aac.c revision 146851
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 146851 2005-06-01 07:11:17Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus.h>
56#include <sys/bus_dma.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <sys/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
79				   int nseg, int error);
80static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
81				       int nseg, int error);
82static int	aac_alloc_commands(struct aac_softc *sc);
83static void	aac_free_commands(struct aac_softc *sc);
84static void	aac_unmap_command(struct aac_command *cm);
85
86/* Hardware Interface */
87static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88			       int error);
89static int	aac_check_firmware(struct aac_softc *sc);
90static int	aac_init(struct aac_softc *sc);
91static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93				 u_int32_t arg3, u_int32_t *sp);
94static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95				struct aac_command *cm);
96static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97				u_int32_t *fib_size, struct aac_fib **fib_addr);
98static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99				     struct aac_fib *fib);
100
101/* Falcon/PPC interface */
102static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104static int	aac_fa_get_istatus(struct aac_softc *sc);
105static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107				   u_int32_t arg0, u_int32_t arg1,
108				   u_int32_t arg2, u_int32_t arg3);
109static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
110static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111
112struct aac_interface aac_fa_interface = {
113	aac_fa_get_fwstatus,
114	aac_fa_qnotify,
115	aac_fa_get_istatus,
116	aac_fa_clear_istatus,
117	aac_fa_set_mailbox,
118	aac_fa_get_mailbox,
119	aac_fa_set_interrupts
120};
121
122/* StrongARM interface */
123static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125static int	aac_sa_get_istatus(struct aac_softc *sc);
126static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128				   u_int32_t arg0, u_int32_t arg1,
129				   u_int32_t arg2, u_int32_t arg3);
130static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
131static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132
133struct aac_interface aac_sa_interface = {
134	aac_sa_get_fwstatus,
135	aac_sa_qnotify,
136	aac_sa_get_istatus,
137	aac_sa_clear_istatus,
138	aac_sa_set_mailbox,
139	aac_sa_get_mailbox,
140	aac_sa_set_interrupts
141};
142
143/* i960Rx interface */
144static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146static int	aac_rx_get_istatus(struct aac_softc *sc);
147static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149				   u_int32_t arg0, u_int32_t arg1,
150				   u_int32_t arg2, u_int32_t arg3);
151static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
152static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153
154struct aac_interface aac_rx_interface = {
155	aac_rx_get_fwstatus,
156	aac_rx_qnotify,
157	aac_rx_get_istatus,
158	aac_rx_clear_istatus,
159	aac_rx_set_mailbox,
160	aac_rx_get_mailbox,
161	aac_rx_set_interrupts
162};
163
164/* Rocket/MIPS interface */
165static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
166static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
167static int	aac_rkt_get_istatus(struct aac_softc *sc);
168static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
169static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
170				    u_int32_t arg0, u_int32_t arg1,
171				    u_int32_t arg2, u_int32_t arg3);
172static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
173static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
174
175struct aac_interface aac_rkt_interface = {
176	aac_rkt_get_fwstatus,
177	aac_rkt_qnotify,
178	aac_rkt_get_istatus,
179	aac_rkt_clear_istatus,
180	aac_rkt_set_mailbox,
181	aac_rkt_get_mailbox,
182	aac_rkt_set_interrupts
183};
184
185/* Debugging and Diagnostics */
186static void	aac_describe_controller(struct aac_softc *sc);
187static char	*aac_describe_code(struct aac_code_lookup *table,
188				   u_int32_t code);
189
190/* Management Interface */
191static d_open_t		aac_open;
192static d_close_t	aac_close;
193static d_ioctl_t	aac_ioctl;
194static d_poll_t		aac_poll;
195static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
196static void		aac_handle_aif(struct aac_softc *sc,
197					   struct aac_fib *fib);
198static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
199static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
200static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
201static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
202
203static struct cdevsw aac_cdevsw = {
204	.d_version =	D_VERSION,
205	.d_flags =	D_NEEDGIANT,
206	.d_open =	aac_open,
207	.d_close =	aac_close,
208	.d_ioctl =	aac_ioctl,
209	.d_poll =	aac_poll,
210	.d_name =	"aac",
211};
212
213MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
214
215/* sysctl node */
216SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
217
218/*
219 * Device Interface
220 */
221
222/*
223 * Initialise the controller and softc
224 */
225int
226aac_attach(struct aac_softc *sc)
227{
228	int error, unit;
229
230	debug_called(1);
231
232	/*
233	 * Initialise per-controller queues.
234	 */
235	aac_initq_free(sc);
236	aac_initq_ready(sc);
237	aac_initq_busy(sc);
238	aac_initq_bio(sc);
239
240	/*
241	 * Initialise command-completion task.
242	 */
243	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
244
245	/* disable interrupts before we enable anything */
246	AAC_MASK_INTERRUPTS(sc);
247
248	/* mark controller as suspended until we get ourselves organised */
249	sc->aac_state |= AAC_STATE_SUSPEND;
250
251	/*
252	 * Check that the firmware on the card is supported.
253	 */
254	if ((error = aac_check_firmware(sc)) != 0)
255		return(error);
256
257	/*
258	 * Initialize locks
259	 */
260	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
261	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
262	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
263	TAILQ_INIT(&sc->aac_container_tqh);
264
265	/* Initialize the local AIF queue pointers */
266	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
267
268	/*
269	 * Initialise the adapter.
270	 */
271	if ((error = aac_init(sc)) != 0)
272		return(error);
273
274	/*
275	 * Print a little information about the controller.
276	 */
277	aac_describe_controller(sc);
278
279	/*
280	 * Register to probe our containers later.
281	 */
282	sc->aac_ich.ich_func = aac_startup;
283	sc->aac_ich.ich_arg = sc;
284	if (config_intrhook_establish(&sc->aac_ich) != 0) {
285		device_printf(sc->aac_dev,
286			      "can't establish configuration hook\n");
287		return(ENXIO);
288	}
289
290	/*
291	 * Make the control device.
292	 */
293	unit = device_get_unit(sc->aac_dev);
294	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
295				 0640, "aac%d", unit);
296	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
297	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
298	sc->aac_dev_t->si_drv1 = sc;
299
300	/* Create the AIF thread */
301	if (kthread_create((void(*)(void *))aac_command_thread, sc,
302			   &sc->aifthread, 0, 0, "aac%daif", unit))
303		panic("Could not create AIF thread\n");
304
305	/* Register the shutdown method to only be called post-dump */
306	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
307	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
308		device_printf(sc->aac_dev,
309			      "shutdown event registration failed\n");
310
311	/* Register with CAM for the non-DASD devices */
312	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
313		TAILQ_INIT(&sc->aac_sim_tqh);
314		aac_get_bus_info(sc);
315	}
316
317	return(0);
318}
319
320/*
321 * Probe for containers, create disks.
322 */
323static void
324aac_startup(void *arg)
325{
326	struct aac_softc *sc;
327	struct aac_fib *fib;
328	struct aac_mntinfo *mi;
329	struct aac_mntinforesp *mir = NULL;
330	int count = 0, i = 0;
331
332	debug_called(1);
333
334	sc = (struct aac_softc *)arg;
335
336	/* disconnect ourselves from the intrhook chain */
337	config_intrhook_disestablish(&sc->aac_ich);
338
339	aac_alloc_sync_fib(sc, &fib);
340	mi = (struct aac_mntinfo *)&fib->data[0];
341
342	/* loop over possible containers */
343	do {
344		/* request information on this container */
345		bzero(mi, sizeof(struct aac_mntinfo));
346		mi->Command = VM_NameServe;
347		mi->MntType = FT_FILESYS;
348		mi->MntCount = i;
349		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
350				 sizeof(struct aac_mntinfo))) {
351			printf("error probing container %d", i);
352			continue;
353		}
354
355		mir = (struct aac_mntinforesp *)&fib->data[0];
356		/* XXX Need to check if count changed */
357		count = mir->MntRespCount;
358		aac_add_container(sc, mir, 0);
359		i++;
360	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
361
362	aac_release_sync_fib(sc);
363
364	/* poke the bus to actually attach the child devices */
365	if (bus_generic_attach(sc->aac_dev))
366		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
367
368	/* mark the controller up */
369	sc->aac_state &= ~AAC_STATE_SUSPEND;
370
371	/* enable interrupts now */
372	AAC_UNMASK_INTERRUPTS(sc);
373}
374
375/*
376 * Create a device to respresent a new container
377 */
378static void
379aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
380{
381	struct aac_container *co;
382	device_t child;
383
384	/*
385	 * Check container volume type for validity.  Note that many of
386	 * the possible types may never show up.
387	 */
388	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
389		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
390		       M_NOWAIT | M_ZERO);
391		if (co == NULL)
392			panic("Out of memory?!\n");
393		debug(1, "id %x  name '%.16s'  size %u  type %d",
394		      mir->MntTable[0].ObjectId,
395		      mir->MntTable[0].FileSystemName,
396		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
397
398		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
399			device_printf(sc->aac_dev, "device_add_child failed\n");
400		else
401			device_set_ivars(child, co);
402		device_set_desc(child, aac_describe_code(aac_container_types,
403				mir->MntTable[0].VolType));
404		co->co_disk = child;
405		co->co_found = f;
406		bcopy(&mir->MntTable[0], &co->co_mntobj,
407		      sizeof(struct aac_mntobj));
408		mtx_lock(&sc->aac_container_lock);
409		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
410		mtx_unlock(&sc->aac_container_lock);
411	}
412}
413
414/*
415 * Free all of the resources associated with (sc)
416 *
417 * Should not be called if the controller is active.
