aac.c revision 95350
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 95350 2002-04-24 05:12:50Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/file.h>
61#include <sys/signalvar.h>
62#include <sys/time.h>
63#include <sys/eventhandler.h>
64
65#include <machine/bus_memio.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68
69#include <dev/aac/aacreg.h>
70#include <dev/aac/aac_ioctl.h>
71#include <dev/aac/aacvar.h>
72#include <dev/aac/aac_tables.h>
73
74static void	aac_startup(void *arg);
75static void	aac_add_container(struct aac_softc *sc,
76				  struct aac_mntinforesp *mir, int f);
77
78/* Command Processing */
79static void	aac_startio(struct aac_softc *sc);
80static void	aac_timeout(struct aac_softc *sc);
81static int	aac_start(struct aac_command *cm);
82static void	aac_complete(void *context, int pending);
83static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84static void	aac_bio_complete(struct aac_command *cm);
85static int	aac_wait_command(struct aac_command *cm, int timeout);
86static void	aac_host_command(struct aac_softc *sc);
87static void	aac_host_response(struct aac_softc *sc);
88
89/* Command Buffer Management */
90static int	aac_alloc_command(struct aac_softc *sc,
91				  struct aac_command **cmp);
92static void	aac_release_command(struct aac_command *cm);
93static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
94				       int nseg, int error);
95static int	aac_alloc_commands(struct aac_softc *sc);
96static void	aac_free_commands(struct aac_softc *sc);
97static void	aac_map_command(struct aac_command *cm);
98static void	aac_unmap_command(struct aac_command *cm);
99
100/* Hardware Interface */
101static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
102			       int error);
103static int	aac_check_firmware(struct aac_softc *sc);
104static int	aac_init(struct aac_softc *sc);
105static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
106				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
107				 u_int32_t arg3, u_int32_t *sp);
108static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
109				struct aac_command *cm);
110static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
111				u_int32_t *fib_size, struct aac_fib **fib_addr);
112static int	aac_enqueue_response(struct aac_softc *sc, int queue,
113				     struct aac_fib *fib);
114
115/* Falcon/PPC interface */
116static int	aac_fa_get_fwstatus(struct aac_softc *sc);
117static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
118static int	aac_fa_get_istatus(struct aac_softc *sc);
119static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
120static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
121				   u_int32_t arg0, u_int32_t arg1,
122				   u_int32_t arg2, u_int32_t arg3);
123static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
124static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
125
126struct aac_interface aac_fa_interface = {
127	aac_fa_get_fwstatus,
128	aac_fa_qnotify,
129	aac_fa_get_istatus,
130	aac_fa_clear_istatus,
131	aac_fa_set_mailbox,
132	aac_fa_get_mailboxstatus,
133	aac_fa_set_interrupts
134};
135
136/* StrongARM interface */
137static int	aac_sa_get_fwstatus(struct aac_softc *sc);
138static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
139static int	aac_sa_get_istatus(struct aac_softc *sc);
140static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
141static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
142				   u_int32_t arg0, u_int32_t arg1,
143				   u_int32_t arg2, u_int32_t arg3);
144static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
145static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
146
147struct aac_interface aac_sa_interface = {
148	aac_sa_get_fwstatus,
149	aac_sa_qnotify,
150	aac_sa_get_istatus,
151	aac_sa_clear_istatus,
152	aac_sa_set_mailbox,
153	aac_sa_get_mailboxstatus,
154	aac_sa_set_interrupts
155};
156
157/* i960Rx interface */
158static int	aac_rx_get_fwstatus(struct aac_softc *sc);
159static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
160static int	aac_rx_get_istatus(struct aac_softc *sc);
161static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
162static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
163				   u_int32_t arg0, u_int32_t arg1,
164				   u_int32_t arg2, u_int32_t arg3);
165static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
166static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
167
168struct aac_interface aac_rx_interface = {
169	aac_rx_get_fwstatus,
170	aac_rx_qnotify,
171	aac_rx_get_istatus,
172	aac_rx_clear_istatus,
173	aac_rx_set_mailbox,
174	aac_rx_get_mailboxstatus,
175	aac_rx_set_interrupts
176};
177
178/* Debugging and Diagnostics */
179static void	aac_describe_controller(struct aac_softc *sc);
180static char	*aac_describe_code(struct aac_code_lookup *table,
181				   u_int32_t code);
182
183/* Management Interface */
184static d_open_t		aac_open;
185static d_close_t	aac_close;
186static d_ioctl_t	aac_ioctl;
187static d_poll_t		aac_poll;
188static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
189static void		aac_handle_aif(struct aac_softc *sc,
190					   struct aac_fib *fib);
191static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
192static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
193static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
194static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
195
196#define AAC_CDEV_MAJOR	150
197
198static struct cdevsw aac_cdevsw = {
199	aac_open,		/* open */
200	aac_close,		/* close */
201	noread,			/* read */
202	nowrite,		/* write */
203	aac_ioctl,		/* ioctl */
204	aac_poll,		/* poll */
205	nommap,			/* mmap */
206	nostrategy,		/* strategy */
207	"aac",			/* name */
208	AAC_CDEV_MAJOR,		/* major */
209	nodump,			/* dump */
210	nopsize,		/* psize */
211	0,			/* flags */
212#if __FreeBSD_version < 500005
213	-1,			/* bmaj */
214#endif
215};
216
217MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
218
219/* sysctl node */
220SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
221
222/*
223 * Device Interface
224 */
225
226/*
227 * Initialise the controller and softc
228 */
229int
230aac_attach(struct aac_softc *sc)
231{
232	int error, unit;
233
234	debug_called(1);
235
236	/*
237	 * Initialise per-controller queues.
238	 */
239	aac_initq_free(sc);
240	aac_initq_ready(sc);
241	aac_initq_busy(sc);
242	aac_initq_complete(sc);
243	aac_initq_bio(sc);
244
245#if __FreeBSD_version >= 500005
246	/*
247	 * Initialise command-completion task.
248	 */
249	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
250#endif
251
252	/* disable interrupts before we enable anything */
253	AAC_MASK_INTERRUPTS(sc);
254
255	/* mark controller as suspended until we get ourselves organised */
256	sc->aac_state |= AAC_STATE_SUSPEND;
257
258	/*
259	 * Check that the firmware on the card is supported.
260	 */
261	if ((error = aac_check_firmware(sc)) != 0)
262		return(error);
263
264	/*
265	 * Allocate command structures.
266	 */
267	if ((error = aac_alloc_commands(sc)) != 0)
268		return(error);
269
270	/* Init the sync fib lock */
271	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
272
273	/*
274	 * Initialise the adapter.
275	 */
276	if ((error = aac_init(sc)) != 0)
277		return(error);
278
279	/*
280	 * Print a little information about the controller.
281	 */
282	aac_describe_controller(sc);
283
284	/*
285	 * Register to probe our containers later.
286	 */
287	TAILQ_INIT(&sc->aac_container_tqh);
288	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
289
290	/*
291	 * Lock for the AIF queue
292	 */
293	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
294
295	sc->aac_ich.ich_func = aac_startup;
296	sc->aac_ich.ich_arg = sc;
297	if (config_intrhook_establish(&sc->aac_ich) != 0) {
298		device_printf(sc->aac_dev,
299			      "can't establish configuration hook\n");
300		return(ENXIO);
301	}
302
303	/*
304	 * Make the control device.
305	 */
306	unit = device_get_unit(sc->aac_dev);
307	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
308				 "aac%d", unit);
309#if __FreeBSD_version > 500005
310	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
311	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
312#endif
313	sc->aac_dev_t->si_drv1 = sc;
314
315	/* Create the AIF thread */
316#if __FreeBSD_version > 500005
317	if (kthread_create((void(*)(void *))aac_host_command, sc,
318			   &sc->aifthread, 0, "aac%daif", unit))
319#else
320	if (kthread_create((void(*)(void *))aac_host_command, sc,
321			   &sc->aifthread, "aac%daif", unit))
322#endif
323		panic("Could not create AIF thread\n");
324
325	/* Register the shutdown method to only be called post-dump */
326	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
327				   SHUTDOWN_PRI_DEFAULT)) == NULL)
328	device_printf(sc->aac_dev, "shutdown event registration failed\n");
329
330	return(0);
331}
332
333/*
334 * Probe for containers, create disks.
