aac.c revision 89112
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 89112 2002-01-09 03:32:40Z msmith $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46#if __FreeBSD_version >= 500005
47#include <sys/selinfo.h>
48#else
49#include <sys/select.h>
50#endif
51
52#include <dev/aac/aac_compat.h>
53
54#include <sys/bus.h>
55#include <sys/conf.h>
56#include <sys/devicestat.h>
57#include <sys/disk.h>
58#include <sys/file.h>
59#include <sys/signalvar.h>
60#include <sys/time.h>
61#include <sys/eventhandler.h>
62
63#include <machine/bus_memio.h>
64#include <machine/bus.h>
65#include <machine/resource.h>
66
67#include <dev/aac/aacreg.h>
68#include <dev/aac/aac_ioctl.h>
69#include <dev/aac/aacvar.h>
70#include <dev/aac/aac_tables.h>
71
72static void	aac_startup(void *arg);
73static void	aac_add_container(struct aac_softc *sc,
74				  struct aac_mntinforesponse *mir, int f);
75
76/* Command Processing */
77static void	aac_startio(struct aac_softc *sc);
78static void	aac_timeout(struct aac_softc *sc);
79static int	aac_start(struct aac_command *cm);
80static void	aac_complete(void *context, int pending);
81static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
82static void	aac_bio_complete(struct aac_command *cm);
83static int	aac_wait_command(struct aac_command *cm, int timeout);
84static void	aac_host_command(struct aac_softc *sc);
85static void	aac_host_response(struct aac_softc *sc);
86
87/* Command Buffer Management */
88static int	aac_alloc_command(struct aac_softc *sc,
89				  struct aac_command **cmp);
90static void	aac_release_command(struct aac_command *cm);
91static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
92				       int nseg, int error);
93static int	aac_alloc_commands(struct aac_softc *sc);
94static void	aac_free_commands(struct aac_softc *sc);
95static void	aac_map_command(struct aac_command *cm);
96static void	aac_unmap_command(struct aac_command *cm);
97
98/* Hardware Interface */
99static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
100			       int error);
101static int	aac_init(struct aac_softc *sc);
102static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
103				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
104				 u_int32_t arg3, u_int32_t *sp);
105static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
106			     u_int32_t xferstate, void *data,
107			     u_int16_t datasize, void *result,
108			     u_int16_t *resultsize);
109static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
110				struct aac_command *cm);
111static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
112				u_int32_t *fib_size, struct aac_fib **fib_addr);
113static int	aac_enqueue_response(struct aac_softc *sc, int queue,
114				     struct aac_fib *fib);
115
116/* Falcon/PPC interface */
117static int	aac_fa_get_fwstatus(struct aac_softc *sc);
118static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
119static int	aac_fa_get_istatus(struct aac_softc *sc);
120static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
121static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
122				   u_int32_t arg0, u_int32_t arg1,
123				   u_int32_t arg2, u_int32_t arg3);
124static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
125static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
126
127struct aac_interface aac_fa_interface = {
128	aac_fa_get_fwstatus,
129	aac_fa_qnotify,
130	aac_fa_get_istatus,
131	aac_fa_clear_istatus,
132	aac_fa_set_mailbox,
133	aac_fa_get_mailboxstatus,
134	aac_fa_set_interrupts
135};
136
137/* StrongARM interface */
138static int	aac_sa_get_fwstatus(struct aac_softc *sc);
139static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
140static int	aac_sa_get_istatus(struct aac_softc *sc);
141static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
142static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
143				   u_int32_t arg0, u_int32_t arg1,
144				   u_int32_t arg2, u_int32_t arg3);
145static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
146static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
147
148struct aac_interface aac_sa_interface = {
149	aac_sa_get_fwstatus,
150	aac_sa_qnotify,
151	aac_sa_get_istatus,
152	aac_sa_clear_istatus,
153	aac_sa_set_mailbox,
154	aac_sa_get_mailboxstatus,
155	aac_sa_set_interrupts
156};
157
158/* i960Rx interface */
159static int	aac_rx_get_fwstatus(struct aac_softc *sc);
160static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
161static int	aac_rx_get_istatus(struct aac_softc *sc);
162static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
163static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
164				   u_int32_t arg0, u_int32_t arg1,
165				   u_int32_t arg2, u_int32_t arg3);
166static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
167static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
168
169struct aac_interface aac_rx_interface = {
170	aac_rx_get_fwstatus,
171	aac_rx_qnotify,
172	aac_rx_get_istatus,
173	aac_rx_clear_istatus,
174	aac_rx_set_mailbox,
175	aac_rx_get_mailboxstatus,
176	aac_rx_set_interrupts
177};
178
179/* Debugging and Diagnostics */
180static void	aac_describe_controller(struct aac_softc *sc);
181static char	*aac_describe_code(struct aac_code_lookup *table,
182				   u_int32_t code);
183
184/* Management Interface */
185static d_open_t		aac_open;
186static d_close_t	aac_close;
187static d_ioctl_t	aac_ioctl;
188static d_poll_t		aac_poll;
189static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
190static void		aac_handle_aif(struct aac_softc *sc,
191					   struct aac_fib *fib);
192static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
193static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
194static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
195static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
196
197#define AAC_CDEV_MAJOR	150
198
199static struct cdevsw aac_cdevsw = {
200	aac_open,		/* open */
201	aac_close,		/* close */
202	noread,			/* read */
203	nowrite,		/* write */
204	aac_ioctl,		/* ioctl */
205	aac_poll,		/* poll */
206	nommap,			/* mmap */
207	nostrategy,		/* strategy */
208	"aac",			/* name */
209	AAC_CDEV_MAJOR,		/* major */
210	nodump,			/* dump */
211	nopsize,		/* psize */
212	0,			/* flags */
213#if __FreeBSD_version < 500005
214	-1,			/* bmaj */
215#endif
216};
217
218MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
219
220/* sysctl node */
221SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
222
223/*
224 * Device Interface
225 */
226
227/*
228 * Initialise the controller and softc
229 */
230int
231aac_attach(struct aac_softc *sc)
232{
233	int error, unit;
234
235	debug_called(1);
236
237	/*
238	 * Initialise per-controller queues.
239	 */
240	aac_initq_free(sc);
241	aac_initq_ready(sc);
242	aac_initq_busy(sc);
243	aac_initq_complete(sc);
244	aac_initq_bio(sc);
245
246#if __FreeBSD_version >= 500005
247	/*
248	 * Initialise command-completion task.
249	 */
250	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
251#endif
252
253	/* disable interrupts before we enable anything */
254	AAC_MASK_INTERRUPTS(sc);
255
256	/* mark controller as suspended until we get ourselves organised */
257	sc->aac_state |= AAC_STATE_SUSPEND;
258
259	/*
260	 * Allocate command structures.
261	 */
262	if ((error = aac_alloc_commands(sc)) != 0)
263		return(error);
264
265	/*
266	 * Initialise the adapter.
267	 */
268	if ((error = aac_init(sc)) != 0)
269		return(error);
270
271	/*
272	 * Print a little information about the controller.
273	 */
274	aac_describe_controller(sc);
275
276	/*
277	 * Register to probe our containers later.
278	 */
279	TAILQ_INIT(&sc->aac_container_tqh);
280	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
281
282	/*
283	 * Lock for the AIF queue
284	 */
285	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
286
287	sc->aac_ich.ich_func = aac_startup;
288	sc->aac_ich.ich_arg = sc;
289	if (config_intrhook_establish(&sc->aac_ich) != 0) {
290		device_printf(sc->aac_dev,
291			      "can't establish configuration hook\n");
292		return(ENXIO);
293	}
294
295	/*
296	 * Make the control device.
297	 */
298	unit = device_get_unit(sc->aac_dev);
299	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
300				 "aac%d", unit);
301#if __FreeBSD_version > 500005
302	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
303	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
304#endif
305	sc->aac_dev_t->si_drv1 = sc;
306
307	/* Create the AIF thread */
308#if __FreeBSD_version > 500005
309	if (kthread_create((void(*)(void *))aac_host_command, sc,
310			   &sc->aifthread, 0, "aac%daif", unit))
311#else
312	if (kthread_create((void(*)(void *))aac_host_command, sc,
313			   &sc->aifthread, "aac%daif", unit))
314#endif
315		panic("Could not create AIF thread\n");
316
317	/* Register the shutdown method to only be called post-dump */
318	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
319				   SHUTDOWN_PRI_DEFAULT)) == NULL)
320	device_printf(sc->aac_dev, "shutdown event registration failed\n");
321
322	return(0);
323}
324
325/*
326 * Probe for containers, create disks.