418 */
419void
420aac_free(struct aac_softc *sc)
421{
422
423	debug_called(1);
424
425	/* remove the control device */
426	if (sc->aac_dev_t != NULL)
427		destroy_dev(sc->aac_dev_t);
428
429	/* throw away any FIB buffers, discard the FIB DMA tag */
430	aac_free_commands(sc);
431	if (sc->aac_fib_dmat)
432		bus_dma_tag_destroy(sc->aac_fib_dmat);
433
434	free(sc->aac_commands, M_AACBUF);
435
436	/* destroy the common area */
437	if (sc->aac_common) {
438		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
439		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
440				sc->aac_common_dmamap);
441	}
442	if (sc->aac_common_dmat)
443		bus_dma_tag_destroy(sc->aac_common_dmat);
444
445	/* disconnect the interrupt handler */
446	if (sc->aac_intr)
447		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
448	if (sc->aac_irq != NULL)
449		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
450				     sc->aac_irq);
451
452	/* destroy data-transfer DMA tag */
453	if (sc->aac_buffer_dmat)
454		bus_dma_tag_destroy(sc->aac_buffer_dmat);
455
456	/* destroy the parent DMA tag */
457	if (sc->aac_parent_dmat)
458		bus_dma_tag_destroy(sc->aac_parent_dmat);
459
460	/* release the register window mapping */
461	if (sc->aac_regs_resource != NULL)
462		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
463				     sc->aac_regs_rid, sc->aac_regs_resource);
464}
465
466/*
467 * Disconnect from the controller completely, in preparation for unload.
468 */
469int
470aac_detach(device_t dev)
471{
472	struct aac_softc *sc;
473	struct aac_container *co;
474	struct aac_sim	*sim;
475	int error;
476
477	debug_called(1);
478
479	sc = device_get_softc(dev);
480
481	if (sc->aac_state & AAC_STATE_OPEN)
482		return(EBUSY);
483
484	/* Remove the child containers */
485	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
486		error = device_delete_child(dev, co->co_disk);
487		if (error)
488			return (error);
489		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
490		free(co, M_AACBUF);
491	}
492
493	/* Remove the CAM SIMs */
494	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
495		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
496		error = device_delete_child(dev, sim->sim_dev);
497		if (error)
498			return (error);
499		free(sim, M_AACBUF);
500	}
501
502	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
503		sc->aifflags |= AAC_AIFFLAGS_EXIT;
504		wakeup(sc->aifthread);
505		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
506	}
507
508	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
509		panic("Cannot shutdown AIF thread\n");
510
511	if ((error = aac_shutdown(dev)))
512		return(error);
513
514	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
515
516	aac_free(sc);
517
518	mtx_destroy(&sc->aac_aifq_lock);
519	mtx_destroy(&sc->aac_io_lock);
520	mtx_destroy(&sc->aac_container_lock);
521
522	return(0);
523}
524
525/*
526 * Bring the controller down to a dormant state and detach all child devices.
527 *
528 * This function is called before detach or system shutdown.
529 *
530 * Note that we can assume that the bioq on the controller is empty, as we won't
531 * allow shutdown if any device is open.
532 */
533int
534aac_shutdown(device_t dev)
535{
536	struct aac_softc *sc;
537	struct aac_fib *fib;
538	struct aac_close_command *cc;
539
540	debug_called(1);
541
542	sc = device_get_softc(dev);
543
544	sc->aac_state |= AAC_STATE_SUSPEND;
545
546	/*
547	 * Send a Container shutdown followed by a HostShutdown FIB to the
548	 * controller to convince it that we don't want to talk to it anymore.
549	 * We've been closed and all I/O completed already
550	 */
551	device_printf(sc->aac_dev, "shutting down controller...");
552
553	aac_alloc_sync_fib(sc, &fib);
554	cc = (struct aac_close_command *)&fib->data[0];
555
556	bzero(cc, sizeof(struct aac_close_command));
557	cc->Command = VM_CloseAll;
558	cc->ContainerId = 0xffffffff;
559	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
560	    sizeof(struct aac_close_command)))
561		printf("FAILED.\n");
562	else
563		printf("done\n");
564#if 0
565	else {
566		fib->data[0] = 0;
567		/*
568		 * XXX Issuing this command to the controller makes it shut down
569		 * but also keeps it from coming back up without a reset of the
570		 * PCI bus.  This is not desirable if you are just unloading the
571		 * driver module with the intent to reload it later.
572		 */
573		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
574		    fib, 1)) {
575			printf("FAILED.\n");
576		} else {
577			printf("done.\n");
578		}
579	}
580#endif
581
582	AAC_MASK_INTERRUPTS(sc);
583	aac_release_sync_fib(sc);
584
585	return(0);
586}
587
588/*
589 * Bring the controller to a quiescent state, ready for system suspend.
590 */
591int
592aac_suspend(device_t dev)
593{
594	struct aac_softc *sc;
595
596	debug_called(1);
597
598	sc = device_get_softc(dev);
599
600	sc->aac_state |= AAC_STATE_SUSPEND;
601
602	AAC_MASK_INTERRUPTS(sc);
603	return(0);
604}
605
606/*
607 * Bring the controller back to a state ready for operation.
608 */
609int
610aac_resume(device_t dev)
611{
612	struct aac_softc *sc;
613
614	debug_called(1);
615
616	sc = device_get_softc(dev);
617
618	sc->aac_state &= ~AAC_STATE_SUSPEND;
619	AAC_UNMASK_INTERRUPTS(sc);
620	return(0);
621}
622
623/*
624 * Take an interrupt.
625 */
626void
627aac_intr(void *arg)
628{
629	struct aac_softc *sc;
630	u_int16_t reason;
631
632	debug_called(2);
633
634	sc = (struct aac_softc *)arg;
635
636	/*
637	 * Read the status register directly.  This is faster than taking the
638	 * driver lock and reading the queues directly.  It also saves having
639	 * to turn parts of the driver lock into a spin mutex, which would be
640	 * ugly.
641	 */
642	reason = AAC_GET_ISTATUS(sc);
643	AAC_CLEAR_ISTATUS(sc, reason);
644
645	/* handle completion processing */
646	if (reason & AAC_DB_RESPONSE_READY)
647		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
648
649	/* controller wants to talk to us */
650	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
651		/*
652		 * XXX Make sure that we don't get fooled by strange messages
653		 * that start with a NULL.
654		 */
655		if ((reason & AAC_DB_PRINTF) &&
656		    (sc->aac_common->ac_printf[0] == 0))
657			sc->aac_common->ac_printf[0] = 32;
658
659		/*
660		 * This might miss doing the actual wakeup.  However, the
661		 * msleep that this is waking up has a timeout, so it will
662		 * wake up eventually.  AIFs and printfs are low enough
663		 * priority that they can handle hanging out for a few seconds
664		 * if needed.
665		 */
666		wakeup(sc->aifthread);
667	}
668}
669
670/*
671 * Command Processing
672 */
673
674/*
675 * Start as much queued I/O as possible on the controller
676 */
677void
678aac_startio(struct aac_softc *sc)
679{
680	struct aac_command *cm;
681	int error;
682
683	debug_called(2);
684
685	for (;;) {
686		/*
687		 * This flag might be set if the card is out of resources.
688		 * Checking it here prevents an infinite loop of deferrals.
689		 */
690		if (sc->flags & AAC_QUEUE_FRZN)
691			break;
692
693		/*
694		 * Try to get a command that's been put off for lack of
695		 * resources
696		 */
697		cm = aac_dequeue_ready(sc);
698
699		/*
700		 * Try to build a command off the bio queue (ignore error
701		 * return)
702		 */
703		if (cm == NULL)
704			aac_bio_command(sc, &cm);
705
706		/* nothing to do? */
707		if (cm == NULL)
708			break;
709
710		/* don't map more than once */
711		if (cm->cm_flags & AAC_CMD_MAPPED)
712			panic("aac: command %p already mapped", cm);
713
714		/*
715		 * Set up the command to go to the controller.  If there are no
716		 * data buffers associated with the command then it can bypass
717		 * busdma.
718		 */
719		if (cm->cm_datalen != 0) {
720			error = bus_dmamap_load(sc->aac_buffer_dmat,
721						cm->cm_datamap, cm->cm_data,
722						cm->cm_datalen,
723						aac_map_command_sg, cm, 0);
724			if (error == EINPROGRESS) {
725				debug(1, "freezing queue\n");
726				sc->flags |= AAC_QUEUE_FRZN;
727				error = 0;
728			} else if (error != 0)
729				panic("aac_startio: unexpected error %d from "
730				      "busdma\n", error);
731		} else
732			aac_map_command_sg(cm, NULL, 0, 0);
733	}
734}
735
736/*
737 * Handle notification of one or more FIBs coming from the controller.
738 */
739static void
740aac_command_thread(struct aac_softc *sc)
741{
742	struct aac_fib *fib;
743	u_int32_t fib_size;
744	int size, retval;
745
746	debug_called(2);
747
748	mtx_lock(&sc->aac_io_lock);
749	sc->aifflags = AAC_AIFFLAGS_RUNNING;
750
751	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
752
753		retval = 0;
754		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
755			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
756					"aifthd", AAC_PERIODIC_INTERVAL * hz);
757
758		/*
759		 * First see if any FIBs need to be allocated.  This needs
760		 * to be called without the driver lock because contigmalloc
761		 * will grab Giant, and would result in an LOR.
762		 */
763		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
764			mtx_unlock(&sc->aac_io_lock);
765			aac_alloc_commands(sc);
766			mtx_lock(&sc->aac_io_lock);
767			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
768			aac_startio(sc);
769		}
770
771		/*
772		 * While we're here, check to see if any commands are stuck.
773		 * This is pretty low-priority, so it's ok if it doesn't
774		 * always fire.
775		 */
776		if (retval == EWOULDBLOCK)
777			aac_timeout(sc);
778
779		/* Check the hardware printf message buffer */
780		if (sc->aac_common->ac_printf[0] != 0)
781			aac_print_printf(sc);
782
783		/* Also check to see if the adapter has a command for us. */
784		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
785				       &fib_size, &fib) == 0) {
786
787			AAC_PRINT_FIB(sc, fib);
788
789			switch (fib->Header.Command) {
790			case AifRequest:
791				aac_handle_aif(sc, fib);
792				break;
793			default:
794				device_printf(sc->aac_dev, "unknown command "
795					      "from controller\n");
796				break;
797			}
798
799			if ((fib->Header.XferState == 0) ||
800			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
801				break;
802
803			/* Return the AIF to the controller. */
804			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
805				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
806				*(AAC_FSAStatus*)fib->data = ST_OK;
807
808				/* XXX Compute the Size field? */
809				size = fib->Header.Size;
810				if (size > sizeof(struct aac_fib)) {
811					size = sizeof(struct aac_fib);
812					fib->Header.Size = size;
813				}
814				/*
815				 * Since we did not generate this command, it
816				 * cannot go through the normal
817				 * enqueue->startio chain.