335 */
336static void
337aac_startup(void *arg)
338{
339	struct aac_softc *sc;
340	struct aac_fib *fib;
341	struct aac_mntinfo *mi;
342	struct aac_mntinforesp *mir = NULL;
343	int i = 0;
344
345	debug_called(1);
346
347	sc = (struct aac_softc *)arg;
348
349	/* disconnect ourselves from the intrhook chain */
350	config_intrhook_disestablish(&sc->aac_ich);
351
352	aac_get_sync_fib(sc, &fib, 0);
353	mi = (struct aac_mntinfo *)&fib->data[0];
354
355	/* loop over possible containers */
356	mi->Command = VM_NameServe;
357	mi->MntType = FT_FILESYS;
358	do {
359		/* request information on this container */
360		mi->MntCount = i;
361		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
362				 sizeof(struct aac_mntinfo))) {
363			debug(2, "error probing container %d", i);
364			continue;
365		}
366		/* check response size */
367
368		mir = (struct aac_mntinforesp *)&fib->data[0];
369		aac_add_container(sc, mir, 0);
370		i++;
371	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
372
373	aac_release_sync_fib(sc);
374
375	/* poke the bus to actually attach the child devices */
376	if (bus_generic_attach(sc->aac_dev))
377		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
378
379	/* mark the controller up */
380	sc->aac_state &= ~AAC_STATE_SUSPEND;
381
382	/* enable interrupts now */
383	AAC_UNMASK_INTERRUPTS(sc);
384
385	/* enable the timeout watchdog */
386	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
387}
388
389/*
390 * Create a device to respresent a new container
391 */
392static void
393aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
394{
395	struct aac_container *co;
396	device_t child;
397
398	/*
399	 * Check container volume type for validity.  Note that many of
400	 * the possible types may never show up.
401	 */
402	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
403		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
404		       M_NOWAIT);
405		if (co == NULL)
406			panic("Out of memory?!\n");
407		debug(1, "id %x  name '%.16s'  size %u  type %d",
408		      mir->MntTable[0].ObjectId,
409		      mir->MntTable[0].FileSystemName,
410		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
411
412		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
413			device_printf(sc->aac_dev, "device_add_child failed\n");
414		else
415			device_set_ivars(child, co);
416		device_set_desc(child, aac_describe_code(aac_container_types,
417				mir->MntTable[0].VolType));
418		co->co_disk = child;
419		co->co_found = f;
420		bcopy(&mir->MntTable[0], &co->co_mntobj,
421		      sizeof(struct aac_mntobj));
422		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
423		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
424		AAC_LOCK_RELEASE(&sc->aac_container_lock);
425	}
426}
427
428/*
429 * Free all of the resources associated with (sc)
430 *
431 * Should not be called if the controller is active.
432 */
433void
434aac_free(struct aac_softc *sc)
435{
436	debug_called(1);
437
438	/* remove the control device */
439	if (sc->aac_dev_t != NULL)
440		destroy_dev(sc->aac_dev_t);
441
442	/* throw away any FIB buffers, discard the FIB DMA tag */
443	if (sc->aac_fibs != NULL)
444		aac_free_commands(sc);
445	if (sc->aac_fib_dmat)
446		bus_dma_tag_destroy(sc->aac_fib_dmat);
447
448	/* destroy the common area */
449	if (sc->aac_common) {
450		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
451		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
452				sc->aac_common_dmamap);
453	}
454	if (sc->aac_common_dmat)
455		bus_dma_tag_destroy(sc->aac_common_dmat);
456
457	/* disconnect the interrupt handler */
458	if (sc->aac_intr)
459		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
460	if (sc->aac_irq != NULL)
461		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
462				     sc->aac_irq);
463
464	/* destroy data-transfer DMA tag */
465	if (sc->aac_buffer_dmat)
466		bus_dma_tag_destroy(sc->aac_buffer_dmat);
467
468	/* destroy the parent DMA tag */
469	if (sc->aac_parent_dmat)
470		bus_dma_tag_destroy(sc->aac_parent_dmat);
471
472	/* release the register window mapping */
473	if (sc->aac_regs_resource != NULL)
474		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
475				     sc->aac_regs_rid, sc->aac_regs_resource);
476}
477
478/*
479 * Disconnect from the controller completely, in preparation for unload.
480 */
481int
482aac_detach(device_t dev)
483{
484	struct aac_softc *sc;
485#if AAC_BROKEN
486	int error;
487#endif
488
489	debug_called(1);
490
491	sc = device_get_softc(dev);
492
493	if (sc->aac_state & AAC_STATE_OPEN)
494	return(EBUSY);
495
496#if AAC_BROKEN
497	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
498		sc->aifflags |= AAC_AIFFLAGS_EXIT;
499		wakeup(sc->aifthread);
500		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
501	}
502
503	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
504		panic("Cannot shutdown AIF thread\n");
505
506	if ((error = aac_shutdown(dev)))
507		return(error);
508
509	aac_free(sc);
510
511	return(0);
512#else
513	return (EBUSY);
514#endif
515}
516
517/*
518 * Bring the controller down to a dormant state and detach all child devices.
519 *
520 * This function is called before detach or system shutdown.
521 *
522 * Note that we can assume that the bioq on the controller is empty, as we won't
523 * allow shutdown if any device is open.
524 */
525int
526aac_shutdown(device_t dev)
527{
528	struct aac_softc *sc;
529	struct aac_fib *fib;
530	struct aac_close_command *cc;
531	int s;
532
533	debug_called(1);
534
535	sc = device_get_softc(dev);
536
537	s = splbio();
538
539	sc->aac_state |= AAC_STATE_SUSPEND;
540
541	/*
542	 * Send a Container shutdown followed by a HostShutdown FIB to the
543	 * controller to convince it that we don't want to talk to it anymore.
544	 * We've been closed and all I/O completed already
545	 */
546	device_printf(sc->aac_dev, "shutting down controller...");
547
548	aac_get_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
549	cc = (struct aac_close_command *)&fib->data[0];
550
551	cc->Command = VM_CloseAll;
552	cc->ContainerId = 0xffffffff;
553	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
554	    sizeof(struct aac_close_command)))
555		printf("FAILED.\n");
556	else {
557		fib->data[0] = 0;
558		/*
559		 * XXX Issuing this command to the controller makes it shut down
560		 * but also keeps it from coming back up without a reset of the
561		 * PCI bus.  This is not desirable if you are just unloading the
562		 * driver module with the intent to reload it later.
563		 */
564		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
565		    fib, 1)) {
566			printf("FAILED.\n");
567		} else {
568			printf("done.\n");
569		}
570	}
571
572	AAC_MASK_INTERRUPTS(sc);
573
574	splx(s);
575	return(0);
576}
577
578/*
579 * Bring the controller to a quiescent state, ready for system suspend.
580 */
581int
582aac_suspend(device_t dev)
583{
584	struct aac_softc *sc;
585	int s;
586
587	debug_called(1);
588
589	sc = device_get_softc(dev);
590
591	s = splbio();
592
593	sc->aac_state |= AAC_STATE_SUSPEND;
594
595	AAC_MASK_INTERRUPTS(sc);
596	splx(s);
597	return(0);
598}
599
600/*
601 * Bring the controller back to a state ready for operation.
602 */
603int
604aac_resume(device_t dev)
605{
606	struct aac_softc *sc;
607
608	debug_called(1);
609
610	sc = device_get_softc(dev);
611
612	sc->aac_state &= ~AAC_STATE_SUSPEND;
613	AAC_UNMASK_INTERRUPTS(sc);
614	return(0);
615}
616
617/*
618 * Take an interrupt.
619 */
620void
621aac_intr(void *arg)
622{
623	struct aac_softc *sc;
624	u_int16_t reason;
625
626	debug_called(2);
627
628	sc = (struct aac_softc *)arg;
629
630	reason = AAC_GET_ISTATUS(sc);
631
632	/* controller wants to talk to the log */
633	if (reason & AAC_DB_PRINTF) {
634		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
635		aac_print_printf(sc);
636	}
637
638	/* controller has a message for us? */
639	if (reason & AAC_DB_COMMAND_READY) {
640		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
641		/* XXX What happens if the thread is already awake? */
642		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
643			sc->aifflags |= AAC_AIFFLAGS_PENDING;
644			wakeup(sc->aifthread);
645		}
646	}
647
648	/* controller has a response for us? */
649	if (reason & AAC_DB_RESPONSE_READY) {
650		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
651		aac_host_response(sc);
652	}
653
654	/*
655	 * spurious interrupts that we don't use - reset the mask and clear the
656	 * interrupts
657	 */
658	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
659		AAC_UNMASK_INTERRUPTS(sc);
660		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
661				  AAC_DB_RESPONSE_NOT_FULL);
662	}
663};
664
665/*
666 * Command Processing
667 */
668
669/*
670 * Start as much queued I/O as possible on the controller
671 */
672static void
673aac_startio(struct aac_softc *sc)
674{
675	struct aac_command *cm;
676
677	debug_called(2);
678
679	for (;;) {
680		/*
681		 * Try to get a command that's been put off for lack of
682		 * resources
683		 */
684		cm = aac_dequeue_ready(sc);
685
686		/*
687		 * Try to build a command off the bio queue (ignore error
688		 * return)
689		 */
690		if (cm == NULL)
691			aac_bio_command(sc, &cm);
692
693		/* nothing to do? */
694		if (cm == NULL)
695			break;
696
697		/* try to give the command to the controller */
698		if (aac_start(cm) == EBUSY) {
699			/* put it on the ready queue for later */
700			aac_requeue_ready(cm);
701			break;
702		}
703	}
704}
705
706/*
707 * Deliver a command to the controller; allocate controller resources at the
708 * last moment when possible.