327 */
328static void
329aac_startup(void *arg)
330{
331	struct aac_softc *sc;
332	struct aac_mntinfo mi;
333	struct aac_mntinforesponse mir;
334	u_int16_t rsize;
335	int i = 0;
336
337	debug_called(1);
338
339	sc = (struct aac_softc *)arg;
340
341	/* disconnect ourselves from the intrhook chain */
342	config_intrhook_disestablish(&sc->aac_ich);
343
344	/* loop over possible containers */
345	mi.Command = VM_NameServe;
346	mi.MntType = FT_FILESYS;
347	do {
348		/* request information on this container */
349		mi.MntCount = i;
350		rsize = sizeof(mir);
351		if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
352				 sizeof(struct aac_mntinfo), &mir, &rsize)) {
353			debug(2, "error probing container %d", i);
354			continue;
355		}
356		/* check response size */
357		if (rsize != sizeof(mir)) {
358			debug(2, "container info response wrong size "
359			      "(%d should be %d)", rsize, sizeof(mir));
360			continue;
361		}
362
363		aac_add_container(sc, &mir, 0);
364		i++;
365	} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
366
367	/* poke the bus to actually attach the child devices */
368	if (bus_generic_attach(sc->aac_dev))
369		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
370
371	/* mark the controller up */
372	sc->aac_state &= ~AAC_STATE_SUSPEND;
373
374	/* enable interrupts now */
375	AAC_UNMASK_INTERRUPTS(sc);
376
377	/* enable the timeout watchdog */
378	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
379}
380
381/*
382 * Create a device to respresent a new container
383 */
384static void
385aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
386{
387	struct aac_container *co;
388	device_t child;
389
390	/*
391	 * Check container volume type for validity.  Note that many of
392	 * the possible types may never show up.
393	 */
394	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
395		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
396		       M_NOWAIT);
397		if (co == NULL)
398			panic("Out of memory?!\n");
399		debug(1, "id %x  name '%.16s'  size %u  type %d",
400		      mir->MntTable[0].ObjectId,
401		      mir->MntTable[0].FileSystemName,
402		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
403
404		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
405			device_printf(sc->aac_dev, "device_add_child failed\n");
406		else
407			device_set_ivars(child, co);
408		device_set_desc(child, aac_describe_code(aac_container_types,
409				mir->MntTable[0].VolType));
410		co->co_disk = child;
411		co->co_found = f;
412		bcopy(&mir->MntTable[0], &co->co_mntobj,
413		      sizeof(struct aac_mntobj));
414		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
415		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
416		AAC_LOCK_RELEASE(&sc->aac_container_lock);
417	}
418}
419
420/*
421 * Free all of the resources associated with (sc)
422 *
423 * Should not be called if the controller is active.
424 */
425void
426aac_free(struct aac_softc *sc)
427{
428	debug_called(1);
429
430	/* remove the control device */
431	if (sc->aac_dev_t != NULL)
432		destroy_dev(sc->aac_dev_t);
433
434	/* throw away any FIB buffers, discard the FIB DMA tag */
435	if (sc->aac_fibs != NULL)
436		aac_free_commands(sc);
437	if (sc->aac_fib_dmat)
438		bus_dma_tag_destroy(sc->aac_fib_dmat);
439
440	/* destroy the common area */
441	if (sc->aac_common) {
442		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
443		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
444				sc->aac_common_dmamap);
445	}
446	if (sc->aac_common_dmat)
447		bus_dma_tag_destroy(sc->aac_common_dmat);
448
449	/* disconnect the interrupt handler */
450	if (sc->aac_intr)
451		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
452	if (sc->aac_irq != NULL)
453		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
454				     sc->aac_irq);
455
456	/* destroy data-transfer DMA tag */
457	if (sc->aac_buffer_dmat)
458		bus_dma_tag_destroy(sc->aac_buffer_dmat);
459
460	/* destroy the parent DMA tag */
461	if (sc->aac_parent_dmat)
462		bus_dma_tag_destroy(sc->aac_parent_dmat);
463
464	/* release the register window mapping */
465	if (sc->aac_regs_resource != NULL)
466		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
467				     sc->aac_regs_rid, sc->aac_regs_resource);
468}
469
470/*
471 * Disconnect from the controller completely, in preparation for unload.
472 */
473int
474aac_detach(device_t dev)
475{
476	struct aac_softc *sc;
477#if AAC_BROKEN
478	int error;
479#endif
480
481	debug_called(1);
482
483	sc = device_get_softc(dev);
484
485	if (sc->aac_state & AAC_STATE_OPEN)
486	return(EBUSY);
487
488#if AAC_BROKEN
489	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
490		sc->aifflags |= AAC_AIFFLAGS_EXIT;
491		wakeup(sc->aifthread);
492		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
493	}
494
495	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
496		panic("Cannot shutdown AIF thread\n");
497
498	if ((error = aac_shutdown(dev)))
499		return(error);
500
501	aac_free(sc);
502
503	return(0);
504#else
505	return (EBUSY);
506#endif
507}
508
509/*
510 * Bring the controller down to a dormant state and detach all child devices.
511 *
512 * This function is called before detach or system shutdown.
513 *
514 * Note that we can assume that the bioq on the controller is empty, as we won't
515 * allow shutdown if any device is open.
516 */
517int
518aac_shutdown(device_t dev)
519{
520	struct aac_softc *sc;
521	struct aac_close_command cc;
522	int s, i;
523
524	debug_called(1);
525
526	sc = device_get_softc(dev);
527
528	s = splbio();
529
530	sc->aac_state |= AAC_STATE_SUSPEND;
531
532	/*
533	 * Send a Container shutdown followed by a HostShutdown FIB to the
534	 * controller to convince it that we don't want to talk to it anymore.
535	 * We've been closed and all I/O completed already
536	 */
537	device_printf(sc->aac_dev, "shutting down controller...");
538
539	cc.Command = VM_CloseAll;
540	cc.ContainerId = 0xffffffff;
541	if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
542		printf("FAILED.\n");
543	else {
544		i = 0;
545		/*
546		 * XXX Issuing this command to the controller makes it shut down
547		 * but also keeps it from coming back up without a reset of the
548		 * PCI bus.  This is not desirable if you are just unloading the
549		 * driver module with the intent to reload it later.
550		 */
551		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
552				 sizeof(i), NULL, NULL)) {
553			printf("FAILED.\n");
554		} else {
555			printf("done.\n");
556		}
557	}
558
559	AAC_MASK_INTERRUPTS(sc);
560
561	splx(s);
562	return(0);
563}
564
565/*
566 * Bring the controller to a quiescent state, ready for system suspend.
567 */
568int
569aac_suspend(device_t dev)
570{
571	struct aac_softc *sc;
572	int s;
573
574	debug_called(1);
575
576	sc = device_get_softc(dev);
577
578	s = splbio();
579
580	sc->aac_state |= AAC_STATE_SUSPEND;
581
582	AAC_MASK_INTERRUPTS(sc);
583	splx(s);
584	return(0);
585}
586
587/*
588 * Bring the controller back to a state ready for operation.
589 */
590int
591aac_resume(device_t dev)
592{
593	struct aac_softc *sc;
594
595	debug_called(1);
596
597	sc = device_get_softc(dev);
598
599	sc->aac_state &= ~AAC_STATE_SUSPEND;
600	AAC_UNMASK_INTERRUPTS(sc);
601	return(0);
602}
603
604/*
605 * Take an interrupt.
606 */
607void
608aac_intr(void *arg)
609{
610	struct aac_softc *sc;
611	u_int16_t reason;
612
613	debug_called(2);
614
615	sc = (struct aac_softc *)arg;
616
617	reason = AAC_GET_ISTATUS(sc);
618
619	/* controller wants to talk to the log */
620	if (reason & AAC_DB_PRINTF) {
621		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
622		aac_print_printf(sc);
623	}
624
625	/* controller has a message for us? */
626	if (reason & AAC_DB_COMMAND_READY) {
627		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
628		/* XXX What happens if the thread is already awake? */
629		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
630			sc->aifflags |= AAC_AIFFLAGS_PENDING;
631			wakeup(sc->aifthread);
632		}
633	}
634
635	/* controller has a response for us? */
636	if (reason & AAC_DB_RESPONSE_READY) {
637		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
638		aac_host_response(sc);
639	}
640
641	/*
642	 * spurious interrupts that we don't use - reset the mask and clear the
643	 * interrupts
644	 */
645	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
646		AAC_UNMASK_INTERRUPTS(sc);
647		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
648				  AAC_DB_RESPONSE_NOT_FULL);
649	}
650};
651
652/*
653 * Command Processing
654 */
655
656/*
657 * Start as much queued I/O as possible on the controller
658 */
659static void
660aac_startio(struct aac_softc *sc)
661{
662	struct aac_command *cm;
663
664	debug_called(2);
665
666	for (;;) {
667		/*
668		 * Try to get a command that's been put off for lack of
669		 * resources
670		 */
671		cm = aac_dequeue_ready(sc);
672
673		/*
674		 * Try to build a command off the bio queue (ignore error
675		 * return)
676		 */
677		if (cm == NULL)
678			aac_bio_command(sc, &cm);
679
680		/* nothing to do? */
681		if (cm == NULL)
682			break;
683
684		/* try to give the command to the controller */
685		if (aac_start(cm) == EBUSY) {
686			/* put it on the ready queue for later */
687			aac_requeue_ready(cm);
688			break;
689		}
690	}
691}
692
693/*
694 * Deliver a command to the controller; allocate controller resources at the
695 * last moment when possible.