818				 */
819				aac_enqueue_response(sc,
820						     AAC_ADAP_NORM_RESP_QUEUE,
821						     fib);
822			}
823		}
824	}
825	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
826	mtx_unlock(&sc->aac_io_lock);
827	wakeup(sc->aac_dev);
828
829	kthread_exit(0);
830}
831
832/*
833 * Process completed commands.
834 */
835static void
836aac_complete(void *context, int pending)
837{
838	struct aac_softc *sc;
839	struct aac_command *cm;
840	struct aac_fib *fib;
841	u_int32_t fib_size;
842
843	debug_called(2);
844
845	sc = (struct aac_softc *)context;
846
847	mtx_lock(&sc->aac_io_lock);
848
849	/* pull completed commands off the queue */
850	for (;;) {
851		/* look for completed FIBs on our queue */
852		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
853				    &fib))
854			break;	/* nothing to do */
855
856		/* get the command, unmap and hand off for processing */
857		cm = sc->aac_commands + fib->Header.SenderData;
858		if (cm == NULL) {
859			AAC_PRINT_FIB(sc, fib);
860			break;
861		}
862
863		aac_remove_busy(cm);
864		aac_unmap_command(cm);
865		cm->cm_flags |= AAC_CMD_COMPLETED;
866
867		/* is there a completion handler? */
868		if (cm->cm_complete != NULL) {
869			cm->cm_complete(cm);
870		} else {
871			/* assume that someone is sleeping on this command */
872			wakeup(cm);
873		}
874	}
875
876	/* see if we can start some more I/O */
877	sc->flags &= ~AAC_QUEUE_FRZN;
878	aac_startio(sc);
879
880	mtx_unlock(&sc->aac_io_lock);
881}
882
883/*
884 * Handle a bio submitted from a disk device.
885 */
886void
887aac_submit_bio(struct bio *bp)
888{
889	struct aac_disk *ad;
890	struct aac_softc *sc;
891
892	debug_called(2);
893
894	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
895	sc = ad->ad_controller;
896
897	/* queue the BIO and try to get some work done */
898	aac_enqueue_bio(sc, bp);
899	aac_startio(sc);
900}
901
902/*
903 * Get a bio and build a command to go with it.
904 */
905static int
906aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
907{
908	struct aac_command *cm;
909	struct aac_fib *fib;
910	struct aac_disk *ad;
911	struct bio *bp;
912
913	debug_called(2);
914
915	/* get the resources we will need */
916	cm = NULL;
917	bp = NULL;
918	if (aac_alloc_command(sc, &cm))	/* get a command */
919		goto fail;
920	if ((bp = aac_dequeue_bio(sc)) == NULL)
921		goto fail;
922
923	/* fill out the command */
924	cm->cm_data = (void *)bp->bio_data;
925	cm->cm_datalen = bp->bio_bcount;
926	cm->cm_complete = aac_bio_complete;
927	cm->cm_private = bp;
928	cm->cm_timestamp = time_second;
929	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
930
931	/* build the FIB */
932	fib = cm->cm_fib;
933	fib->Header.Size = sizeof(struct aac_fib_header);
934	fib->Header.XferState =
935		AAC_FIBSTATE_HOSTOWNED   |
936		AAC_FIBSTATE_INITIALISED |
937		AAC_FIBSTATE_EMPTY	 |
938		AAC_FIBSTATE_FROMHOST	 |
939		AAC_FIBSTATE_REXPECTED   |
940		AAC_FIBSTATE_NORM	 |
941		AAC_FIBSTATE_ASYNC	 |
942		AAC_FIBSTATE_FAST_RESPONSE;
943
944	/* build the read/write request */
945	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
946
947	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
948		fib->Header.Command = ContainerCommand;
949		if (bp->bio_cmd == BIO_READ) {
950			struct aac_blockread *br;
951			br = (struct aac_blockread *)&fib->data[0];
952			br->Command = VM_CtBlockRead;
953			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
954			br->BlockNumber = bp->bio_pblkno;
955			br->ByteCount = bp->bio_bcount;
956			fib->Header.Size += sizeof(struct aac_blockread);
957			cm->cm_sgtable = &br->SgMap;
958			cm->cm_flags |= AAC_CMD_DATAIN;
959		} else {
960			struct aac_blockwrite *bw;
961			bw = (struct aac_blockwrite *)&fib->data[0];
962			bw->Command = VM_CtBlockWrite;
963			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
964			bw->BlockNumber = bp->bio_pblkno;
965			bw->ByteCount = bp->bio_bcount;
966			bw->Stable = CUNSTABLE;
967			fib->Header.Size += sizeof(struct aac_blockwrite);
968			cm->cm_flags |= AAC_CMD_DATAOUT;
969			cm->cm_sgtable = &bw->SgMap;
970		}
971	} else {
972		fib->Header.Command = ContainerCommand64;
973		if (bp->bio_cmd == BIO_READ) {
974			struct aac_blockread64 *br;
975			br = (struct aac_blockread64 *)&fib->data[0];
976			br->Command = VM_CtHostRead64;
977			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
978			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
979			br->BlockNumber = bp->bio_pblkno;
980			br->Pad = 0;
981			br->Flags = 0;
982			fib->Header.Size += sizeof(struct aac_blockread64);
983			cm->cm_flags |= AAC_CMD_DATAOUT;
984			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
985		} else {
986			struct aac_blockwrite64 *bw;
987			bw = (struct aac_blockwrite64 *)&fib->data[0];
988			bw->Command = VM_CtHostWrite64;
989			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
990			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
991			bw->BlockNumber = bp->bio_pblkno;
992			bw->Pad = 0;
993			bw->Flags = 0;
994			fib->Header.Size += sizeof(struct aac_blockwrite64);
995			cm->cm_flags |= AAC_CMD_DATAIN;
996			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
997		}
998	}
999
1000	*cmp = cm;
1001	return(0);
1002
1003fail:
1004	if (cm != NULL)
1005		aac_release_command(cm);
1006	return(ENOMEM);
1007}
1008
1009/*
1010 * Handle a bio-instigated command that has been completed.
1011 */
1012static void
1013aac_bio_complete(struct aac_command *cm)
1014{
1015	struct aac_blockread_response *brr;
1016	struct aac_blockwrite_response *bwr;
1017	struct bio *bp;
1018	AAC_FSAStatus status;
1019
1020	/* fetch relevant status and then release the command */
1021	bp = (struct bio *)cm->cm_private;
1022	if (bp->bio_cmd == BIO_READ) {
1023		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1024		status = brr->Status;
1025	} else {
1026		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1027		status = bwr->Status;
1028	}
1029	aac_release_command(cm);
1030
1031	/* fix up the bio based on status */
1032	if (status == ST_OK) {
1033		bp->bio_resid = 0;
1034	} else {
1035		bp->bio_error = EIO;
1036		bp->bio_flags |= BIO_ERROR;
1037		/* pass an error string out to the disk layer */
1038		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1039						    status);
1040	}
1041	aac_biodone(bp);
1042}
1043
1044/*
1045 * Submit a command to the controller, return when it completes.
1046 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1047 *     be stuck here forever.  At the same time, signals are not caught
1048 *     because there is a risk that a signal could wakeup the sleep before
1049 *     the card has a chance to complete the command.  Since there is no way
1050 *     to cancel a command that is in progress, we can't protect against the
1051 *     card completing a command late and spamming the command and data
1052 *     memory.  So, we are held hostage until the command completes.
1053 */
1054static int
1055aac_wait_command(struct aac_command *cm)
1056{
1057	struct aac_softc *sc;
1058	int error;
1059
1060	debug_called(2);
1061
1062	sc = cm->cm_sc;
1063
1064	/* Put the command on the ready queue and get things going */
1065	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1066	aac_enqueue_ready(cm);
1067	aac_startio(sc);
1068	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1069	return(error);
1070}
1071
1072/*
1073 *Command Buffer Management
1074 */
1075
1076/*
1077 * Allocate a command.
1078 */
1079int
1080aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1081{
1082	struct aac_command *cm;
1083
1084	debug_called(3);
1085
1086	if ((cm = aac_dequeue_free(sc)) == NULL) {
1087		if (sc->total_fibs < sc->aac_max_fibs) {
1088			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1089			wakeup(sc->aifthread);
1090		}
1091		return (EBUSY);
1092	}
1093
1094	*cmp = cm;
1095	return(0);
1096}
1097
1098/*
1099 * Release a command back to the freelist.
1100 */
1101void
1102aac_release_command(struct aac_command *cm)
1103{
1104	debug_called(3);
1105
1106	/* (re)initialise the command/FIB */
1107	cm->cm_sgtable = NULL;
1108	cm->cm_flags = 0;
1109	cm->cm_complete = NULL;
1110	cm->cm_private = NULL;
1111	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1112	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1113	cm->cm_fib->Header.Flags = 0;
1114	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1115
1116	/*
1117	 * These are duplicated in aac_start to cover the case where an
1118	 * intermediate stage may have destroyed them.  They're left
1119	 * initialised here for debugging purposes only.
1120	 */
1121	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1122	cm->cm_fib->Header.SenderData = 0;
1123
1124	aac_enqueue_free(cm);
1125}
1126
1127/*
1128 * Map helper for command/FIB allocation.
1129 */
1130static void
1131aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1132{
1133	uint32_t	*fibphys;
1134
1135	fibphys = (uint32_t *)arg;
1136
1137	debug_called(3);
1138
1139	*fibphys = segs[0].ds_addr;
1140}
1141
1142/*
1143 * Allocate and initialise commands/FIBs for this adapter.