709 */
710static int
711aac_start(struct aac_command *cm)
712{
713	struct aac_softc *sc;
714	int error;
715
716	debug_called(2);
717
718	sc = cm->cm_sc;
719
720	/* get the command mapped */
721	aac_map_command(cm);
722
723	/* fix up the address values in the FIB */
724	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
725	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
726
727	/* save a pointer to the command for speedy reverse-lookup */
728	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
729							 * address issue */
730
731	/* put the FIB on the outbound queue */
732	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
733	return(error);
734}
735
736/*
737 * Handle notification of one or more FIBs coming from the controller.
738 */
739static void
740aac_host_command(struct aac_softc *sc)
741{
742	struct aac_fib *fib;
743	u_int32_t fib_size;
744	int size;
745
746	debug_called(2);
747
748	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749
750	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
752			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
753
754		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
755		for (;;) {
756			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
757					    &fib_size, &fib))
758				break;	/* nothing to do */
759
760			AAC_PRINT_FIB(sc, fib);
761
762			switch (fib->Header.Command) {
763			case AifRequest:
764				aac_handle_aif(sc, fib);
765				break;
766			default:
767				device_printf(sc->aac_dev, "unknown command "
768					      "from controller\n");
769				break;
770			}
771
772			/* Return the AIF to the controller. */
773			if ((fib->Header.XferState == 0) ||
774			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775				break;
776
777			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
778				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
779				*(AAC_FSAStatus*)fib->data = ST_OK;
780
781				/* XXX Compute the Size field? */
782				size = fib->Header.Size;
783				if (size > sizeof(struct aac_fib)) {
784	 				size = sizeof(struct aac_fib);
785					fib->Header.Size = size;
786				}
787				/*
788				 * Since we did not generate this command, it
789				 * cannot go through the normal
790				 * enqueue->startio chain.
791				 */
792				aac_enqueue_response(sc,
793						     AAC_ADAP_NORM_RESP_QUEUE,
794						     fib);
795			}
796		}
797	}
798	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
799	wakeup(sc->aac_dev);
800
801#if __FreeBSD_version > 500005
802	mtx_lock(&Giant);
803#endif
804	kthread_exit(0);
805}
806
807/*
808 * Handle notification of one or more FIBs completed by the controller
809 */
810static void
811aac_host_response(struct aac_softc *sc)
812{
813	struct aac_command *cm;
814	struct aac_fib *fib;
815	u_int32_t fib_size;
816
817	debug_called(2);
818
819	for (;;) {
820		/* look for completed FIBs on our queue */
821		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
822				    &fib))
823			break;	/* nothing to do */
824
825		/* get the command, unmap and queue for later processing */
826		cm = (struct aac_command *)fib->Header.SenderData;
827		if (cm == NULL) {
828			AAC_PRINT_FIB(sc, fib);
829		} else {
830			aac_remove_busy(cm);
831			aac_unmap_command(cm);		/* XXX defer? */
832			aac_enqueue_complete(cm);
833		}
834	}
835
836	/* handle completion processing */
837#if __FreeBSD_version >= 500005
838	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
839#else
840	aac_complete(sc, 0);
841#endif
842}
843
844/*
845 * Process completed commands.
846 */
847static void
848aac_complete(void *context, int pending)
849{
850	struct aac_softc *sc;
851	struct aac_command *cm;
852
853	debug_called(2);
854
855	sc = (struct aac_softc *)context;
856
857	/* pull completed commands off the queue */
858	for (;;) {
859		cm = aac_dequeue_complete(sc);
860		if (cm == NULL)
861			break;
862		cm->cm_flags |= AAC_CMD_COMPLETED;
863
864		/* is there a completion handler? */
865		if (cm->cm_complete != NULL) {
866			cm->cm_complete(cm);
867		} else {
868			/* assume that someone is sleeping on this command */
869			wakeup(cm);
870		}
871	}
872
873	/* see if we can start some more I/O */
874	aac_startio(sc);
875}
876
877/*
878 * Handle a bio submitted from a disk device.
879 */
880void
881aac_submit_bio(struct bio *bp)
882{
883	struct aac_disk *ad;
884	struct aac_softc *sc;
885
886	debug_called(2);
887
888	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
889	sc = ad->ad_controller;
890
891	/* queue the BIO and try to get some work done */
892	aac_enqueue_bio(sc, bp);
893	aac_startio(sc);
894}
895
896/*
897 * Get a bio and build a command to go with it.
898 */
899static int
900aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
901{
902	struct aac_command *cm;
903	struct aac_fib *fib;
904	struct aac_blockread *br;
905	struct aac_blockwrite *bw;
906	struct aac_disk *ad;
907	struct bio *bp;
908
909	debug_called(2);
910
911	/* get the resources we will need */
912	cm = NULL;
913	if ((bp = aac_dequeue_bio(sc)) == NULL)
914		goto fail;
915	if (aac_alloc_command(sc, &cm))	/* get a command */
916		goto fail;
917
918	/* fill out the command */
919	cm->cm_data = (void *)bp->bio_data;
920	cm->cm_datalen = bp->bio_bcount;
921	cm->cm_complete = aac_bio_complete;
922	cm->cm_private = bp;
923	cm->cm_timestamp = time_second;
924	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
925
926	/* build the FIB */
927	fib = cm->cm_fib;
928	fib->Header.XferState =
929	AAC_FIBSTATE_HOSTOWNED   |
930	AAC_FIBSTATE_INITIALISED |
931	AAC_FIBSTATE_FROMHOST	 |
932	AAC_FIBSTATE_REXPECTED   |
933	AAC_FIBSTATE_NORM;
934	fib->Header.Command = ContainerCommand;
935	fib->Header.Size = sizeof(struct aac_fib_header);
936
937	/* build the read/write request */
938	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
939	if (BIO_IS_READ(bp)) {
940		br = (struct aac_blockread *)&fib->data[0];
941		br->Command = VM_CtBlockRead;
942		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
943		br->BlockNumber = bp->bio_pblkno;
944		br->ByteCount = bp->bio_bcount;
945		fib->Header.Size += sizeof(struct aac_blockread);
946		cm->cm_sgtable = &br->SgMap;
947		cm->cm_flags |= AAC_CMD_DATAIN;
948	} else {
949		bw = (struct aac_blockwrite *)&fib->data[0];
950		bw->Command = VM_CtBlockWrite;
951		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
952		bw->BlockNumber = bp->bio_pblkno;
953		bw->ByteCount = bp->bio_bcount;
954		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
955		fib->Header.Size += sizeof(struct aac_blockwrite);
956		cm->cm_flags |= AAC_CMD_DATAOUT;
957		cm->cm_sgtable = &bw->SgMap;
958	}
959
960	*cmp = cm;
961	return(0);
962
963fail:
964	if (bp != NULL)
965		aac_enqueue_bio(sc, bp);
966	if (cm != NULL)
967		aac_release_command(cm);
968	return(ENOMEM);
969}
970
971/*
972 * Handle a bio-instigated command that has been completed.
973 */
974static void
975aac_bio_complete(struct aac_command *cm)
976{
977	struct aac_blockread_response *brr;
978	struct aac_blockwrite_response *bwr;
979	struct bio *bp;
980	AAC_FSAStatus status;
981
982	/* fetch relevant status and then release the command */
983	bp = (struct bio *)cm->cm_private;
984	if (BIO_IS_READ(bp)) {
985		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
986		status = brr->Status;
987	} else {
988		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
989		status = bwr->Status;
990	}
991	aac_release_command(cm);
992
993	/* fix up the bio based on status */
994	if (status == ST_OK) {
995		bp->bio_resid = 0;
996	} else {
997		bp->bio_error = EIO;
998		bp->bio_flags |= BIO_ERROR;
999		/* pass an error string out to the disk layer */
1000		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1001						    status);
1002	}
1003	aac_biodone(bp);
1004}
1005
1006/*
1007 * Submit a command to the controller, return when it completes.
1008 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1009 *     be stuck here forever.  At the same time, signals are not caught
1010 *     because there is a risk that a signal could wakeup the tsleep before
1011 *     the card has a chance to complete the command.  The passed in timeout
1012 *     is ignored for the same reason.  Since there is no way to cancel a
1013 *     command in progress, we should probably create a 'dead' queue where
1014 *     commands go that have been interrupted/timed-out/etc, that keeps them
1015 *     out of the free pool.  That way, if the card is just slow, it won't
1016 *     spam the memory of a command that has been recycled.
