aac.c revision 89316
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 89316 2002-01-13 21:37:49Z alfred $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/file.h>
61#include <sys/signalvar.h>
62#include <sys/time.h>
63#include <sys/eventhandler.h>
64
65#include <machine/bus_memio.h>
66#include <machine/bus.h>
67#include <machine/resource.h>
68
69#include <dev/aac/aacreg.h>
70#include <dev/aac/aac_ioctl.h>
71#include <dev/aac/aacvar.h>
72#include <dev/aac/aac_tables.h>
73
74static void	aac_startup(void *arg);
75static void	aac_add_container(struct aac_softc *sc,
76				  struct aac_mntinforesponse *mir, int f);
77
78/* Command Processing */
79static void	aac_startio(struct aac_softc *sc);
80static void	aac_timeout(struct aac_softc *sc);
81static int	aac_start(struct aac_command *cm);
82static void	aac_complete(void *context, int pending);
83static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84static void	aac_bio_complete(struct aac_command *cm);
85static int	aac_wait_command(struct aac_command *cm, int timeout);
86static void	aac_host_command(struct aac_softc *sc);
87static void	aac_host_response(struct aac_softc *sc);
88
89/* Command Buffer Management */
90static int	aac_alloc_command(struct aac_softc *sc,
91				  struct aac_command **cmp);
92static void	aac_release_command(struct aac_command *cm);
93static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
94				       int nseg, int error);
95static int	aac_alloc_commands(struct aac_softc *sc);
96static void	aac_free_commands(struct aac_softc *sc);
97static void	aac_map_command(struct aac_command *cm);
98static void	aac_unmap_command(struct aac_command *cm);
99
100/* Hardware Interface */
101static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
102			       int error);
103static int	aac_init(struct aac_softc *sc);
104static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
105				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
106				 u_int32_t arg3, u_int32_t *sp);
107static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
108			     u_int32_t xferstate, void *data,
109			     u_int16_t datasize, void *result,
110			     u_int16_t *resultsize);
111static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
112				struct aac_command *cm);
113static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
114				u_int32_t *fib_size, struct aac_fib **fib_addr);
115static int	aac_enqueue_response(struct aac_softc *sc, int queue,
116				     struct aac_fib *fib);
117
118/* Falcon/PPC interface */
119static int	aac_fa_get_fwstatus(struct aac_softc *sc);
120static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
121static int	aac_fa_get_istatus(struct aac_softc *sc);
122static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
123static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
124				   u_int32_t arg0, u_int32_t arg1,
125				   u_int32_t arg2, u_int32_t arg3);
126static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
127static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
128
129struct aac_interface aac_fa_interface = {
130	aac_fa_get_fwstatus,
131	aac_fa_qnotify,
132	aac_fa_get_istatus,
133	aac_fa_clear_istatus,
134	aac_fa_set_mailbox,
135	aac_fa_get_mailboxstatus,
136	aac_fa_set_interrupts
137};
138
139/* StrongARM interface */
140static int	aac_sa_get_fwstatus(struct aac_softc *sc);
141static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
142static int	aac_sa_get_istatus(struct aac_softc *sc);
143static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
144static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
145				   u_int32_t arg0, u_int32_t arg1,
146				   u_int32_t arg2, u_int32_t arg3);
147static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
148static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
149
150struct aac_interface aac_sa_interface = {
151	aac_sa_get_fwstatus,
152	aac_sa_qnotify,
153	aac_sa_get_istatus,
154	aac_sa_clear_istatus,
155	aac_sa_set_mailbox,
156	aac_sa_get_mailboxstatus,
157	aac_sa_set_interrupts
158};
159
160/* i960Rx interface */
161static int	aac_rx_get_fwstatus(struct aac_softc *sc);
162static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
163static int	aac_rx_get_istatus(struct aac_softc *sc);
164static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
165static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
166				   u_int32_t arg0, u_int32_t arg1,
167				   u_int32_t arg2, u_int32_t arg3);
168static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
169static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
170
171struct aac_interface aac_rx_interface = {
172	aac_rx_get_fwstatus,
173	aac_rx_qnotify,
174	aac_rx_get_istatus,
175	aac_rx_clear_istatus,
176	aac_rx_set_mailbox,
177	aac_rx_get_mailboxstatus,
178	aac_rx_set_interrupts
179};
180
181/* Debugging and Diagnostics */
182static void	aac_describe_controller(struct aac_softc *sc);
183static char	*aac_describe_code(struct aac_code_lookup *table,
184				   u_int32_t code);
185
186/* Management Interface */
187static d_open_t		aac_open;
188static d_close_t	aac_close;
189static d_ioctl_t	aac_ioctl;
190static d_poll_t		aac_poll;
191static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
192static void		aac_handle_aif(struct aac_softc *sc,
193					   struct aac_fib *fib);
194static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
195static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
196static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
197static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
198
199#define AAC_CDEV_MAJOR	150
200
201static struct cdevsw aac_cdevsw = {
202	aac_open,		/* open */
203	aac_close,		/* close */
204	noread,			/* read */
205	nowrite,		/* write */
206	aac_ioctl,		/* ioctl */
207	aac_poll,		/* poll */
208	nommap,			/* mmap */
209	nostrategy,		/* strategy */
210	"aac",			/* name */
211	AAC_CDEV_MAJOR,		/* major */
212	nodump,			/* dump */
213	nopsize,		/* psize */
214	0,			/* flags */
215#if __FreeBSD_version < 500005
216	-1,			/* bmaj */
217#endif
218};
219
220MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
221
222/* sysctl node */
223SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
224
225/*
226 * Device Interface
227 */
228
229/*
230 * Initialise the controller and softc
231 */
232int
233aac_attach(struct aac_softc *sc)
234{
235	int error, unit;
236
237	debug_called(1);
238
239	/*
240	 * Initialise per-controller queues.
241	 */
242	aac_initq_free(sc);
243	aac_initq_ready(sc);
244	aac_initq_busy(sc);
245	aac_initq_complete(sc);
246	aac_initq_bio(sc);
247
248#if __FreeBSD_version >= 500005
249	/*
250	 * Initialise command-completion task.
251	 */
252	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
253#endif
254
255	/* disable interrupts before we enable anything */
256	AAC_MASK_INTERRUPTS(sc);
257
258	/* mark controller as suspended until we get ourselves organised */
259	sc->aac_state |= AAC_STATE_SUSPEND;
260
261	/*
262	 * Allocate command structures.
263	 */
264	if ((error = aac_alloc_commands(sc)) != 0)
265		return(error);
266
267	/*
268	 * Initialise the adapter.
269	 */
270	if ((error = aac_init(sc)) != 0)
271		return(error);
272
273	/*
274	 * Print a little information about the controller.
275	 */
276	aac_describe_controller(sc);
277
278	/*
279	 * Register to probe our containers later.
280	 */
281	TAILQ_INIT(&sc->aac_container_tqh);
282	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
283
284	/*
285	 * Lock for the AIF queue
286	 */
287	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
288
289	sc->aac_ich.ich_func = aac_startup;
290	sc->aac_ich.ich_arg = sc;
291	if (config_intrhook_establish(&sc->aac_ich) != 0) {
292		device_printf(sc->aac_dev,
293			      "can't establish configuration hook\n");
294		return(ENXIO);
295	}
296
297	/*
298	 * Make the control device.
299	 */
300	unit = device_get_unit(sc->aac_dev);
301	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
302				 "aac%d", unit);
303#if __FreeBSD_version > 500005
304	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
305	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
306#endif
307	sc->aac_dev_t->si_drv1 = sc;
308
309	/* Create the AIF thread */
310#if __FreeBSD_version > 500005
311	if (kthread_create((void(*)(void *))aac_host_command, sc,
312			   &sc->aifthread, 0, "aac%daif", unit))
313#else
314	if (kthread_create((void(*)(void *))aac_host_command, sc,
315			   &sc->aifthread, "aac%daif", unit))
316#endif
317		panic("Could not create AIF thread\n");
318
319	/* Register the shutdown method to only be called post-dump */
320	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
321				   SHUTDOWN_PRI_DEFAULT)) == NULL)
322	device_printf(sc->aac_dev, "shutdown event registration failed\n");
323
324	return(0);
325}
326
327/*
328 * Probe for containers, create disks.
329 */
330static void
331aac_startup(void *arg)
332{
333	struct aac_softc *sc;
334	struct aac_mntinfo mi;
335	struct aac_mntinforesponse mir;
336	u_int16_t rsize;
337	int i = 0;
338
339	debug_called(1);
340
341	sc = (struct aac_softc *)arg;
342
343	/* disconnect ourselves from the intrhook chain */
344	config_intrhook_disestablish(&sc->aac_ich);
345
346	/* loop over possible containers */
347	mi.Command = VM_NameServe;
348	mi.MntType = FT_FILESYS;
349	do {
350		/* request information on this container */
351		mi.MntCount = i;
352		rsize = sizeof(mir);
353		if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
354				 sizeof(struct aac_mntinfo), &mir, &rsize)) {
355			debug(2, "error probing container %d", i);
356			continue;
357		}
358		/* check response size */
359		if (rsize != sizeof(mir)) {
360			debug(2, "container info response wrong size "
361			      "(%d should be %d)", rsize, sizeof(mir));
362			continue;
363		}
364
365		aac_add_container(sc, &mir, 0);
366		i++;
367	} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
368
369	/* poke the bus to actually attach the child devices */
370	if (bus_generic_attach(sc->aac_dev))
371		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
372
373	/* mark the controller up */
374	sc->aac_state &= ~AAC_STATE_SUSPEND;
375
376	/* enable interrupts now */
377	AAC_UNMASK_INTERRUPTS(sc);
378
379	/* enable the timeout watchdog */
380	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
381}
382
383/*
384 * Create a device to respresent a new container
385 */
386static void
387aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
388{
389	struct aac_container *co;
390	device_t child;
391
392	/*
393	 * Check container volume type for validity.  Note that many of
394	 * the possible types may never show up.