696 */
697static int
698aac_start(struct aac_command *cm)
699{
700	struct aac_softc *sc;
701	int error;
702
703	debug_called(2);
704
705	sc = cm->cm_sc;
706
707	/* get the command mapped */
708	aac_map_command(cm);
709
710	/* fix up the address values in the FIB */
711	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
712	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
713
714	/* save a pointer to the command for speedy reverse-lookup */
715	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
716							 * address issue */
717
718	/* put the FIB on the outbound queue */
719	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
720	return(error);
721}
722
723/*
724 * Handle notification of one or more FIBs coming from the controller.
725 */
726static void
727aac_host_command(struct aac_softc *sc)
728{
729	struct aac_fib *fib;
730	u_int32_t fib_size;
731	int size;
732
733	debug_called(2);
734
735	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
736
737	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
738		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
739			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
740
741		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
742		for (;;) {
743			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
744					    &fib_size, &fib))
745				break;	/* nothing to do */
746
747			AAC_PRINT_FIB(sc, fib);
748
749			switch (fib->Header.Command) {
750			case AifRequest:
751				aac_handle_aif(sc, fib);
752				break;
753			default:
754				device_printf(sc->aac_dev, "unknown command "
755					      "from controller\n");
756				break;
757			}
758
759			/* Return the AIF to the controller. */
760			if ((fib->Header.XferState == 0) ||
761			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
762				break;
763
764			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
765				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
766				*(AAC_FSAStatus*)fib->data = ST_OK;
767
768				/* XXX Compute the Size field? */
769				size = fib->Header.Size;
770				if (size > sizeof(struct aac_fib)) {
771	 				size = sizeof(struct aac_fib);
772					fib->Header.Size = size;
773				}
774				/*
775				 * Since we did not generate this command, it
776				 * cannot go through the normal
777				 * enqueue->startio chain.
778				 */
779				aac_enqueue_response(sc,
780						     AAC_ADAP_NORM_RESP_QUEUE,
781						     fib);
782			}
783		}
784	}
785	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
786	wakeup(sc->aac_dev);
787
788#if __FreeBSD_version > 500005
789	mtx_lock(&Giant);
790#endif
791	kthread_exit(0);
792}
793
794/*
795 * Handle notification of one or more FIBs completed by the controller
796 */
797static void
798aac_host_response(struct aac_softc *sc)
799{
800	struct aac_command *cm;
801	struct aac_fib *fib;
802	u_int32_t fib_size;
803
804	debug_called(2);
805
806	for (;;) {
807		/* look for completed FIBs on our queue */
808		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
809				    &fib))
810			break;	/* nothing to do */
811
812		/* get the command, unmap and queue for later processing */
813		cm = (struct aac_command *)fib->Header.SenderData;
814		if (cm == NULL) {
815			AAC_PRINT_FIB(sc, fib);
816		} else {
817			aac_remove_busy(cm);
818			aac_unmap_command(cm);		/* XXX defer? */
819			aac_enqueue_complete(cm);
820		}
821	}
822
823	/* handle completion processing */
824#if __FreeBSD_version >= 500005
825	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
826#else
827	aac_complete(sc, 0);
828#endif
829}
830
831/*
832 * Process completed commands.
833 */
834static void
835aac_complete(void *context, int pending)
836{
837	struct aac_softc *sc;
838	struct aac_command *cm;
839
840	debug_called(2);
841
842	sc = (struct aac_softc *)context;
843
844	/* pull completed commands off the queue */
845	for (;;) {
846		cm = aac_dequeue_complete(sc);
847		if (cm == NULL)
848			break;
849		cm->cm_flags |= AAC_CMD_COMPLETED;
850
851		/* is there a completion handler? */
852		if (cm->cm_complete != NULL) {
853			cm->cm_complete(cm);
854		} else {
855			/* assume that someone is sleeping on this command */
856			wakeup(cm);
857		}
858	}
859
860	/* see if we can start some more I/O */
861	aac_startio(sc);
862}
863
864/*
865 * Handle a bio submitted from a disk device.
866 */
867void
868aac_submit_bio(struct bio *bp)
869{
870	struct aac_disk *ad;
871	struct aac_softc *sc;
872
873	debug_called(2);
874
875	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
876	sc = ad->ad_controller;
877
878	/* queue the BIO and try to get some work done */
879	aac_enqueue_bio(sc, bp);
880	aac_startio(sc);
881}
882
883/*
884 * Get a bio and build a command to go with it.
885 */
886static int
887aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
888{
889	struct aac_command *cm;
890	struct aac_fib *fib;
891	struct aac_blockread *br;
892	struct aac_blockwrite *bw;
893	struct aac_disk *ad;
894	struct bio *bp;
895
896	debug_called(2);
897
898	/* get the resources we will need */
899	cm = NULL;
900	if ((bp = aac_dequeue_bio(sc)) == NULL)
901		goto fail;
902	if (aac_alloc_command(sc, &cm))	/* get a command */
903		goto fail;
904
905	/* fill out the command */
906	cm->cm_data = (void *)bp->bio_data;
907	cm->cm_datalen = bp->bio_bcount;
908	cm->cm_complete = aac_bio_complete;
909	cm->cm_private = bp;
910	cm->cm_timestamp = time_second;
911	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
912
913	/* build the FIB */
914	fib = cm->cm_fib;
915	fib->Header.XferState =
916	AAC_FIBSTATE_HOSTOWNED   |
917	AAC_FIBSTATE_INITIALISED |
918	AAC_FIBSTATE_FROMHOST	 |
919	AAC_FIBSTATE_REXPECTED   |
920	AAC_FIBSTATE_NORM;
921	fib->Header.Command = ContainerCommand;
922	fib->Header.Size = sizeof(struct aac_fib_header);
923
924	/* build the read/write request */
925	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
926	if (BIO_IS_READ(bp)) {
927		br = (struct aac_blockread *)&fib->data[0];
928		br->Command = VM_CtBlockRead;
929		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
930		br->BlockNumber = bp->bio_pblkno;
931		br->ByteCount = bp->bio_bcount;
932		fib->Header.Size += sizeof(struct aac_blockread);
933		cm->cm_sgtable = &br->SgMap;
934		cm->cm_flags |= AAC_CMD_DATAIN;
935	} else {
936		bw = (struct aac_blockwrite *)&fib->data[0];
937		bw->Command = VM_CtBlockWrite;
938		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
939		bw->BlockNumber = bp->bio_pblkno;
940		bw->ByteCount = bp->bio_bcount;
941		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
942		fib->Header.Size += sizeof(struct aac_blockwrite);
943		cm->cm_flags |= AAC_CMD_DATAOUT;
944		cm->cm_sgtable = &bw->SgMap;
945	}
946
947	*cmp = cm;
948	return(0);
949
950fail:
951	if (bp != NULL)
952		aac_enqueue_bio(sc, bp);
953	if (cm != NULL)
954		aac_release_command(cm);
955	return(ENOMEM);
956}
957
958/*
959 * Handle a bio-instigated command that has been completed.
960 */
961static void
962aac_bio_complete(struct aac_command *cm)
963{
964	struct aac_blockread_response *brr;
965	struct aac_blockwrite_response *bwr;
966	struct bio *bp;
967	AAC_FSAStatus status;
968
969	/* fetch relevant status and then release the command */
970	bp = (struct bio *)cm->cm_private;
971	if (BIO_IS_READ(bp)) {
972		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
973		status = brr->Status;
974	} else {
975		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
976		status = bwr->Status;
977	}
978	aac_release_command(cm);
979
980	/* fix up the bio based on status */
981	if (status == ST_OK) {
982		bp->bio_resid = 0;
983	} else {
984		bp->bio_error = EIO;
985		bp->bio_flags |= BIO_ERROR;
986		/* pass an error string out to the disk layer */
987		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
988						    status);
989	}
990	aac_biodone(bp);
991}
992
993/*
994 * Dump a block of data to the controller.  If the queue is full, tell the
995 * caller to hold off and wait for the queue to drain.