1017 */
1018static int
1019aac_wait_command(struct aac_command *cm, int timeout)
1020{
1021	int s, error = 0;
1022
1023	debug_called(2);
1024
1025	/* Put the command on the ready queue and get things going */
1026	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1027	aac_enqueue_ready(cm);
1028	aac_startio(cm->cm_sc);
1029	s = splbio();
1030	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1031		error = tsleep(cm, PRIBIO, "aacwait", 0);
1032	}
1033	splx(s);
1034	return(error);
1035}
1036
1037/*
1038 *Command Buffer Management
1039 */
1040
1041/*
1042 * Allocate a command.
1043 */
1044static int
1045aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1046{
1047	struct aac_command *cm;
1048
1049	debug_called(3);
1050
1051	if ((cm = aac_dequeue_free(sc)) == NULL)
1052		return(ENOMEM);
1053
1054	*cmp = cm;
1055	return(0);
1056}
1057
1058/*
1059 * Release a command back to the freelist.
1060 */
1061static void
1062aac_release_command(struct aac_command *cm)
1063{
1064	debug_called(3);
1065
1066	/* (re)initialise the command/FIB */
1067	cm->cm_sgtable = NULL;
1068	cm->cm_flags = 0;
1069	cm->cm_complete = NULL;
1070	cm->cm_private = NULL;
1071	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1072	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1073	cm->cm_fib->Header.Flags = 0;
1074	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1075
1076	/*
1077	 * These are duplicated in aac_start to cover the case where an
1078	 * intermediate stage may have destroyed them.  They're left
1079	 * initialised here for debugging purposes only.
1080	 */
1081	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1082	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1083
1084	aac_enqueue_free(cm);
1085}
1086
1087/*
1088 * Map helper for command/FIB allocation.
1089 */
1090static void
1091aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1092{
1093	struct aac_softc *sc;
1094
1095	sc = (struct aac_softc *)arg;
1096
1097	debug_called(3);
1098
1099	sc->aac_fibphys = segs[0].ds_addr;
1100}
1101
1102/*
1103 * Allocate and initialise commands/FIBs for this adapter.
1104 */
1105static int
1106aac_alloc_commands(struct aac_softc *sc)
1107{
1108	struct aac_command *cm;
1109	int i;
1110
1111	debug_called(1);
1112
1113	/* allocate the FIBs in DMAable memory and load them */
1114	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1115			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1116		return(ENOMEM);
1117	}
1118	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1119			AAC_FIB_COUNT * sizeof(struct aac_fib),
1120			aac_map_command_helper, sc, 0);
1121
1122	/* initialise constant fields in the command structure */
1123	for (i = 0; i < AAC_FIB_COUNT; i++) {
1124		cm = &sc->aac_command[i];
1125		cm->cm_sc = sc;
1126		cm->cm_fib = sc->aac_fibs + i;
1127		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1128
1129		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1130			aac_release_command(cm);
1131	}
1132	return(0);
1133}
1134
1135/*
1136 * Free FIBs owned by this adapter.
1137 */
1138static void
1139aac_free_commands(struct aac_softc *sc)
1140{
1141	int i;
1142
1143	debug_called(1);
1144
1145	for (i = 0; i < AAC_FIB_COUNT; i++)
1146		bus_dmamap_destroy(sc->aac_buffer_dmat,
1147				   sc->aac_command[i].cm_datamap);
1148
1149	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1150	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1151}
1152
1153/*
1154 * Command-mapping helper function - populate this command's s/g table.
1155 */
1156static void
1157aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1158{
1159	struct aac_command *cm;
1160	struct aac_fib *fib;
1161	struct aac_sg_table *sg;
1162	int i;
1163
1164	debug_called(3);
1165
1166	cm = (struct aac_command *)arg;
1167	fib = cm->cm_fib;
1168
1169	/* find the s/g table */
1170	sg = cm->cm_sgtable;
1171
1172	/* copy into the FIB */
1173	if (sg != NULL) {
1174		sg->SgCount = nseg;
1175		for (i = 0; i < nseg; i++) {
1176			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1177			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1178		}
1179		/* update the FIB size for the s/g count */
1180		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1181	}
1182
1183}
1184
1185/*
1186 * Map a command into controller-visible space.
1187 */
1188static void
1189aac_map_command(struct aac_command *cm)
1190{
1191	struct aac_softc *sc;
1192
1193	debug_called(2);
1194
1195	sc = cm->cm_sc;
1196
1197	/* don't map more than once */
1198	if (cm->cm_flags & AAC_CMD_MAPPED)
1199		return;
1200
1201	if (cm->cm_datalen != 0) {
1202		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1203				cm->cm_data, cm->cm_datalen,
1204				aac_map_command_sg, cm, 0);
1205
1206	if (cm->cm_flags & AAC_CMD_DATAIN)
1207		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1208				BUS_DMASYNC_PREREAD);
1209	if (cm->cm_flags & AAC_CMD_DATAOUT)
1210		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1211				BUS_DMASYNC_PREWRITE);
1212	}
1213	cm->cm_flags |= AAC_CMD_MAPPED;
1214}
1215
1216/*
1217 * Unmap a command from controller-visible space.
1218 */
1219static void
1220aac_unmap_command(struct aac_command *cm)
1221{
1222	struct aac_softc *sc;
1223
1224	debug_called(2);
1225
1226	sc = cm->cm_sc;
1227
1228	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1229		return;
1230
1231	if (cm->cm_datalen != 0) {
1232		if (cm->cm_flags & AAC_CMD_DATAIN)
1233			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1234					BUS_DMASYNC_POSTREAD);
1235		if (cm->cm_flags & AAC_CMD_DATAOUT)
1236			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1237					BUS_DMASYNC_POSTWRITE);
1238
1239		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1240	}
1241	cm->cm_flags &= ~AAC_CMD_MAPPED;
1242}
1243
1244/*
1245 * Hardware Interface
1246 */
1247
1248/*
1249 * Initialise the adapter.
1250 */
1251static void
1252aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1253{
1254	struct aac_softc *sc;
1255
1256	debug_called(1);
1257
1258	sc = (struct aac_softc *)arg;
1259
1260	sc->aac_common_busaddr = segs[0].ds_addr;
1261}
1262
1263/*
1264 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1265 * firmware version 1.x are not compatible with this driver.
1266 */
1267static int
1268aac_check_firmware(struct aac_softc *sc)
1269{
1270	u_int32_t major, minor;
1271
1272	debug_called(1);
1273
1274	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1275		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1276				     NULL)) {
1277			device_printf(sc->aac_dev,
1278				      "Error reading firmware version\n");
1279			return (EIO);
1280		}
1281
1282		/* These numbers are stored as ASCII! */
1283		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1284		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1285		if (major == 1) {
1286			device_printf(sc->aac_dev,
1287			    "Firmware version %d.%d is not supported.\n",
1288			    major, minor);
1289			return (EINVAL);
1290		}
1291	}
1292
1293	return (0);
1294}
1295
1296static int
1297aac_init(struct aac_softc *sc)
1298{
1299	struct aac_adapter_init	*ip;
1300	time_t then;
1301	u_int32_t code;
1302	u_int8_t *qaddr;
1303
1304	debug_called(1);
1305
1306	/*
1307	 * First wait for the adapter to come ready.
1308	 */
1309	then = time_second;
1310	do {
1311		code = AAC_GET_FWSTATUS(sc);
1312		if (code & AAC_SELF_TEST_FAILED) {
1313			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1314			return(ENXIO);
1315		}
1316		if (code & AAC_KERNEL_PANIC) {
1317			device_printf(sc->aac_dev,
1318				      "FATAL: controller kernel panic\n");
1319			return(ENXIO);
1320		}
1321		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1322			device_printf(sc->aac_dev,
1323				      "FATAL: controller not coming ready, "
1324					   "status %x\n", code);
1325			return(ENXIO);
1326		}
1327	} while (!(code & AAC_UP_AND_RUNNING));
1328
1329	/*
1330	 * Create DMA tag for the common structure and allocate it.
1331	 */
1332	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1333			       1, 0, 			/* algnmnt, boundary */
1334			       BUS_SPACE_MAXADDR,	/* lowaddr */
1335			       BUS_SPACE_MAXADDR, 	/* highaddr */
1336			       NULL, NULL, 		/* filter, filterarg */
1337			       sizeof(struct aac_common), /* maxsize */
1338			       1,			/* nsegments */
1339			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1340			       0,			/* flags */
1341			       &sc->aac_common_dmat)) {
1342		device_printf(sc->aac_dev,
1343			      "can't allocate common structure DMA tag\n");
1344		return(ENOMEM);
1345	}
1346	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1347			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1348		device_printf(sc->aac_dev, "can't allocate common structure\n");
1349		return(ENOMEM);
1350	}
1351	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1352			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1353		        sc, 0);
1354	bzero(sc->aac_common, sizeof(*sc->aac_common));
1355
1356	/*
1357	 * Fill in the init structure.  This tells the adapter about the
1358	 * physical location of various important shared data structures.