395	 */
396	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
398		       M_NOWAIT);
399		if (co == NULL)
400			panic("Out of memory?!\n");
401		debug(1, "id %x  name '%.16s'  size %u  type %d",
402		      mir->MntTable[0].ObjectId,
403		      mir->MntTable[0].FileSystemName,
404		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
405
406		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
407			device_printf(sc->aac_dev, "device_add_child failed\n");
408		else
409			device_set_ivars(child, co);
410		device_set_desc(child, aac_describe_code(aac_container_types,
411				mir->MntTable[0].VolType));
412		co->co_disk = child;
413		co->co_found = f;
414		bcopy(&mir->MntTable[0], &co->co_mntobj,
415		      sizeof(struct aac_mntobj));
416		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
417		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
418		AAC_LOCK_RELEASE(&sc->aac_container_lock);
419	}
420}
421
422/*
423 * Free all of the resources associated with (sc)
424 *
425 * Should not be called if the controller is active.
426 */
427void
428aac_free(struct aac_softc *sc)
429{
430	debug_called(1);
431
432	/* remove the control device */
433	if (sc->aac_dev_t != NULL)
434		destroy_dev(sc->aac_dev_t);
435
436	/* throw away any FIB buffers, discard the FIB DMA tag */
437	if (sc->aac_fibs != NULL)
438		aac_free_commands(sc);
439	if (sc->aac_fib_dmat)
440		bus_dma_tag_destroy(sc->aac_fib_dmat);
441
442	/* destroy the common area */
443	if (sc->aac_common) {
444		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
445		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
446				sc->aac_common_dmamap);
447	}
448	if (sc->aac_common_dmat)
449		bus_dma_tag_destroy(sc->aac_common_dmat);
450
451	/* disconnect the interrupt handler */
452	if (sc->aac_intr)
453		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
454	if (sc->aac_irq != NULL)
455		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
456				     sc->aac_irq);
457
458	/* destroy data-transfer DMA tag */
459	if (sc->aac_buffer_dmat)
460		bus_dma_tag_destroy(sc->aac_buffer_dmat);
461
462	/* destroy the parent DMA tag */
463	if (sc->aac_parent_dmat)
464		bus_dma_tag_destroy(sc->aac_parent_dmat);
465
466	/* release the register window mapping */
467	if (sc->aac_regs_resource != NULL)
468		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
469				     sc->aac_regs_rid, sc->aac_regs_resource);
470}
471
472/*
473 * Disconnect from the controller completely, in preparation for unload.
474 */
475int
476aac_detach(device_t dev)
477{
478	struct aac_softc *sc;
479#if AAC_BROKEN
480	int error;
481#endif
482
483	debug_called(1);
484
485	sc = device_get_softc(dev);
486
487	if (sc->aac_state & AAC_STATE_OPEN)
488	return(EBUSY);
489
490#if AAC_BROKEN
491	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
492		sc->aifflags |= AAC_AIFFLAGS_EXIT;
493		wakeup(sc->aifthread);
494		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
495	}
496
497	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
498		panic("Cannot shutdown AIF thread\n");
499
500	if ((error = aac_shutdown(dev)))
501		return(error);
502
503	aac_free(sc);
504
505	return(0);
506#else
507	return (EBUSY);
508#endif
509}
510
511/*
512 * Bring the controller down to a dormant state and detach all child devices.
513 *
514 * This function is called before detach or system shutdown.
515 *
516 * Note that we can assume that the bioq on the controller is empty, as we won't
517 * allow shutdown if any device is open.
518 */
519int
520aac_shutdown(device_t dev)
521{
522	struct aac_softc *sc;
523	struct aac_close_command cc;
524	int s, i;
525
526	debug_called(1);
527
528	sc = device_get_softc(dev);
529
530	s = splbio();
531
532	sc->aac_state |= AAC_STATE_SUSPEND;
533
534	/*
535	 * Send a Container shutdown followed by a HostShutdown FIB to the
536	 * controller to convince it that we don't want to talk to it anymore.
537	 * We've been closed and all I/O completed already
538	 */
539	device_printf(sc->aac_dev, "shutting down controller...");
540
541	cc.Command = VM_CloseAll;
542	cc.ContainerId = 0xffffffff;
543	if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
544		printf("FAILED.\n");
545	else {
546		i = 0;
547		/*
548		 * XXX Issuing this command to the controller makes it shut down
549		 * but also keeps it from coming back up without a reset of the
550		 * PCI bus.  This is not desirable if you are just unloading the
551		 * driver module with the intent to reload it later.
552		 */
553		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
554				 sizeof(i), NULL, NULL)) {
555			printf("FAILED.\n");
556		} else {
557			printf("done.\n");
558		}
559	}
560
561	AAC_MASK_INTERRUPTS(sc);
562
563	splx(s);
564	return(0);
565}
566
567/*
568 * Bring the controller to a quiescent state, ready for system suspend.
569 */
570int
571aac_suspend(device_t dev)
572{
573	struct aac_softc *sc;
574	int s;
575
576	debug_called(1);
577
578	sc = device_get_softc(dev);
579
580	s = splbio();
581
582	sc->aac_state |= AAC_STATE_SUSPEND;
583
584	AAC_MASK_INTERRUPTS(sc);
585	splx(s);
586	return(0);
587}
588
589/*
590 * Bring the controller back to a state ready for operation.
591 */
592int
593aac_resume(device_t dev)
594{
595	struct aac_softc *sc;
596
597	debug_called(1);
598
599	sc = device_get_softc(dev);
600
601	sc->aac_state &= ~AAC_STATE_SUSPEND;
602	AAC_UNMASK_INTERRUPTS(sc);
603	return(0);
604}
605
606/*
607 * Take an interrupt.
608 */
609void
610aac_intr(void *arg)
611{
612	struct aac_softc *sc;
613	u_int16_t reason;
614
615	debug_called(2);
616
617	sc = (struct aac_softc *)arg;
618
619	reason = AAC_GET_ISTATUS(sc);
620
621	/* controller wants to talk to the log */
622	if (reason & AAC_DB_PRINTF) {
623		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
624		aac_print_printf(sc);
625	}
626
627	/* controller has a message for us? */
628	if (reason & AAC_DB_COMMAND_READY) {
629		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
630		/* XXX What happens if the thread is already awake? */
631		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632			sc->aifflags |= AAC_AIFFLAGS_PENDING;
633			wakeup(sc->aifthread);
634		}
635	}
636
637	/* controller has a response for us? */
638	if (reason & AAC_DB_RESPONSE_READY) {
639		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
640		aac_host_response(sc);
641	}
642
643	/*
644	 * spurious interrupts that we don't use - reset the mask and clear the
645	 * interrupts
646	 */
647	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
648		AAC_UNMASK_INTERRUPTS(sc);
649		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
650				  AAC_DB_RESPONSE_NOT_FULL);
651	}
652};
653
654/*
655 * Command Processing
656 */
657
658/*
659 * Start as much queued I/O as possible on the controller
660 */
661static void
662aac_startio(struct aac_softc *sc)
663{
664	struct aac_command *cm;
665
666	debug_called(2);
667
668	for (;;) {
669		/*
670		 * Try to get a command that's been put off for lack of
671		 * resources
672		 */
673		cm = aac_dequeue_ready(sc);
674
675		/*
676		 * Try to build a command off the bio queue (ignore error
677		 * return)
678		 */
679		if (cm == NULL)
680			aac_bio_command(sc, &cm);
681
682		/* nothing to do? */
683		if (cm == NULL)
684			break;
685
686		/* try to give the command to the controller */
687		if (aac_start(cm) == EBUSY) {
688			/* put it on the ready queue for later */
689			aac_requeue_ready(cm);
690			break;
691		}
692	}
693}
694
695/*
696 * Deliver a command to the controller; allocate controller resources at the
697 * last moment when possible.
698 */
699static int
700aac_start(struct aac_command *cm)
701{
702	struct aac_softc *sc;
703	int error;
704
705	debug_called(2);
706
707	sc = cm->cm_sc;
708
709	/* get the command mapped */
710	aac_map_command(cm);
711
712	/* fix up the address values in the FIB */
713	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
714	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
715
716	/* save a pointer to the command for speedy reverse-lookup */
717	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
718							 * address issue */
719
720	/* put the FIB on the outbound queue */
721	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
722	return(error);
723}
724
725/*
726 * Handle notification of one or more FIBs coming from the controller.
