aac.c revision 143838
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 143838 2005-03-19 06:29:32Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <sys/bus_dma.h>
58#include <machine/resource.h>
59
60#include <dev/aac/aacreg.h>
61#include <sys/aac_ioctl.h>
62#include <dev/aac/aacvar.h>
63#include <dev/aac/aac_tables.h>
64
65static void	aac_startup(void *arg);
66static void	aac_add_container(struct aac_softc *sc,
67				  struct aac_mntinforesp *mir, int f);
68static void	aac_get_bus_info(struct aac_softc *sc);
69
70/* Command Processing */
71static void	aac_timeout(struct aac_softc *sc);
72static void	aac_complete(void *context, int pending);
73static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74static void	aac_bio_complete(struct aac_command *cm);
75static int	aac_wait_command(struct aac_command *cm);
76static void	aac_command_thread(struct aac_softc *sc);
77
78/* Command Buffer Management */
79static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80				   int nseg, int error);
81static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82				       int nseg, int error);
83static int	aac_alloc_commands(struct aac_softc *sc);
84static void	aac_free_commands(struct aac_softc *sc);
85static void	aac_unmap_command(struct aac_command *cm);
86
87/* Hardware Interface */
88static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89			       int error);
90static int	aac_check_firmware(struct aac_softc *sc);
91static int	aac_init(struct aac_softc *sc);
92static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94				 u_int32_t arg3, u_int32_t *sp);
95static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96				struct aac_command *cm);
97static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98				u_int32_t *fib_size, struct aac_fib **fib_addr);
99static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100				     struct aac_fib *fib);
101
102/* Falcon/PPC interface */
103static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105static int	aac_fa_get_istatus(struct aac_softc *sc);
106static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108				   u_int32_t arg0, u_int32_t arg1,
109				   u_int32_t arg2, u_int32_t arg3);
110static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112
113struct aac_interface aac_fa_interface = {
114	aac_fa_get_fwstatus,
115	aac_fa_qnotify,
116	aac_fa_get_istatus,
117	aac_fa_clear_istatus,
118	aac_fa_set_mailbox,
119	aac_fa_get_mailbox,
120	aac_fa_set_interrupts
121};
122
123/* StrongARM interface */
124static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126static int	aac_sa_get_istatus(struct aac_softc *sc);
127static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129				   u_int32_t arg0, u_int32_t arg1,
130				   u_int32_t arg2, u_int32_t arg3);
131static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133
134struct aac_interface aac_sa_interface = {
135	aac_sa_get_fwstatus,
136	aac_sa_qnotify,
137	aac_sa_get_istatus,
138	aac_sa_clear_istatus,
139	aac_sa_set_mailbox,
140	aac_sa_get_mailbox,
141	aac_sa_set_interrupts
142};
143
144/* i960Rx interface */
145static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147static int	aac_rx_get_istatus(struct aac_softc *sc);
148static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150				   u_int32_t arg0, u_int32_t arg1,
151				   u_int32_t arg2, u_int32_t arg3);
152static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154
155struct aac_interface aac_rx_interface = {
156	aac_rx_get_fwstatus,
157	aac_rx_qnotify,
158	aac_rx_get_istatus,
159	aac_rx_clear_istatus,
160	aac_rx_set_mailbox,
161	aac_rx_get_mailbox,
162	aac_rx_set_interrupts
163};
164
165/* Rocket/MIPS interface */
166static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
167static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
168static int	aac_rkt_get_istatus(struct aac_softc *sc);
169static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
170static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
171				    u_int32_t arg0, u_int32_t arg1,
172				    u_int32_t arg2, u_int32_t arg3);
173static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
174static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
175
176struct aac_interface aac_rkt_interface = {
177	aac_rkt_get_fwstatus,
178	aac_rkt_qnotify,
179	aac_rkt_get_istatus,
180	aac_rkt_clear_istatus,
181	aac_rkt_set_mailbox,
182	aac_rkt_get_mailbox,
183	aac_rkt_set_interrupts
184};
185
186/* Debugging and Diagnostics */
187static void	aac_describe_controller(struct aac_softc *sc);
188static char	*aac_describe_code(struct aac_code_lookup *table,
189				   u_int32_t code);
190
191/* Management Interface */
192static d_open_t		aac_open;
193static d_close_t	aac_close;
194static d_ioctl_t	aac_ioctl;
195static d_poll_t		aac_poll;
196static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
197static void		aac_handle_aif(struct aac_softc *sc,
198					   struct aac_fib *fib);
199static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
200static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
201static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
202static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
203
204static struct cdevsw aac_cdevsw = {
205	.d_version =	D_VERSION,
206	.d_flags =	D_NEEDGIANT,
207	.d_open =	aac_open,
208	.d_close =	aac_close,
209	.d_ioctl =	aac_ioctl,
210	.d_poll =	aac_poll,
211	.d_name =	"aac",
212};
213
214MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
215
216/* sysctl node */
217SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
218
219/*
220 * Device Interface
221 */
222
223/*
224 * Initialise the controller and softc
225 */
226int
227aac_attach(struct aac_softc *sc)
228{
229	int error, unit;
230
231	debug_called(1);
232
233	/*
234	 * Initialise per-controller queues.
235	 */
236	aac_initq_free(sc);
237	aac_initq_ready(sc);
238	aac_initq_busy(sc);
239	aac_initq_bio(sc);
240
241	/*
242	 * Initialise command-completion task.
243	 */
244	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
245
246	/* disable interrupts before we enable anything */
247	AAC_MASK_INTERRUPTS(sc);
248
249	/* mark controller as suspended until we get ourselves organised */
250	sc->aac_state |= AAC_STATE_SUSPEND;
251
252	/*
253	 * Check that the firmware on the card is supported.
254	 */
255	if ((error = aac_check_firmware(sc)) != 0)
256		return(error);
257
258	/*
259	 * Initialize locks
260	 */
261	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
262	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
263	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
264	TAILQ_INIT(&sc->aac_container_tqh);
265
266	/* Initialize the local AIF queue pointers */
267	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
268
269	/*
270	 * Initialise the adapter.
271	 */
272	if ((error = aac_init(sc)) != 0)
273		return(error);
274
275	/*
276	 * Print a little information about the controller.
277	 */
278	aac_describe_controller(sc);
279
280	/*
281	 * Register to probe our containers later.
282	 */
283	sc->aac_ich.ich_func = aac_startup;
284	sc->aac_ich.ich_arg = sc;
285	if (config_intrhook_establish(&sc->aac_ich) != 0) {
286		device_printf(sc->aac_dev,
287			      "can't establish configuration hook\n");
288		return(ENXIO);
289	}
290
291	/*
292	 * Make the control device.