1359	 */
1360	ip = &sc->aac_common->ac_init;
1361	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1362
1363	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1364					 offsetof(struct aac_common, ac_fibs);
1365	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1366	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1367	ip->AdapterFibAlign = sizeof(struct aac_fib);
1368
1369	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1370				  offsetof(struct aac_common, ac_printf);
1371	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1372
1373	ip->HostPhysMemPages = 0;		/* not used? */
1374	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1375
1376	/*
1377	 * Initialise FIB queues.  Note that it appears that the layout of the
1378	 * indexes and the segmentation of the entries may be mandated by the
1379	 * adapter, which is only told about the base of the queue index fields.
1380	 *
1381	 * The initial values of the indices are assumed to inform the adapter
1382	 * of the sizes of the respective queues, and theoretically it could
1383	 * work out the entire layout of the queue structures from this.  We
1384	 * take the easy route and just lay this area out like everyone else
1385	 * does.
1386	 *
1387	 * The Linux driver uses a much more complex scheme whereby several
1388	 * header records are kept for each queue.  We use a couple of generic
1389	 * list manipulation functions which 'know' the size of each list by
1390	 * virtue of a table.
1391	 */
1392	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1393	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1394	sc->aac_queues = (struct aac_queue_table *)qaddr;
1395	ip->CommHeaderAddress = sc->aac_common_busaddr +
1396				((u_int32_t)sc->aac_queues -
1397				(u_int32_t)sc->aac_common);
1398	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1399
1400	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1401		AAC_HOST_NORM_CMD_ENTRIES;
1402	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1403		AAC_HOST_NORM_CMD_ENTRIES;
1404	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1405		AAC_HOST_HIGH_CMD_ENTRIES;
1406	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1407		AAC_HOST_HIGH_CMD_ENTRIES;
1408	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1409		AAC_ADAP_NORM_CMD_ENTRIES;
1410	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1411		AAC_ADAP_NORM_CMD_ENTRIES;
1412	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1413		AAC_ADAP_HIGH_CMD_ENTRIES;
1414	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1415		AAC_ADAP_HIGH_CMD_ENTRIES;
1416	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1417		AAC_HOST_NORM_RESP_ENTRIES;
1418	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1419		AAC_HOST_NORM_RESP_ENTRIES;
1420	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1421		AAC_HOST_HIGH_RESP_ENTRIES;
1422	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1423		AAC_HOST_HIGH_RESP_ENTRIES;
1424	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1425		AAC_ADAP_NORM_RESP_ENTRIES;
1426	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1427		AAC_ADAP_NORM_RESP_ENTRIES;
1428	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1429		AAC_ADAP_HIGH_RESP_ENTRIES;
1430	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1431		AAC_ADAP_HIGH_RESP_ENTRIES;
1432	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1433		&sc->aac_queues->qt_HostNormCmdQueue[0];
1434	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1435		&sc->aac_queues->qt_HostHighCmdQueue[0];
1436	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1437		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1438	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1439		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1440	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1441		&sc->aac_queues->qt_HostNormRespQueue[0];
1442	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1443		&sc->aac_queues->qt_HostHighRespQueue[0];
1444	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1445		&sc->aac_queues->qt_AdapNormRespQueue[0];
1446	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1447		&sc->aac_queues->qt_AdapHighRespQueue[0];
1448
1449	/*
1450	 * Do controller-type-specific initialisation
1451	 */
1452	switch (sc->aac_hwif) {
1453	case AAC_HWIF_I960RX:
1454		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1455		break;
1456	}
1457
1458	/*
1459	 * Give the init structure to the controller.
1460	 */
1461	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1462			     sc->aac_common_busaddr +
1463			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1464			     NULL)) {
1465		device_printf(sc->aac_dev,
1466			      "error establishing init structure\n");
1467		return(EIO);
1468	}
1469
1470	return(0);
1471}
1472
1473/*
1474 * Send a synchronous command to the controller and wait for a result.
1475 */
1476static int
1477aac_sync_command(struct aac_softc *sc, u_int32_t command,
1478		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1479		 u_int32_t *sp)
1480{
1481	time_t then;
1482	u_int32_t status;
1483
1484	debug_called(3);
1485
1486	/* populate the mailbox */
1487	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1488
1489	/* ensure the sync command doorbell flag is cleared */
1490	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1491
1492	/* then set it to signal the adapter */
1493	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1494
1495	/* spin waiting for the command to complete */
1496	then = time_second;
1497	do {
1498		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1499			debug(2, "timed out");
1500			return(EIO);
1501		}
1502	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1503
1504	/* clear the completion flag */
1505	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1506
1507	/* get the command status */
1508	status = AAC_GET_MAILBOXSTATUS(sc);
1509	if (sp != NULL)
1510		*sp = status;
1511	return(0);
1512}
1513
1514/*
1515 * Grab the sync fib area.
1516 */
1517int
1518aac_get_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1519{
1520
1521	/*
1522	 * If the force flag is set, the system is shutting down, or in
1523	 * trouble.  Ignore the mutex.
1524	 */
1525	if (!(flags & AAC_SYNC_LOCK_FORCE))
1526		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1527
1528	*fib = &sc->aac_common->ac_sync_fib;
1529
1530	return (1);
1531}
1532
1533/*
1534 * Release the sync fib area.
1535 */
1536void
1537aac_release_sync_fib(struct aac_softc *sc)
1538{
1539
1540	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1541}
1542
1543/*
1544 * Send a synchronous FIB to the controller and wait for a result.
1545 */
1546int
1547aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1548		 struct aac_fib *fib, u_int16_t datasize)
1549{
1550	debug_called(3);
1551
1552	if (datasize > AAC_FIB_DATASIZE)
1553		return(EINVAL);
1554
1555	/*
1556	 * Set up the sync FIB
1557	 */
1558	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1559				AAC_FIBSTATE_INITIALISED |
1560				AAC_FIBSTATE_EMPTY;
1561	fib->Header.XferState |= xferstate;
1562	fib->Header.Command = command;
1563	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1564	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1565	fib->Header.SenderSize = sizeof(struct aac_fib);
1566	fib->Header.SenderFibAddress = (u_int32_t)fib;
1567	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1568					 offsetof(struct aac_common,
1569						  ac_sync_fib);
1570
1571	/*
1572	 * Give the FIB to the controller, wait for a response.
1573	 */
1574	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1575			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1576		debug(2, "IO error");
1577		return(EIO);
1578	}
1579
1580	return (0);
1581}
1582
1583/*
1584 * Adapter-space FIB queue manipulation
1585 *
1586 * Note that the queue implementation here is a little funky; neither the PI or
1587 * CI will ever be zero.  This behaviour is a controller feature.
1588 */
1589static struct {
1590	int		size;
1591	int		notify;
1592} aac_qinfo[] = {
1593	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1594	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1595	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1596	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1597	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1598	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1599	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1600	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1601};
1602
1603/*
1604 * Atomically insert an entry into the nominated queue, returns 0 on success or
1605 * EBUSY if the queue is full.
1606 *
1607 * Note: it would be more efficient to defer notifying the controller in
1608 *	 the case where we may be inserting several entries in rapid succession,
1609 *	 but implementing this usefully may be difficult (it would involve a
1610 *	 separate queue/notify interface).
1611 */
1612static int
1613aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1614{
1615	u_int32_t pi, ci;
1616	int s, error;
1617	u_int32_t fib_size;
1618	u_int32_t fib_addr;
1619
1620	debug_called(3);
1621
1622	fib_size = cm->cm_fib->Header.Size;
1623	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1624
1625	s = splbio();
1626
1627	/* get the producer/consumer indices */
1628	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1629	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1630
1631	/* wrap the queue? */
1632	if (pi >= aac_qinfo[queue].size)
1633		pi = 0;
1634
1635	/* check for queue full */
1636	if ((pi + 1) == ci) {
1637		error = EBUSY;
1638		goto out;
1639	}
1640
1641	/* populate queue entry */
1642	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1643	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1644
1645	/* update producer index */
1646	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1647
1648	/*
1649	 * To avoid a race with its completion interrupt, place this command on
1650	 * the busy queue prior to advertising it to the controller.
1651	 */
1652	aac_enqueue_busy(cm);
1653
1654	/* notify the adapter if we know how */
1655	if (aac_qinfo[queue].notify != 0)
1656		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1657
1658	error = 0;
1659
1660out:
1661	splx(s);
1662	return(error);
1663}
1664
1665/*
1666 * Atomically remove one entry from the nominated queue, returns 0 on
1667 * success or ENOENT if the queue is empty.