727 */
728static void
729aac_host_command(struct aac_softc *sc)
730{
731	struct aac_fib *fib;
732	u_int32_t fib_size;
733	int size;
734
735	debug_called(2);
736
737	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738
739	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
740		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
741			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
742
743		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
744		for (;;) {
745			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
746					    &fib_size, &fib))
747				break;	/* nothing to do */
748
749			AAC_PRINT_FIB(sc, fib);
750
751			switch (fib->Header.Command) {
752			case AifRequest:
753				aac_handle_aif(sc, fib);
754				break;
755			default:
756				device_printf(sc->aac_dev, "unknown command "
757					      "from controller\n");
758				break;
759			}
760
761			/* Return the AIF to the controller. */
762			if ((fib->Header.XferState == 0) ||
763			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
764				break;
765
766			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
767				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
768				*(AAC_FSAStatus*)fib->data = ST_OK;
769
770				/* XXX Compute the Size field? */
771				size = fib->Header.Size;
772				if (size > sizeof(struct aac_fib)) {
773	 				size = sizeof(struct aac_fib);
774					fib->Header.Size = size;
775				}
776				/*
777				 * Since we did not generate this command, it
778				 * cannot go through the normal
779				 * enqueue->startio chain.
780				 */
781				aac_enqueue_response(sc,
782						     AAC_ADAP_NORM_RESP_QUEUE,
783						     fib);
784			}
785		}
786	}
787	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
788	wakeup(sc->aac_dev);
789
790#if __FreeBSD_version > 500005
791	mtx_lock(&Giant);
792#endif
793	kthread_exit(0);
794}
795
796/*
797 * Handle notification of one or more FIBs completed by the controller
798 */
799static void
800aac_host_response(struct aac_softc *sc)
801{
802	struct aac_command *cm;
803	struct aac_fib *fib;
804	u_int32_t fib_size;
805
806	debug_called(2);
807
808	for (;;) {
809		/* look for completed FIBs on our queue */
810		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
811				    &fib))
812			break;	/* nothing to do */
813
814		/* get the command, unmap and queue for later processing */
815		cm = (struct aac_command *)fib->Header.SenderData;
816		if (cm == NULL) {
817			AAC_PRINT_FIB(sc, fib);
818		} else {
819			aac_remove_busy(cm);
820			aac_unmap_command(cm);		/* XXX defer? */
821			aac_enqueue_complete(cm);
822		}
823	}
824
825	/* handle completion processing */
826#if __FreeBSD_version >= 500005
827	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
828#else
829	aac_complete(sc, 0);
830#endif
831}
832
833/*
834 * Process completed commands.
835 */
836static void
837aac_complete(void *context, int pending)
838{
839	struct aac_softc *sc;
840	struct aac_command *cm;
841
842	debug_called(2);
843
844	sc = (struct aac_softc *)context;
845
846	/* pull completed commands off the queue */
847	for (;;) {
848		cm = aac_dequeue_complete(sc);
849		if (cm == NULL)
850			break;
851		cm->cm_flags |= AAC_CMD_COMPLETED;
852
853		/* is there a completion handler? */
854		if (cm->cm_complete != NULL) {
855			cm->cm_complete(cm);
856		} else {
857			/* assume that someone is sleeping on this command */
858			wakeup(cm);
859		}
860	}
861
862	/* see if we can start some more I/O */
863	aac_startio(sc);
864}
865
866/*
867 * Handle a bio submitted from a disk device.
868 */
869void
870aac_submit_bio(struct bio *bp)
871{
872	struct aac_disk *ad;
873	struct aac_softc *sc;
874
875	debug_called(2);
876
877	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
878	sc = ad->ad_controller;
879
880	/* queue the BIO and try to get some work done */
881	aac_enqueue_bio(sc, bp);
882	aac_startio(sc);
883}
884
885/*
886 * Get a bio and build a command to go with it.
887 */
888static int
889aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
890{
891	struct aac_command *cm;
892	struct aac_fib *fib;
893	struct aac_blockread *br;
894	struct aac_blockwrite *bw;
895	struct aac_disk *ad;
896	struct bio *bp;
897
898	debug_called(2);
899
900	/* get the resources we will need */
901	cm = NULL;
902	if ((bp = aac_dequeue_bio(sc)) == NULL)
903		goto fail;
904	if (aac_alloc_command(sc, &cm))	/* get a command */
905		goto fail;
906
907	/* fill out the command */
908	cm->cm_data = (void *)bp->bio_data;
909	cm->cm_datalen = bp->bio_bcount;
910	cm->cm_complete = aac_bio_complete;
911	cm->cm_private = bp;
912	cm->cm_timestamp = time_second;
913	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914
915	/* build the FIB */
916	fib = cm->cm_fib;
917	fib->Header.XferState =
918	AAC_FIBSTATE_HOSTOWNED   |
919	AAC_FIBSTATE_INITIALISED |
920	AAC_FIBSTATE_FROMHOST	 |
921	AAC_FIBSTATE_REXPECTED   |
922	AAC_FIBSTATE_NORM;
923	fib->Header.Command = ContainerCommand;
924	fib->Header.Size = sizeof(struct aac_fib_header);
925
926	/* build the read/write request */
927	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
928	if (BIO_IS_READ(bp)) {
929		br = (struct aac_blockread *)&fib->data[0];
930		br->Command = VM_CtBlockRead;
931		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
932		br->BlockNumber = bp->bio_pblkno;
933		br->ByteCount = bp->bio_bcount;
934		fib->Header.Size += sizeof(struct aac_blockread);
935		cm->cm_sgtable = &br->SgMap;
936		cm->cm_flags |= AAC_CMD_DATAIN;
937	} else {
938		bw = (struct aac_blockwrite *)&fib->data[0];
939		bw->Command = VM_CtBlockWrite;
940		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
941		bw->BlockNumber = bp->bio_pblkno;
942		bw->ByteCount = bp->bio_bcount;
943		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
944		fib->Header.Size += sizeof(struct aac_blockwrite);
945		cm->cm_flags |= AAC_CMD_DATAOUT;
946		cm->cm_sgtable = &bw->SgMap;
947	}
948
949	*cmp = cm;
950	return(0);
951
952fail:
953	if (bp != NULL)
954		aac_enqueue_bio(sc, bp);
955	if (cm != NULL)
956		aac_release_command(cm);
957	return(ENOMEM);
958}
959
960/*
961 * Handle a bio-instigated command that has been completed.
962 */
963static void
964aac_bio_complete(struct aac_command *cm)
965{
966	struct aac_blockread_response *brr;
967	struct aac_blockwrite_response *bwr;
968	struct bio *bp;
969	AAC_FSAStatus status;
970
971	/* fetch relevant status and then release the command */
972	bp = (struct bio *)cm->cm_private;
973	if (BIO_IS_READ(bp)) {
974		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
975		status = brr->Status;
976	} else {
977		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
978		status = bwr->Status;
979	}
980	aac_release_command(cm);
981
982	/* fix up the bio based on status */
983	if (status == ST_OK) {
984		bp->bio_resid = 0;
985	} else {
986		bp->bio_error = EIO;
987		bp->bio_flags |= BIO_ERROR;
988		/* pass an error string out to the disk layer */
989		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
990						    status);
991	}
992	aac_biodone(bp);
993}
994
995/*
996 * Dump a block of data to the controller.  If the queue is full, tell the
997 * caller to hold off and wait for the queue to drain.
998 */
999int
1000aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1001{
1002	struct aac_softc *sc;
1003	struct aac_command *cm;
1004	struct aac_fib *fib;
1005	struct aac_blockwrite *bw;
1006
1007	sc = ad->ad_controller;
1008	cm = NULL;
1009
1010	if (aac_alloc_command(sc, &cm))
1011		return (EBUSY);
1012
1013	/* fill out the command */
1014	cm->cm_data = data;
1015	cm->cm_datalen = dumppages * PAGE_SIZE;
1016	cm->cm_complete = NULL;
1017	cm->cm_private = NULL;
1018	cm->cm_timestamp = time_second;
1019	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1020
1021	/* build the FIB */
1022	fib = cm->cm_fib;
1023	fib->Header.XferState =
1024	AAC_FIBSTATE_HOSTOWNED   |
1025	AAC_FIBSTATE_INITIALISED |
1026	AAC_FIBSTATE_FROMHOST	 |
1027	AAC_FIBSTATE_REXPECTED   |
1028	AAC_FIBSTATE_NORM;
1029	fib->Header.Command = ContainerCommand;
1030	fib->Header.Size = sizeof(struct aac_fib_header);
1031
1032	bw = (struct aac_blockwrite *)&fib->data[0];
1033	bw->Command = VM_CtBlockWrite;
1034	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1035	bw->BlockNumber = lba;
1036	bw->ByteCount = dumppages * PAGE_SIZE;
1037	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1038	fib->Header.Size += sizeof(struct aac_blockwrite);
1039	cm->cm_flags |= AAC_CMD_DATAOUT;
1040	cm->cm_sgtable = &bw->SgMap;
1041
1042	return (aac_start(cm));
1043}
1044
1045/*
1046 * Wait for the card's queue to drain when dumping.  Also check for monitor
1047 * printf's
1048 */
1049void
1050aac_dump_complete(struct aac_softc *sc)
1051{
1052	struct aac_fib *fib;
1053	struct aac_command *cm;
1054	u_int16_t reason;
1055	u_int32_t pi, ci, fib_size;
1056
1057	do {
1058		reason = AAC_GET_ISTATUS(sc);
1059		if (reason & AAC_DB_RESPONSE_READY) {
1060			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1061			for (;;) {
1062				if (aac_dequeue_fib(sc,
1063						    AAC_HOST_NORM_RESP_QUEUE,
1064						    &fib_size, &fib))
1065					break;
1066				cm = (struct aac_command *)
1067					fib->Header.SenderData;
1068				if (cm == NULL)
1069					AAC_PRINT_FIB(sc, fib);
1070				else {
1071					aac_remove_busy(cm);
1072					aac_unmap_command(cm);
1073					aac_enqueue_complete(cm);
1074					aac_release_command(cm);
1075				}
1076			}
1077		}
1078		if (reason & AAC_DB_PRINTF) {
1079			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1080			aac_print_printf(sc);
1081		}
1082		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1083			AAC_PRODUCER_INDEX];
1084		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1085			AAC_CONSUMER_INDEX];
1086	} while (ci != pi);
1087
1088	return;
1089}
1090
1091/*
1092 * Submit a command to the controller, return when it completes.