293	 */
294	unit = device_get_unit(sc->aac_dev);
295	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
296				 0640, "aac%d", unit);
297	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
298	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
299	sc->aac_dev_t->si_drv1 = sc;
300
301	/* Create the AIF thread */
302	if (kthread_create((void(*)(void *))aac_command_thread, sc,
303			   &sc->aifthread, 0, 0, "aac%daif", unit))
304		panic("Could not create AIF thread\n");
305
306	/* Register the shutdown method to only be called post-dump */
307	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
308	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
309		device_printf(sc->aac_dev,
310			      "shutdown event registration failed\n");
311
312	/* Register with CAM for the non-DASD devices */
313	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
314		TAILQ_INIT(&sc->aac_sim_tqh);
315		aac_get_bus_info(sc);
316	}
317
318	return(0);
319}
320
321/*
322 * Probe for containers, create disks.
323 */
324static void
325aac_startup(void *arg)
326{
327	struct aac_softc *sc;
328	struct aac_fib *fib;
329	struct aac_mntinfo *mi;
330	struct aac_mntinforesp *mir = NULL;
331	int count = 0, i = 0;
332
333	debug_called(1);
334
335	sc = (struct aac_softc *)arg;
336
337	/* disconnect ourselves from the intrhook chain */
338	config_intrhook_disestablish(&sc->aac_ich);
339
340	aac_alloc_sync_fib(sc, &fib);
341	mi = (struct aac_mntinfo *)&fib->data[0];
342
343	/* loop over possible containers */
344	do {
345		/* request information on this container */
346		bzero(mi, sizeof(struct aac_mntinfo));
347		mi->Command = VM_NameServe;
348		mi->MntType = FT_FILESYS;
349		mi->MntCount = i;
350		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
351				 sizeof(struct aac_mntinfo))) {
352			printf("error probing container %d", i);
353			continue;
354		}
355
356		mir = (struct aac_mntinforesp *)&fib->data[0];
357		/* XXX Need to check if count changed */
358		count = mir->MntRespCount;
359		aac_add_container(sc, mir, 0);
360		i++;
361	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
362
363	aac_release_sync_fib(sc);
364
365	/* poke the bus to actually attach the child devices */
366	if (bus_generic_attach(sc->aac_dev))
367		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
368
369	/* mark the controller up */
370	sc->aac_state &= ~AAC_STATE_SUSPEND;
371
372	/* enable interrupts now */
373	AAC_UNMASK_INTERRUPTS(sc);
374}
375
376/*
377 * Create a device to respresent a new container
378 */
379static void
380aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
381{
382	struct aac_container *co;
383	device_t child;
384
385	/*
386	 * Check container volume type for validity.  Note that many of
387	 * the possible types may never show up.
388	 */
389	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
390		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
391		       M_NOWAIT | M_ZERO);
392		if (co == NULL)
393			panic("Out of memory?!\n");
394		debug(1, "id %x  name '%.16s'  size %u  type %d",
395		      mir->MntTable[0].ObjectId,
396		      mir->MntTable[0].FileSystemName,
397		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
398
399		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
400			device_printf(sc->aac_dev, "device_add_child failed\n");
401		else
402			device_set_ivars(child, co);
403		device_set_desc(child, aac_describe_code(aac_container_types,
404				mir->MntTable[0].VolType));
405		co->co_disk = child;
406		co->co_found = f;
407		bcopy(&mir->MntTable[0], &co->co_mntobj,
408		      sizeof(struct aac_mntobj));
409		mtx_lock(&sc->aac_container_lock);
410		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
411		mtx_unlock(&sc->aac_container_lock);
412	}
413}
414
415/*
416 * Free all of the resources associated with (sc)
417 *
418 * Should not be called if the controller is active.
419 */
420void
421aac_free(struct aac_softc *sc)
422{
423
424	debug_called(1);
425
426	/* remove the control device */
427	if (sc->aac_dev_t != NULL)
428		destroy_dev(sc->aac_dev_t);
429
430	/* throw away any FIB buffers, discard the FIB DMA tag */
431	aac_free_commands(sc);
432	if (sc->aac_fib_dmat)
433		bus_dma_tag_destroy(sc->aac_fib_dmat);
434
435	free(sc->aac_commands, M_AACBUF);
436
437	/* destroy the common area */
438	if (sc->aac_common) {
439		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
440		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
441				sc->aac_common_dmamap);
442	}
443	if (sc->aac_common_dmat)
444		bus_dma_tag_destroy(sc->aac_common_dmat);
445
446	/* disconnect the interrupt handler */
447	if (sc->aac_intr)
448		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
449	if (sc->aac_irq != NULL)
450		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
451				     sc->aac_irq);
452
453	/* destroy data-transfer DMA tag */
454	if (sc->aac_buffer_dmat)
455		bus_dma_tag_destroy(sc->aac_buffer_dmat);
456
457	/* destroy the parent DMA tag */
458	if (sc->aac_parent_dmat)
459		bus_dma_tag_destroy(sc->aac_parent_dmat);
460
461	/* release the register window mapping */
462	if (sc->aac_regs_resource != NULL)
463		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
464				     sc->aac_regs_rid, sc->aac_regs_resource);
465}
466
467/*
468 * Disconnect from the controller completely, in preparation for unload.
469 */
470int
471aac_detach(device_t dev)
472{
473	struct aac_softc *sc;
474	struct aac_container *co;
475	struct aac_sim	*sim;
476	int error;
477
478	debug_called(1);
479
480	sc = device_get_softc(dev);
481
482	if (sc->aac_state & AAC_STATE_OPEN)
483		return(EBUSY);
484
485	/* Remove the child containers */
486	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
487		error = device_delete_child(dev, co->co_disk);
488		if (error)
489			return (error);
490		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
491		free(co, M_AACBUF);
492	}
493
494	/* Remove the CAM SIMs */
495	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
496		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
497		error = device_delete_child(dev, sim->sim_dev);
498		if (error)
499			return (error);
500		free(sim, M_AACBUF);
501	}
502
503	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
504		sc->aifflags |= AAC_AIFFLAGS_EXIT;
505		wakeup(sc->aifthread);
506		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
507	}
508
509	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
510		panic("Cannot shutdown AIF thread\n");
511
512	if ((error = aac_shutdown(dev)))
513		return(error);
514
515	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
516
517	aac_free(sc);
518
519	mtx_destroy(&sc->aac_aifq_lock);
520	mtx_destroy(&sc->aac_io_lock);
521	mtx_destroy(&sc->aac_container_lock);
522
523	return(0);
524}
525
526/*
527 * Bring the controller down to a dormant state and detach all child devices.