1144 */
1145static int
1146aac_alloc_commands(struct aac_softc *sc)
1147{
1148	struct aac_command *cm;
1149	struct aac_fibmap *fm;
1150	uint32_t fibphys;
1151	int i, error;
1152
1153	debug_called(2);
1154
1155	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1156		return (ENOMEM);
1157
1158	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1159	if (fm == NULL)
1160		return (ENOMEM);
1161
1162	/* allocate the FIBs in DMAable memory and load them */
1163	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1164			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1165		device_printf(sc->aac_dev,
1166			      "Not enough contiguous memory available.\n");
1167		free(fm, M_AACBUF);
1168		return (ENOMEM);
1169	}
1170
1171	/* Ignore errors since this doesn't bounce */
1172	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1173			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1174			      aac_map_command_helper, &fibphys, 0);
1175
1176	/* initialise constant fields in the command structure */
1177	mtx_lock(&sc->aac_io_lock);
1178	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1179	for (i = 0; i < AAC_FIB_COUNT; i++) {
1180		cm = sc->aac_commands + sc->total_fibs;
1181		fm->aac_commands = cm;
1182		cm->cm_sc = sc;
1183		cm->cm_fib = fm->aac_fibs + i;
1184		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1185		cm->cm_index = sc->total_fibs;
1186
1187		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1188					       &cm->cm_datamap)) == 0)
1189			aac_release_command(cm);
1190		else
1191			break;
1192		sc->total_fibs++;
1193	}
1194
1195	if (i > 0) {
1196		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1197		debug(1, "total_fibs= %d\n", sc->total_fibs);
1198		mtx_unlock(&sc->aac_io_lock);
1199		return (0);
1200	}
1201
1202	mtx_unlock(&sc->aac_io_lock);
1203	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1204	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1205	free(fm, M_AACBUF);
1206	return (ENOMEM);
1207}
1208
1209/*
1210 * Free FIBs owned by this adapter.
1211 */
1212static void
1213aac_free_commands(struct aac_softc *sc)
1214{
1215	struct aac_fibmap *fm;
1216	struct aac_command *cm;
1217	int i;
1218
1219	debug_called(1);
1220
1221	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1222
1223		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1224		/*
1225		 * We check against total_fibs to handle partially
1226		 * allocated blocks.
1227		 */
1228		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1229			cm = fm->aac_commands + i;
1230			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1231		}
1232		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1233		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1234		free(fm, M_AACBUF);
1235	}
1236}
1237
1238/*
1239 * Command-mapping helper function - populate this command's s/g table.
1240 */
1241static void
1242aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1243{
1244	struct aac_softc *sc;
1245	struct aac_command *cm;
1246	struct aac_fib *fib;
1247	int i;
1248
1249	debug_called(3);
1250
1251	cm = (struct aac_command *)arg;
1252	sc = cm->cm_sc;
1253	fib = cm->cm_fib;
1254
1255	/* copy into the FIB */
1256	if (cm->cm_sgtable != NULL) {
1257		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1258			struct aac_sg_table *sg;
1259			sg = cm->cm_sgtable;
1260			sg->SgCount = nseg;
1261			for (i = 0; i < nseg; i++) {
1262				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1263				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1264			}
1265			/* update the FIB size for the s/g count */
1266			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1267		} else {
1268			struct aac_sg_table64 *sg;
1269			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1270			sg->SgCount = nseg;
1271			for (i = 0; i < nseg; i++) {
1272				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1273				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1274			}
1275			/* update the FIB size for the s/g count */
1276			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1277		}
1278	}
1279
1280	/* Fix up the address values in the FIB.  Use the command array index
1281	 * instead of a pointer since these fields are only 32 bits.  Shift
1282	 * the SenderFibAddress over to make room for the fast response bit.
1283	 */
1284	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1285	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1286
1287	/* save a pointer to the command for speedy reverse-lookup */
1288	cm->cm_fib->Header.SenderData = cm->cm_index;
1289
1290	if (cm->cm_flags & AAC_CMD_DATAIN)
1291		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1292				BUS_DMASYNC_PREREAD);
1293	if (cm->cm_flags & AAC_CMD_DATAOUT)
1294		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1295				BUS_DMASYNC_PREWRITE);
1296	cm->cm_flags |= AAC_CMD_MAPPED;
1297
1298	/* Put the FIB on the outbound queue */
1299	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1300		aac_unmap_command(cm);
1301		sc->flags |= AAC_QUEUE_FRZN;
1302		aac_requeue_ready(cm);
1303	}
1304
1305	return;
1306}
1307
1308/*
1309 * Unmap a command from controller-visible space.
1310 */
1311static void
1312aac_unmap_command(struct aac_command *cm)
1313{
1314	struct aac_softc *sc;
1315
1316	debug_called(2);
1317
1318	sc = cm->cm_sc;
1319
1320	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1321		return;
1322
1323	if (cm->cm_datalen != 0) {
1324		if (cm->cm_flags & AAC_CMD_DATAIN)
1325			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1326					BUS_DMASYNC_POSTREAD);
1327		if (cm->cm_flags & AAC_CMD_DATAOUT)
1328			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1329					BUS_DMASYNC_POSTWRITE);
1330
1331		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1332	}
1333	cm->cm_flags &= ~AAC_CMD_MAPPED;
1334}
1335
1336/*
1337 * Hardware Interface
1338 */
1339
1340/*
1341 * Initialise the adapter.
1342 */
1343static void
1344aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1345{
1346	struct aac_softc *sc;
1347
1348	debug_called(1);
1349
1350	sc = (struct aac_softc *)arg;
1351
1352	sc->aac_common_busaddr = segs[0].ds_addr;
1353}
1354
1355static int
1356aac_check_firmware(struct aac_softc *sc)
1357{
1358	u_int32_t major, minor, options;
1359
1360	debug_called(1);
1361
1362	/*
1363	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1364	 * firmware version 1.x are not compatible with this driver.
1365	 */
1366	if (sc->flags & AAC_FLAGS_PERC2QC) {
1367		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1368				     NULL)) {
1369			device_printf(sc->aac_dev,
1370				      "Error reading firmware version\n");
1371			return (EIO);
1372		}
1373
1374		/* These numbers are stored as ASCII! */
1375		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1376		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1377		if (major == 1) {
1378			device_printf(sc->aac_dev,
1379			    "Firmware version %d.%d is not supported.\n",
1380			    major, minor);
1381			return (EINVAL);
1382		}
1383	}
1384
1385	/*
1386	 * Retrieve the capabilities/supported options word so we know what
1387	 * work-arounds to enable.
1388	 */
1389	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1390		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1391		return (EIO);
1392	}
1393	options = AAC_GET_MAILBOX(sc, 1);
1394	sc->supported_options = options;
1395
1396	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1397	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1398		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1399	if (options & AAC_SUPPORTED_NONDASD)
1400		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1401	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1402	     && (sizeof(bus_addr_t) > 4)) {
1403		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1404		sc->flags |= AAC_FLAGS_SG_64BIT;
1405	}
1406
1407	/* Check for broken hardware that does a lower number of commands */
1408	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1409		sc->aac_max_fibs = AAC_MAX_FIBS;
1410	else
1411		sc->aac_max_fibs = 256;
1412
1413	return (0);
1414}
1415
1416static int
1417aac_init(struct aac_softc *sc)
1418{
1419	struct aac_adapter_init	*ip;
1420	time_t then;
1421	u_int32_t code, qoffset;
1422	int error;
1423
1424	debug_called(1);
1425
1426	/*
1427	 * First wait for the adapter to come ready.
1428	 */
1429	then = time_second;
1430	do {
1431		code = AAC_GET_FWSTATUS(sc);
1432		if (code & AAC_SELF_TEST_FAILED) {
1433			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1434			return(ENXIO);
1435		}
1436		if (code & AAC_KERNEL_PANIC) {
1437			device_printf(sc->aac_dev,
1438				      "FATAL: controller kernel panic\n");
1439			return(ENXIO);
1440		}
1441		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1442			device_printf(sc->aac_dev,
1443				      "FATAL: controller not coming ready, "
1444					   "status %x\n", code);
1445			return(ENXIO);
1446		}
1447	} while (!(code & AAC_UP_AND_RUNNING));
1448
1449	error = ENOMEM;
1450	/*
1451	 * Create DMA tag for mapping buffers into controller-addressable space.
1452	 */
1453	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1454			       1, 0, 			/* algnmnt, boundary */
1455			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1456			       BUS_SPACE_MAXADDR :
1457			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1458			       BUS_SPACE_MAXADDR, 	/* highaddr */
1459			       NULL, NULL, 		/* filter, filterarg */
1460			       MAXBSIZE,		/* maxsize */
1461			       AAC_MAXSGENTRIES,	/* nsegments */
1462			       MAXBSIZE,		/* maxsegsize */
1463			       BUS_DMA_ALLOCNOW,	/* flags */
1464			       busdma_lock_mutex,	/* lockfunc */
1465			       &sc->aac_io_lock,	/* lockfuncarg */
1466			       &sc->aac_buffer_dmat)) {
1467		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1468		goto out;
1469	}
1470
1471	/*
1472	 * Create DMA tag for mapping FIBs into controller-addressable space..
1473	 */
1474	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1475			       1, 0, 			/* algnmnt, boundary */
1476			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1477			       BUS_SPACE_MAXADDR_32BIT :
1478			       0x7fffffff,		/* lowaddr */
1479			       BUS_SPACE_MAXADDR, 	/* highaddr */
1480			       NULL, NULL, 		/* filter, filterarg */
1481			       AAC_FIB_COUNT *
1482			       sizeof(struct aac_fib),  /* maxsize */
1483			       1,			/* nsegments */
1484			       AAC_FIB_COUNT *
1485			       sizeof(struct aac_fib),	/* maxsegsize */
1486			       0,			/* flags */
1487			       NULL, NULL,		/* No locking needed */
1488			       &sc->aac_fib_dmat)) {
1489		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1490		goto out;
1491	}
1492
1493	/*
1494	 * Create DMA tag for the common structure and allocate it.
1495	 */
1496	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1497			       1, 0,			/* algnmnt, boundary */
1498			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1499			       BUS_SPACE_MAXADDR_32BIT :
1500			       0x7fffffff,		/* lowaddr */
1501			       BUS_SPACE_MAXADDR, 	/* highaddr */
1502			       NULL, NULL, 		/* filter, filterarg */
1503			       8192 + sizeof(struct aac_common), /* maxsize */
1504			       1,			/* nsegments */
1505			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1506			       0,			/* flags */
1507			       NULL, NULL,		/* No locking needed */
1508			       &sc->aac_common_dmat)) {
1509		device_printf(sc->aac_dev,
1510			      "can't allocate common structure DMA tag\n");
1511		goto out;
1512	}
1513	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1514			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1515		device_printf(sc->aac_dev, "can't allocate common structure\n");
1516		goto out;
1517	}
1518
1519	/*
1520	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1521	 * below address 8192 in physical memory.