1093 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1094 *     be stuck here forever.  At the same time, signals are not caught
1095 *     because there is a risk that a signal could wakeup the tsleep before
1096 *     the card has a chance to complete the command.  The passed in timeout
1097 *     is ignored for the same reason.  Since there is no way to cancel a
1098 *     command in progress, we should probably create a 'dead' queue where
1099 *     commands go that have been interrupted/timed-out/etc, that keeps them
1100 *     out of the free pool.  That way, if the card is just slow, it won't
1101 *     spam the memory of a command that has been recycled.
1102 */
1103static int
1104aac_wait_command(struct aac_command *cm, int timeout)
1105{
1106	int s, error = 0;
1107
1108	debug_called(2);
1109
1110	/* Put the command on the ready queue and get things going */
1111	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1112	aac_enqueue_ready(cm);
1113	aac_startio(cm->cm_sc);
1114	s = splbio();
1115	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1116		error = tsleep(cm, PRIBIO, "aacwait", 0);
1117	}
1118	splx(s);
1119	return(error);
1120}
1121
1122/*
1123 *Command Buffer Management
1124 */
1125
1126/*
1127 * Allocate a command.
1128 */
1129static int
1130aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1131{
1132	struct aac_command *cm;
1133
1134	debug_called(3);
1135
1136	if ((cm = aac_dequeue_free(sc)) == NULL)
1137		return(ENOMEM);
1138
1139	*cmp = cm;
1140	return(0);
1141}
1142
1143/*
1144 * Release a command back to the freelist.
1145 */
1146static void
1147aac_release_command(struct aac_command *cm)
1148{
1149	debug_called(3);
1150
1151	/* (re)initialise the command/FIB */
1152	cm->cm_sgtable = NULL;
1153	cm->cm_flags = 0;
1154	cm->cm_complete = NULL;
1155	cm->cm_private = NULL;
1156	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1157	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1158	cm->cm_fib->Header.Flags = 0;
1159	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1160
1161	/*
1162	 * These are duplicated in aac_start to cover the case where an
1163	 * intermediate stage may have destroyed them.  They're left
1164	 * initialised here for debugging purposes only.
1165	 */
1166	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1167	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1168
1169	aac_enqueue_free(cm);
1170}
1171
1172/*
1173 * Map helper for command/FIB allocation.
1174 */
1175static void
1176aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1177{
1178	struct aac_softc *sc;
1179
1180	sc = (struct aac_softc *)arg;
1181
1182	debug_called(3);
1183
1184	sc->aac_fibphys = segs[0].ds_addr;
1185}
1186
1187/*
1188 * Allocate and initialise commands/FIBs for this adapter.
1189 */
1190static int
1191aac_alloc_commands(struct aac_softc *sc)
1192{
1193	struct aac_command *cm;
1194	int i;
1195
1196	debug_called(1);
1197
1198	/* allocate the FIBs in DMAable memory and load them */
1199	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1200			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1201		return(ENOMEM);
1202	}
1203	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1204			AAC_FIB_COUNT * sizeof(struct aac_fib),
1205			aac_map_command_helper, sc, 0);
1206
1207	/* initialise constant fields in the command structure */
1208	for (i = 0; i < AAC_FIB_COUNT; i++) {
1209		cm = &sc->aac_command[i];
1210		cm->cm_sc = sc;
1211		cm->cm_fib = sc->aac_fibs + i;
1212		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1213
1214		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1215			aac_release_command(cm);
1216	}
1217	return(0);
1218}
1219
1220/*
1221 * Free FIBs owned by this adapter.
1222 */
1223static void
1224aac_free_commands(struct aac_softc *sc)
1225{
1226	int i;
1227
1228	debug_called(1);
1229
1230	for (i = 0; i < AAC_FIB_COUNT; i++)
1231		bus_dmamap_destroy(sc->aac_buffer_dmat,
1232				   sc->aac_command[i].cm_datamap);
1233
1234	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1235	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1236}
1237
1238/*
1239 * Command-mapping helper function - populate this command's s/g table.
1240 */
1241static void
1242aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1243{
1244	struct aac_command *cm;
1245	struct aac_fib *fib;
1246	struct aac_sg_table *sg;
1247	int i;
1248
1249	debug_called(3);
1250
1251	cm = (struct aac_command *)arg;
1252	fib = cm->cm_fib;
1253
1254	/* find the s/g table */
1255	sg = cm->cm_sgtable;
1256
1257	/* copy into the FIB */
1258	if (sg != NULL) {
1259		sg->SgCount = nseg;
1260		for (i = 0; i < nseg; i++) {
1261			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1262			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1263		}
1264		/* update the FIB size for the s/g count */
1265		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1266	}
1267
1268}
1269
1270/*
1271 * Map a command into controller-visible space.
1272 */
1273static void
1274aac_map_command(struct aac_command *cm)
1275{
1276	struct aac_softc *sc;
1277
1278	debug_called(2);
1279
1280	sc = cm->cm_sc;
1281
1282	/* don't map more than once */
1283	if (cm->cm_flags & AAC_CMD_MAPPED)
1284		return;
1285
1286	if (cm->cm_datalen != 0) {
1287		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1288				cm->cm_data, cm->cm_datalen,
1289				aac_map_command_sg, cm, 0);
1290
1291	if (cm->cm_flags & AAC_CMD_DATAIN)
1292		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1293				BUS_DMASYNC_PREREAD);
1294	if (cm->cm_flags & AAC_CMD_DATAOUT)
1295		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1296				BUS_DMASYNC_PREWRITE);
1297	}
1298	cm->cm_flags |= AAC_CMD_MAPPED;
1299}
1300
1301/*
1302 * Unmap a command from controller-visible space.
1303 */
1304static void
1305aac_unmap_command(struct aac_command *cm)
1306{
1307	struct aac_softc *sc;
1308
1309	debug_called(2);
1310
1311	sc = cm->cm_sc;
1312
1313	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1314		return;
1315
1316	if (cm->cm_datalen != 0) {
1317		if (cm->cm_flags & AAC_CMD_DATAIN)
1318			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1319					BUS_DMASYNC_POSTREAD);
1320		if (cm->cm_flags & AAC_CMD_DATAOUT)
1321			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1322					BUS_DMASYNC_POSTWRITE);
1323
1324		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1325	}
1326	cm->cm_flags &= ~AAC_CMD_MAPPED;
1327}
1328
1329/*
1330 * Hardware Interface
1331 */
1332
1333/*
1334 * Initialise the adapter.
1335 */
1336static void
1337aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1338{
1339	struct aac_softc *sc;
1340
1341	debug_called(1);
1342
1343	sc = (struct aac_softc *)arg;
1344
1345	sc->aac_common_busaddr = segs[0].ds_addr;
1346}
1347
1348static int
1349aac_init(struct aac_softc *sc)
1350{
1351	struct aac_adapter_init	*ip;
1352	time_t then;
1353	u_int32_t code;
1354	u_int8_t *qaddr;
1355
1356	debug_called(1);
1357
1358	/*
1359	 * First wait for the adapter to come ready.
1360	 */
1361	then = time_second;
1362	do {
1363		code = AAC_GET_FWSTATUS(sc);
1364		if (code & AAC_SELF_TEST_FAILED) {
1365			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1366			return(ENXIO);
1367		}
1368		if (code & AAC_KERNEL_PANIC) {
1369			device_printf(sc->aac_dev,
1370				      "FATAL: controller kernel panic\n");
1371			return(ENXIO);
1372		}
1373		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1374			device_printf(sc->aac_dev,
1375				      "FATAL: controller not coming ready, "
1376					   "status %x\n", code);
1377			return(ENXIO);
1378		}
1379	} while (!(code & AAC_UP_AND_RUNNING));
1380
1381	/*
1382	 * Create DMA tag for the common structure and allocate it.