528 *
529 * This function is called before detach or system shutdown.
530 *
531 * Note that we can assume that the bioq on the controller is empty, as we won't
532 * allow shutdown if any device is open.
533 */
534int
535aac_shutdown(device_t dev)
536{
537	struct aac_softc *sc;
538	struct aac_fib *fib;
539	struct aac_close_command *cc;
540
541	debug_called(1);
542
543	sc = device_get_softc(dev);
544
545	sc->aac_state |= AAC_STATE_SUSPEND;
546
547	/*
548	 * Send a Container shutdown followed by a HostShutdown FIB to the
549	 * controller to convince it that we don't want to talk to it anymore.
550	 * We've been closed and all I/O completed already
551	 */
552	device_printf(sc->aac_dev, "shutting down controller...");
553
554	aac_alloc_sync_fib(sc, &fib);
555	cc = (struct aac_close_command *)&fib->data[0];
556
557	bzero(cc, sizeof(struct aac_close_command));
558	cc->Command = VM_CloseAll;
559	cc->ContainerId = 0xffffffff;
560	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
561	    sizeof(struct aac_close_command)))
562		printf("FAILED.\n");
563	else
564		printf("done\n");
565#if 0
566	else {
567		fib->data[0] = 0;
568		/*
569		 * XXX Issuing this command to the controller makes it shut down
570		 * but also keeps it from coming back up without a reset of the
571		 * PCI bus.  This is not desirable if you are just unloading the
572		 * driver module with the intent to reload it later.
573		 */
574		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
575		    fib, 1)) {
576			printf("FAILED.\n");
577		} else {
578			printf("done.\n");
579		}
580	}
581#endif
582
583	AAC_MASK_INTERRUPTS(sc);
584	aac_release_sync_fib(sc);
585
586	return(0);
587}
588
589/*
590 * Bring the controller to a quiescent state, ready for system suspend.
591 */
592int
593aac_suspend(device_t dev)
594{
595	struct aac_softc *sc;
596
597	debug_called(1);
598
599	sc = device_get_softc(dev);
600
601	sc->aac_state |= AAC_STATE_SUSPEND;
602
603	AAC_MASK_INTERRUPTS(sc);
604	return(0);
605}
606
607/*
608 * Bring the controller back to a state ready for operation.
609 */
610int
611aac_resume(device_t dev)
612{
613	struct aac_softc *sc;
614
615	debug_called(1);
616
617	sc = device_get_softc(dev);
618
619	sc->aac_state &= ~AAC_STATE_SUSPEND;
620	AAC_UNMASK_INTERRUPTS(sc);
621	return(0);
622}
623
624/*
625 * Take an interrupt.
626 */
627void
628aac_intr(void *arg)
629{
630	struct aac_softc *sc;
631	u_int16_t reason;
632
633	debug_called(2);
634
635	sc = (struct aac_softc *)arg;
636
637	/*
638	 * Read the status register directly.  This is faster than taking the
639	 * driver lock and reading the queues directly.  It also saves having
640	 * to turn parts of the driver lock into a spin mutex, which would be
641	 * ugly.
642	 */
643	reason = AAC_GET_ISTATUS(sc);
644	AAC_CLEAR_ISTATUS(sc, reason);
645
646	/* handle completion processing */
647	if (reason & AAC_DB_RESPONSE_READY)
648		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
649
650	/* controller wants to talk to us */
651	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
652		/*
653		 * XXX Make sure that we don't get fooled by strange messages
654		 * that start with a NULL.
655		 */
656		if ((reason & AAC_DB_PRINTF) &&
657		    (sc->aac_common->ac_printf[0] == 0))
658			sc->aac_common->ac_printf[0] = 32;
659
660		/*
661		 * This might miss doing the actual wakeup.  However, the
662		 * msleep that this is waking up has a timeout, so it will
663		 * wake up eventually.  AIFs and printfs are low enough
664		 * priority that they can handle hanging out for a few seconds
665		 * if needed.
666		 */
667		wakeup(sc->aifthread);
668	}
669}
670
671/*
672 * Command Processing
673 */
674
675/*
676 * Start as much queued I/O as possible on the controller
677 */
678void
679aac_startio(struct aac_softc *sc)
680{
681	struct aac_command *cm;
682	int error;
683
684	debug_called(2);
685
686	for (;;) {
687		/*
688		 * This flag might be set if the card is out of resources.
689		 * Checking it here prevents an infinite loop of deferrals.
690		 */
691		if (sc->flags & AAC_QUEUE_FRZN)
692			break;
693
694		/*
695		 * Try to get a command that's been put off for lack of
696		 * resources
697		 */
698		cm = aac_dequeue_ready(sc);
699
700		/*
701		 * Try to build a command off the bio queue (ignore error
702		 * return)
703		 */
704		if (cm == NULL)
705			aac_bio_command(sc, &cm);
706
707		/* nothing to do? */
708		if (cm == NULL)
709			break;
710
711		/* don't map more than once */
712		if (cm->cm_flags & AAC_CMD_MAPPED)
713			panic("aac: command %p already mapped", cm);
714
715		/*
716		 * Set up the command to go to the controller.  If there are no
717		 * data buffers associated with the command then it can bypass
718		 * busdma.
719		 */
720		if (cm->cm_datalen != 0) {
721			error = bus_dmamap_load(sc->aac_buffer_dmat,
722						cm->cm_datamap, cm->cm_data,
723						cm->cm_datalen,
724						aac_map_command_sg, cm, 0);
725			if (error == EINPROGRESS) {
726				debug(1, "freezing queue\n");
727				sc->flags |= AAC_QUEUE_FRZN;
728				error = 0;
729			} else if (error != 0)
730				panic("aac_startio: unexpected error %d from "
731				      "busdma\n", error);
732		} else
733			aac_map_command_sg(cm, NULL, 0, 0);
734	}
735}
736
737/*
738 * Handle notification of one or more FIBs coming from the controller.
739 */
740static void
741aac_command_thread(struct aac_softc *sc)
742{
743	struct aac_fib *fib;
744	u_int32_t fib_size;
745	int size, retval;
746
747	debug_called(2);
748
749	mtx_lock(&sc->aac_io_lock);
750	sc->aifflags = AAC_AIFFLAGS_RUNNING;
751
752	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
753
754		retval = 0;
755		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
756			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
757					"aifthd", AAC_PERIODIC_INTERVAL * hz);
758
759		/*
760		 * First see if any FIBs need to be allocated.  This needs
761		 * to be called without the driver lock because contigmalloc
762		 * will grab Giant, and would result in an LOR.