1668 */
1669static int
1670aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1671		struct aac_fib **fib_addr)
1672{
1673	u_int32_t pi, ci;
1674	int s, error;
1675	int notify;
1676
1677	debug_called(3);
1678
1679	s = splbio();
1680
1681	/* get the producer/consumer indices */
1682	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1683	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1684
1685	/* check for queue empty */
1686	if (ci == pi) {
1687		error = ENOENT;
1688		goto out;
1689	}
1690
1691	notify = 0;
1692	if (ci == pi + 1)
1693		notify++;
1694
1695	/* wrap the queue? */
1696	if (ci >= aac_qinfo[queue].size)
1697		ci = 0;
1698
1699	/* fetch the entry */
1700	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1701	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1702				       ci)->aq_fib_addr;
1703
1704	/* update consumer index */
1705	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1706
1707	/* if we have made the queue un-full, notify the adapter */
1708	if (notify && (aac_qinfo[queue].notify != 0))
1709		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1710	error = 0;
1711
1712out:
1713	splx(s);
1714	return(error);
1715}
1716
1717/*
1718 * Put our response to an Adapter Initialed Fib on the response queue
1719 */
1720static int
1721aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1722{
1723	u_int32_t pi, ci;
1724	int s, error;
1725	u_int32_t fib_size;
1726	u_int32_t fib_addr;
1727
1728	debug_called(1);
1729
1730	/* Tell the adapter where the FIB is */
1731	fib_size = fib->Header.Size;
1732	fib_addr = fib->Header.SenderFibAddress;
1733	fib->Header.ReceiverFibAddress = fib_addr;
1734
1735	s = splbio();
1736
1737	/* get the producer/consumer indices */
1738	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1739	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1740
1741	/* wrap the queue? */
1742	if (pi >= aac_qinfo[queue].size)
1743		pi = 0;
1744
1745	/* check for queue full */
1746	if ((pi + 1) == ci) {
1747		error = EBUSY;
1748		goto out;
1749	}
1750
1751	/* populate queue entry */
1752	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1753	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1754
1755	/* update producer index */
1756	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1757
1758	/* notify the adapter if we know how */
1759	if (aac_qinfo[queue].notify != 0)
1760		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1761
1762	error = 0;
1763
1764out:
1765	splx(s);
1766	return(error);
1767}
1768
1769/*
1770 * Check for commands that have been outstanding for a suspiciously long time,
1771 * and complain about them.
1772 */
1773static void
1774aac_timeout(struct aac_softc *sc)
1775{
1776	int s;
1777	struct aac_command *cm;
1778	time_t deadline;
1779
1780#if 0
1781	/* simulate an interrupt to handle possibly-missed interrupts */
1782	/*
1783	 * XXX This was done to work around another bug which has since been
1784	 * fixed.  It is dangerous anyways because you don't want multiple
1785	 * threads in the interrupt handler at the same time!  If calling
1786	 * is deamed neccesary in the future, proper mutexes must be used.
1787	 */
1788	s = splbio();
1789	aac_intr(sc);
1790	splx(s);
1791
1792	/* kick the I/O queue to restart it in the case of deadlock */
1793	aac_startio(sc);
1794#endif
1795
1796	/*
1797	 * traverse the busy command list, bitch about late commands once
1798	 * only.
1799	 */
1800	deadline = time_second - AAC_CMD_TIMEOUT;
1801	s = splbio();
1802	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1803		if ((cm->cm_timestamp  < deadline)
1804			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1805			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1806			device_printf(sc->aac_dev,
1807				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1808				      cm, (int)(time_second-cm->cm_timestamp));
1809			AAC_PRINT_FIB(sc, cm->cm_fib);
1810		}
1811	}
1812	splx(s);
1813
1814	/* reset the timer for next time */
1815	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1816	return;
1817}
1818
1819/*
1820 * Interface Function Vectors
1821 */
1822
1823/*
1824 * Read the current firmware status word.
1825 */
1826static int
1827aac_sa_get_fwstatus(struct aac_softc *sc)
1828{
1829	debug_called(3);
1830
1831	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1832}
1833
1834static int
1835aac_rx_get_fwstatus(struct aac_softc *sc)
1836{
1837	debug_called(3);
1838
1839	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1840}
1841
1842static int
1843aac_fa_get_fwstatus(struct aac_softc *sc)
1844{
1845	int val;
1846
1847	debug_called(3);
1848
1849	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1850	return (val);
1851}
1852
1853/*
1854 * Notify the controller of a change in a given queue
1855 */
1856
1857static void
1858aac_sa_qnotify(struct aac_softc *sc, int qbit)
1859{
1860	debug_called(3);
1861
1862	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1863}
1864
1865static void
1866aac_rx_qnotify(struct aac_softc *sc, int qbit)
1867{
1868	debug_called(3);
1869
1870	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1871}
1872
1873static void
1874aac_fa_qnotify(struct aac_softc *sc, int qbit)
1875{
1876	debug_called(3);
1877
1878	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1879	AAC_FA_HACK(sc);
1880}
1881
1882/*
1883 * Get the interrupt reason bits
1884 */
1885static int
1886aac_sa_get_istatus(struct aac_softc *sc)
1887{
1888	debug_called(3);
1889
1890	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1891}
1892
1893static int
1894aac_rx_get_istatus(struct aac_softc *sc)
1895{
1896	debug_called(3);
1897
1898	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1899}
1900
1901static int
1902aac_fa_get_istatus(struct aac_softc *sc)
1903{
1904	int val;
1905
1906	debug_called(3);
1907
1908	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1909	return (val);
1910}
1911
1912/*
1913 * Clear some interrupt reason bits
1914 */
1915static void
1916aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1917{
1918	debug_called(3);
1919
1920	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1921}
1922
1923static void
1924aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1925{
1926	debug_called(3);
1927
1928	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1929}
1930
1931static void
1932aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1933{
1934	debug_called(3);
1935
1936	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1937	AAC_FA_HACK(sc);
1938}
1939
1940/*
1941 * Populate the mailbox and set the command word
1942 */
1943static void
1944aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1945		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1946{
1947	debug_called(4);
1948
1949	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1950	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1951	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1952	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1953	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1954}
1955
1956static void
1957aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1958		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1959{
1960	debug_called(4);
1961
1962	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1963	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1964	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1965	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1966	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1967}
1968
1969static void
1970aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1971		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1972{
1973	debug_called(4);
1974
1975	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
1976	AAC_FA_HACK(sc);
1977	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
1978	AAC_FA_HACK(sc);
1979	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
1980	AAC_FA_HACK(sc);
1981	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
1982	AAC_FA_HACK(sc);
1983	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
1984	AAC_FA_HACK(sc);
1985}
1986
1987/*
1988 * Fetch the immediate command status word
1989 */
1990static int
1991aac_sa_get_mailboxstatus(struct aac_softc *sc)
1992{
1993	debug_called(4);
1994
1995	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
1996}
1997
1998static int
1999aac_rx_get_mailboxstatus(struct aac_softc *sc)
2000{
2001	debug_called(4);
2002
2003	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2004}
2005
2006static int
2007aac_fa_get_mailboxstatus(struct aac_softc *sc)
2008{
2009	int val;
2010
2011	debug_called(4);
2012
2013	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2014	return (val);
2015}
2016
2017/*
2018 * Set/clear interrupt masks
2019 */
2020static void
2021aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2022{
2023	debug(2, "%sable interrupts", enable ? "en" : "dis");
2024
2025	if (enable) {
2026		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2027	} else {
2028		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2029	}
2030}
2031
2032static void
2033aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2034{
2035	debug(2, "%sable interrupts", enable ? "en" : "dis");
2036
2037	if (enable) {
2038		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2039	} else {
2040		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2041	}
2042}
2043
2044static void
2045aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2046{
2047	debug(2, "%sable interrupts", enable ? "en" : "dis");
2048
2049	if (enable) {
2050		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2051		AAC_FA_HACK(sc);
2052	} else {
2053		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2054		AAC_FA_HACK(sc);
2055	}
2056}
2057
2058/*
2059 * Debugging and Diagnostics
2060 */
2061
2062/*
2063 * Print some information about the controller.
2064 */
2065static void
2066aac_describe_controller(struct aac_softc *sc)
2067{
2068	struct aac_fib *fib;
2069	struct aac_adapter_info	*info;
2070
2071	debug_called(2);
2072
2073	aac_get_sync_fib(sc, &fib, 0);
2074
2075	fib->data[0] = 0;
2076	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2077		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2078		return;
2079	}
2080	info = (struct aac_adapter_info *)&fib->data[0];
2081
2082	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2083		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2084		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2085		      aac_describe_code(aac_battery_platform,
2086					info->batteryPlatform));
2087
2088	/* save the kernel revision structure for later use */
2089	sc->aac_revision = info->KernelRevision;
2090	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2091		      info->KernelRevision.external.comp.major,
2092		      info->KernelRevision.external.comp.minor,
2093		      info->KernelRevision.external.comp.dash,
2094		      info->KernelRevision.buildNumber,
2095		      (u_int32_t)(info->SerialNumber & 0xffffff));
2096}
2097
2098/*
2099 * Look up a text description of a numeric error code and return a pointer to
2100 * same.
