch (aif->command) {
2365	case AifCmdEventNotify:
2366		switch (aif->data.EN.type) {
2367		case AifEnAddContainer:
2368		case AifEnDeleteContainer:
2369			/*
2370			 * A container was added or deleted, but the message
2371			 * doesn't tell us anything else!  Re-enumerate the
2372			 * containers and sort things out.
2373			 */
2374			aac_alloc_sync_fib(sc, &fib, 0);
2375			mi = (struct aac_mntinfo *)&fib->data[0];
2376			mi->Command = VM_NameServe;
2377			mi->MntType = FT_FILESYS;
2378			do {
2379				/*
2380				 * Ask the controller for its containers one at
2381				 * a time.
2382				 * XXX What if the controller's list changes
2383				 * midway through this enumaration?
2384				 * XXX This should be done async.
2385				 */
2386				mi->MntCount = i;
2387				rsize = sizeof(mir);
2388				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2389						 sizeof(struct aac_mntinfo))) {
2390					debug(2, "Error probing container %d\n",
2391					      i);
2392					continue;
2393				}
2394				mir = (struct aac_mntinforesp *)&fib->data[0];
2395				/*
2396				 * Check the container against our list.
2397				 * co->co_found was already set to 0 in a
2398				 * previous run.
2399				 */
2400				if ((mir->Status == ST_OK) &&
2401				    (mir->MntTable[0].VolType != CT_NONE)) {
2402					found = 0;
2403					TAILQ_FOREACH(co,
2404						      &sc->aac_container_tqh,
2405						      co_link) {
2406						if (co->co_mntobj.ObjectId ==
2407						    mir->MntTable[0].ObjectId) {
2408							co->co_found = 1;
2409							found = 1;
2410							break;
2411						}
2412					}
2413					/*
2414					 * If the container matched, continue
2415					 * in the list.
2416					 */
2417					if (found) {
2418						i++;
2419						continue;
2420					}
2421
2422					/*
2423					 * This is a new container.  Do all the
2424					 * appropriate things to set it up.						 */
2425					aac_add_container(sc, mir, 1);
2426					added = 1;
2427				}
2428				i++;
2429			} while ((i < mir->MntRespCount) &&
2430				 (i < AAC_MAX_CONTAINERS));
2431			aac_release_sync_fib(sc);
2432
2433			/*
2434			 * Go through our list of containers and see which ones
2435			 * were not marked 'found'.  Since the controller didn't
2436			 * list them they must have been deleted.  Do the
2437			 * appropriate steps to destroy the device.  Also reset
2438			 * the co->co_found field.
2439			 */
2440			co = TAILQ_FIRST(&sc->aac_container_tqh);
2441			while (co != NULL) {
2442				if (co->co_found == 0) {
2443					device_delete_child(sc->aac_dev,
2444							    co->co_disk);
2445					co_next = TAILQ_NEXT(co, co_link);
2446					AAC_LOCK_ACQUIRE(&sc->
2447							aac_container_lock);
2448					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2449						     co_link);
2450					AAC_LOCK_RELEASE(&sc->
2451							 aac_container_lock);
2452					FREE(co, M_AACBUF);
2453					co = co_next;
2454				} else {
2455					co->co_found = 0;
2456					co = TAILQ_NEXT(co, co_link);
2457				}
2458			}
2459
2460			/* Attach the newly created containers */
2461			if (added)
2462				bus_generic_attach(sc->aac_dev);
2463
2464				break;
2465
2466		default:
2467			break;
2468		}
2469
2470	default:
2471		break;
2472	}
2473
2474	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2475	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2476	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2477	if (next != sc->aac_aifq_tail) {
2478		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2479		sc->aac_aifq_head = next;
2480
2481		/* On the off chance that someone is sleeping for an aif... */
2482		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2483			wakeup(sc->aac_aifq);
2484		/* Wakeup any poll()ers */
2485		selwakeup(&sc->rcv_select);
2486	}
2487	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2488
2489	return;
2490}
2491
2492/*
2493 * Linux Management Interface
2494 * This is soon to be removed!