763		 */
764		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
765			mtx_unlock(&sc->aac_io_lock);
766			aac_alloc_commands(sc);
767			mtx_lock(&sc->aac_io_lock);
768			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
769			aac_startio(sc);
770		}
771
772		/*
773		 * While we're here, check to see if any commands are stuck.
774		 * This is pretty low-priority, so it's ok if it doesn't
775		 * always fire.
776		 */
777		if (retval == EWOULDBLOCK)
778			aac_timeout(sc);
779
780		/* Check the hardware printf message buffer */
781		if (sc->aac_common->ac_printf[0] != 0)
782			aac_print_printf(sc);
783
784		/* Also check to see if the adapter has a command for us. */
785		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
786				       &fib_size, &fib) == 0) {
787
788			AAC_PRINT_FIB(sc, fib);
789
790			switch (fib->Header.Command) {
791			case AifRequest:
792				aac_handle_aif(sc, fib);
793				break;
794			default:
795				device_printf(sc->aac_dev, "unknown command "
796					      "from controller\n");
797				break;
798			}
799
800			if ((fib->Header.XferState == 0) ||
801			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
802				break;
803
804			/* Return the AIF to the controller. */
805			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
806				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
807				*(AAC_FSAStatus*)fib->data = ST_OK;
808
809				/* XXX Compute the Size field? */
810				size = fib->Header.Size;
811				if (size > sizeof(struct aac_fib)) {
812					size = sizeof(struct aac_fib);
813					fib->Header.Size = size;
814				}
815				/*
816				 * Since we did not generate this command, it
817				 * cannot go through the normal
818				 * enqueue->startio chain.
819				 */
820				aac_enqueue_response(sc,
821						     AAC_ADAP_NORM_RESP_QUEUE,
822						     fib);
823			}
824		}
825	}
826	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
827	mtx_unlock(&sc->aac_io_lock);
828	wakeup(sc->aac_dev);
829
830	kthread_exit(0);
831}
832
833/*
834 * Process completed commands.
835 */
836static void
837aac_complete(void *context, int pending)
838{
839	struct aac_softc *sc;
840	struct aac_command *cm;
841	struct aac_fib *fib;
842	u_int32_t fib_size;
843
844	debug_called(2);
845
846	sc = (struct aac_softc *)context;
847
848	mtx_lock(&sc->aac_io_lock);
849
850	/* pull completed commands off the queue */
851	for (;;) {
852		/* look for completed FIBs on our queue */
853		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
854				    &fib))
855			break;	/* nothing to do */
856
857		/* get the command, unmap and hand off for processing */
858		cm = sc->aac_commands + fib->Header.SenderData;
859		if (cm == NULL) {
860			AAC_PRINT_FIB(sc, fib);
861			break;
862		}
863
864		aac_remove_busy(cm);
865		aac_unmap_command(cm);
866		cm->cm_flags |= AAC_CMD_COMPLETED;
867
868		/* is there a completion handler? */
869		if (cm->cm_complete != NULL) {
870			cm->cm_complete(cm);
871		} else {
872			/* assume that someone is sleeping on this command */
873			wakeup(cm);
874		}
875	}
876
877	/* see if we can start some more I/O */
878	sc->flags &= ~AAC_QUEUE_FRZN;
879	aac_startio(sc);
880
881	mtx_unlock(&sc->aac_io_lock);
882}
883
884/*
885 * Handle a bio submitted from a disk device.
886 */
887void
888aac_submit_bio(struct bio *bp)
889{
890	struct aac_disk *ad;
891	struct aac_softc *sc;
892
893	debug_called(2);
894
895	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
896	sc = ad->ad_controller;
897
898	/* queue the BIO and try to get some work done */
899	aac_enqueue_bio(sc, bp);
900	aac_startio(sc);
901}
902
903/*
904 * Get a bio and build a command to go with it.
905 */
906static int
907aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
908{
909	struct aac_command *cm;
910	struct aac_fib *fib;
911	struct aac_disk *ad;
912	struct bio *bp;
913
914	debug_called(2);
915
916	/* get the resources we will need */
917	cm = NULL;
918	bp = NULL;
919	if (aac_alloc_command(sc, &cm))	/* get a command */
920		goto fail;
921	if ((bp = aac_dequeue_bio(sc)) == NULL)
922		goto fail;
923
924	/* fill out the command */
925	cm->cm_data = (void *)bp->bio_data;
926	cm->cm_datalen = bp->bio_bcount;
927	cm->cm_complete = aac_bio_complete;
928	cm->cm_private = bp;
929	cm->cm_timestamp = time_second;
930	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
931
932	/* build the FIB */
933	fib = cm->cm_fib;
934	fib->Header.Size = sizeof(struct aac_fib_header);
935	fib->Header.XferState =
936		AAC_FIBSTATE_HOSTOWNED   |
937		AAC_FIBSTATE_INITIALISED |
938		AAC_FIBSTATE_EMPTY	 |
939		AAC_FIBSTATE_FROMHOST	 |
940		AAC_FIBSTATE_REXPECTED   |
941		AAC_FIBSTATE_NORM	 |
942		AAC_FIBSTATE_ASYNC	 |
943		AAC_FIBSTATE_FAST_RESPONSE;
944
945	/* build the read/write request */
946	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
947
948	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
949		fib->Header.Command = ContainerCommand;
950		if (bp->bio_cmd == BIO_READ) {
951			struct aac_blockread *br;
952			br = (struct aac_blockread *)&fib->data[0];
953			br->Command = VM_CtBlockRead;
954			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955			br->BlockNumber = bp->bio_pblkno;
956			br->ByteCount = bp->bio_bcount;
957			fib->Header.Size += sizeof(struct aac_blockread);
958			cm->cm_sgtable = &br->SgMap;
959			cm->cm_flags |= AAC_CMD_DATAIN;
960		} else {
961			struct aac_blockwrite *bw;
962			bw = (struct aac_blockwrite *)&fib->data[0];
963			bw->Command = VM_CtBlockWrite;
964			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
965			bw->BlockNumber = bp->bio_pblkno;
966			bw->ByteCount = bp->bio_bcount;
967			bw->Stable = CUNSTABLE;
968			fib->Header.Size += sizeof(struct aac_blockwrite);
969			cm->cm_flags |= AAC_CMD_DATAOUT;
970			cm->cm_sgtable = &bw->SgMap;
971		}
972	} else {
973		fib->Header.Command = ContainerCommand64;
974		if (bp->bio_cmd == BIO_READ) {
975			struct aac_blockread64 *br;
976			br = (struct aac_blockread64 *)&fib->data[0];
977			br->Command = VM_CtHostRead64;
978			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
979			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
980			br->BlockNumber = bp->bio_pblkno;
981			br->Pad = 0;
982			br->Flags = 0;
983			fib->Header.Size += sizeof(struct aac_blockread64);
984			cm->cm_flags |= AAC_CMD_DATAOUT;
985			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
986		} else {
987			struct aac_blockwrite64 *bw;
988			bw = (struct aac_blockwrite64 *)&fib->data[0];
989			bw->Command = VM_CtHostWrite64;
990			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
991			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
992			bw->BlockNumber = bp->bio_pblkno;
993			bw->Pad = 0;
994			bw->Flags = 0;
995			fib->Header.Size += sizeof(struct aac_blockwrite64);
996			cm->cm_flags |= AAC_CMD_DATAIN;
997			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
998		}
999	}
1000
1001	*cmp = cm;
1002	return(0);
1003
1004fail:
1005	if (bp != NULL)
1006		aac_enqueue_bio(sc, bp);
1007	if (cm != NULL)
1008		aac_release_command(cm);
1009	return(ENOMEM);
1010}
1011
1012/*
1013 * Handle a bio-instigated command that has been completed.