1383	 */
1384	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1385			       1, 0, 			/* algnmnt, boundary */
1386			       BUS_SPACE_MAXADDR,	/* lowaddr */
1387			       BUS_SPACE_MAXADDR, 	/* highaddr */
1388			       NULL, NULL, 		/* filter, filterarg */
1389			       sizeof(struct aac_common), /* maxsize */
1390			       1,			/* nsegments */
1391			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1392			       0,			/* flags */
1393			       &sc->aac_common_dmat)) {
1394		device_printf(sc->aac_dev,
1395			      "can't allocate common structure DMA tag\n");
1396		return(ENOMEM);
1397	}
1398	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1399			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1400		device_printf(sc->aac_dev, "can't allocate common structure\n");
1401		return(ENOMEM);
1402	}
1403	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1404			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1405		        sc, 0);
1406	bzero(sc->aac_common, sizeof(*sc->aac_common));
1407
1408	/*
1409	 * Fill in the init structure.  This tells the adapter about the
1410	 * physical location of various important shared data structures.
1411	 */
1412	ip = &sc->aac_common->ac_init;
1413	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1414
1415	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1416					 offsetof(struct aac_common, ac_fibs);
1417	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1418	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1419	ip->AdapterFibAlign = sizeof(struct aac_fib);
1420
1421	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1422				  offsetof(struct aac_common, ac_printf);
1423	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1424
1425	ip->HostPhysMemPages = 0;		/* not used? */
1426	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1427
1428	/*
1429	 * Initialise FIB queues.  Note that it appears that the layout of the
1430	 * indexes and the segmentation of the entries may be mandated by the
1431	 * adapter, which is only told about the base of the queue index fields.
1432	 *
1433	 * The initial values of the indices are assumed to inform the adapter
1434	 * of the sizes of the respective queues, and theoretically it could
1435	 * work out the entire layout of the queue structures from this.  We
1436	 * take the easy route and just lay this area out like everyone else
1437	 * does.
1438	 *
1439	 * The Linux driver uses a much more complex scheme whereby several
1440	 * header records are kept for each queue.  We use a couple of generic
1441	 * list manipulation functions which 'know' the size of each list by
1442	 * virtue of a table.
1443	 */
1444	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1445	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1446	sc->aac_queues = (struct aac_queue_table *)qaddr;
1447	ip->CommHeaderAddress = sc->aac_common_busaddr +
1448				((u_int32_t)sc->aac_queues -
1449				(u_int32_t)sc->aac_common);
1450	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1451
1452	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1453		AAC_HOST_NORM_CMD_ENTRIES;
1454	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1455		AAC_HOST_NORM_CMD_ENTRIES;
1456	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1457		AAC_HOST_HIGH_CMD_ENTRIES;
1458	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1459		AAC_HOST_HIGH_CMD_ENTRIES;
1460	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1461		AAC_ADAP_NORM_CMD_ENTRIES;
1462	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1463		AAC_ADAP_NORM_CMD_ENTRIES;
1464	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1465		AAC_ADAP_HIGH_CMD_ENTRIES;
1466	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1467		AAC_ADAP_HIGH_CMD_ENTRIES;
1468	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1469		AAC_HOST_NORM_RESP_ENTRIES;
1470	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1471		AAC_HOST_NORM_RESP_ENTRIES;
1472	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1473		AAC_HOST_HIGH_RESP_ENTRIES;
1474	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1475		AAC_HOST_HIGH_RESP_ENTRIES;
1476	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1477		AAC_ADAP_NORM_RESP_ENTRIES;
1478	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1479		AAC_ADAP_NORM_RESP_ENTRIES;
1480	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1481		AAC_ADAP_HIGH_RESP_ENTRIES;
1482	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1483		AAC_ADAP_HIGH_RESP_ENTRIES;
1484	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1485		&sc->aac_queues->qt_HostNormCmdQueue[0];
1486	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1487		&sc->aac_queues->qt_HostHighCmdQueue[0];
1488	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1489		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1490	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1491		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1492	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1493		&sc->aac_queues->qt_HostNormRespQueue[0];
1494	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1495		&sc->aac_queues->qt_HostHighRespQueue[0];
1496	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1497		&sc->aac_queues->qt_AdapNormRespQueue[0];
1498	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1499		&sc->aac_queues->qt_AdapHighRespQueue[0];
1500
1501	/*
1502	 * Do controller-type-specific initialisation
1503	 */
1504	switch (sc->aac_hwif) {
1505	case AAC_HWIF_I960RX:
1506		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1507		break;
1508	}
1509
1510	/*
1511	 * Give the init structure to the controller.
1512	 */
1513	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1514			     sc->aac_common_busaddr +
1515			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1516			     NULL)) {
1517		device_printf(sc->aac_dev,
1518			      "error establishing init structure\n");
1519		return(EIO);
1520	}
1521
1522	return(0);
1523}
1524
1525/*
1526 * Send a synchronous command to the controller and wait for a result.
1527 */
1528static int
1529aac_sync_command(struct aac_softc *sc, u_int32_t command,
1530		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1531		 u_int32_t *sp)
1532{
1533	time_t then;
1534	u_int32_t status;
1535
1536	debug_called(3);
1537
1538	/* populate the mailbox */
1539	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1540
1541	/* ensure the sync command doorbell flag is cleared */
1542	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1543
1544	/* then set it to signal the adapter */
1545	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1546
1547	/* spin waiting for the command to complete */
1548	then = time_second;
1549	do {
1550		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1551			debug(2, "timed out");
1552			return(EIO);
1553		}
1554	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1555
1556	/* clear the completion flag */
1557	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1558
1559	/* get the command status */
1560	status = AAC_GET_MAILBOXSTATUS(sc);
1561	if (sp != NULL)
1562		*sp = status;
1563	return(0);
1564}
1565
1566/*
1567 * Send a synchronous FIB to the controller and wait for a result.
1568 */
1569static int
1570aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1571		 void *data, u_int16_t datasize,
1572		 void *result, u_int16_t *resultsize)
1573{
1574	struct aac_fib *fib;
1575
1576	debug_called(3);
1577
1578	fib = &sc->aac_common->ac_sync_fib;
1579
1580	if (datasize > AAC_FIB_DATASIZE)
1581		return(EINVAL);
1582
1583	/*
1584	 * Set up the sync FIB
1585	 */
1586	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1587				AAC_FIBSTATE_INITIALISED |
1588				AAC_FIBSTATE_EMPTY;
1589	fib->Header.XferState |= xferstate;
1590	fib->Header.Command = command;
1591	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1592	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1593	fib->Header.SenderSize = sizeof(struct aac_fib);
1594	fib->Header.SenderFibAddress = (u_int32_t)fib;
1595	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1596					 offsetof(struct aac_common,
1597						  ac_sync_fib);
1598
1599	/*
1600	 * Copy in data.
1601	 */
1602	if (data != NULL) {
1603		KASSERT(datasize <= sizeof(fib->data),
1604			("aac_sync_fib: datasize to large"));
1605		bcopy(data, fib->data, datasize);
1606		fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
1607					 AAC_FIBSTATE_NORM;
1608	}
1609
1610	/*
1611	 * Give the FIB to the controller, wait for a response.
1612	 */
1613	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1614			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1615		debug(2, "IO error");
1616		return(EIO);
1617	}
1618
1619	/*
1620	 * Copy out the result
1621	 */
1622	if (result != NULL) {
1623		u_int copysize;
1624
1625		copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1626		if (copysize > *resultsize)
1627			copysize = *resultsize;
1628		*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1629		bcopy(fib->data, result, copysize);
1630	}
1631	return(0);
1632}
1633
1634/*
1635 * Adapter-space FIB queue manipulation
1636 *
1637 * Note that the queue implementation here is a little funky; neither the PI or
1638 * CI will ever be zero.  This behaviour is a controller feature.
1639 */
1640static struct {
1641	int		size;
1642	int		notify;
1643} aac_qinfo[] = {
1644	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1645	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1646	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1647	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1648	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1649	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1650	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1651	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1652};
1653
1654/*
1655 * Atomically insert an entry into the nominated queue, returns 0 on success or
1656 * EBUSY if the queue is full.
1657 *
1658 * Note: it would be more efficient to defer notifying the controller in
1659 *	 the case where we may be inserting several entries in rapid succession,
1660 *	 but implementing this usefully may be difficult (it would involve a
1661 *	 separate queue/notify interface).
1662 */
1663static int
1664aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1665{
1666	u_int32_t pi, ci;
1667	int s, error;
1668	u_int32_t fib_size;
1669	u_int32_t fib_addr;
1670
1671	debug_called(3);
1672
1673	fib_size = cm->cm_fib->Header.Size;
1674	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1675
1676	s = splbio();
1677
1678	/* get the producer/consumer indices */
1679	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1680	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1681
1682	/* wrap the queue? */
1683	if (pi >= aac_qinfo[queue].size)
1684		pi = 0;
1685
1686	/* check for queue full */
1687	if ((pi + 1) == ci) {
1688		error = EBUSY;
1689		goto out;
1690	}
1691
1692	/* populate queue entry */
1693	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1694	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1695
1696	/* update producer index */
1697	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1698
1699	/*
1700	 * To avoid a race with its completion interrupt, place this command on
1701	 * the busy queue prior to advertising it to the controller.