996 */
997int
998aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
999{
1000	struct aac_softc *sc;
1001	struct aac_command *cm;
1002	struct aac_fib *fib;
1003	struct aac_blockwrite *bw;
1004
1005	sc = ad->ad_controller;
1006	cm = NULL;
1007
1008	if (aac_alloc_command(sc, &cm))
1009		return (EBUSY);
1010
1011	/* fill out the command */
1012	cm->cm_data = data;
1013	cm->cm_datalen = dumppages * PAGE_SIZE;
1014	cm->cm_complete = NULL;
1015	cm->cm_private = NULL;
1016	cm->cm_timestamp = time_second;
1017	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1018
1019	/* build the FIB */
1020	fib = cm->cm_fib;
1021	fib->Header.XferState =
1022	AAC_FIBSTATE_HOSTOWNED   |
1023	AAC_FIBSTATE_INITIALISED |
1024	AAC_FIBSTATE_FROMHOST	 |
1025	AAC_FIBSTATE_REXPECTED   |
1026	AAC_FIBSTATE_NORM;
1027	fib->Header.Command = ContainerCommand;
1028	fib->Header.Size = sizeof(struct aac_fib_header);
1029
1030	bw = (struct aac_blockwrite *)&fib->data[0];
1031	bw->Command = VM_CtBlockWrite;
1032	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1033	bw->BlockNumber = lba;
1034	bw->ByteCount = dumppages * PAGE_SIZE;
1035	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1036	fib->Header.Size += sizeof(struct aac_blockwrite);
1037	cm->cm_flags |= AAC_CMD_DATAOUT;
1038	cm->cm_sgtable = &bw->SgMap;
1039
1040	return (aac_start(cm));
1041}
1042
1043/*
1044 * Wait for the card's queue to drain when dumping.  Also check for monitor
1045 * printf's
1046 */
1047void
1048aac_dump_complete(struct aac_softc *sc)
1049{
1050	struct aac_fib *fib;
1051	struct aac_command *cm;
1052	u_int16_t reason;
1053	u_int32_t pi, ci, fib_size;
1054
1055	do {
1056		reason = AAC_GET_ISTATUS(sc);
1057		if (reason & AAC_DB_RESPONSE_READY) {
1058			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1059			for (;;) {
1060				if (aac_dequeue_fib(sc,
1061						    AAC_HOST_NORM_RESP_QUEUE,
1062						    &fib_size, &fib))
1063					break;
1064				cm = (struct aac_command *)
1065					fib->Header.SenderData;
1066				if (cm == NULL)
1067					AAC_PRINT_FIB(sc, fib);
1068				else {
1069					aac_remove_busy(cm);
1070					aac_unmap_command(cm);
1071					aac_enqueue_complete(cm);
1072					aac_release_command(cm);
1073				}
1074			}
1075		}
1076		if (reason & AAC_DB_PRINTF) {
1077			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1078			aac_print_printf(sc);
1079		}
1080		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1081			AAC_PRODUCER_INDEX];
1082		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1083			AAC_CONSUMER_INDEX];
1084	} while (ci != pi);
1085
1086	return;
1087}
1088
1089/*
1090 * Submit a command to the controller, return when it completes.
1091 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1092 *     be stuck here forever.  At the same time, signals are not caught
1093 *     because there is a risk that a signal could wakeup the tsleep before
1094 *     the card has a chance to complete the command.  The passed in timeout
1095 *     is ignored for the same reason.  Since there is no way to cancel a
1096 *     command in progress, we should probably create a 'dead' queue where
1097 *     commands go that have been interrupted/timed-out/etc, that keeps them
1098 *     out of the free pool.  That way, if the card is just slow, it won't
1099 *     spam the memory of a command that has been recycled.
1100 */
1101static int
1102aac_wait_command(struct aac_command *cm, int timeout)
1103{
1104	int s, error = 0;
1105
1106	debug_called(2);
1107
1108	/* Put the command on the ready queue and get things going */
1109	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1110	aac_enqueue_ready(cm);
1111	aac_startio(cm->cm_sc);
1112	s = splbio();
1113	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1114		error = tsleep(cm, PRIBIO, "aacwait", 0);
1115	}
1116	splx(s);
1117	return(error);
1118}
1119
1120/*
1121 *Command Buffer Management
1122 */
1123
1124/*
1125 * Allocate a command.
1126 */
1127static int
1128aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1129{
1130	struct aac_command *cm;
1131
1132	debug_called(3);
1133
1134	if ((cm = aac_dequeue_free(sc)) == NULL)
1135		return(ENOMEM);
1136
1137	*cmp = cm;
1138	return(0);
1139}
1140
1141/*
1142 * Release a command back to the freelist.
1143 */
1144static void
1145aac_release_command(struct aac_command *cm)
1146{
1147	debug_called(3);
1148
1149	/* (re)initialise the command/FIB */
1150	cm->cm_sgtable = NULL;
1151	cm->cm_flags = 0;
1152	cm->cm_complete = NULL;
1153	cm->cm_private = NULL;
1154	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1155	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1156	cm->cm_fib->Header.Flags = 0;
1157	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1158
1159	/*
1160	 * These are duplicated in aac_start to cover the case where an
1161	 * intermediate stage may have destroyed them.  They're left
1162	 * initialised here for debugging purposes only.
1163	 */
1164	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1165	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1166
1167	aac_enqueue_free(cm);
1168}
1169
1170/*
1171 * Map helper for command/FIB allocation.
1172 */
1173static void
1174aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1175{
1176	struct aac_softc *sc;
1177
1178	sc = (struct aac_softc *)arg;
1179
1180	debug_called(3);
1181
1182	sc->aac_fibphys = segs[0].ds_addr;
1183}
1184
1185/*
1186 * Allocate and initialise commands/FIBs for this adapter.
1187 */
1188static int
1189aac_alloc_commands(struct aac_softc *sc)
1190{
1191	struct aac_command *cm;
1192	int i;
1193
1194	debug_called(1);
1195
1196	/* allocate the FIBs in DMAable memory and load them */
1197	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1198			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1199		return(ENOMEM);
1200	}
1201	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1202			AAC_FIB_COUNT * sizeof(struct aac_fib),
1203			aac_map_command_helper, sc, 0);
1204
1205	/* initialise constant fields in the command structure */
1206	for (i = 0; i < AAC_FIB_COUNT; i++) {
1207		cm = &sc->aac_command[i];
1208		cm->cm_sc = sc;
1209		cm->cm_fib = sc->aac_fibs + i;
1210		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1211
1212		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1213			aac_release_command(cm);
1214	}
1215	return(0);
1216}
1217
1218/*
1219 * Free FIBs owned by this adapter.
1220 */
1221static void
1222aac_free_commands(struct aac_softc *sc)
1223{
1224	int i;
1225
1226	debug_called(1);
1227
1228	for (i = 0; i < AAC_FIB_COUNT; i++)
1229		bus_dmamap_destroy(sc->aac_buffer_dmat,
1230				   sc->aac_command[i].cm_datamap);
1231
1232	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1233	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1234}
1235
1236/*
1237 * Command-mapping helper function - populate this command's s/g table.
1238 */
1239static void
1240aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1241{
1242	struct aac_command *cm;
1243	struct aac_fib *fib;
1244	struct aac_sg_table *sg;
1245	int i;
1246
1247	debug_called(3);
1248
1249	cm = (struct aac_command *)arg;
1250	fib = cm->cm_fib;
1251
1252	/* find the s/g table */
1253	sg = cm->cm_sgtable;
1254
1255	/* copy into the FIB */
1256	if (sg != NULL) {
1257		sg->SgCount = nseg;
1258		for (i = 0; i < nseg; i++) {
1259			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1260			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1261		}
1262		/* update the FIB size for the s/g count */
1263		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1264	}
1265
1266}
1267
1268/*
1269 * Map a command into controller-visible space.
1270 */
1271static void
1272aac_map_command(struct aac_command *cm)
1273{
1274	struct aac_softc *sc;
1275
1276	debug_called(2);
1277
1278	sc = cm->cm_sc;
1279
1280	/* don't map more than once */
1281	if (cm->cm_flags & AAC_CMD_MAPPED)
1282		return;
1283
1284	if (cm->cm_datalen != 0) {
1285		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1286				cm->cm_data, cm->cm_datalen,
1287				aac_map_command_sg, cm, 0);
1288
1289	if (cm->cm_flags & AAC_CMD_DATAIN)
1290		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1291				BUS_DMASYNC_PREREAD);
1292	if (cm->cm_flags & AAC_CMD_DATAOUT)
1293		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1294				BUS_DMASYNC_PREWRITE);
1295	}
1296	cm->cm_flags |= AAC_CMD_MAPPED;
1297}
1298
1299/*
1300 * Unmap a command from controller-visible space.
1301 */
1302static void
1303aac_unmap_command(struct aac_command *cm)
1304{
1305	struct aac_softc *sc;
1306
1307	debug_called(2);
1308
1309	sc = cm->cm_sc;
1310
1311	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1312		return;
1313
1314	if (cm->cm_datalen != 0) {
1315		if (cm->cm_flags & AAC_CMD_DATAIN)
1316			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317					BUS_DMASYNC_POSTREAD);
1318		if (cm->cm_flags & AAC_CMD_DATAOUT)
1319			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1320					BUS_DMASYNC_POSTWRITE);
1321
1322		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1323	}
1324	cm->cm_flags &= ~AAC_CMD_MAPPED;
1325}
1326
1327/*
1328 * Hardware Interface
1329 */
1330
1331/*
1332 * Initialise the adapter.
1333 */
1334static void
1335aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1336{
1337	struct aac_softc *sc;
1338
1339	debug_called(1);
1340
1341	sc = (struct aac_softc *)arg;
1342
1343	sc->aac_common_busaddr = segs[0].ds_addr;
1344}
1345
1346static int
1347aac_init(struct aac_softc *sc)
1348{
1349	struct aac_adapter_init	*ip;
1350	time_t then;
1351	u_int32_t code;
1352	u_int8_t *qaddr;
1353
1354	debug_called(1);
1355
1356	/*
1357	 * First wait for the adapter to come ready.
1358	 */
1359	then = time_second;
1360	do {
1361		code = AAC_GET_FWSTATUS(sc);
1362		if (code & AAC_SELF_TEST_FAILED) {
1363			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1364			return(ENXIO);
1365		}
1366		if (code & AAC_KERNEL_PANIC) {
1367			device_printf(sc->aac_dev,
1368				      "FATAL: controller kernel panic\n");
1369			return(ENXIO);
1370		}
1371		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1372			device_printf(sc->aac_dev,
1373				      "FATAL: controller not coming ready, "
1374					   "status %x\n", code);
1375			return(ENXIO);
1376		}
1377	} while (!(code & AAC_UP_AND_RUNNING));
1378
1379	/*
1380	 * Create DMA tag for the common structure and allocate it.