1522	 * XXX If the padding is not needed, can it be put to use instead
1523	 * of ignored?
1524	 */
1525	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1526			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1527			aac_common_map, sc, 0);
1528
1529	if (sc->aac_common_busaddr < 8192) {
1530		sc->aac_common = (struct aac_common *)
1531		    ((uint8_t *)sc->aac_common + 8192);
1532		sc->aac_common_busaddr += 8192;
1533	}
1534	bzero(sc->aac_common, sizeof(*sc->aac_common));
1535
1536	/* Allocate some FIBs and associated command structs */
1537	TAILQ_INIT(&sc->aac_fibmap_tqh);
1538	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1539				  M_AACBUF, M_WAITOK|M_ZERO);
1540	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1541		if (aac_alloc_commands(sc) != 0)
1542			break;
1543	}
1544	if (sc->total_fibs == 0)
1545		goto out;
1546
1547	/*
1548	 * Fill in the init structure.  This tells the adapter about the
1549	 * physical location of various important shared data structures.
1550	 */
1551	ip = &sc->aac_common->ac_init;
1552	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1553	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1554
1555	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1556					 offsetof(struct aac_common, ac_fibs);
1557	ip->AdapterFibsVirtualAddress = 0;
1558	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1559	ip->AdapterFibAlign = sizeof(struct aac_fib);
1560
1561	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1562				  offsetof(struct aac_common, ac_printf);
1563	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1564
1565	/*
1566	 * The adapter assumes that pages are 4K in size, except on some
1567 	 * broken firmware versions that do the page->byte conversion twice,
1568	 * therefore 'assuming' that this value is in 16MB units (2^24).
1569	 * Round up since the granularity is so high.
1570	 */
1571	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1572	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1573		ip->HostPhysMemPages =
1574		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1575	}
1576	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1577
1578	/*
1579	 * Initialise FIB queues.  Note that it appears that the layout of the
1580	 * indexes and the segmentation of the entries may be mandated by the
1581	 * adapter, which is only told about the base of the queue index fields.
1582	 *
1583	 * The initial values of the indices are assumed to inform the adapter
1584	 * of the sizes of the respective queues, and theoretically it could
1585	 * work out the entire layout of the queue structures from this.  We
1586	 * take the easy route and just lay this area out like everyone else
1587	 * does.
1588	 *
1589	 * The Linux driver uses a much more complex scheme whereby several
1590	 * header records are kept for each queue.  We use a couple of generic
1591	 * list manipulation functions which 'know' the size of each list by
1592	 * virtue of a table.
1593	 */
1594	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1595	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1596	sc->aac_queues =
1597	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1598	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1599
1600	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1601		AAC_HOST_NORM_CMD_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1603		AAC_HOST_NORM_CMD_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1605		AAC_HOST_HIGH_CMD_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1607		AAC_HOST_HIGH_CMD_ENTRIES;
1608	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1609		AAC_ADAP_NORM_CMD_ENTRIES;
1610	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1611		AAC_ADAP_NORM_CMD_ENTRIES;
1612	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1613		AAC_ADAP_HIGH_CMD_ENTRIES;
1614	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1615		AAC_ADAP_HIGH_CMD_ENTRIES;
1616	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1617		AAC_HOST_NORM_RESP_ENTRIES;
1618	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1619		AAC_HOST_NORM_RESP_ENTRIES;
1620	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1621		AAC_HOST_HIGH_RESP_ENTRIES;
1622	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1623		AAC_HOST_HIGH_RESP_ENTRIES;
1624	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1625		AAC_ADAP_NORM_RESP_ENTRIES;
1626	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1627		AAC_ADAP_NORM_RESP_ENTRIES;
1628	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1629		AAC_ADAP_HIGH_RESP_ENTRIES;
1630	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1631		AAC_ADAP_HIGH_RESP_ENTRIES;
1632	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1633		&sc->aac_queues->qt_HostNormCmdQueue[0];
1634	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1635		&sc->aac_queues->qt_HostHighCmdQueue[0];
1636	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1637		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1638	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1639		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1640	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1641		&sc->aac_queues->qt_HostNormRespQueue[0];
1642	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1643		&sc->aac_queues->qt_HostHighRespQueue[0];
1644	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1645		&sc->aac_queues->qt_AdapNormRespQueue[0];
1646	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1647		&sc->aac_queues->qt_AdapHighRespQueue[0];
1648
1649	/*
1650	 * Do controller-type-specific initialisation
1651	 */
1652	switch (sc->aac_hwif) {
1653	case AAC_HWIF_I960RX:
1654		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1655		break;
1656	case AAC_HWIF_RKT:
1657		AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
1658		break;
1659	default:
1660		break;
1661	}
1662
1663	/*
1664	 * Give the init structure to the controller.
1665	 */
1666	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1667			     sc->aac_common_busaddr +
1668			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1669			     NULL)) {
1670		device_printf(sc->aac_dev,
1671			      "error establishing init structure\n");
1672		error = EIO;
1673		goto out;
1674	}
1675
1676	error = 0;
1677out:
1678	return(error);
1679}
1680
1681/*
1682 * Send a synchronous command to the controller and wait for a result.
1683 */
1684static int
1685aac_sync_command(struct aac_softc *sc, u_int32_t command,
1686		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1687		 u_int32_t *sp)
1688{
1689	time_t then;
1690	u_int32_t status;
1691
1692	debug_called(3);
1693
1694	/* populate the mailbox */
1695	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1696
1697	/* ensure the sync command doorbell flag is cleared */
1698	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1699
1700	/* then set it to signal the adapter */
1701	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1702
1703	/* spin waiting for the command to complete */
1704	then = time_second;
1705	do {
1706		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1707			debug(1, "timed out");
1708			return(EIO);
1709		}
1710	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1711
1712	/* clear the completion flag */
1713	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1714
1715	/* get the command status */
1716	status = AAC_GET_MAILBOX(sc, 0);
1717	if (sp != NULL)
1718		*sp = status;
1719	return(0);
1720}
1721
1722int
1723aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1724		 struct aac_fib *fib, u_int16_t datasize)
1725{
1726	debug_called(3);
1727
1728	if (datasize > AAC_FIB_DATASIZE)
1729		return(EINVAL);
1730
1731	/*
1732	 * Set up the sync FIB
1733	 */
1734	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1735				AAC_FIBSTATE_INITIALISED |
1736				AAC_FIBSTATE_EMPTY;
1737	fib->Header.XferState |= xferstate;
1738	fib->Header.Command = command;
1739	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1740	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1741	fib->Header.SenderSize = sizeof(struct aac_fib);
1742	fib->Header.SenderFibAddress = 0;	/* Not needed */
1743	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1744					 offsetof(struct aac_common,
1745						  ac_sync_fib);
1746
1747	/*
1748	 * Give the FIB to the controller, wait for a response.
1749	 */
1750	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1751			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1752		debug(2, "IO error");
1753		return(EIO);
1754	}
1755
1756	return (0);
1757}
1758
1759/*
1760 * Adapter-space FIB queue manipulation
1761 *
1762 * Note that the queue implementation here is a little funky; neither the PI or
1763 * CI will ever be zero.  This behaviour is a controller feature.
1764 */
1765static struct {
1766	int		size;
1767	int		notify;
1768} aac_qinfo[] = {
1769	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1770	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1771	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1772	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1773	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1774	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1775	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1776	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1777};
1778
1779/*
1780 * Atomically insert an entry into the nominated queue, returns 0 on success or
1781 * EBUSY if the queue is full.
1782 *
1783 * Note: it would be more efficient to defer notifying the controller in
1784 *	 the case where we may be inserting several entries in rapid succession,
1785 *	 but implementing this usefully may be difficult (it would involve a
1786 *	 separate queue/notify interface).
1787 */
1788static int
1789aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1790{
1791	u_int32_t pi, ci;
1792	int error;
1793	u_int32_t fib_size;
1794	u_int32_t fib_addr;
1795
1796	debug_called(3);
1797
1798	fib_size = cm->cm_fib->Header.Size;
1799	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1800
1801	/* get the producer/consumer indices */
1802	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1803	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1804
1805	/* wrap the queue? */
1806	if (pi >= aac_qinfo[queue].size)
1807		pi = 0;
1808
1809	/* check for queue full */
1810	if ((pi + 1) == ci) {
1811		error = EBUSY;
1812		goto out;
1813	}
1814
1815	/*
1816	 * To avoid a race with its completion interrupt, place this command on
1817	 * the busy queue prior to advertising it to the controller.
1818	 */
1819	aac_enqueue_busy(cm);
1820
1821	/* populate queue entry */
1822	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1823	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1824
1825	/* update producer index */
1826	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1827
1828	/* notify the adapter if we know how */
1829	if (aac_qinfo[queue].notify != 0)
1830		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1831
1832	error = 0;
1833
1834out:
1835	return(error);
1836}
1837
1838/*
1839 * Atomically remove one entry from the nominated queue, returns 0 on
1840 * success or ENOENT if the queue is empty.
1841 */
1842static int
1843aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1844		struct aac_fib **fib_addr)
1845{
1846	u_int32_t pi, ci;
1847	u_int32_t fib_index;
1848	int error;
1849	int notify;
1850
1851	debug_called(3);
1852
1853	/* get the producer/consumer indices */
1854	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1855	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1856
1857	/* check for queue empty */
1858	if (ci == pi) {
1859		error = ENOENT;
1860		goto out;
1861	}
1862
1863	/* wrap the pi so the following test works */
1864	if (pi >= aac_qinfo[queue].size)
1865		pi = 0;
1866
1867	notify = 0;
1868	if (ci == pi + 1)
1869		notify++;
1870
1871	/* wrap the queue? */
1872	if (ci >= aac_qinfo[queue].size)
1873		ci = 0;
1874
1875	/* fetch the entry */
1876	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1877
1878	switch (queue) {
1879	case AAC_HOST_NORM_CMD_QUEUE:
1880	case AAC_HOST_HIGH_CMD_QUEUE:
1881		/*
1882		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1883		 * on to hold an address.  For AIF's, the adapter assumes
1884		 * that it's giving us an address into the array of AIF fibs.