1702	 */
1703	aac_enqueue_busy(cm);
1704
1705	/* notify the adapter if we know how */
1706	if (aac_qinfo[queue].notify != 0)
1707		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1708
1709	error = 0;
1710
1711out:
1712	splx(s);
1713	return(error);
1714}
1715
1716/*
1717 * Atomically remove one entry from the nominated queue, returns 0 on
1718 * success or ENOENT if the queue is empty.
1719 */
1720static int
1721aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1722		struct aac_fib **fib_addr)
1723{
1724	u_int32_t pi, ci;
1725	int s, error;
1726	int notify;
1727
1728	debug_called(3);
1729
1730	s = splbio();
1731
1732	/* get the producer/consumer indices */
1733	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1734	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1735
1736	/* check for queue empty */
1737	if (ci == pi) {
1738		error = ENOENT;
1739		goto out;
1740	}
1741
1742	notify = 0;
1743	if (ci == pi + 1)
1744		notify++;
1745
1746	/* wrap the queue? */
1747	if (ci >= aac_qinfo[queue].size)
1748		ci = 0;
1749
1750	/* fetch the entry */
1751	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1752	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1753				       ci)->aq_fib_addr;
1754
1755	/* update consumer index */
1756	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1757
1758	/* if we have made the queue un-full, notify the adapter */
1759	if (notify && (aac_qinfo[queue].notify != 0))
1760		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1761	error = 0;
1762
1763out:
1764	splx(s);
1765	return(error);
1766}
1767
1768/*
1769 * Put our response to an Adapter Initialed Fib on the response queue
1770 */
1771static int
1772aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1773{
1774	u_int32_t pi, ci;
1775	int s, error;
1776	u_int32_t fib_size;
1777	u_int32_t fib_addr;
1778
1779	debug_called(1);
1780
1781	/* Tell the adapter where the FIB is */
1782	fib_size = fib->Header.Size;
1783	fib_addr = fib->Header.SenderFibAddress;
1784	fib->Header.ReceiverFibAddress = fib_addr;
1785
1786	s = splbio();
1787
1788	/* get the producer/consumer indices */
1789	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1790	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1791
1792	/* wrap the queue? */
1793	if (pi >= aac_qinfo[queue].size)
1794		pi = 0;
1795
1796	/* check for queue full */
1797	if ((pi + 1) == ci) {
1798		error = EBUSY;
1799		goto out;
1800	}
1801
1802	/* populate queue entry */
1803	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1804	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1805
1806	/* update producer index */
1807	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1808
1809	/* notify the adapter if we know how */
1810	if (aac_qinfo[queue].notify != 0)
1811		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1812
1813	error = 0;
1814
1815out:
1816	splx(s);
1817	return(error);
1818}
1819
1820/*
1821 * Check for commands that have been outstanding for a suspiciously long time,
1822 * and complain about them.
1823 */
1824static void
1825aac_timeout(struct aac_softc *sc)
1826{
1827	int s;
1828	struct aac_command *cm;
1829	time_t deadline;
1830
1831#if 0
1832	/* simulate an interrupt to handle possibly-missed interrupts */
1833	/*
1834	 * XXX This was done to work around another bug which has since been
1835	 * fixed.  It is dangerous anyways because you don't want multiple
1836	 * threads in the interrupt handler at the same time!  If calling
1837	 * is deamed neccesary in the future, proper mutexes must be used.
1838	 */
1839	s = splbio();
1840	aac_intr(sc);
1841	splx(s);
1842
1843	/* kick the I/O queue to restart it in the case of deadlock */
1844	aac_startio(sc);
1845#endif
1846
1847	/*
1848	 * traverse the busy command list, bitch about late commands once
1849	 * only.
1850	 */
1851	deadline = time_second - AAC_CMD_TIMEOUT;
1852	s = splbio();
1853	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1854		if ((cm->cm_timestamp  < deadline)
1855			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1856			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1857			device_printf(sc->aac_dev,
1858				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1859				      cm, (int)(time_second-cm->cm_timestamp));
1860			AAC_PRINT_FIB(sc, cm->cm_fib);
1861		}
1862	}
1863	splx(s);
1864
1865	/* reset the timer for next time */
1866	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1867	return;
1868}
1869
1870/*
1871 * Interface Function Vectors
1872 */
1873
1874/*
1875 * Read the current firmware status word.
1876 */
1877static int
1878aac_sa_get_fwstatus(struct aac_softc *sc)
1879{
1880	debug_called(3);
1881
1882	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1883}
1884
1885static int
1886aac_rx_get_fwstatus(struct aac_softc *sc)
1887{
1888	debug_called(3);
1889
1890	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1891}
1892
1893static int
1894aac_fa_get_fwstatus(struct aac_softc *sc)
1895{
1896	int val;
1897
1898	debug_called(3);
1899
1900	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1901	return (val);
1902}
1903
1904/*
1905 * Notify the controller of a change in a given queue
1906 */
1907
1908static void
1909aac_sa_qnotify(struct aac_softc *sc, int qbit)
1910{
1911	debug_called(3);
1912
1913	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1914}
1915
1916static void
1917aac_rx_qnotify(struct aac_softc *sc, int qbit)
1918{
1919	debug_called(3);
1920
1921	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1922}
1923
1924static void
1925aac_fa_qnotify(struct aac_softc *sc, int qbit)
1926{
1927	debug_called(3);
1928
1929	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1930	AAC_FA_HACK(sc);
1931}
1932
1933/*
1934 * Get the interrupt reason bits
1935 */
1936static int
1937aac_sa_get_istatus(struct aac_softc *sc)
1938{
1939	debug_called(3);
1940
1941	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1942}
1943
1944static int
1945aac_rx_get_istatus(struct aac_softc *sc)
1946{
1947	debug_called(3);
1948
1949	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1950}
1951
1952static int
1953aac_fa_get_istatus(struct aac_softc *sc)
1954{
1955	int val;
1956
1957	debug_called(3);
1958
1959	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1960	return (val);
1961}
1962
1963/*
1964 * Clear some interrupt reason bits
1965 */
1966static void
1967aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1968{
1969	debug_called(3);
1970
1971	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1972}
1973
1974static void
1975aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1976{
1977	debug_called(3);
1978
1979	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1980}
1981
1982static void
1983aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1984{
1985	debug_called(3);
1986
1987	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1988	AAC_FA_HACK(sc);
1989}
1990
1991/*
1992 * Populate the mailbox and set the command word
1993 */
1994static void
1995aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1996		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1997{
1998	debug_called(4);
1999
2000	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2001	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2002	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2003	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2004	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2005}
2006
2007static void
2008aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2009		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2010{
2011	debug_called(4);
2012
2013	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2014	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2015	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2016	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2017	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2018}
2019
2020static void
2021aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2022		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2023{
2024	debug_called(4);
2025
2026	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2027	AAC_FA_HACK(sc);
2028	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2029	AAC_FA_HACK(sc);
2030	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2031	AAC_FA_HACK(sc);
2032	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2033	AAC_FA_HACK(sc);
2034	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2035	AAC_FA_HACK(sc);
2036}
2037
2038/*
2039 * Fetch the immediate command status word
2040 */
2041static int
2042aac_sa_get_mailboxstatus(struct aac_softc *sc)
2043{
2044	debug_called(4);
2045
2046	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2047}
2048
2049static int
2050aac_rx_get_mailboxstatus(struct aac_softc *sc)
2051{
2052	debug_called(4);
2053
2054	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2055}
2056
2057static int
2058aac_fa_get_mailboxstatus(struct aac_softc *sc)
2059{
2060	int val;
2061
2062	debug_called(4);
2063
2064	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2065	return (val);
2066}
2067
2068/*
2069 * Set/clear interrupt masks
2070 */
2071static void
2072aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2073{
2074	debug(2, "%sable interrupts", enable ? "en" : "dis");
2075
2076	if (enable) {
2077		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2078	} else {
2079		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2080	}
2081}
2082
2083static void
2084aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2085{
2086	debug(2, "%sable interrupts", enable ? "en" : "dis");
2087
2088	if (enable) {
2089		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2090	} else {
2091		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2092	}
2093}
2094
2095static void
2096aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2097{
2098	debug(2, "%sable interrupts", enable ? "en" : "dis");
2099
2100	if (enable) {
2101		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2102		AAC_FA_HACK(sc);
2103	} else {
2104		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2105		AAC_FA_HACK(sc);
2106	}
2107}
2108
2109/*
2110 * Debugging and Diagnostics
2111 */
2112
2113/*
2114 * Print some information about the controller.