1014 */
1015static void
1016aac_bio_complete(struct aac_command *cm)
1017{
1018	struct aac_blockread_response *brr;
1019	struct aac_blockwrite_response *bwr;
1020	struct bio *bp;
1021	AAC_FSAStatus status;
1022
1023	/* fetch relevant status and then release the command */
1024	bp = (struct bio *)cm->cm_private;
1025	if (bp->bio_cmd == BIO_READ) {
1026		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1027		status = brr->Status;
1028	} else {
1029		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1030		status = bwr->Status;
1031	}
1032	aac_release_command(cm);
1033
1034	/* fix up the bio based on status */
1035	if (status == ST_OK) {
1036		bp->bio_resid = 0;
1037	} else {
1038		bp->bio_error = EIO;
1039		bp->bio_flags |= BIO_ERROR;
1040		/* pass an error string out to the disk layer */
1041		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1042						    status);
1043	}
1044	aac_biodone(bp);
1045}
1046
1047/*
1048 * Submit a command to the controller, return when it completes.
1049 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1050 *     be stuck here forever.  At the same time, signals are not caught
1051 *     because there is a risk that a signal could wakeup the sleep before
1052 *     the card has a chance to complete the command.  Since there is no way
1053 *     to cancel a command that is in progress, we can't protect against the
1054 *     card completing a command late and spamming the command and data
1055 *     memory.  So, we are held hostage until the command completes.
1056 */
1057static int
1058aac_wait_command(struct aac_command *cm)
1059{
1060	struct aac_softc *sc;
1061	int error;
1062
1063	debug_called(2);
1064
1065	sc = cm->cm_sc;
1066
1067	/* Put the command on the ready queue and get things going */
1068	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1069	aac_enqueue_ready(cm);
1070	aac_startio(sc);
1071	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1072	return(error);
1073}
1074
1075/*
1076 *Command Buffer Management
1077 */
1078
1079/*
1080 * Allocate a command.
1081 */
1082int
1083aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1084{
1085	struct aac_command *cm;
1086
1087	debug_called(3);
1088
1089	if ((cm = aac_dequeue_free(sc)) == NULL) {
1090		if (sc->total_fibs < sc->aac_max_fibs) {
1091			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1092			wakeup(sc->aifthread);
1093		}
1094		return (EBUSY);
1095	}
1096
1097	*cmp = cm;
1098	return(0);
1099}
1100
1101/*
1102 * Release a command back to the freelist.
1103 */
1104void
1105aac_release_command(struct aac_command *cm)
1106{
1107	debug_called(3);
1108
1109	/* (re)initialise the command/FIB */
1110	cm->cm_sgtable = NULL;
1111	cm->cm_flags = 0;
1112	cm->cm_complete = NULL;
1113	cm->cm_private = NULL;
1114	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1115	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1116	cm->cm_fib->Header.Flags = 0;
1117	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1118
1119	/*
1120	 * These are duplicated in aac_start to cover the case where an
1121	 * intermediate stage may have destroyed them.  They're left
1122	 * initialised here for debugging purposes only.
1123	 */
1124	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1125	cm->cm_fib->Header.SenderData = 0;
1126
1127	aac_enqueue_free(cm);
1128}
1129
1130/*
1131 * Map helper for command/FIB allocation.
1132 */
1133static void
1134aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1135{
1136	uint32_t	*fibphys;
1137
1138	fibphys = (uint32_t *)arg;
1139
1140	debug_called(3);
1141
1142	*fibphys = segs[0].ds_addr;
1143}
1144
1145/*
1146 * Allocate and initialise commands/FIBs for this adapter.
1147 */
1148static int
1149aac_alloc_commands(struct aac_softc *sc)
1150{
1151	struct aac_command *cm;
1152	struct aac_fibmap *fm;
1153	uint32_t fibphys;
1154	int i, error;
1155
1156	debug_called(2);
1157
1158	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1159		return (ENOMEM);
1160
1161	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1162	if (fm == NULL)
1163		return (ENOMEM);
1164
1165	/* allocate the FIBs in DMAable memory and load them */
1166	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1167			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1168		device_printf(sc->aac_dev,
1169			      "Not enough contiguous memory available.\n");
1170		free(fm, M_AACBUF);
1171		return (ENOMEM);
1172	}
1173
1174	/* Ignore errors since this doesn't bounce */
1175	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1176			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1177			      aac_map_command_helper, &fibphys, 0);
1178
1179	/* initialise constant fields in the command structure */
1180	mtx_lock(&sc->aac_io_lock);
1181	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1182	for (i = 0; i < AAC_FIB_COUNT; i++) {
1183		cm = sc->aac_commands + sc->total_fibs;
1184		fm->aac_commands = cm;
1185		cm->cm_sc = sc;
1186		cm->cm_fib = fm->aac_fibs + i;
1187		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1188		cm->cm_index = sc->total_fibs;
1189
1190		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1191					       &cm->cm_datamap)) == 0)
1192			aac_release_command(cm);
1193		else
1194			break;
1195		sc->total_fibs++;
1196	}
1197
1198	if (i > 0) {
1199		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1200		debug(1, "total_fibs= %d\n", sc->total_fibs);
1201		mtx_unlock(&sc->aac_io_lock);
1202		return (0);
1203	}
1204
1205	mtx_unlock(&sc->aac_io_lock);
1206	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1207	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1208	free(fm, M_AACBUF);
1209	return (ENOMEM);
1210}
1211
1212/*
1213 * Free FIBs owned by this adapter.