1381	 */
1382	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1383			       1, 0, 			/* algnmnt, boundary */
1384			       BUS_SPACE_MAXADDR,	/* lowaddr */
1385			       BUS_SPACE_MAXADDR, 	/* highaddr */
1386			       NULL, NULL, 		/* filter, filterarg */
1387			       sizeof(struct aac_common), /* maxsize */
1388			       1,			/* nsegments */
1389			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1390			       0,			/* flags */
1391			       &sc->aac_common_dmat)) {
1392		device_printf(sc->aac_dev,
1393			      "can't allocate common structure DMA tag\n");
1394		return(ENOMEM);
1395	}
1396	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1397			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1398		device_printf(sc->aac_dev, "can't allocate common structure\n");
1399		return(ENOMEM);
1400	}
1401	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1402			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1403		        sc, 0);
1404	bzero(sc->aac_common, sizeof(*sc->aac_common));
1405
1406	/*
1407	 * Fill in the init structure.  This tells the adapter about the
1408	 * physical location of various important shared data structures.
1409	 */
1410	ip = &sc->aac_common->ac_init;
1411	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1412
1413	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1414					 offsetof(struct aac_common, ac_fibs);
1415	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1416	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1417	ip->AdapterFibAlign = sizeof(struct aac_fib);
1418
1419	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1420				  offsetof(struct aac_common, ac_printf);
1421	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1422
1423	ip->HostPhysMemPages = 0;		/* not used? */
1424	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1425
1426	/*
1427	 * Initialise FIB queues.  Note that it appears that the layout of the
1428	 * indexes and the segmentation of the entries may be mandated by the
1429	 * adapter, which is only told about the base of the queue index fields.
1430	 *
1431	 * The initial values of the indices are assumed to inform the adapter
1432	 * of the sizes of the respective queues, and theoretically it could
1433	 * work out the entire layout of the queue structures from this.  We
1434	 * take the easy route and just lay this area out like everyone else
1435	 * does.
1436	 *
1437	 * The Linux driver uses a much more complex scheme whereby several
1438	 * header records are kept for each queue.  We use a couple of generic
1439	 * list manipulation functions which 'know' the size of each list by
1440	 * virtue of a table.
1441	 */
1442	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1443	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1444	sc->aac_queues = (struct aac_queue_table *)qaddr;
1445	ip->CommHeaderAddress = sc->aac_common_busaddr +
1446				((u_int32_t)sc->aac_queues -
1447				(u_int32_t)sc->aac_common);
1448	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1449
1450	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1451		AAC_HOST_NORM_CMD_ENTRIES;
1452	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1453		AAC_HOST_NORM_CMD_ENTRIES;
1454	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1455		AAC_HOST_HIGH_CMD_ENTRIES;
1456	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1457		AAC_HOST_HIGH_CMD_ENTRIES;
1458	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1459		AAC_ADAP_NORM_CMD_ENTRIES;
1460	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1461		AAC_ADAP_NORM_CMD_ENTRIES;
1462	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1463		AAC_ADAP_HIGH_CMD_ENTRIES;
1464	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1465		AAC_ADAP_HIGH_CMD_ENTRIES;
1466	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1467		AAC_HOST_NORM_RESP_ENTRIES;
1468	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1469		AAC_HOST_NORM_RESP_ENTRIES;
1470	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1471		AAC_HOST_HIGH_RESP_ENTRIES;
1472	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1473		AAC_HOST_HIGH_RESP_ENTRIES;
1474	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1475		AAC_ADAP_NORM_RESP_ENTRIES;
1476	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1477		AAC_ADAP_NORM_RESP_ENTRIES;
1478	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1479		AAC_ADAP_HIGH_RESP_ENTRIES;
1480	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1481		AAC_ADAP_HIGH_RESP_ENTRIES;
1482	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1483		&sc->aac_queues->qt_HostNormCmdQueue[0];
1484	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1485		&sc->aac_queues->qt_HostHighCmdQueue[0];
1486	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1487		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1488	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1489		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1490	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1491		&sc->aac_queues->qt_HostNormRespQueue[0];
1492	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1493		&sc->aac_queues->qt_HostHighRespQueue[0];
1494	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1495		&sc->aac_queues->qt_AdapNormRespQueue[0];
1496	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1497		&sc->aac_queues->qt_AdapHighRespQueue[0];
1498
1499	/*
1500	 * Do controller-type-specific initialisation
1501	 */
1502	switch (sc->aac_hwif) {
1503	case AAC_HWIF_I960RX:
1504		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1505		break;
1506	}
1507
1508	/*
1509	 * Give the init structure to the controller.
1510	 */
1511	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1512			     sc->aac_common_busaddr +
1513			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1514			     NULL)) {
1515		device_printf(sc->aac_dev,
1516			      "error establishing init structure\n");
1517		return(EIO);
1518	}
1519
1520	return(0);
1521}
1522
1523/*
1524 * Send a synchronous command to the controller and wait for a result.
1525 */
1526static int
1527aac_sync_command(struct aac_softc *sc, u_int32_t command,
1528		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1529		 u_int32_t *sp)
1530{
1531	time_t then;
1532	u_int32_t status;
1533
1534	debug_called(3);
1535
1536	/* populate the mailbox */
1537	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1538
1539	/* ensure the sync command doorbell flag is cleared */
1540	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1541
1542	/* then set it to signal the adapter */
1543	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1544
1545	/* spin waiting for the command to complete */
1546	then = time_second;
1547	do {
1548		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1549			debug(2, "timed out");
1550			return(EIO);
1551		}
1552	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1553
1554	/* clear the completion flag */
1555	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1556
1557	/* get the command status */
1558	status = AAC_GET_MAILBOXSTATUS(sc);
1559	if (sp != NULL)
1560		*sp = status;
1561	return(0);
1562}
1563
1564/*
1565 * Send a synchronous FIB to the controller and wait for a result.
1566 */
1567static int
1568aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1569		 void *data, u_int16_t datasize,
1570		 void *result, u_int16_t *resultsize)
1571{
1572	struct aac_fib *fib;
1573
1574	debug_called(3);
1575
1576	fib = &sc->aac_common->ac_sync_fib;
1577
1578	if (datasize > AAC_FIB_DATASIZE)
1579		return(EINVAL);
1580
1581	/*
1582	 * Set up the sync FIB
1583	 */
1584	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1585				AAC_FIBSTATE_INITIALISED |
1586				AAC_FIBSTATE_EMPTY;
1587	fib->Header.XferState |= xferstate;
1588	fib->Header.Command = command;
1589	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1590	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1591	fib->Header.SenderSize = sizeof(struct aac_fib);
1592	fib->Header.SenderFibAddress = (u_int32_t)fib;
1593	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1594					 offsetof(struct aac_common,
1595						  ac_sync_fib);
1596
1597	/*
1598	 * Copy in data.
1599	 */
1600	if (data != NULL) {
1601		KASSERT(datasize <= sizeof(fib->data),
1602			("aac_sync_fib: datasize to large"));
1603		bcopy(data, fib->data, datasize);
1604		fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
1605					 AAC_FIBSTATE_NORM;
1606	}
1607
1608	/*
1609	 * Give the FIB to the controller, wait for a response.
1610	 */
1611	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1612			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1613		debug(2, "IO error");
1614		return(EIO);
1615	}
1616
1617	/*
1618	 * Copy out the result
1619	 */
1620	if (result != NULL) {
1621		u_int copysize;
1622
1623		copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1624		if (copysize > *resultsize)
1625			copysize = *resultsize;
1626		*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1627		bcopy(fib->data, result, copysize);
1628	}
1629	return(0);
1630}
1631
1632/*
1633 * Adapter-space FIB queue manipulation
1634 *
1635 * Note that the queue implementation here is a little funky; neither the PI or
1636 * CI will ever be zero.  This behaviour is a controller feature.
1637 */
1638static struct {
1639	int		size;
1640	int		notify;
1641} aac_qinfo[] = {
1642	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1643	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1644	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1645	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1646	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1647	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1648	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1649	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1650};
1651
1652/*
1653 * Atomically insert an entry into the nominated queue, returns 0 on success or
1654 * EBUSY if the queue is full.
1655 *
1656 * Note: it would be more efficient to defer notifying the controller in
1657 *	 the case where we may be inserting several entries in rapid succession,
1658 *	 but implementing this usefully may be difficult (it would involve a
1659 *	 separate queue/notify interface).