1885		 * Therefore, we have to convert it to an index.
1886		 */
1887		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1888			sizeof(struct aac_fib);
1889		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1890		break;
1891
1892	case AAC_HOST_NORM_RESP_QUEUE:
1893	case AAC_HOST_HIGH_RESP_QUEUE:
1894	{
1895		struct aac_command *cm;
1896
1897		/*
1898		 * As above, an index is used instead of an actual address.
1899		 * Gotta shift the index to account for the fast response
1900		 * bit.  No other correction is needed since this value was
1901		 * originally provided by the driver via the SenderFibAddress
1902		 * field.
1903		 */
1904		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1905		cm = sc->aac_commands + (fib_index >> 1);
1906		*fib_addr = cm->cm_fib;
1907
1908		/*
1909		 * Is this a fast response? If it is, update the fib fields in
1910		 * local memory since the whole fib isn't DMA'd back up.
1911		 */
1912		if (fib_index & 0x01) {
1913			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1914			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1915		}
1916		break;
1917	}
1918	default:
1919		panic("Invalid queue in aac_dequeue_fib()");
1920		break;
1921	}
1922
1923	/* update consumer index */
1924	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1925
1926	/* if we have made the queue un-full, notify the adapter */
1927	if (notify && (aac_qinfo[queue].notify != 0))
1928		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1929	error = 0;
1930
1931out:
1932	return(error);
1933}
1934
1935/*
1936 * Put our response to an Adapter Initialed Fib on the response queue
1937 */
1938static int
1939aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1940{
1941	u_int32_t pi, ci;
1942	int error;
1943	u_int32_t fib_size;
1944	u_int32_t fib_addr;
1945
1946	debug_called(1);
1947
1948	/* Tell the adapter where the FIB is */
1949	fib_size = fib->Header.Size;
1950	fib_addr = fib->Header.SenderFibAddress;
1951	fib->Header.ReceiverFibAddress = fib_addr;
1952
1953	/* get the producer/consumer indices */
1954	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1955	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1956
1957	/* wrap the queue? */
1958	if (pi >= aac_qinfo[queue].size)
1959		pi = 0;
1960
1961	/* check for queue full */
1962	if ((pi + 1) == ci) {
1963		error = EBUSY;
1964		goto out;
1965	}
1966
1967	/* populate queue entry */
1968	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1969	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1970
1971	/* update producer index */
1972	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1973
1974	/* notify the adapter if we know how */
1975	if (aac_qinfo[queue].notify != 0)
1976		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1977
1978	error = 0;
1979
1980out:
1981	return(error);
1982}
1983
1984/*
1985 * Check for commands that have been outstanding for a suspiciously long time,
1986 * and complain about them.
1987 */
1988static void
1989aac_timeout(struct aac_softc *sc)
1990{
1991	struct aac_command *cm;
1992	time_t deadline;
1993	int timedout, code;
1994
1995	/*
1996	 * Traverse the busy command list, bitch about late commands once
1997	 * only.
1998	 */
1999	timedout = 0;
2000	deadline = time_second - AAC_CMD_TIMEOUT;
2001	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2002		if ((cm->cm_timestamp  < deadline)
2003			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2004			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2005			device_printf(sc->aac_dev,
2006				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2007				      cm, (int)(time_second-cm->cm_timestamp));
2008			AAC_PRINT_FIB(sc, cm->cm_fib);
2009			timedout++;
2010		}
2011	}
2012
2013	if (timedout) {
2014		code = AAC_GET_FWSTATUS(sc);
2015		if (code != AAC_UP_AND_RUNNING) {
2016			device_printf(sc->aac_dev, "WARNING! Controller is no "
2017				      "longer running! code= 0x%x\n", code);
2018		}
2019	}
2020	return;
2021}
2022
2023/*
2024 * Interface Function Vectors
2025 */
2026
2027/*
2028 * Read the current firmware status word.
2029 */
2030static int
2031aac_sa_get_fwstatus(struct aac_softc *sc)
2032{
2033	debug_called(3);
2034
2035	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2036}
2037
2038static int
2039aac_rx_get_fwstatus(struct aac_softc *sc)
2040{
2041	debug_called(3);
2042
2043	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2044}
2045
2046static int
2047aac_fa_get_fwstatus(struct aac_softc *sc)
2048{
2049	int val;
2050
2051	debug_called(3);
2052
2053	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2054	return (val);
2055}
2056
2057static int
2058aac_rkt_get_fwstatus(struct aac_softc *sc)
2059{
2060	debug_called(3);
2061
2062	return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
2063}
2064
2065/*
2066 * Notify the controller of a change in a given queue
2067 */
2068
2069static void
2070aac_sa_qnotify(struct aac_softc *sc, int qbit)
2071{
2072	debug_called(3);
2073
2074	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2075}
2076
2077static void
2078aac_rx_qnotify(struct aac_softc *sc, int qbit)
2079{
2080	debug_called(3);
2081
2082	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2083}
2084
2085static void
2086aac_fa_qnotify(struct aac_softc *sc, int qbit)
2087{
2088	debug_called(3);
2089
2090	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2091	AAC_FA_HACK(sc);
2092}
2093
2094static void
2095aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2096{
2097	debug_called(3);
2098
2099	AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
2100}
2101
2102/*
2103 * Get the interrupt reason bits
2104 */
2105static int
2106aac_sa_get_istatus(struct aac_softc *sc)
2107{
2108	debug_called(3);
2109
2110	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2111}
2112
2113static int
2114aac_rx_get_istatus(struct aac_softc *sc)
2115{
2116	debug_called(3);
2117
2118	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2119}
2120
2121static int
2122aac_fa_get_istatus(struct aac_softc *sc)
2123{
2124	int val;
2125
2126	debug_called(3);
2127
2128	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2129	return (val);
2130}
2131
2132static int
2133aac_rkt_get_istatus(struct aac_softc *sc)
2134{
2135	debug_called(3);
2136
2137	return(AAC_GETREG4(sc, AAC_RKT_ODBR));
2138}
2139
2140/*
2141 * Clear some interrupt reason bits
2142 */
2143static void
2144aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2145{
2146	debug_called(3);
2147
2148	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2149}
2150
2151static void
2152aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2153{
2154	debug_called(3);
2155
2156	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2157}
2158
2159static void
2160aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2161{
2162	debug_called(3);
2163
2164	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2165	AAC_FA_HACK(sc);
2166}
2167
2168static void
2169aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2170{
2171	debug_called(3);
2172
2173	AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
2174}
2175
2176/*
2177 * Populate the mailbox and set the command word
2178 */
2179static void
2180aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2181		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2182{
2183	debug_called(4);
2184
2185	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2186	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2187	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2188	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2189	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2190}
2191
2192static void
2193aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2194		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2195{
2196	debug_called(4);
2197
2198	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2199	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2200	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2201	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2202	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2203}
2204
2205static void
2206aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2207		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2208{
2209	debug_called(4);
2210
2211	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2212	AAC_FA_HACK(sc);
2213	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2214	AAC_FA_HACK(sc);
2215	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2216	AAC_FA_HACK(sc);
2217	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2218	AAC_FA_HACK(sc);
2219	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2220	AAC_FA_HACK(sc);
2221}
2222
2223static void
2224aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2225		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2226{
2227	debug_called(4);
2228
2229	AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
2230	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2231	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2232	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2233	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2234}
2235
2236/*
2237 * Fetch the immediate command status word
2238 */
2239static int
2240aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2241{
2242	debug_called(4);
2243
2244	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2245}
2246
2247static int
2248aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2249{
2250	debug_called(4);
2251
2252	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2253}
2254
2255static int
2256aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2257{
2258	int val;
2259
2260	debug_called(4);
2261
2262	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2263	return (val);
2264}
2265
2266static int
2267aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2268{
2269	debug_called(4);
2270
2271	return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2272}
2273
2274/*
2275 * Set/clear interrupt masks
2276 */
2277static void
2278aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2279{
2280	debug(2, "%sable interrupts", enable ? "en" : "dis");
2281
2282	if (enable) {
2283		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2284	} else {
2285		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2286	}
2287}
2288
2289static void
2290aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2291{
2292	debug(2, "%sable interrupts", enable ? "en" : "dis");
2293
2294	if (enable) {
2295		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2296	} else {
2297		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2298	}
2299}
2300
2301static void
2302aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2303{
2304	debug(2, "%sable interrupts", enable ? "en" : "dis");
2305
2306	if (enable) {
2307		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2308		AAC_FA_HACK(sc);
2309	} else {
2310		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2311		AAC_FA_HACK(sc);
2312	}
2313}
2314
2315static void
2316aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2317{
2318	debug(2, "%sable interrupts", enable ? "en" : "dis");
2319
2320	if (enable) {
2321		AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2322	} else {
2323		AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
2324	}
2325}
2326
2327/*
2328 * Debugging and Diagnostics
2329 */
2330
2331/*
2332 * Print some information about the controller.
2333 */
2334static void
2335aac_describe_controller(struct aac_softc *sc)
2336{
2337	struct aac_fib *fib;
2338	struct aac_adapter_info	*info;
2339
2340	debug_called(2);
2341
2342	aac_alloc_sync_fib(sc, &fib);
2343
2344	fib->data[0] = 0;
2345	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2346		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2347		aac_release_sync_fib(sc);
2348		return;
2349	}
2350
2351	/* save the kernel revision structure for later use */
2352	info = (struct aac_adapter_info *)&fib->data[0];
2353	sc->aac_revision = info->KernelRevision;
2354
2355	if (bootverbose) {
2356		device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
2357		    "(%dMB cache, %dMB execution), %s\n",
2358		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2359		    info->ClockSpeed, info->TotalMem / (1024 * 1024),
2360		    info->BufferMem / (1024 * 1024),
2361		    info->ExecutionMem / (1024 * 1024),
2362		    aac_describe_code(aac_battery_platform,
2363		    info->batteryPlatform));
2364
2365		device_printf(sc->aac_dev,
2366		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2367		    info->KernelRevision.external.comp.major,
2368		    info->KernelRevision.external.comp.minor,
2369		    info->KernelRevision.external.comp.dash,
2370		    info->KernelRevision.buildNumber,
2371		    (u_int32_t)(info->SerialNumber & 0xffffff));
2372
2373		device_printf(sc->aac_dev, "Supported Options=%b\n",
2374			      sc->supported_options,
2375			      "\20"
2376			      "\1SNAPSHOT"
2377			      "\2CLUSTERS"
2378			      "\3WCACHE"
2379			      "\4DATA64"
2380			      "\5HOSTTIME"
2381			      "\6RAID50"
2382			      "\7WINDOW4GB"
2383			      "\10SCSIUPGD"
2384			      "\11SOFTERR"
2385			      "\12NORECOND"
2386			      "\13SGMAP64"
2387			      "\14ALARM"
2388			      "\15NONDASD");
2389	}
2390	aac_release_sync_fib(sc);
2391}
2392
2393/*
2394 * Look up a text description of a numeric error code and return a pointer to
2395 * same.