1214 */
1215static void
1216aac_free_commands(struct aac_softc *sc)
1217{
1218	struct aac_fibmap *fm;
1219	struct aac_command *cm;
1220	int i;
1221
1222	debug_called(1);
1223
1224	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1225
1226		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1227		/*
1228		 * We check against total_fibs to handle partially
1229		 * allocated blocks.
1230		 */
1231		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1232			cm = fm->aac_commands + i;
1233			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1234		}
1235		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1236		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1237		free(fm, M_AACBUF);
1238	}
1239}
1240
1241/*
1242 * Command-mapping helper function - populate this command's s/g table.
1243 */
1244static void
1245aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1246{
1247	struct aac_softc *sc;
1248	struct aac_command *cm;
1249	struct aac_fib *fib;
1250	int i;
1251
1252	debug_called(3);
1253
1254	cm = (struct aac_command *)arg;
1255	sc = cm->cm_sc;
1256	fib = cm->cm_fib;
1257
1258	/* copy into the FIB */
1259	if (cm->cm_sgtable != NULL) {
1260		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1261			struct aac_sg_table *sg;
1262			sg = cm->cm_sgtable;
1263			sg->SgCount = nseg;
1264			for (i = 0; i < nseg; i++) {
1265				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1266				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1267			}
1268			/* update the FIB size for the s/g count */
1269			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1270		} else {
1271			struct aac_sg_table64 *sg;
1272			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1273			sg->SgCount = nseg;
1274			for (i = 0; i < nseg; i++) {
1275				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1276				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1277			}
1278			/* update the FIB size for the s/g count */
1279			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1280		}
1281	}
1282
1283	/* Fix up the address values in the FIB.  Use the command array index
1284	 * instead of a pointer since these fields are only 32 bits.  Shift
1285	 * the SenderFibAddress over to make room for the fast response bit.
1286	 */
1287	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1288	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1289
1290	/* save a pointer to the command for speedy reverse-lookup */
1291	cm->cm_fib->Header.SenderData = cm->cm_index;
1292
1293	if (cm->cm_flags & AAC_CMD_DATAIN)
1294		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1295				BUS_DMASYNC_PREREAD);
1296	if (cm->cm_flags & AAC_CMD_DATAOUT)
1297		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1298				BUS_DMASYNC_PREWRITE);
1299	cm->cm_flags |= AAC_CMD_MAPPED;
1300
1301	/* Put the FIB on the outbound queue */
1302	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1303		aac_unmap_command(cm);
1304		sc->flags |= AAC_QUEUE_FRZN;
1305		aac_requeue_ready(cm);
1306	}
1307
1308	return;
1309}
1310
1311/*
1312 * Unmap a command from controller-visible space.
1313 */
1314static void
1315aac_unmap_command(struct aac_command *cm)
1316{
1317	struct aac_softc *sc;
1318
1319	debug_called(2);
1320
1321	sc = cm->cm_sc;
1322
1323	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1324		return;
1325
1326	if (cm->cm_datalen != 0) {
1327		if (cm->cm_flags & AAC_CMD_DATAIN)
1328			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1329					BUS_DMASYNC_POSTREAD);
1330		if (cm->cm_flags & AAC_CMD_DATAOUT)
1331			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1332					BUS_DMASYNC_POSTWRITE);
1333
1334		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1335	}
1336	cm->cm_flags &= ~AAC_CMD_MAPPED;
1337}
1338
1339/*
1340 * Hardware Interface
1341 */
1342
1343/*
1344 * Initialise the adapter.
1345 */
1346static void
1347aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1348{
1349	struct aac_softc *sc;
1350
1351	debug_called(1);
1352
1353	sc = (struct aac_softc *)arg;
1354
1355	sc->aac_common_busaddr = segs[0].ds_addr;
1356}
1357
1358static int
1359aac_check_firmware(struct aac_softc *sc)
1360{
1361	u_int32_t major, minor, options;
1362
1363	debug_called(1);
1364
1365	/*
1366	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1367	 * firmware version 1.x are not compatible with this driver.
1368	 */
1369	if (sc->flags & AAC_FLAGS_PERC2QC) {
1370		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1371				     NULL)) {
1372			device_printf(sc->aac_dev,
1373				      "Error reading firmware version\n");
1374			return (EIO);
1375		}
1376
1377		/* These numbers are stored as ASCII! */
1378		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1379		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1380		if (major == 1) {
1381			device_printf(sc->aac_dev,
1382			    "Firmware version %d.%d is not supported.\n",
1383			    major, minor);
1384			return (EINVAL);
1385		}
1386	}
1387
1388	/*
1389	 * Retrieve the capabilities/supported options word so we know what
1390	 * work-arounds to enable.
1391	 */
1392	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1393		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1394		return (EIO);
1395	}
1396	options = AAC_GET_MAILBOX(sc, 1);
1397	sc->supported_options = options;
1398
1399	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1400	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1401		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1402	if (options & AAC_SUPPORTED_NONDASD)
1403		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1404	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1405	     && (sizeof(bus_addr_t) > 4)) {
1406		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1407		sc->flags |= AAC_FLAGS_SG_64BIT;
1408	}
1409
1410	/* Check for broken hardware that does a lower number of commands */
1411	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1412		sc->aac_max_fibs = AAC_MAX_FIBS;
1413	else
1414		sc->aac_max_fibs = 256;
1415
1416	return (0);
1417}
1418
1419static int
1420aac_init(struct aac_softc *sc)
1421{
1422	struct aac_adapter_init	*ip;
1423	time_t then;
1424	u_int32_t code, qoffset;
1425	int error;
1426
1427	debug_called(1);
1428
1429	/*
1430	 * First wait for the adapter to come ready.
1431	 */
1432	then = time_second;
1433	do {
1434		code = AAC_GET_FWSTATUS(sc);
1435		if (code & AAC_SELF_TEST_FAILED) {
1436			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1437			return(ENXIO);
1438		}
1439		if (code & AAC_KERNEL_PANIC) {
1440			device_printf(sc->aac_dev,
1441				      "FATAL: controller kernel panic\n");
1442			return(ENXIO);
1443		}
1444		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1445			device_printf(sc->aac_dev,
1446				      "FATAL: controller not coming ready, "
1447					   "status %x\n", code);
1448			return(ENXIO);
1449		}
1450	} while (!(code & AAC_UP_AND_RUNNING));
1451
1452	error = ENOMEM;
1453	/*
1454	 * Create DMA tag for mapping buffers into controller-addressable space.