1660 */
1661static int
1662aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1663{
1664	u_int32_t pi, ci;
1665	int s, error;
1666	u_int32_t fib_size;
1667	u_int32_t fib_addr;
1668
1669	debug_called(3);
1670
1671	fib_size = cm->cm_fib->Header.Size;
1672	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1673
1674	s = splbio();
1675
1676	/* get the producer/consumer indices */
1677	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1678	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1679
1680	/* wrap the queue? */
1681	if (pi >= aac_qinfo[queue].size)
1682		pi = 0;
1683
1684	/* check for queue full */
1685	if ((pi + 1) == ci) {
1686		error = EBUSY;
1687		goto out;
1688	}
1689
1690	/* populate queue entry */
1691	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1692	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1693
1694	/* update producer index */
1695	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1696
1697	/*
1698	 * To avoid a race with its completion interrupt, place this command on
1699	 * the busy queue prior to advertising it to the controller.
1700	 */
1701	aac_enqueue_busy(cm);
1702
1703	/* notify the adapter if we know how */
1704	if (aac_qinfo[queue].notify != 0)
1705		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1706
1707	error = 0;
1708
1709out:
1710	splx(s);
1711	return(error);
1712}
1713
1714/*
1715 * Atomically remove one entry from the nominated queue, returns 0 on
1716 * success or ENOENT if the queue is empty.
1717 */
1718static int
1719aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1720		struct aac_fib **fib_addr)
1721{
1722	u_int32_t pi, ci;
1723	int s, error;
1724	int notify;
1725
1726	debug_called(3);
1727
1728	s = splbio();
1729
1730	/* get the producer/consumer indices */
1731	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1732	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1733
1734	/* check for queue empty */
1735	if (ci == pi) {
1736		error = ENOENT;
1737		goto out;
1738	}
1739
1740	notify = 0;
1741	if (ci == pi + 1)
1742		notify++;
1743
1744	/* wrap the queue? */
1745	if (ci >= aac_qinfo[queue].size)
1746		ci = 0;
1747
1748	/* fetch the entry */
1749	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1750	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1751				       ci)->aq_fib_addr;
1752
1753	/* update consumer index */
1754	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1755
1756	/* if we have made the queue un-full, notify the adapter */
1757	if (notify && (aac_qinfo[queue].notify != 0))
1758		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1759	error = 0;
1760
1761out:
1762	splx(s);
1763	return(error);
1764}
1765
1766/*
1767 * Put our response to an Adapter Initialed Fib on the response queue
1768 */
1769static int
1770aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1771{
1772	u_int32_t pi, ci;
1773	int s, error;
1774	u_int32_t fib_size;
1775	u_int32_t fib_addr;
1776
1777	debug_called(1);
1778
1779	/* Tell the adapter where the FIB is */
1780	fib_size = fib->Header.Size;
1781	fib_addr = fib->Header.SenderFibAddress;
1782	fib->Header.ReceiverFibAddress = fib_addr;
1783
1784	s = splbio();
1785
1786	/* get the producer/consumer indices */
1787	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1788	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1789
1790	/* wrap the queue? */
1791	if (pi >= aac_qinfo[queue].size)
1792		pi = 0;
1793
1794	/* check for queue full */
1795	if ((pi + 1) == ci) {
1796		error = EBUSY;
1797		goto out;
1798	}
1799
1800	/* populate queue entry */
1801	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1802	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1803
1804	/* update producer index */
1805	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1806
1807	/* notify the adapter if we know how */
1808	if (aac_qinfo[queue].notify != 0)
1809		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1810
1811	error = 0;
1812
1813out:
1814	splx(s);
1815	return(error);
1816}
1817
1818/*
1819 * Check for commands that have been outstanding for a suspiciously long time,
1820 * and complain about them.
1821 */
1822static void
1823aac_timeout(struct aac_softc *sc)
1824{
1825	int s;
1826	struct aac_command *cm;
1827	time_t deadline;
1828
1829#if 0
1830	/* simulate an interrupt to handle possibly-missed interrupts */
1831	/*
1832	 * XXX This was done to work around another bug which has since been
1833	 * fixed.  It is dangerous anyways because you don't want multiple
1834	 * threads in the interrupt handler at the same time!  If calling
1835	 * is deamed neccesary in the future, proper mutexes must be used.
1836	 */
1837	s = splbio();
1838	aac_intr(sc);
1839	splx(s);
1840
1841	/* kick the I/O queue to restart it in the case of deadlock */
1842	aac_startio(sc);
1843#endif
1844
1845	/*
1846	 * traverse the busy command list, bitch about late commands once
1847	 * only.
1848	 */
1849	deadline = time_second - AAC_CMD_TIMEOUT;
1850	s = splbio();
1851	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1852		if ((cm->cm_timestamp  < deadline)
1853			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1854			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1855			device_printf(sc->aac_dev,
1856				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1857				      cm, (int)(time_second-cm->cm_timestamp));
1858			AAC_PRINT_FIB(sc, cm->cm_fib);
1859		}
1860	}
1861	splx(s);
1862
1863	/* reset the timer for next time */
1864	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1865	return;
1866}
1867
1868/*
1869 * Interface Function Vectors
1870 */
1871
1872/*
1873 * Read the current firmware status word.
1874 */
1875static int
1876aac_sa_get_fwstatus(struct aac_softc *sc)
1877{
1878	debug_called(3);
1879
1880	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1881}
1882
1883static int
1884aac_rx_get_fwstatus(struct aac_softc *sc)
1885{
1886	debug_called(3);
1887
1888	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1889}
1890
1891static int
1892aac_fa_get_fwstatus(struct aac_softc *sc)
1893{
1894	int val;
1895
1896	debug_called(3);
1897
1898	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1899	return (val);
1900}
1901
1902/*
1903 * Notify the controller of a change in a given queue
1904 */
1905
1906static void
1907aac_sa_qnotify(struct aac_softc *sc, int qbit)
1908{
1909	debug_called(3);
1910
1911	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1912}
1913
1914static void
1915aac_rx_qnotify(struct aac_softc *sc, int qbit)
1916{
1917	debug_called(3);
1918
1919	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1920}
1921
1922static void
1923aac_fa_qnotify(struct aac_softc *sc, int qbit)
1924{
1925	debug_called(3);
1926
1927	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1928	AAC_FA_HACK(sc);
1929}
1930
1931/*
1932 * Get the interrupt reason bits
1933 */
1934static int
1935aac_sa_get_istatus(struct aac_softc *sc)
1936{
1937	debug_called(3);
1938
1939	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1940}
1941
1942static int
1943aac_rx_get_istatus(struct aac_softc *sc)
1944{
1945	debug_called(3);
1946
1947	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1948}
1949
1950static int
1951aac_fa_get_istatus(struct aac_softc *sc)
1952{
1953	int val;
1954
1955	debug_called(3);
1956
1957	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1958	return (val);
1959}
1960
1961/*
1962 * Clear some interrupt reason bits
1963 */
1964static void
1965aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1966{
1967	debug_called(3);
1968
1969	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1970}
1971
1972static void
1973aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1974{
1975	debug_called(3);
1976
1977	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1978}
1979
1980static void
1981aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1982{
1983	debug_called(3);
1984
1985	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1986	AAC_FA_HACK(sc);
1987}
1988
1989/*
1990 * Populate the mailbox and set the command word
1991 */
1992static void
1993aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1994		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1995{
1996	debug_called(4);
1997
1998	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1999	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2000	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2001	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2002	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2003}
2004
2005static void
2006aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2007		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2008{
2009	debug_called(4);
2010
2011	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2012	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2013	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2014	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2015	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2016}
2017
2018static void
2019aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2020		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2021{
2022	debug_called(4);
2023
2024	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2025	AAC_FA_HACK(sc);
2026	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2027	AAC_FA_HACK(sc);
2028	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2029	AAC_FA_HACK(sc);
2030	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2031	AAC_FA_HACK(sc);
2032	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2033	AAC_FA_HACK(sc);
2034}
2035
2036/*
2037 * Fetch the immediate command status word
2038 */
2039static int
2040aac_sa_get_mailboxstatus(struct aac_softc *sc)
2041{
2042	debug_called(4);
2043
2044	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2045}
2046
2047static int
2048aac_rx_get_mailboxstatus(struct aac_softc *sc)
2049{
2050	debug_called(4);
2051
2052	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2053}
2054
2055static int
2056aac_fa_get_mailboxstatus(struct aac_softc *sc)
2057{
2058	int val;
2059
2060	debug_called(4);
2061
2062	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2063	return (val);
2064}
2065
2066/*
2067 * Set/clear interrupt masks
2068 */
2069static void
2070aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2071{
2072	debug(2, "%sable interrupts", enable ? "en" : "dis");
2073
2074	if (enable) {
2075		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2076	} else {
2077		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2078	}
2079}
2080
2081static void
2082aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2083{
2084	debug(2, "%sable interrupts", enable ? "en" : "dis");
2085
2086	if (enable) {
2087		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2088	} else {
2089		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2090	}
2091}
2092
2093static void
2094aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2095{
2096	debug(2, "%sable interrupts", enable ? "en" : "dis");
2097
2098	if (enable) {
2099		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2100		AAC_FA_HACK(sc);
2101	} else {
2102		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2103		AAC_FA_HACK(sc);
2104	}
2105}
2106
2107/*
2108 * Debugging and Diagnostics
2109 */
2110
2111/*
2112 * Print some information about the controller.