2101 */
2102static char *
2103aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2104{
2105	int i;
2106
2107	for (i = 0; table[i].string != NULL; i++)
2108		if (table[i].code == code)
2109			return(table[i].string);
2110	return(table[i + 1].string);
2111}
2112
2113/*
2114 * Management Interface
2115 */
2116
2117static int
2118aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2119{
2120	struct aac_softc *sc;
2121
2122	debug_called(2);
2123
2124	sc = dev->si_drv1;
2125
2126	/* Check to make sure the device isn't already open */
2127	if (sc->aac_state & AAC_STATE_OPEN) {
2128		return EBUSY;
2129	}
2130	sc->aac_state |= AAC_STATE_OPEN;
2131
2132	return 0;
2133}
2134
2135static int
2136aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2137{
2138	struct aac_softc *sc;
2139
2140	debug_called(2);
2141
2142	sc = dev->si_drv1;
2143
2144	/* Mark this unit as no longer open  */
2145	sc->aac_state &= ~AAC_STATE_OPEN;
2146
2147	return 0;
2148}
2149
2150static int
2151aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2152{
2153	union aac_statrequest *as;
2154	struct aac_softc *sc;
2155	int error = 0;
2156	int i;
2157
2158	debug_called(2);
2159
2160	as = (union aac_statrequest *)arg;
2161	sc = dev->si_drv1;
2162
2163	switch (cmd) {
2164	case AACIO_STATS:
2165		switch (as->as_item) {
2166		case AACQ_FREE:
2167		case AACQ_BIO:
2168		case AACQ_READY:
2169		case AACQ_BUSY:
2170		case AACQ_COMPLETE:
2171			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2172			      sizeof(struct aac_qstat));
2173			break;
2174		default:
2175			error = ENOENT;
2176			break;
2177		}
2178	break;
2179
2180	case FSACTL_SENDFIB:
2181		arg = *(caddr_t*)arg;
2182	case FSACTL_LNX_SENDFIB:
2183		debug(1, "FSACTL_SENDFIB");
2184		error = aac_ioctl_sendfib(sc, arg);
2185		break;
2186	case FSACTL_AIF_THREAD:
2187	case FSACTL_LNX_AIF_THREAD:
2188		debug(1, "FSACTL_AIF_THREAD");
2189		error = EINVAL;
2190		break;
2191	case FSACTL_OPEN_GET_ADAPTER_FIB:
2192		arg = *(caddr_t*)arg;
2193	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2194		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2195		/*
2196		 * Pass the caller out an AdapterFibContext.
2197		 *
2198		 * Note that because we only support one opener, we
2199		 * basically ignore this.  Set the caller's context to a magic
2200		 * number just in case.
2201		 *
2202		 * The Linux code hands the driver a pointer into kernel space,
2203		 * and then trusts it when the caller hands it back.  Aiee!
2204		 * Here, we give it the proc pointer of the per-adapter aif
2205		 * thread. It's only used as a sanity check in other calls.
2206		 */
2207		i = (int)sc->aifthread;
2208		error = copyout(&i, arg, sizeof(i));
2209		break;
2210	case FSACTL_GET_NEXT_ADAPTER_FIB:
2211		arg = *(caddr_t*)arg;
2212	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2213		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2214		error = aac_getnext_aif(sc, arg);
2215		break;
2216	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2217	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2218		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2219		/* don't do anything here */
2220		break;
2221	case FSACTL_MINIPORT_REV_CHECK:
2222		arg = *(caddr_t*)arg;
2223	case FSACTL_LNX_MINIPORT_REV_CHECK:
2224		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2225		error = aac_rev_check(sc, arg);
2226		break;
2227	case FSACTL_QUERY_DISK:
2228		arg = *(caddr_t*)arg;
2229	case FSACTL_LNX_QUERY_DISK:
2230		debug(1, "FSACTL_QUERY_DISK");
2231		error = aac_query_disk(sc, arg);
2232			break;
2233	case FSACTL_DELETE_DISK:
2234	case FSACTL_LNX_DELETE_DISK:
2235		/*
2236		 * We don't trust the underland to tell us when to delete a
2237		 * container, rather we rely on an AIF coming from the
2238		 * controller
2239		 */
2240		error = 0;
2241		break;
2242	default:
2243		debug(1, "unsupported cmd 0x%lx\n", cmd);
2244		error = EINVAL;
2245		break;
2246	}
2247	return(error);
2248}
2249
2250static int
2251aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2252{
2253	struct aac_softc *sc;
2254	int revents;
2255
2256	sc = dev->si_drv1;
2257	revents = 0;
2258
2259	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2260	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2261		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2262			revents |= poll_events & (POLLIN | POLLRDNORM);
2263	}
2264	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2265
2266	if (revents == 0) {
2267		if (poll_events & (POLLIN | POLLRDNORM))
2268			selrecord(td, &sc->rcv_select);
2269	}
2270
2271	return (revents);
2272}
2273
2274/*
2275 * Send a FIB supplied from userspace
2276 */
2277static int
2278aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2279{
2280	struct aac_command *cm;
2281	int size, error;
2282
2283	debug_called(2);
2284
2285	cm = NULL;
2286
2287	/*
2288	 * Get a command
2289	 */
2290	if (aac_alloc_command(sc, &cm)) {
2291		error = EBUSY;
2292		goto out;
2293	}
2294
2295	/*
2296	 * Fetch the FIB header, then re-copy to get data as well.
2297	 */
2298	if ((error = copyin(ufib, cm->cm_fib,
2299			    sizeof(struct aac_fib_header))) != 0)
2300		goto out;
2301	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2302	if (size > sizeof(struct aac_fib)) {
2303		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2304			      size, sizeof(struct aac_fib));
2305		size = sizeof(struct aac_fib);
2306	}
2307	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2308		goto out;
2309	cm->cm_fib->Header.Size = size;
2310	cm->cm_timestamp = time_second;
2311
2312	/*
2313	 * Pass the FIB to the controller, wait for it to complete.
2314	 */
2315	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2316		printf("aac_wait_command return %d\n", error);
2317		goto out;
2318	}
2319
2320	/*
2321	 * Copy the FIB and data back out to the caller.
2322	 */
2323	size = cm->cm_fib->Header.Size;
2324	if (size > sizeof(struct aac_fib)) {
2325		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2326			      size, sizeof(struct aac_fib));
2327		size = sizeof(struct aac_fib);
2328	}
2329	error = copyout(cm->cm_fib, ufib, size);
2330
2331out:
2332	if (cm != NULL) {
2333		aac_release_command(cm);
2334	}
2335	return(error);
2336}
2337
2338/*
2339 * Handle an AIF sent to us by the controller; queue it for later reference.
2340 * If the queue fills up, then drop the older entries.
2341 */
2342static void
2343aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2344{
2345	struct aac_aif_command *aif;
2346	struct aac_container *co, *co_next;
2347	struct aac_mntinfo *mi;
2348	struct aac_mntinforesp *mir = NULL;
2349	u_int16_t rsize;
2350	int next, found;
2351	int added = 0, i = 0;
2352
2353	debug_called(2);
2354
2355	aif = (struct aac_aif_command*)&fib->data[0];
2356	aac_print_aif(sc, aif);
2357
2358	/* Is it an event that we should care about? */
2359	switch (aif->command) {
2360	case AifCmdEventNotify:
2361		switch (aif->data.EN.type) {
2362		case AifEnAddContainer:
2363		case AifEnDeleteContainer:
2364			/*
2365			 * A container was added or deleted, but the message
2366			 * doesn't tell us anything else!  Re-enumerate the
2367			 * containers and sort things out.
2368			 */
2369			aac_get_sync_fib(sc, &fib, 0);
2370			mi = (struct aac_mntinfo *)&fib->data[0];
2371			mi->Command = VM_NameServe;
2372			mi->MntType = FT_FILESYS;
2373			do {
2374				/*
2375				 * Ask the controller for its containers one at
2376				 * a time.
2377				 * XXX What if the controller's list changes
2378				 * midway through this enumaration?
2379				 * XXX This should be done async.
2380				 */
2381				mi->MntCount = i;
2382				rsize = sizeof(mir);
2383				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2384						 sizeof(struct aac_mntinfo))) {
2385					debug(2, "Error probing container %d\n",
2386					      i);
2387					continue;
2388				}
2389				mir = (struct aac_mntinforesp *)&fib->data[0];
2390				/*
2391				 * Check the container against our list.