2396 */
2397static char *
2398aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2399{
2400	int i;
2401
2402	for (i = 0; table[i].string != NULL; i++)
2403		if (table[i].code == code)
2404			return(table[i].string);
2405	return(table[i + 1].string);
2406}
2407
2408/*
2409 * Management Interface
2410 */
2411
2412static int
2413aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2414{
2415	struct aac_softc *sc;
2416
2417	debug_called(2);
2418
2419	sc = dev->si_drv1;
2420
2421	/* Check to make sure the device isn't already open */
2422	if (sc->aac_state & AAC_STATE_OPEN) {
2423		return EBUSY;
2424	}
2425	sc->aac_state |= AAC_STATE_OPEN;
2426
2427	return 0;
2428}
2429
2430static int
2431aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2432{
2433	struct aac_softc *sc;
2434
2435	debug_called(2);
2436
2437	sc = dev->si_drv1;
2438
2439	/* Mark this unit as no longer open  */
2440	sc->aac_state &= ~AAC_STATE_OPEN;
2441
2442	return 0;
2443}
2444
2445static int
2446aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2447{
2448	union aac_statrequest *as;
2449	struct aac_softc *sc;
2450	int error = 0;
2451	uint32_t cookie;
2452
2453	debug_called(2);
2454
2455	as = (union aac_statrequest *)arg;
2456	sc = dev->si_drv1;
2457
2458	switch (cmd) {
2459	case AACIO_STATS:
2460		switch (as->as_item) {
2461		case AACQ_FREE:
2462		case AACQ_BIO:
2463		case AACQ_READY:
2464		case AACQ_BUSY:
2465			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2466			      sizeof(struct aac_qstat));
2467			break;
2468		default:
2469			error = ENOENT;
2470			break;
2471		}
2472	break;
2473
2474	case FSACTL_SENDFIB:
2475		arg = *(caddr_t*)arg;
2476	case FSACTL_LNX_SENDFIB:
2477		debug(1, "FSACTL_SENDFIB");
2478		error = aac_ioctl_sendfib(sc, arg);
2479		break;
2480	case FSACTL_AIF_THREAD:
2481	case FSACTL_LNX_AIF_THREAD:
2482		debug(1, "FSACTL_AIF_THREAD");
2483		error = EINVAL;
2484		break;
2485	case FSACTL_OPEN_GET_ADAPTER_FIB:
2486		arg = *(caddr_t*)arg;
2487	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2488		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2489		/*
2490		 * Pass the caller out an AdapterFibContext.
2491		 *
2492		 * Note that because we only support one opener, we
2493		 * basically ignore this.  Set the caller's context to a magic
2494		 * number just in case.
2495		 *
2496		 * The Linux code hands the driver a pointer into kernel space,
2497		 * and then trusts it when the caller hands it back.  Aiee!
2498		 * Here, we give it the proc pointer of the per-adapter aif
2499		 * thread. It's only used as a sanity check in other calls.
2500		 */
2501		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2502		error = copyout(&cookie, arg, sizeof(cookie));
2503		break;
2504	case FSACTL_GET_NEXT_ADAPTER_FIB:
2505		arg = *(caddr_t*)arg;
2506	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2507		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2508		error = aac_getnext_aif(sc, arg);
2509		break;
2510	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2511	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2512		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2513		/* don't do anything here */
2514		break;
2515	case FSACTL_MINIPORT_REV_CHECK:
2516		arg = *(caddr_t*)arg;
2517	case FSACTL_LNX_MINIPORT_REV_CHECK:
2518		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2519		error = aac_rev_check(sc, arg);
2520		break;
2521	case FSACTL_QUERY_DISK:
2522		arg = *(caddr_t*)arg;
2523	case FSACTL_LNX_QUERY_DISK:
2524		debug(1, "FSACTL_QUERY_DISK");
2525		error = aac_query_disk(sc, arg);
2526			break;
2527	case FSACTL_DELETE_DISK:
2528	case FSACTL_LNX_DELETE_DISK:
2529		/*
2530		 * We don't trust the underland to tell us when to delete a
2531		 * container, rather we rely on an AIF coming from the
2532		 * controller
2533		 */
2534		error = 0;
2535		break;
2536	default:
2537		debug(1, "unsupported cmd 0x%lx\n", cmd);
2538		error = EINVAL;
2539		break;
2540	}
2541	return(error);
2542}
2543
2544static int
2545aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2546{
2547	struct aac_softc *sc;
2548	int revents;
2549
2550	sc = dev->si_drv1;
2551	revents = 0;
2552
2553	mtx_lock(&sc->aac_aifq_lock);
2554	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2555		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2556			revents |= poll_events & (POLLIN | POLLRDNORM);
2557	}
2558	mtx_unlock(&sc->aac_aifq_lock);
2559
2560	if (revents == 0) {
2561		if (poll_events & (POLLIN | POLLRDNORM))
2562			selrecord(td, &sc->rcv_select);
2563	}
2564
2565	return (revents);
2566}
2567
2568/*
2569 * Send a FIB supplied from userspace
2570 */
2571static int
2572aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2573{
2574	struct aac_command *cm;
2575	int size, error;
2576
2577	debug_called(2);
2578
2579	cm = NULL;
2580
2581	/*
2582	 * Get a command
2583	 */
2584	mtx_lock(&sc->aac_io_lock);
2585	if (aac_alloc_command(sc, &cm)) {
2586		error = EBUSY;
2587		goto out;
2588	}
2589
2590	/*
2591	 * Fetch the FIB header, then re-copy to get data as well.
2592	 */
2593	if ((error = copyin(ufib, cm->cm_fib,
2594			    sizeof(struct aac_fib_header))) != 0)
2595		goto out;
2596	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2597	if (size > sizeof(struct aac_fib)) {
2598		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2599			      size, sizeof(struct aac_fib));
2600		size = sizeof(struct aac_fib);
2601	}
2602	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2603		goto out;
2604	cm->cm_fib->Header.Size = size;
2605	cm->cm_timestamp = time_second;
2606
2607	/*
2608	 * Pass the FIB to the controller, wait for it to complete.
2609	 */
2610	if ((error = aac_wait_command(cm)) != 0) {
2611		device_printf(sc->aac_dev,
2612			      "aac_wait_command return %d\n", error);
2613		goto out;
2614	}
2615
2616	/*
2617	 * Copy the FIB and data back out to the caller.
2618	 */
2619	size = cm->cm_fib->Header.Size;
2620	if (size > sizeof(struct aac_fib)) {
2621		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2622			      size, sizeof(struct aac_fib));
2623		size = sizeof(struct aac_fib);
2624	}
2625	error = copyout(cm->cm_fib, ufib, size);
2626
2627out:
2628	if (cm != NULL) {
2629		aac_release_command(cm);
2630	}
2631
2632	mtx_unlock(&sc->aac_io_lock);
2633	return(error);
2634}
2635
2636/*
2637 * Handle an AIF sent to us by the controller; queue it for later reference.
2638 * If the queue fills up, then drop the older entries.
2639 */
2640static void
2641aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2642{
2643	struct aac_aif_command *aif;
2644	struct aac_container *co, *co_next;
2645	struct aac_mntinfo *mi;
2646	struct aac_mntinforesp *mir = NULL;
2647	u_int16_t rsize;
2648	int next, found;
2649	int count = 0, added = 0, i = 0;
2650
2651	debug_called(2);
2652
2653	aif = (struct aac_aif_command*)&fib->data[0];
2654	aac_print_aif(sc, aif);
2655
2656	/* Is it an event that we should care about? */
2657	switch (aif->command) {
2658	case AifCmdEventNotify:
2659		switch (aif->data.EN.type) {
2660		case AifEnAddContainer:
2661		case AifEnDeleteContainer:
2662			/*
2663			 * A container was added or deleted, but the message
2664			 * doesn't tell us anything else!  Re-enumerate the
2665			 * containers and sort things out.
2666			 */
2667			aac_alloc_sync_fib(sc, &fib);
2668			mi = (struct aac_mntinfo *)&fib->data[0];
2669			do {
2670				/*
2671				 * Ask the controller for its containers one at
2672				 * a time.
2673				 * XXX What if the controller's list changes
2674				 * midway through this enumaration?
2675				 * XXX This should be done async.
2676				 */
2677				bzero(mi, sizeof(struct aac_mntinfo));
2678				mi->Command = VM_NameServe;
2679				mi->MntType = FT_FILESYS;
2680				mi->MntCount = i;
2681				rsize = sizeof(mir);
2682				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2683						 sizeof(struct aac_mntinfo))) {
2684					printf("Error probing container %d\n",
2685					      i);
2686					continue;
2687				}
2688				mir = (struct aac_mntinforesp *)&fib->data[0];
2689				/* XXX Need to check if count changed */
2690				count = mir->MntRespCount;
2691				/*
2692				 * Check the container against our list.
2693				 * co->co_found was already set to 0 in a
2694				 * previous run.
2695				 */
2696				if ((mir->Status == ST_OK) &&
2697				    (mir->MntTable[0].VolType != CT_NONE)) {
2698					found = 0;
2699					TAILQ_FOREACH(co,
2700						      &sc->aac_container_tqh,
2701						      co_link) {
2702						if (co->co_mntobj.ObjectId ==
2703						    mir->MntTable[0].ObjectId) {
2704							co->co_found = 1;
2705							found = 1;
2706							break;
2707						}
2708					}
2709					/*
2710					 * If the container matched, continue
2711					 * in the list.