2113 */
2114static void
2115aac_describe_controller(struct aac_softc *sc)
2116{
2117	u_int8_t buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
2118					 * for the stack */
2119	u_int16_t bufsize;
2120	struct aac_adapter_info	*info;
2121	u_int8_t arg;
2122
2123	debug_called(2);
2124
2125	arg = 0;
2126	bufsize = sizeof(buf);
2127	if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
2128			 &bufsize)) {
2129		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2130		return;
2131	}
2132	if (bufsize != sizeof(*info)) {
2133		device_printf(sc->aac_dev,
2134			      "RequestAdapterInfo returned wrong data size "
2135			      "(%d != %d)\n", bufsize, sizeof(*info));
2136		/*return;*/
2137	}
2138	info = (struct aac_adapter_info *)&buf[0];
2139
2140	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2141		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2142		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2143		      aac_describe_code(aac_battery_platform,
2144					info->batteryPlatform));
2145
2146	/* save the kernel revision structure for later use */
2147	sc->aac_revision = info->KernelRevision;
2148	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2149		      info->KernelRevision.external.comp.major,
2150		      info->KernelRevision.external.comp.minor,
2151		      info->KernelRevision.external.comp.dash,
2152		      info->KernelRevision.buildNumber,
2153		      (u_int32_t)(info->SerialNumber & 0xffffff));
2154}
2155
2156/*
2157 * Look up a text description of a numeric error code and return a pointer to
2158 * same.
2159 */
2160static char *
2161aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2162{
2163	int i;
2164
2165	for (i = 0; table[i].string != NULL; i++)
2166		if (table[i].code == code)
2167			return(table[i].string);
2168	return(table[i + 1].string);
2169}
2170
2171/*
2172 * Management Interface
2173 */
2174
2175static int
2176aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2177{
2178	struct aac_softc *sc;
2179
2180	debug_called(2);
2181
2182	sc = dev->si_drv1;
2183
2184	/* Check to make sure the device isn't already open */
2185	if (sc->aac_state & AAC_STATE_OPEN) {
2186		return EBUSY;
2187	}
2188	sc->aac_state |= AAC_STATE_OPEN;
2189
2190	return 0;
2191}
2192
2193static int
2194aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2195{
2196	struct aac_softc *sc;
2197
2198	debug_called(2);
2199
2200	sc = dev->si_drv1;
2201
2202	/* Mark this unit as no longer open  */
2203	sc->aac_state &= ~AAC_STATE_OPEN;
2204
2205	return 0;
2206}
2207
2208static int
2209aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2210{
2211	union aac_statrequest *as;
2212	struct aac_softc *sc;
2213	int error = 0;
2214	int i;
2215
2216	debug_called(2);
2217
2218	as = (union aac_statrequest *)arg;
2219	sc = dev->si_drv1;
2220
2221	switch (cmd) {
2222	case AACIO_STATS:
2223		switch (as->as_item) {
2224		case AACQ_FREE:
2225		case AACQ_BIO:
2226		case AACQ_READY:
2227		case AACQ_BUSY:
2228		case AACQ_COMPLETE:
2229			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2230			      sizeof(struct aac_qstat));
2231			break;
2232		default:
2233			error = ENOENT;
2234			break;
2235		}
2236	break;
2237
2238	case FSACTL_SENDFIB:
2239		arg = *(caddr_t*)arg;
2240	case FSACTL_LNX_SENDFIB:
2241		debug(1, "FSACTL_SENDFIB");
2242		error = aac_ioctl_sendfib(sc, arg);
2243		break;
2244	case FSACTL_AIF_THREAD:
2245	case FSACTL_LNX_AIF_THREAD:
2246		debug(1, "FSACTL_AIF_THREAD");
2247		error = EINVAL;
2248		break;
2249	case FSACTL_OPEN_GET_ADAPTER_FIB:
2250		arg = *(caddr_t*)arg;
2251	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2252		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2253		/*
2254		 * Pass the caller out an AdapterFibContext.
2255		 *
2256		 * Note that because we only support one opener, we
2257		 * basically ignore this.  Set the caller's context to a magic
2258		 * number just in case.
2259		 *
2260		 * The Linux code hands the driver a pointer into kernel space,
2261		 * and then trusts it when the caller hands it back.  Aiee!
2262		 * Here, we give it the proc pointer of the per-adapter aif
2263		 * thread. It's only used as a sanity check in other calls.
2264		 */
2265		i = (int)sc->aifthread;
2266		error = copyout(&i, arg, sizeof(i));
2267		break;
2268	case FSACTL_GET_NEXT_ADAPTER_FIB:
2269		arg = *(caddr_t*)arg;
2270	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2271		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2272		error = aac_getnext_aif(sc, arg);
2273		break;
2274	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2275	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2276		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2277		/* don't do anything here */
2278		break;
2279	case FSACTL_MINIPORT_REV_CHECK:
2280		arg = *(caddr_t*)arg;
2281	case FSACTL_LNX_MINIPORT_REV_CHECK:
2282		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2283		error = aac_rev_check(sc, arg);
2284		break;
2285	case FSACTL_QUERY_DISK:
2286		arg = *(caddr_t*)arg;
2287	case FSACTL_LNX_QUERY_DISK:
2288		debug(1, "FSACTL_QUERY_DISK");
2289		error = aac_query_disk(sc, arg);
2290			break;
2291	case FSACTL_DELETE_DISK:
2292	case FSACTL_LNX_DELETE_DISK:
2293		/*
2294		 * We don't trust the underland to tell us when to delete a
2295		 * container, rather we rely on an AIF coming from the
2296		 * controller
2297		 */
2298		error = 0;
2299		break;
2300	default:
2301		debug(1, "unsupported cmd 0x%lx\n", cmd);
2302		error = EINVAL;
2303		break;
2304	}
2305	return(error);
2306}
2307
2308static int
2309aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2310{
2311	struct aac_softc *sc;
2312	int revents;
2313
2314	sc = dev->si_drv1;
2315	revents = 0;
2316
2317	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2318	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2319		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2320			revents |= poll_events & (POLLIN | POLLRDNORM);
2321	}
2322	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2323
2324	if (revents == 0) {
2325		if (poll_events & (POLLIN | POLLRDNORM))
2326			selrecord(td, &sc->rcv_select);
2327	}
2328
2329	return (revents);
2330}
2331
2332/*
2333 * Send a FIB supplied from userspace
2334 */
2335static int
2336aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2337{
2338	struct aac_command *cm;
2339	int size, error;
2340
2341	debug_called(2);
2342
2343	cm = NULL;
2344
2345	/*
2346	 * Get a command
2347	 */
2348	if (aac_alloc_command(sc, &cm)) {
2349		error = EBUSY;
2350		goto out;
2351	}
2352
2353	/*
2354	 * Fetch the FIB header, then re-copy to get data as well.
2355	 */
2356	if ((error = copyin(ufib, cm->cm_fib,
2357			    sizeof(struct aac_fib_header))) != 0)
2358		goto out;
2359	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2360	if (size > sizeof(struct aac_fib)) {
2361		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2362			      size, sizeof(struct aac_fib));
2363		size = sizeof(struct aac_fib);
2364	}
2365	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2366		goto out;
2367	cm->cm_fib->Header.Size = size;
2368	cm->cm_timestamp = time_second;
2369
2370	/*
2371	 * Pass the FIB to the controller, wait for it to complete.
2372	 */
2373	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2374		printf("aac_wait_command return %d\n", error);
2375		goto out;
2376	}
2377
2378	/*
2379	 * Copy the FIB and data back out to the caller.
2380	 */
2381	size = cm->cm_fib->Header.Size;
2382	if (size > sizeof(struct aac_fib)) {
2383		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2384			      size, sizeof(struct aac_fib));
2385		size = sizeof(struct aac_fib);
2386	}
2387	error = copyout(cm->cm_fib, ufib, size);
2388
2389out:
2390	if (cm != NULL) {
2391		aac_release_command(cm);
2392	}
2393	return(error);
2394}
2395
2396/*
2397 * Handle an AIF sent to us by the controller; queue it for later reference.
2398 * If the queue fills up, then drop the older entries.
2399 */
2400static void
2401aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2402{
2403	struct aac_aif_command *aif;
2404	struct aac_container *co, *co_next;
2405	struct aac_mntinfo mi;
2406	struct aac_mntinforesponse mir;
2407	u_int16_t rsize;
2408	int next, found;
2409	int added = 0, i = 0;
2410
2411	debug_called(2);
2412
2413	aif = (struct aac_aif_command*)&fib->data[0];
2414	aac_print_aif(sc, aif);
2415
2416	/* Is it an event that we should care about? */
2417	switch (aif->command) {
2418	case AifCmdEventNotify:
2419		switch (aif->data.EN.type) {
2420		case AifEnAddContainer:
2421		case AifEnDeleteContainer:
2422			/*
2423			 * A container was added or deleted, but the message
2424			 * doesn't tell us anything else!  Re-enumerate the
2425			 * containers and sort things out.
2426			 */
2427			mi.Command = VM_NameServe;
2428			mi.MntType = FT_FILESYS;
2429			do {
2430				/*
2431				 * Ask the controller for its containers one at
2432				 * a time.
2433				 * XXX What if the controller's list changes
2434				 * midway through this enumaration?