2392				 * co->co_found was already set to 0 in a
2393				 * previous run.
2394				 */
2395				if ((mir->Status == ST_OK) &&
2396				    (mir->MntTable[0].VolType != CT_NONE)) {
2397					found = 0;
2398					TAILQ_FOREACH(co,
2399						      &sc->aac_container_tqh,
2400						      co_link) {
2401						if (co->co_mntobj.ObjectId ==
2402						    mir->MntTable[0].ObjectId) {
2403							co->co_found = 1;
2404							found = 1;
2405							break;
2406						}
2407					}
2408					/*
2409					 * If the container matched, continue
2410					 * in the list.
2411					 */
2412					if (found) {
2413						i++;
2414						continue;
2415					}
2416
2417					/*
2418					 * This is a new container.  Do all the
2419					 * appropriate things to set it up.						 */
2420					aac_add_container(sc, mir, 1);
2421					added = 1;
2422				}
2423				i++;
2424			} while ((i < mir->MntRespCount) &&
2425				 (i < AAC_MAX_CONTAINERS));
2426			aac_release_sync_fib(sc);
2427
2428			/*
2429			 * Go through our list of containers and see which ones
2430			 * were not marked 'found'.  Since the controller didn't
2431			 * list them they must have been deleted.  Do the
2432			 * appropriate steps to destroy the device.  Also reset
2433			 * the co->co_found field.
2434			 */
2435			co = TAILQ_FIRST(&sc->aac_container_tqh);
2436			while (co != NULL) {
2437				if (co->co_found == 0) {
2438					device_delete_child(sc->aac_dev,
2439							    co->co_disk);
2440					co_next = TAILQ_NEXT(co, co_link);
2441					AAC_LOCK_ACQUIRE(&sc->
2442							aac_container_lock);
2443					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2444						     co_link);
2445					AAC_LOCK_RELEASE(&sc->
2446							 aac_container_lock);
2447					FREE(co, M_AACBUF);
2448					co = co_next;
2449				} else {
2450					co->co_found = 0;
2451					co = TAILQ_NEXT(co, co_link);
2452				}
2453			}
2454
2455			/* Attach the newly created containers */
2456			if (added)
2457				bus_generic_attach(sc->aac_dev);
2458
2459				break;
2460
2461		default:
2462			break;
2463		}
2464
2465	default:
2466		break;
2467	}
2468
2469	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2470	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2471	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2472	if (next != sc->aac_aifq_tail) {
2473		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2474		sc->aac_aifq_head = next;
2475
2476		/* On the off chance that someone is sleeping for an aif... */
2477		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2478			wakeup(sc->aac_aifq);
2479		/* Wakeup any poll()ers */
2480		selwakeup(&sc->rcv_select);
2481	}
2482	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2483
2484	return;
2485}
2486
2487/*
2488 * Linux Management Interface
2489 * This is soon to be removed!
2490 */
2491
2492#ifdef AAC_COMPAT_LINUX
2493
2494#include <sys/proc.h>
2495#include <machine/../linux/linux.h>
2496#include <machine/../linux/linux_proto.h>
2497#include <compat/linux/linux_ioctl.h>
2498
2499/* There are multiple ioctl number ranges that need to be handled */
2500#define AAC_LINUX_IOCTL_MIN  0x0000
2501#define AAC_LINUX_IOCTL_MAX  0x21ff
2502
2503static linux_ioctl_function_t aac_linux_ioctl;
2504static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2505						 AAC_LINUX_IOCTL_MIN,
2506						 AAC_LINUX_IOCTL_MAX};
2507
2508SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2509	  linux_ioctl_register_handler, &aac_handler);
2510SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2511	  linux_ioctl_unregister_handler, &aac_handler);
2512
2513MODULE_DEPEND(aac, linux, 1, 1, 1);
2514
2515static int
2516aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2517{
2518	struct file *fp;
2519	u_long cmd;
2520	int error;
2521
2522	debug_called(2);
2523
2524	if ((error = fget(td, args->fd, &fp)) != 0)
2525		return (error);
2526	cmd = args->cmd;
2527
2528	/*
2529	 * Pass the ioctl off to our standard handler.
2530	 */
2531	error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2532	fdrop(fp, td);
2533	return (error);
2534}
2535
2536#endif
2537
2538/*
2539 * Return the Revision of the driver to userspace and check to see if the
2540 * userspace app is possibly compatible.  This is extremely bogus since
2541 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2542 * returning what the card reported.
2543 */
2544static int
2545aac_rev_check(struct aac_softc *sc, caddr_t udata)
2546{
2547	struct aac_rev_check rev_check;
2548	struct aac_rev_check_resp rev_check_resp;
2549	int error = 0;
2550
2551	debug_called(2);
2552
2553	/*
2554	 * Copyin the revision struct from userspace
2555	 */
2556	if ((error = copyin(udata, (caddr_t)&rev_check,
2557			sizeof(struct aac_rev_check))) != 0) {
2558		return error;
2559	}
2560
2561	debug(2, "Userland revision= %d\n",
2562	      rev_check.callingRevision.buildNumber);
2563
2564	/*
2565	 * Doctor up the response struct.
2566	 */
2567	rev_check_resp.possiblyCompatible = 1;
2568	rev_check_resp.adapterSWRevision.external.ul =
2569	    sc->aac_revision.external.ul;
2570	rev_check_resp.adapterSWRevision.buildNumber =
2571	    sc->aac_revision.buildNumber;
2572
2573	return(copyout((caddr_t)&rev_check_resp, udata,
2574			sizeof(struct aac_rev_check_resp)));
2575}
2576
2577/*
2578 * Pass the caller the next AIF in their queue
2579 */
2580static int
2581aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2582{
2583	struct get_adapter_fib_ioctl agf;
2584	int error, s;
2585
2586	debug_called(2);
2587
2588	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2589
2590		/*
2591		 * Check the magic number that we gave the caller.
2592		 */
2593		if (agf.AdapterFibContext != (int)sc->aifthread) {
2594			error = EFAULT;
2595		} else {
2596
2597			s = splbio();
2598			error = aac_return_aif(sc, agf.AifFib);
2599
2600			if ((error == EAGAIN) && (agf.Wait)) {
2601				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2602				while (error == EAGAIN) {
2603					error = tsleep(sc->aac_aifq, PRIBIO |
2604						       PCATCH, "aacaif", 0);
2605					if (error == 0)
2606						error = aac_return_aif(sc,
2607						    agf.AifFib);
2608				}
2609				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2610			}
2611		splx(s);
2612		}
2613	}
2614	return(error);
2615}
2616
2617/*
2618 * Hand the next AIF off the top of the queue out to userspace.
2619 */
2620static int
2621aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2622{
2623	int error;
2624
2625	debug_called(2);
2626
2627	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2628	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2629		error = EAGAIN;
2630	} else {
2631		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2632				sizeof(struct aac_aif_command));
2633		if (error)
2634			printf("aac_return_aif: copyout returned %d\n", error);
2635		if (!error)
2636			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2637					    AAC_AIFQ_LENGTH;
2638	}
2639	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2640	return(error);
2641}
2642
2643/*
2644 * Give the userland some information about the container.  The AAC arch
2645 * expects the driver to be a SCSI passthrough type driver, so it expects
2646 * the containers to have b:t:l numbers.  Fake it.
2647 */
2648static int
2649aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2650{
2651	struct aac_query_disk query_disk;
2652	struct aac_container *co;
2653	struct aac_disk	*disk;
2654	int error, id;
2655
2656	debug_called(2);
2657
2658	disk = NULL;
2659
2660	error = copyin(uptr, (caddr_t)&query_disk,
2661		       sizeof(struct aac_query_disk));
2662	if (error)
2663		return (error);
2664
2665	id = query_disk.ContainerNumber;
2666	if (id == -1)
2667		return (EINVAL);
2668
2669	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2670	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2671		if (co->co_mntobj.ObjectId == id)
2672			break;
2673		}
2674
2675		if (co == NULL) {
2676			query_disk.Valid = 0;
2677			query_disk.Locked = 0;
2678			query_disk.Deleted = 1;		/* XXX is this right? */
2679		} else {
2680			disk = device_get_softc(co->co_disk);
2681			query_disk.Valid = 1;
2682			query_disk.Locked =
2683			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2684			query_disk.Deleted = 0;
2685			query_disk.Bus = device_get_unit(sc->aac_dev);
2686			query_disk.Target = disk->unit;
2687			query_disk.Lun = 0;
2688			query_disk.UnMapped = 0;
2689			bcopy(disk->ad_dev_t->si_name,
2690			      &query_disk.diskDeviceName[0], 10);
2691		}
2692	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2693
2694	error = copyout((caddr_t)&query_disk, uptr,
2695			sizeof(struct aac_query_disk));
2696
2697	return (error);
2698}
2699
2700