2495 */
2496
2497#ifdef AAC_COMPAT_LINUX
2498
2499#include <sys/proc.h>
2500#include <machine/../linux/linux.h>
2501#include <machine/../linux/linux_proto.h>
2502#include <compat/linux/linux_ioctl.h>
2503
2504/* There are multiple ioctl number ranges that need to be handled */
2505#define AAC_LINUX_IOCTL_MIN  0x0000
2506#define AAC_LINUX_IOCTL_MAX  0x21ff
2507
2508static linux_ioctl_function_t aac_linux_ioctl;
2509static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2510						 AAC_LINUX_IOCTL_MIN,
2511						 AAC_LINUX_IOCTL_MAX};
2512
2513SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2514	  linux_ioctl_register_handler, &aac_handler);
2515SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2516	  linux_ioctl_unregister_handler, &aac_handler);
2517
2518MODULE_DEPEND(aac, linux, 1, 1, 1);
2519
2520static int
2521aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2522{
2523	struct file *fp;
2524	u_long cmd;
2525	int error;
2526
2527	debug_called(2);
2528
2529	if ((error = fget(td, args->fd, &fp)) != 0)
2530		return (error);
2531	cmd = args->cmd;
2532
2533	/*
2534	 * Pass the ioctl off to our standard handler.
2535	 */
2536	error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2537	fdrop(fp, td);
2538	return (error);
2539}
2540
2541#endif
2542
2543/*
2544 * Return the Revision of the driver to userspace and check to see if the
2545 * userspace app is possibly compatible.  This is extremely bogus since
2546 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2547 * returning what the card reported.
2548 */
2549static int
2550aac_rev_check(struct aac_softc *sc, caddr_t udata)
2551{
2552	struct aac_rev_check rev_check;
2553	struct aac_rev_check_resp rev_check_resp;
2554	int error = 0;
2555
2556	debug_called(2);
2557
2558	/*
2559	 * Copyin the revision struct from userspace
2560	 */
2561	if ((error = copyin(udata, (caddr_t)&rev_check,
2562			sizeof(struct aac_rev_check))) != 0) {
2563		return error;
2564	}
2565
2566	debug(2, "Userland revision= %d\n",
2567	      rev_check.callingRevision.buildNumber);
2568
2569	/*
2570	 * Doctor up the response struct.
2571	 */
2572	rev_check_resp.possiblyCompatible = 1;
2573	rev_check_resp.adapterSWRevision.external.ul =
2574	    sc->aac_revision.external.ul;
2575	rev_check_resp.adapterSWRevision.buildNumber =
2576	    sc->aac_revision.buildNumber;
2577
2578	return(copyout((caddr_t)&rev_check_resp, udata,
2579			sizeof(struct aac_rev_check_resp)));
2580}
2581
2582/*
2583 * Pass the caller the next AIF in their queue
2584 */
2585static int
2586aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2587{
2588	struct get_adapter_fib_ioctl agf;
2589	int error, s;
2590
2591	debug_called(2);
2592
2593	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2594
2595		/*
2596		 * Check the magic number that we gave the caller.
2597		 */
2598		if (agf.AdapterFibContext != (int)sc->aifthread) {
2599			error = EFAULT;
2600		} else {
2601
2602			s = splbio();
2603			error = aac_return_aif(sc, agf.AifFib);
2604
2605			if ((error == EAGAIN) && (agf.Wait)) {
2606				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2607				while (error == EAGAIN) {
2608					error = tsleep(sc->aac_aifq, PRIBIO |
2609						       PCATCH, "aacaif", 0);
2610					if (error == 0)
2611						error = aac_return_aif(sc,
2612						    agf.AifFib);
2613				}
2614				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2615			}
2616		splx(s);
2617		}
2618	}
2619	return(error);
2620}
2621
2622/*
2623 * Hand the next AIF off the top of the queue out to userspace.
2624 */
2625static int
2626aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2627{
2628	int error;
2629
2630	debug_called(2);
2631
2632	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2633	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2634		error = EAGAIN;
2635	} else {
2636		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2637				sizeof(struct aac_aif_command));
2638		if (error)
2639			printf("aac_return_aif: copyout returned %d\n", error);
2640		if (!error)
2641			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2642					    AAC_AIFQ_LENGTH;
2643	}
2644	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2645	return(error);
2646}
2647
2648/*
2649 * Give the userland some information about the container.  The AAC arch
2650 * expects the driver to be a SCSI passthrough type driver, so it expects
2651 * the containers to have b:t:l numbers.  Fake it.