2435				 * XXX This should be done async.
2436				 */
2437				mi.MntCount = i;
2438				rsize = sizeof(mir);
2439				if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
2440						 sizeof(mi), &mir, &rsize)) {
2441					debug(2, "Error probing container %d\n",
2442					      i);
2443					continue;
2444				}
2445				if (rsize != sizeof(mir)) {
2446					debug(2, "Container response size too "
2447						 "large\n");
2448					continue;
2449				}
2450				/*
2451				 * Check the container against our list.
2452				 * co->co_found was already set to 0 in a
2453				 * previous run.
2454				 */
2455				if ((mir.Status == ST_OK) &&
2456				    (mir.MntTable[0].VolType != CT_NONE)) {
2457					found = 0;
2458					TAILQ_FOREACH(co,
2459						      &sc->aac_container_tqh,
2460						      co_link) {
2461						if (co->co_mntobj.ObjectId ==
2462						    mir.MntTable[0].ObjectId) {
2463							co->co_found = 1;
2464							found = 1;
2465							break;
2466						}
2467					}
2468					/*
2469					 * If the container matched, continue
2470					 * in the list.
2471					 */
2472					if (found) {
2473						i++;
2474						continue;
2475					}
2476
2477					/*
2478					 * This is a new container.  Do all the
2479					 * appropriate things to set it up.						 */
2480					aac_add_container(sc, &mir, 1);
2481					added = 1;
2482				}
2483				i++;
2484			} while ((i < mir.MntRespCount) &&
2485				 (i < AAC_MAX_CONTAINERS));
2486
2487			/*
2488			 * Go through our list of containers and see which ones
2489			 * were not marked 'found'.  Since the controller didn't
2490			 * list them they must have been deleted.  Do the
2491			 * appropriate steps to destroy the device.  Also reset
2492			 * the co->co_found field.
2493			 */
2494			co = TAILQ_FIRST(&sc->aac_container_tqh);
2495			while (co != NULL) {
2496				if (co->co_found == 0) {
2497					device_delete_child(sc->aac_dev,
2498							    co->co_disk);
2499					co_next = TAILQ_NEXT(co, co_link);
2500					AAC_LOCK_ACQUIRE(&sc->
2501							aac_container_lock);
2502					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2503						     co_link);
2504					AAC_LOCK_RELEASE(&sc->
2505							 aac_container_lock);
2506					FREE(co, M_AACBUF);
2507					co = co_next;
2508				} else {
2509					co->co_found = 0;
2510					co = TAILQ_NEXT(co, co_link);
2511				}
2512			}
2513
2514			/* Attach the newly created containers */
2515			if (added)
2516				bus_generic_attach(sc->aac_dev);
2517
2518				break;
2519
2520		default:
2521			break;
2522		}
2523
2524	default:
2525		break;
2526	}
2527
2528	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2529	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2530	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2531	if (next != sc->aac_aifq_tail) {
2532		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2533		sc->aac_aifq_head = next;
2534
2535		/* On the off chance that someone is sleeping for an aif... */
2536		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2537			wakeup(sc->aac_aifq);
2538		/* Wakeup any poll()ers */
2539		selwakeup(&sc->rcv_select);
2540	}
2541	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2542
2543	return;
2544}
2545
2546/*
2547 * Linux Management Interface
2548 * This is soon to be removed!
2549 */
2550
2551#ifdef AAC_COMPAT_LINUX
2552
2553#include <sys/proc.h>
2554#include <machine/../linux/linux.h>
2555#include <machine/../linux/linux_proto.h>
2556#include <compat/linux/linux_ioctl.h>
2557
2558/* There are multiple ioctl number ranges that need to be handled */
2559#define AAC_LINUX_IOCTL_MIN  0x0000
2560#define AAC_LINUX_IOCTL_MAX  0x21ff
2561
2562static linux_ioctl_function_t aac_linux_ioctl;
2563static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2564						 AAC_LINUX_IOCTL_MIN,
2565						 AAC_LINUX_IOCTL_MAX};
2566
2567SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2568	  linux_ioctl_register_handler, &aac_handler);
2569SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2570	  linux_ioctl_unregister_handler, &aac_handler);
2571
2572MODULE_DEPEND(aac, linux, 1, 1, 1);
2573
2574static int
2575aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2576{
2577	struct file *fp;
2578	u_long cmd;
2579
2580	debug_called(2);
2581
2582	fp = td->td_proc->p_fd->fd_ofiles[args->fd];
2583	cmd = args->cmd;
2584
2585	/*
2586	 * Pass the ioctl off to our standard handler.
2587	 */
2588	return(fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2589}
2590
2591#endif
2592
2593/*
2594 * Return the Revision of the driver to userspace and check to see if the
2595 * userspace app is possibly compatible.  This is extremely bogus since
2596 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2597 * returning what the card reported.
2598 */
2599static int
2600aac_rev_check(struct aac_softc *sc, caddr_t udata)
2601{
2602	struct aac_rev_check rev_check;
2603	struct aac_rev_check_resp rev_check_resp;
2604	int error = 0;
2605
2606	debug_called(2);
2607
2608	/*
2609	 * Copyin the revision struct from userspace
2610	 */
2611	if ((error = copyin(udata, (caddr_t)&rev_check,
2612			sizeof(struct aac_rev_check))) != 0) {
2613		return error;
2614	}
2615
2616	debug(2, "Userland revision= %d\n",
2617	      rev_check.callingRevision.buildNumber);
2618
2619	/*
2620	 * Doctor up the response struct.
2621	 */
2622	rev_check_resp.possiblyCompatible = 1;
2623	rev_check_resp.adapterSWRevision.external.ul =
2624	    sc->aac_revision.external.ul;
2625	rev_check_resp.adapterSWRevision.buildNumber =
2626	    sc->aac_revision.buildNumber;
2627
2628	return(copyout((caddr_t)&rev_check_resp, udata,
2629			sizeof(struct aac_rev_check_resp)));
2630}
2631
2632/*
2633 * Pass the caller the next AIF in their queue
2634 */
2635static int
2636aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2637{
2638	struct get_adapter_fib_ioctl agf;
2639	int error, s;
2640
2641	debug_called(2);
2642
2643	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2644
2645		/*
2646		 * Check the magic number that we gave the caller.
2647		 */
2648		if (agf.AdapterFibContext != (int)sc->aifthread) {
2649			error = EFAULT;
2650		} else {
2651
2652			s = splbio();
2653			error = aac_return_aif(sc, agf.AifFib);
2654
2655			if ((error == EAGAIN) && (agf.Wait)) {
2656				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2657				while (error == EAGAIN) {
2658					error = tsleep(sc->aac_aifq, PRIBIO |
2659						       PCATCH, "aacaif", 0);
2660					if (error == 0)
2661						error = aac_return_aif(sc,
2662						    agf.AifFib);
2663				}
2664				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2665			}
2666		splx(s);
2667		}
2668	}
2669	return(error);
2670}
2671
2672/*
2673 * Hand the next AIF off the top of the queue out to userspace.
2674 */
2675static int
2676aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2677{
2678	int error;
2679
2680	debug_called(2);
2681
2682	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2683	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2684		error = EAGAIN;
2685	} else {
2686		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2687				sizeof(struct aac_aif_command));
2688		if (error)
2689			printf("aac_return_aif: copyout returned %d\n", error);
2690		if (!error)
2691			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2692					    AAC_AIFQ_LENGTH;
2693	}
2694	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2695	return(error);
2696}
2697
2698/*
2699 * Give the userland some information about the container.  The AAC arch
2700 * expects the driver to be a SCSI passthrough type driver, so it expects
2701 * the containers to have b:t:l numbers.  Fake it.
2702 */
2703static int
2704aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2705{
2706	struct aac_query_disk query_disk;
2707	struct aac_container *co;
2708	struct aac_disk	*disk;
2709	int error, id;
2710
2711	debug_called(2);
2712
2713	disk = NULL;
2714
2715	error = copyin(uptr, (caddr_t)&query_disk,
2716		       sizeof(struct aac_query_disk));
2717	if (error)
2718		return (error);
2719
2720	id = query_disk.ContainerNumber;
2721	if (id == -1)
2722		return (EINVAL);
2723
2724	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2725	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2726		if (co->co_mntobj.ObjectId == id)
2727			break;
2728		}
2729
2730		if (co == NULL) {
2731			query_disk.Valid = 0;
2732			query_disk.Locked = 0;
2733			query_disk.Deleted = 1;		/* XXX is this right? */
2734		} else {
2735			disk = device_get_softc(co->co_disk);
2736			query_disk.Valid = 1;
2737			query_disk.Locked =
2738			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2739			query_disk.Deleted = 0;
2740			query_disk.Bus = device_get_unit(sc->aac_dev);
2741			query_disk.Target = disk->unit;
2742			query_disk.Lun = 0;
2743			query_disk.UnMapped = 0;
2744			bcopy(disk->ad_dev_t->si_name,
2745			      &query_disk.diskDeviceName[0], 10);
2746		}
2747	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2748
2749	error = copyout((caddr_t)&query_disk, uptr,
2750			sizeof(struct aac_query_disk));
2751
2752	return (error);
2753}
2754
2755