1455	 */
1456	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1457			       1, 0, 			/* algnmnt, boundary */
1458			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1459			       BUS_SPACE_MAXADDR :
1460			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1461			       BUS_SPACE_MAXADDR, 	/* highaddr */
1462			       NULL, NULL, 		/* filter, filterarg */
1463			       MAXBSIZE,		/* maxsize */
1464			       AAC_MAXSGENTRIES,	/* nsegments */
1465			       MAXBSIZE,		/* maxsegsize */
1466			       BUS_DMA_ALLOCNOW,	/* flags */
1467			       busdma_lock_mutex,	/* lockfunc */
1468			       &sc->aac_io_lock,	/* lockfuncarg */
1469			       &sc->aac_buffer_dmat)) {
1470		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1471		goto out;
1472	}
1473
1474	/*
1475	 * Create DMA tag for mapping FIBs into controller-addressable space..
1476	 */
1477	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1478			       1, 0, 			/* algnmnt, boundary */
1479			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1480			       BUS_SPACE_MAXADDR_32BIT :
1481			       0x7fffffff,		/* lowaddr */
1482			       BUS_SPACE_MAXADDR, 	/* highaddr */
1483			       NULL, NULL, 		/* filter, filterarg */
1484			       AAC_FIB_COUNT *
1485			       sizeof(struct aac_fib),  /* maxsize */
1486			       1,			/* nsegments */
1487			       AAC_FIB_COUNT *
1488			       sizeof(struct aac_fib),	/* maxsegsize */
1489			       0,			/* flags */
1490			       NULL, NULL,		/* No locking needed */
1491			       &sc->aac_fib_dmat)) {
1492		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1493		goto out;
1494	}
1495
1496	/*
1497	 * Create DMA tag for the common structure and allocate it.
1498	 */
1499	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1500			       1, 0,			/* algnmnt, boundary */
1501			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1502			       BUS_SPACE_MAXADDR_32BIT :
1503			       0x7fffffff,		/* lowaddr */
1504			       BUS_SPACE_MAXADDR, 	/* highaddr */
1505			       NULL, NULL, 		/* filter, filterarg */
1506			       8192 + sizeof(struct aac_common), /* maxsize */
1507			       1,			/* nsegments */
1508			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1509			       0,			/* flags */
1510			       NULL, NULL,		/* No locking needed */
1511			       &sc->aac_common_dmat)) {
1512		device_printf(sc->aac_dev,
1513			      "can't allocate common structure DMA tag\n");
1514		goto out;
1515	}
1516	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1517			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1518		device_printf(sc->aac_dev, "can't allocate common structure\n");
1519		goto out;
1520	}
1521
1522	/*
1523	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1524	 * below address 8192 in physical memory.
1525	 * XXX If the padding is not needed, can it be put to use instead
1526	 * of ignored?
1527	 */
1528	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1529			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1530			aac_common_map, sc, 0);
1531
1532	if (sc->aac_common_busaddr < 8192) {
1533		sc->aac_common = (struct aac_common *)
1534		    ((uint8_t *)sc->aac_common + 8192);
1535		sc->aac_common_busaddr += 8192;
1536	}
1537	bzero(sc->aac_common, sizeof(*sc->aac_common));
1538
1539	/* Allocate some FIBs and associated command structs */
1540	TAILQ_INIT(&sc->aac_fibmap_tqh);
1541	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1542				  M_AACBUF, M_WAITOK|M_ZERO);
1543	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1544		if (aac_alloc_commands(sc) != 0)
1545			break;
1546	}
1547	if (sc->total_fibs == 0)
1548		goto out;
1549
1550	/*
1551	 * Fill in the init structure.  This tells the adapter about the
1552	 * physical location of various important shared data structures.
1553	 */
1554	ip = &sc->aac_common->ac_init;
1555	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1556	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1557
1558	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1559					 offsetof(struct aac_common, ac_fibs);
1560	ip->AdapterFibsVirtualAddress = 0;
1561	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1562	ip->AdapterFibAlign = sizeof(struct aac_fib);
1563
1564	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1565				  offsetof(struct aac_common, ac_printf);
1566	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1567
1568	/*
1569	 * The adapter assumes that pages are 4K in size, except on some
1570 	 * broken firmware versions that do the page->byte conversion twice,
1571	 * therefore 'assuming' that this value is in 16MB units (2^24).
1572	 * Round up since the granularity is so high.
1573	 */
1574	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1575	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1576		ip->HostPhysMemPages =
1577		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1578	}
1579	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1580
1581	/*
1582	 * Initialise FIB queues.  Note that it appears that the layout of the
1583	 * indexes and the segmentation of the entries may be mandated by the
1584	 * adapter, which is only told about the base of the queue index fields.
1585	 *
1586	 * The initial values of the indices are assumed to inform the adapter
1587	 * of the sizes of the respective queues, and theoretically it could
1588	 * work out the entire layout of the queue structures from this.  We
1589	 * take the easy route and just lay this area out like everyone else
1590	 * does.
1591	 *
1592	 * The Linux driver uses a much more complex scheme whereby several
1593	 * header records are kept for each queue.  We use a couple of generic
1594	 * list manipulation functions which 'know' the size of each list by
1595	 * virtue of a table.
1596	 */
1597	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1598	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1599	sc->aac_queues =
1600	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1601	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1602
1603	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1604		AAC_HOST_NORM_CMD_ENTRIES;
1605	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1606		AAC_HOST_NORM_CMD_ENTRIES;
1607	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1608		AAC_HOST_HIGH_CMD_ENTRIES;
1609	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1610		AAC_HOST_HIGH_CMD_ENTRIES;
1611	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1612		AAC_ADAP_NORM_CMD_ENTRIES;
1613	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1614		AAC_ADAP_NORM_CMD_ENTRIES;
1615	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1616		AAC_ADAP_HIGH_CMD_ENTRIES;
1617	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1618		AAC_ADAP_HIGH_CMD_ENTRIES;
1619	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1620		AAC_HOST_NORM_RESP_ENTRIES;
1621	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1622		AAC_HOST_NORM_RESP_ENTRIES;
1623	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1624		AAC_HOST_HIGH_RESP_ENTRIES;
1625	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1626		AAC_HOST_HIGH_RESP_ENTRIES;
1627	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1628		AAC_ADAP_NORM_RESP_ENTRIES;
1629	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1630		AAC_ADAP_NORM_RESP_ENTRIES;
1631	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1632		AAC_ADAP_HIGH_RESP_ENTRIES;
1633	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1634		AAC_ADAP_HIGH_RESP_ENTRIES;
1635	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1636		&sc->aac_queues->qt_HostNormCmdQueue[0];
1637	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1638		&sc->aac_queues->qt_HostHighCmdQueue[0];
1639	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1640		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1641	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1642		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1643	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1644		&sc->aac_queues->qt_HostNormRespQueue[0];
1645	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1646		&sc->aac_queues->qt_HostHighRespQueue[0];
1647	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1648		&sc->aac_queues->qt_AdapNormRespQueue[0];
1649	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1650		&sc->aac_queues->qt_AdapHighRespQueue[0];
1651
1652	/*
1653	 * Do controller-type-specific initialisation
1654	 */
1655	switch (sc->aac_hwif) {
1656	case AAC_HWIF_I960RX:
1657		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1658		break;
1659	case AAC_HWIF_RKT:
1660		AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
1661		break;
1662	default:
1663		break;
1664	}
1665
1666	/*
1667	 * Give the init structure to the controller.