2652 */
2653static int
2654aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2655{
2656	struct aac_query_disk query_disk;
2657	struct aac_container *co;
2658	struct aac_disk	*disk;
2659	int error, id;
2660
2661	debug_called(2);
2662
2663	disk = NULL;
2664
2665	error = copyin(uptr, (caddr_t)&query_disk,
2666		       sizeof(struct aac_query_disk));
2667	if (error)
2668		return (error);
2669
2670	id = query_disk.ContainerNumber;
2671	if (id == -1)
2672		return (EINVAL);
2673
2674	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2675	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2676		if (co->co_mntobj.ObjectId == id)
2677			break;
2678		}
2679
2680		if (co == NULL) {
2681			query_disk.Valid = 0;
2682			query_disk.Locked = 0;
2683			query_disk.Deleted = 1;		/* XXX is this right? */
2684		} else {
2685			disk = device_get_softc(co->co_disk);
2686			query_disk.Valid = 1;
2687			query_disk.Locked =
2688			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2689			query_disk.Deleted = 0;
2690			query_disk.Bus = device_get_unit(sc->aac_dev);
2691			query_disk.Target = disk->unit;
2692			query_disk.Lun = 0;
2693			query_disk.UnMapped = 0;
2694			bcopy(disk->ad_dev_t->si_name,
2695			      &query_disk.diskDeviceName[0], 10);
2696		}
2697	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2698
2699	error = copyout((caddr_t)&query_disk, uptr,
2700			sizeof(struct aac_query_disk));
2701
2702	return (error);
2703}
2704
2705static void
2706aac_get_bus_info(struct aac_softc *sc)
2707{
2708	struct aac_fib *fib;
2709	struct aac_ctcfg *c_cmd;
2710	struct aac_ctcfg_resp *c_resp;
2711	struct aac_vmioctl *vmi;
2712	struct aac_vmi_businf_resp *vmi_resp;
2713	struct aac_getbusinf businfo;
2714	struct aac_cam_inf *caminf;
2715	device_t child;
2716	int i, found, error;
2717
2718	aac_alloc_sync_fib(sc, &fib, 0);
2719	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2720
2721	c_cmd->Command = VM_ContainerConfig;
2722	c_cmd->cmd = CT_GET_SCSI_METHOD;
2723	c_cmd->param = 0;
2724
2725	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2726	    sizeof(struct aac_ctcfg));
2727	if (error) {
2728		device_printf(sc->aac_dev, "Error %d sending "
2729		    "VM_ContainerConfig command\n", error);
2730		aac_release_sync_fib(sc);
2731		return;
2732	}
2733
2734	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2735	if (c_resp->Status != ST_OK) {
2736		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2737		    c_resp->Status);
2738		aac_release_sync_fib(sc);
2739		return;
2740	}
2741
2742	sc->scsi_method_id = c_resp->param;
2743
2744	vmi = (struct aac_vmioctl *)&fib->data[0];
2745	vmi->Command = VM_Ioctl;
2746	vmi->ObjType = FT_DRIVE;
2747	vmi->MethId = sc->scsi_method_id;
2748	vmi->ObjId = 0;
2749	vmi->IoctlCmd = GetBusInfo;
2750
2751	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2752	    sizeof(struct aac_vmioctl));
2753	if (error) {
2754		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2755		    error);
2756		aac_release_sync_fib(sc);
2757		return;
2758	}
2759
2760	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2761	if (vmi_resp->Status != ST_OK) {
2762		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2763		    vmi_resp->Status);
2764		aac_release_sync_fib(sc);
2765		return;
2766	}
2767
2768	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2769	aac_release_sync_fib(sc);
2770
2771	found = 0;
2772	for (i = 0; i < businfo.BusCount; i++) {
2773		if (businfo.BusValid[i] != AAC_BUS_VALID)
2774			continue;
2775
2776		MALLOC(caminf, struct aac_cam_inf *,
2777		    sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2778		if (caminf == NULL)
2779			continue;
2780
2781		child = device_add_child(sc->aac_dev, "aacp", -1);
2782		if (child == NULL) {
2783			device_printf(sc->aac_dev, "device_add_child failed\n");
2784			continue;
2785		}
2786
2787		caminf->TargetsPerBus = businfo.TargetsPerBus;
2788		caminf->BusNumber = i;
2789		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2790		caminf->aac_sc = sc;
2791
2792		device_set_ivars(child, caminf);
2793		device_set_desc(child, "SCSI Passthrough Bus");
2794
2795		found = 1;
2796	}
2797
2798	if (found)
2799		bus_generic_attach(sc->aac_dev);
2800
2801	return;
2802}
2803