2712					 */
2713					if (found) {
2714						i++;
2715						continue;
2716					}
2717
2718					/*
2719					 * This is a new container.  Do all the
2720					 * appropriate things to set it up.
2721					 */
2722					aac_add_container(sc, mir, 1);
2723					added = 1;
2724				}
2725				i++;
2726			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2727			aac_release_sync_fib(sc);
2728
2729			/*
2730			 * Go through our list of containers and see which ones
2731			 * were not marked 'found'.  Since the controller didn't
2732			 * list them they must have been deleted.  Do the
2733			 * appropriate steps to destroy the device.  Also reset
2734			 * the co->co_found field.
2735			 */
2736			co = TAILQ_FIRST(&sc->aac_container_tqh);
2737			while (co != NULL) {
2738				if (co->co_found == 0) {
2739					device_delete_child(sc->aac_dev,
2740							    co->co_disk);
2741					co_next = TAILQ_NEXT(co, co_link);
2742					mtx_lock(&sc->aac_container_lock);
2743					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2744						     co_link);
2745					mtx_unlock(&sc->aac_container_lock);
2746					free(co, M_AACBUF);
2747					co = co_next;
2748				} else {
2749					co->co_found = 0;
2750					co = TAILQ_NEXT(co, co_link);
2751				}
2752			}
2753
2754			/* Attach the newly created containers */
2755			if (added)
2756				bus_generic_attach(sc->aac_dev);
2757
2758			break;
2759
2760		default:
2761			break;
2762		}
2763
2764	default:
2765		break;
2766	}
2767
2768	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2769	mtx_lock(&sc->aac_aifq_lock);
2770	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2771	if (next != sc->aac_aifq_tail) {
2772		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2773		sc->aac_aifq_head = next;
2774
2775		/* On the off chance that someone is sleeping for an aif... */
2776		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2777			wakeup(sc->aac_aifq);
2778		/* Wakeup any poll()ers */
2779		selwakeuppri(&sc->rcv_select, PRIBIO);
2780	}
2781	mtx_unlock(&sc->aac_aifq_lock);
2782
2783	return;
2784}
2785
2786/*
2787 * Return the Revision of the driver to userspace and check to see if the
2788 * userspace app is possibly compatible.  This is extremely bogus since
2789 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2790 * returning what the card reported.
2791 */
2792static int
2793aac_rev_check(struct aac_softc *sc, caddr_t udata)
2794{
2795	struct aac_rev_check rev_check;
2796	struct aac_rev_check_resp rev_check_resp;
2797	int error = 0;
2798
2799	debug_called(2);
2800
2801	/*
2802	 * Copyin the revision struct from userspace
2803	 */
2804	if ((error = copyin(udata, (caddr_t)&rev_check,
2805			sizeof(struct aac_rev_check))) != 0) {
2806		return error;
2807	}
2808
2809	debug(2, "Userland revision= %d\n",
2810	      rev_check.callingRevision.buildNumber);
2811
2812	/*
2813	 * Doctor up the response struct.
2814	 */
2815	rev_check_resp.possiblyCompatible = 1;
2816	rev_check_resp.adapterSWRevision.external.ul =
2817	    sc->aac_revision.external.ul;
2818	rev_check_resp.adapterSWRevision.buildNumber =
2819	    sc->aac_revision.buildNumber;
2820
2821	return(copyout((caddr_t)&rev_check_resp, udata,
2822			sizeof(struct aac_rev_check_resp)));
2823}
2824
2825/*
2826 * Pass the caller the next AIF in their queue
2827 */
2828static int
2829aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2830{
2831	struct get_adapter_fib_ioctl agf;
2832	int error;
2833
2834	debug_called(2);
2835
2836	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2837
2838		/*
2839		 * Check the magic number that we gave the caller.
2840		 */
2841		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2842			error = EFAULT;
2843		} else {
2844			error = aac_return_aif(sc, agf.AifFib);
2845			if ((error == EAGAIN) && (agf.Wait)) {
2846				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2847				while (error == EAGAIN) {
2848					error = tsleep(sc->aac_aifq, PRIBIO |
2849						       PCATCH, "aacaif", 0);
2850					if (error == 0)
2851						error = aac_return_aif(sc,
2852						    agf.AifFib);
2853				}
2854				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2855			}
2856		}
2857	}
2858	return(error);
2859}
2860
2861/*
2862 * Hand the next AIF off the top of the queue out to userspace.
2863 */
2864static int
2865aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2866{
2867	int next, error;
2868
2869	debug_called(2);
2870
2871	mtx_lock(&sc->aac_aifq_lock);
2872	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2873		mtx_unlock(&sc->aac_aifq_lock);
2874		return (EAGAIN);
2875	}
2876
2877	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2878	error = copyout(&sc->aac_aifq[next], uptr,
2879			sizeof(struct aac_aif_command));
2880	if (error)
2881		device_printf(sc->aac_dev,
2882		    "aac_return_aif: copyout returned %d\n", error);
2883	else
2884		sc->aac_aifq_tail = next;
2885
2886	mtx_unlock(&sc->aac_aifq_lock);
2887	return(error);
2888}
2889
2890/*
2891 * Give the userland some information about the container.  The AAC arch
2892 * expects the driver to be a SCSI passthrough type driver, so it expects
2893 * the containers to have b:t:l numbers.  Fake it.
2894 */
2895static int
2896aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2897{
2898	struct aac_query_disk query_disk;
2899	struct aac_container *co;
2900	struct aac_disk	*disk;
2901	int error, id;
2902
2903	debug_called(2);
2904
2905	disk = NULL;
2906
2907	error = copyin(uptr, (caddr_t)&query_disk,
2908		       sizeof(struct aac_query_disk));
2909	if (error)
2910		return (error);
2911
2912	id = query_disk.ContainerNumber;
2913	if (id == -1)
2914		return (EINVAL);
2915
2916	mtx_lock(&sc->aac_container_lock);
2917	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2918		if (co->co_mntobj.ObjectId == id)
2919			break;
2920		}
2921
2922	if (co == NULL) {
2923			query_disk.Valid = 0;
2924			query_disk.Locked = 0;
2925			query_disk.Deleted = 1;		/* XXX is this right? */
2926	} else {
2927		disk = device_get_softc(co->co_disk);
2928		query_disk.Valid = 1;
2929		query_disk.Locked =
2930		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2931		query_disk.Deleted = 0;
2932		query_disk.Bus = device_get_unit(sc->aac_dev);
2933		query_disk.Target = disk->unit;
2934		query_disk.Lun = 0;
2935		query_disk.UnMapped = 0;
2936		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2937		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2938	}
2939	mtx_unlock(&sc->aac_container_lock);
2940
2941	error = copyout((caddr_t)&query_disk, uptr,
2942			sizeof(struct aac_query_disk));
2943
2944	return (error);
2945}
2946
2947static void
2948aac_get_bus_info(struct aac_softc *sc)
2949{
2950	struct aac_fib *fib;
2951	struct aac_ctcfg *c_cmd;
2952	struct aac_ctcfg_resp *c_resp;
2953	struct aac_vmioctl *vmi;
2954	struct aac_vmi_businf_resp *vmi_resp;
2955	struct aac_getbusinf businfo;
2956	struct aac_sim *caminf;
2957	device_t child;
2958	int i, found, error;
2959
2960	aac_alloc_sync_fib(sc, &fib);
2961	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2962	bzero(c_cmd, sizeof(struct aac_ctcfg));
2963
2964	c_cmd->Command = VM_ContainerConfig;
2965	c_cmd->cmd = CT_GET_SCSI_METHOD;
2966	c_cmd->param = 0;
2967
2968	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2969	    sizeof(struct aac_ctcfg));
2970	if (error) {
2971		device_printf(sc->aac_dev, "Error %d sending "
2972		    "VM_ContainerConfig command\n", error);
2973		aac_release_sync_fib(sc);
2974		return;
2975	}
2976
2977	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2978	if (c_resp->Status != ST_OK) {
2979		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2980		    c_resp->Status);
2981		aac_release_sync_fib(sc);
2982		return;
2983	}
2984
2985	sc->scsi_method_id = c_resp->param;
2986
2987	vmi = (struct aac_vmioctl *)&fib->data[0];
2988	bzero(vmi, sizeof(struct aac_vmioctl));
2989
2990	vmi->Command = VM_Ioctl;
2991	vmi->ObjType = FT_DRIVE;
2992	vmi->MethId = sc->scsi_method_id;
2993	vmi->ObjId = 0;
2994	vmi->IoctlCmd = GetBusInfo;
2995
2996	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2997	    sizeof(struct aac_vmioctl));
2998	if (error) {
2999		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3000		    error);
3001		aac_release_sync_fib(sc);
3002		return;
3003	}
3004
3005	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3006	if (vmi_resp->Status != ST_OK) {
3007		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3008		    vmi_resp->Status);
3009		aac_release_sync_fib(sc);
3010		return;
3011	}
3012
3013	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3014	aac_release_sync_fib(sc);
3015
3016	found = 0;
3017	for (i = 0; i < businfo.BusCount; i++) {
3018		if (businfo.BusValid[i] != AAC_BUS_VALID)
3019			continue;
3020
3021		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3022		    M_AACBUF, M_NOWAIT | M_ZERO);
3023		if (caminf == NULL) {
3024			device_printf(sc->aac_dev,
3025			    "No memory to add passthrough bus %d\n", i);
3026			break;
3027		}
3028
3029		child = device_add_child(sc->aac_dev, "aacp", -1);
3030		if (child == NULL) {
3031			device_printf(sc->aac_dev,
3032			    "device_add_child failed for passthrough bus %d\n",
3033			    i);
3034			free(caminf, M_AACBUF);
3035			break;
3036		}
3037
3038		caminf->TargetsPerBus = businfo.TargetsPerBus;
3039		caminf->BusNumber = i;
3040		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3041		caminf->aac_sc = sc;
3042		caminf->sim_dev = child;
3043
3044		device_set_ivars(child, caminf);
3045		device_set_desc(child, "SCSI Passthrough Bus");
3046		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3047
3048		found = 1;
3049	}
3050
3051	if (found)
3052		bus_generic_attach(sc->aac_dev);
3053
3054	return;
3055}
3056