2115 */
2116static void
2117aac_describe_controller(struct aac_softc *sc)
2118{
2119	u_int8_t buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
2120					 * for the stack */
2121	u_int16_t bufsize;
2122	struct aac_adapter_info	*info;
2123	u_int8_t arg;
2124
2125	debug_called(2);
2126
2127	arg = 0;
2128	bufsize = sizeof(buf);
2129	if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
2130			 &bufsize)) {
2131		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2132		return;
2133	}
2134	if (bufsize != sizeof(*info)) {
2135		device_printf(sc->aac_dev,
2136			      "RequestAdapterInfo returned wrong data size "
2137			      "(%d != %d)\n", bufsize, sizeof(*info));
2138		/*return;*/
2139	}
2140	info = (struct aac_adapter_info *)&buf[0];
2141
2142	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2143		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2144		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2145		      aac_describe_code(aac_battery_platform,
2146					info->batteryPlatform));
2147
2148	/* save the kernel revision structure for later use */
2149	sc->aac_revision = info->KernelRevision;
2150	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2151		      info->KernelRevision.external.comp.major,
2152		      info->KernelRevision.external.comp.minor,
2153		      info->KernelRevision.external.comp.dash,
2154		      info->KernelRevision.buildNumber,
2155		      (u_int32_t)(info->SerialNumber & 0xffffff));
2156}
2157
2158/*
2159 * Look up a text description of a numeric error code and return a pointer to
2160 * same.
2161 */
2162static char *
2163aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2164{
2165	int i;
2166
2167	for (i = 0; table[i].string != NULL; i++)
2168		if (table[i].code == code)
2169			return(table[i].string);
2170	return(table[i + 1].string);
2171}
2172
2173/*
2174 * Management Interface
2175 */
2176
2177static int
2178aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2179{
2180	struct aac_softc *sc;
2181
2182	debug_called(2);
2183
2184	sc = dev->si_drv1;
2185
2186	/* Check to make sure the device isn't already open */
2187	if (sc->aac_state & AAC_STATE_OPEN) {
2188		return EBUSY;
2189	}
2190	sc->aac_state |= AAC_STATE_OPEN;
2191
2192	return 0;
2193}
2194
2195static int
2196aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2197{
2198	struct aac_softc *sc;
2199
2200	debug_called(2);
2201
2202	sc = dev->si_drv1;
2203
2204	/* Mark this unit as no longer open  */
2205	sc->aac_state &= ~AAC_STATE_OPEN;
2206
2207	return 0;
2208}
2209
2210static int
2211aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2212{
2213	union aac_statrequest *as;
2214	struct aac_softc *sc;
2215	int error = 0;
2216	int i;
2217
2218	debug_called(2);
2219
2220	as = (union aac_statrequest *)arg;
2221	sc = dev->si_drv1;
2222
2223	switch (cmd) {
2224	case AACIO_STATS:
2225		switch (as->as_item) {
2226		case AACQ_FREE:
2227		case AACQ_BIO:
2228		case AACQ_READY:
2229		case AACQ_BUSY:
2230		case AACQ_COMPLETE:
2231			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2232			      sizeof(struct aac_qstat));
2233			break;
2234		default:
2235			error = ENOENT;
2236			break;
2237		}
2238	break;
2239
2240	case FSACTL_SENDFIB:
2241		arg = *(caddr_t*)arg;
2242	case FSACTL_LNX_SENDFIB:
2243		debug(1, "FSACTL_SENDFIB");
2244		error = aac_ioctl_sendfib(sc, arg);
2245		break;
2246	case FSACTL_AIF_THREAD:
2247	case FSACTL_LNX_AIF_THREAD:
2248		debug(1, "FSACTL_AIF_THREAD");
2249		error = EINVAL;
2250		break;
2251	case FSACTL_OPEN_GET_ADAPTER_FIB:
2252		arg = *(caddr_t*)arg;
2253	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2254		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2255		/*
2256		 * Pass the caller out an AdapterFibContext.
2257		 *
2258		 * Note that because we only support one opener, we
2259		 * basically ignore this.  Set the caller's context to a magic
2260		 * number just in case.
2261		 *
2262		 * The Linux code hands the driver a pointer into kernel space,
2263		 * and then trusts it when the caller hands it back.  Aiee!
2264		 * Here, we give it the proc pointer of the per-adapter aif
2265		 * thread. It's only used as a sanity check in other calls.
2266		 */
2267		i = (int)sc->aifthread;
2268		error = copyout(&i, arg, sizeof(i));
2269		break;
2270	case FSACTL_GET_NEXT_ADAPTER_FIB:
2271		arg = *(caddr_t*)arg;
2272	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2273		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2274		error = aac_getnext_aif(sc, arg);
2275		break;
2276	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2277	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2278		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2279		/* don't do anything here */
2280		break;
2281	case FSACTL_MINIPORT_REV_CHECK:
2282		arg = *(caddr_t*)arg;
2283	case FSACTL_LNX_MINIPORT_REV_CHECK:
2284		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2285		error = aac_rev_check(sc, arg);
2286		break;
2287	case FSACTL_QUERY_DISK:
2288		arg = *(caddr_t*)arg;
2289	case FSACTL_LNX_QUERY_DISK:
2290		debug(1, "FSACTL_QUERY_DISK");
2291		error = aac_query_disk(sc, arg);
2292			break;
2293	case FSACTL_DELETE_DISK:
2294	case FSACTL_LNX_DELETE_DISK:
2295		/*
2296		 * We don't trust the underland to tell us when to delete a
2297		 * container, rather we rely on an AIF coming from the
2298		 * controller
2299		 */
2300		error = 0;
2301		break;
2302	default:
2303		debug(1, "unsupported cmd 0x%lx\n", cmd);
2304		error = EINVAL;
2305		break;
2306	}
2307	return(error);
2308}
2309
2310static int
2311aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2312{
2313	struct aac_softc *sc;
2314	int revents;
2315
2316	sc = dev->si_drv1;
2317	revents = 0;
2318
2319	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2320	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2321		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2322			revents |= poll_events & (POLLIN | POLLRDNORM);
2323	}
2324	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2325
2326	if (revents == 0) {
2327		if (poll_events & (POLLIN | POLLRDNORM))
2328			selrecord(td, &sc->rcv_select);
2329	}
2330
2331	return (revents);
2332}
2333
2334/*
2335 * Send a FIB supplied from userspace
2336 */
2337static int
2338aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2339{
2340	struct aac_command *cm;
2341	int size, error;
2342
2343	debug_called(2);
2344
2345	cm = NULL;
2346
2347	/*
2348	 * Get a command
2349	 */
2350	if (aac_alloc_command(sc, &cm)) {
2351		error = EBUSY;
2352		goto out;
2353	}
2354
2355	/*
2356	 * Fetch the FIB header, then re-copy to get data as well.
2357	 */
2358	if ((error = copyin(ufib, cm->cm_fib,
2359			    sizeof(struct aac_fib_header))) != 0)
2360		goto out;
2361	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2362	if (size > sizeof(struct aac_fib)) {
2363		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2364			      size, sizeof(struct aac_fib));
2365		size = sizeof(struct aac_fib);
2366	}
2367	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2368		goto out;
2369	cm->cm_fib->Header.Size = size;
2370	cm->cm_timestamp = time_second;
2371
2372	/*
2373	 * Pass the FIB to the controller, wait for it to complete.
2374	 */
2375	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2376		printf("aac_wait_command return %d\n", error);
2377		goto out;
2378	}
2379
2380	/*
2381	 * Copy the FIB and data back out to the caller.
2382	 */
2383	size = cm->cm_fib->Header.Size;
2384	if (size > sizeof(struct aac_fib)) {
2385		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2386			      size, sizeof(struct aac_fib));
2387		size = sizeof(struct aac_fib);
2388	}
2389	error = copyout(cm->cm_fib, ufib, size);
2390
2391out:
2392	if (cm != NULL) {
2393		aac_release_command(cm);
2394	}
2395	return(error);
2396}
2397
2398/*
2399 * Handle an AIF sent to us by the controller; queue it for later reference.
2400 * If the queue fills up, then drop the older entries.
2401 */
2402static void
2403aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2404{
2405	struct aac_aif_command *aif;
2406	struct aac_container *co, *co_next;
2407	struct aac_mntinfo mi;
2408	struct aac_mntinforesponse mir;
2409	u_int16_t rsize;
2410	int next, found;
2411	int added = 0, i = 0;
2412
2413	debug_called(2);
2414
2415	aif = (struct aac_aif_command*)&fib->data[0];
2416	aac_print_aif(sc, aif);
2417
2418	/* Is it an event that we should care about? */
2419	switch (aif->command) {
2420	case AifCmdEventNotify:
2421		switch (aif->data.EN.type) {
2422		case AifEnAddContainer:
2423		case AifEnDeleteContainer:
2424			/*
2425			 * A container was added or deleted, but the message
2426			 * doesn't tell us anything else!  Re-enumerate the
2427			 * containers and sort things out.
2428			 */
2429			mi.Command = VM_NameServe;
2430			mi.MntType = FT_FILESYS;
2431			do {
2432				/*
2433				 * Ask the controller for its containers one at
2434				 * a time.
2435				 * XXX What if the controller's list changes
2436				 * midway through this enumaration?
2437				 * XXX This should be done async.
2438				 */
2439				mi.MntCount = i;
2440				rsize = sizeof(mir);
2441				if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
2442						 sizeof(mi), &mir, &rsize)) {
2443					debug(2, "Error probing container %d\n",
2444					      i);
2445					continue;
2446				}
2447				if (rsize != sizeof(mir)) {
2448					debug(2, "Container response size too "
2449						 "large\n");
2450					continue;
2451				}
2452				/*
2453				 * Check the container against our list.
2454				 * co->co_found was already set to 0 in a
2455				 * previous run.
2456				 */
2457				if ((mir.Status == ST_OK) &&
2458				    (mir.MntTable[0].VolType != CT_NONE)) {
2459					found = 0;
2460					TAILQ_FOREACH(co,
2461						      &sc->aac_container_tqh,
2462						      co_link) {
2463						if (co->co_mntobj.ObjectId ==
2464						    mir.MntTable[0].ObjectId) {
2465							co->co_found = 1;
2466							found = 1;
2467							break;
2468						}
2469					}
2470					/*
2471					 * If the container matched, continue
2472					 * in the list.
2473					 */
2474					if (found) {
2475						i++;
2476						continue;
2477					}
2478
2479					/*
2480					 * This is a new container.  Do all the
2481					 * appropriate things to set it up.						 */
2482					aac_add_container(sc, &mir, 1);
2483					added = 1;
2484				}
2485				i++;
2486			} while ((i < mir.MntRespCount) &&
2487				 (i < AAC_MAX_CONTAINERS));
2488
2489			/*
2490			 * Go through our list of containers and see which ones
2491			 * were not marked 'found'.  Since the controller didn't
2492			 * list them they must have been deleted.  Do the
2493			 * appropriate steps to destroy the device.  Also reset
2494			 * the co->co_found field.
2495			 */
2496			co = TAILQ_FIRST(&sc->aac_container_tqh);
2497			while (co != NULL) {
2498				if (co->co_found == 0) {
2499					device_delete_child(sc->aac_dev,
2500							    co->co_disk);
2501					co_next = TAILQ_NEXT(co, co_link);
2502					AAC_LOCK_ACQUIRE(&sc->
2503							aac_container_lock);
2504					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2505						     co_link);
2506					AAC_LOCK_RELEASE(&sc->
2507							 aac_container_lock);
2508					FREE(co, M_AACBUF);
2509					co = co_next;
2510				} else {
2511					co->co_found = 0;
2512					co = TAILQ_NEXT(co, co_link);
2513				}
2514			}
2515
2516			/* Attach the newly created containers */
2517			if (added)
2518				bus_generic_attach(sc->aac_dev);
2519
2520				break;
2521
2522		default:
2523			break;
2524		}
2525
2526	default:
2527		break;
2528	}
2529
2530	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2531	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2532	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2533	if (next != sc->aac_aifq_tail) {
2534		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2535		sc->aac_aifq_head = next;
2536
2537		/* On the off chance that someone is sleeping for an aif... */
2538		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2539			wakeup(sc->aac_aifq);
2540		/* Wakeup any poll()ers */
2541		selwakeup(&sc->rcv_select);
2542	}
2543	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2544
2545	return;
2546}
2547
2548/*
2549 * Linux Management Interface
2550 * This is soon to be removed!
2551 */
2552
2553#ifdef AAC_COMPAT_LINUX
2554
2555#include <sys/proc.h>
2556#include <machine/../linux/linux.h>
2557#include <machine/../linux/linux_proto.h>
2558#include <compat/linux/linux_ioctl.h>
2559
2560/* There are multiple ioctl number ranges that need to be handled */
2561#define AAC_LINUX_IOCTL_MIN  0x0000
2562#define AAC_LINUX_IOCTL_MAX  0x21ff
2563
2564static linux_ioctl_function_t aac_linux_ioctl;
2565static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2566						 AAC_LINUX_IOCTL_MIN,
2567						 AAC_LINUX_IOCTL_MAX};
2568
2569SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2570	  linux_ioctl_register_handler, &aac_handler);
2571SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2572	  linux_ioctl_unregister_handler, &aac_handler);
2573
2574MODULE_DEPEND(aac, linux, 1, 1, 1);
2575
2576static int
2577aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2578{
2579	struct file *fp;
2580	u_long cmd;
2581	int error;
2582
2583	debug_called(2);
2584
2585	fp = ffind_hold(td, args->fd);
2586	if (fp == NULL)
2587		return (EBADF);
2588	cmd = args->cmd;
2589
2590	/*
2591	 * Pass the ioctl off to our standard handler.
2592	 */
2593	error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2594	fdrop(fp, td);
2595	return (error);
2596}
2597
2598#endif
2599
2600/*
2601 * Return the Revision of the driver to userspace and check to see if the
2602 * userspace app is possibly compatible.  This is extremely bogus since
2603 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2604 * returning what the card reported.
2605 */
2606static int
2607aac_rev_check(struct aac_softc *sc, caddr_t udata)
2608{
2609	struct aac_rev_check rev_check;
2610	struct aac_rev_check_resp rev_check_resp;
2611	int error = 0;
2612
2613	debug_called(2);
2614
2615	/*
2616	 * Copyin the revision struct from userspace
2617	 */
2618	if ((error = copyin(udata, (caddr_t)&rev_check,
2619			sizeof(struct aac_rev_check))) != 0) {
2620		return error;
2621	}
2622
2623	debug(2, "Userland revision= %d\n",
2624	      rev_check.callingRevision.buildNumber);
2625
2626	/*
2627	 * Doctor up the response struct.
2628	 */
2629	rev_check_resp.possiblyCompatible = 1;
2630	rev_check_resp.adapterSWRevision.external.ul =
2631	    sc->aac_revision.external.ul;
2632	rev_check_resp.adapterSWRevision.buildNumber =
2633	    sc->aac_revision.buildNumber;
2634
2635	return(copyout((caddr_t)&rev_check_resp, udata,
2636			sizeof(struct aac_rev_check_resp)));
2637}
2638
2639/*
2640 * Pass the caller the next AIF in their queue
2641 */
2642static int
2643aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2644{
2645	struct get_adapter_fib_ioctl agf;
2646	int error, s;
2647
2648	debug_called(2);
2649
2650	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2651
2652		/*
2653		 * Check the magic number that we gave the caller.
2654		 */
2655		if (agf.AdapterFibContext != (int)sc->aifthread) {
2656			error = EFAULT;
2657		} else {
2658
2659			s = splbio();
2660			error = aac_return_aif(sc, agf.AifFib);
2661
2662			if ((error == EAGAIN) && (agf.Wait)) {
2663				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2664				while (error == EAGAIN) {
2665					error = tsleep(sc->aac_aifq, PRIBIO |
2666						       PCATCH, "aacaif", 0);
2667					if (error == 0)
2668						error = aac_return_aif(sc,
2669						    agf.AifFib);
2670				}
2671				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2672			}
2673		splx(s);
2674		}
2675	}
2676	return(error);
2677}
2678
2679/*
2680 * Hand the next AIF off the top of the queue out to userspace.
2681 */
2682static int
2683aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2684{
2685	int error;
2686
2687	debug_called(2);
2688
2689	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2690	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2691		error = EAGAIN;
2692	} else {
2693		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2694				sizeof(struct aac_aif_command));
2695		if (error)
2696			printf("aac_return_aif: copyout returned %d\n", error);
2697		if (!error)
2698			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2699					    AAC_AIFQ_LENGTH;
2700	}
2701	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2702	return(error);
2703}
2704
2705/*
2706 * Give the userland some information about the container.  The AAC arch
2707 * expects the driver to be a SCSI passthrough type driver, so it expects
2708 * the containers to have b:t:l numbers.  Fake it.
2709 */
2710static int
2711aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2712{
2713	struct aac_query_disk query_disk;
2714	struct aac_container *co;
2715	struct aac_disk	*disk;
2716	int error, id;
2717
2718	debug_called(2);
2719
2720	disk = NULL;
2721
2722	error = copyin(uptr, (caddr_t)&query_disk,
2723		       sizeof(struct aac_query_disk));
2724	if (error)
2725		return (error);
2726
2727	id = query_disk.ContainerNumber;
2728	if (id == -1)
2729		return (EINVAL);
2730
2731	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2732	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2733		if (co->co_mntobj.ObjectId == id)
2734			break;
2735		}
2736
2737		if (co == NULL) {
2738			query_disk.Valid = 0;
2739			query_disk.Locked = 0;
2740			query_disk.Deleted = 1;		/* XXX is this right? */
2741		} else {
2742			disk = device_get_softc(co->co_disk);
2743			query_disk.Valid = 1;
2744			query_disk.Locked =
2745			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2746			query_disk.Deleted = 0;
2747			query_disk.Bus = device_get_unit(sc->aac_dev);
2748			query_disk.Target = disk->unit;
2749			query_disk.Lun = 0;
2750			query_disk.UnMapped = 0;
2751			bcopy(disk->ad_dev_t->si_name,
2752			      &query_disk.diskDeviceName[0], 10);
2753		}
2754	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2755
2756	error = copyout((caddr_t)&query_disk, uptr,
2757			sizeof(struct aac_query_disk));
2758
2759	return (error);
2760}
2761
2762