1668	 */
1669	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1670			     sc->aac_common_busaddr +
1671			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1672			     NULL)) {
1673		device_printf(sc->aac_dev,
1674			      "error establishing init structure\n");
1675		error = EIO;
1676		goto out;
1677	}
1678
1679	error = 0;
1680out:
1681	return(error);
1682}
1683
1684/*
1685 * Send a synchronous command to the controller and wait for a result.
1686 */
1687static int
1688aac_sync_command(struct aac_softc *sc, u_int32_t command,
1689		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1690		 u_int32_t *sp)
1691{
1692	time_t then;
1693	u_int32_t status;
1694
1695	debug_called(3);
1696
1697	/* populate the mailbox */
1698	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1699
1700	/* ensure the sync command doorbell flag is cleared */
1701	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1702
1703	/* then set it to signal the adapter */
1704	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1705
1706	/* spin waiting for the command to complete */
1707	then = time_second;
1708	do {
1709		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1710			debug(1, "timed out");
1711			return(EIO);
1712		}
1713	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1714
1715	/* clear the completion flag */
1716	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1717
1718	/* get the command status */
1719	status = AAC_GET_MAILBOX(sc, 0);
1720	if (sp != NULL)
1721		*sp = status;
1722	return(0);
1723}
1724
1725int
1726aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1727		 struct aac_fib *fib, u_int16_t datasize)
1728{
1729	debug_called(3);
1730
1731	if (datasize > AAC_FIB_DATASIZE)
1732		return(EINVAL);
1733
1734	/*
1735	 * Set up the sync FIB
1736	 */
1737	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1738				AAC_FIBSTATE_INITIALISED |
1739				AAC_FIBSTATE_EMPTY;
1740	fib->Header.XferState |= xferstate;
1741	fib->Header.Command = command;
1742	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1743	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1744	fib->Header.SenderSize = sizeof(struct aac_fib);
1745	fib->Header.SenderFibAddress = 0;	/* Not needed */
1746	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1747					 offsetof(struct aac_common,
1748						  ac_sync_fib);
1749
1750	/*
1751	 * Give the FIB to the controller, wait for a response.
1752	 */
1753	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1754			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1755		debug(2, "IO error");
1756		return(EIO);
1757	}
1758
1759	return (0);
1760}
1761
1762/*
1763 * Adapter-space FIB queue manipulation
1764 *
1765 * Note that the queue implementation here is a little funky; neither the PI or
1766 * CI will ever be zero.  This behaviour is a controller feature.
1767 */
1768static struct {
1769	int		size;
1770	int		notify;
1771} aac_qinfo[] = {
1772	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1773	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1774	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1775	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1776	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1777	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1778	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1779	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1780};
1781
1782/*
1783 * Atomically insert an entry into the nominated queue, returns 0 on success or
1784 * EBUSY if the queue is full.
1785 *
1786 * Note: it would be more efficient to defer notifying the controller in
1787 *	 the case where we may be inserting several entries in rapid succession,
1788 *	 but implementing this usefully may be difficult (it would involve a
1789 *	 separate queue/notify interface).
1790 */
1791static int
1792aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1793{
1794	u_int32_t pi, ci;
1795	int error;
1796	u_int32_t fib_size;
1797	u_int32_t fib_addr;
1798
1799	debug_called(3);
1800
1801	fib_size = cm->cm_fib->Header.Size;
1802	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1803
1804	/* get the producer/consumer indices */
1805	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1806	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1807
1808	/* wrap the queue? */
1809	if (pi >= aac_qinfo[queue].size)
1810		pi = 0;
1811
1812	/* check for queue full */
1813	if ((pi + 1) == ci) {
1814		error = EBUSY;
1815		goto out;
1816	}
1817
1818	/*
1819	 * To avoid a race with its completion interrupt, place this command on
1820	 * the busy queue prior to advertising it to the controller.
1821	 */
1822	aac_enqueue_busy(cm);
1823
1824	/* populate queue entry */
1825	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1826	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1827
1828	/* update producer index */
1829	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1830
1831	/* notify the adapter if we know how */
1832	if (aac_qinfo[queue].notify != 0)
1833		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1834
1835	error = 0;
1836
1837out:
1838	return(error);
1839}
1840
1841/*
1842 * Atomically remove one entry from the nominated queue, returns 0 on
1843 * success or ENOENT if the queue is empty.
1844 */
1845static int
1846aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1847		struct aac_fib **fib_addr)
1848{
1849	u_int32_t pi, ci;
1850	u_int32_t fib_index;
1851	int error;
1852	int notify;
1853
1854	debug_called(3);
1855
1856	/* get the producer/consumer indices */
1857	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1858	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1859
1860	/* check for queue empty */
1861	if (ci == pi) {
1862		error = ENOENT;
1863		goto out;
1864	}
1865
1866	/* wrap the pi so the following test works */
1867	if (pi >= aac_qinfo[queue].size)
1868		pi = 0;
1869
1870	notify = 0;
1871	if (ci == pi + 1)
1872		notify++;
1873
1874	/* wrap the queue? */
1875	if (ci >= aac_qinfo[queue].size)
1876		ci = 0;
1877
1878	/* fetch the entry */
1879	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1880
1881	switch (queue) {
1882	case AAC_HOST_NORM_CMD_QUEUE:
1883	case AAC_HOST_HIGH_CMD_QUEUE:
1884		/*
1885		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1886		 * on to hold an address.  For AIF's, the adapter assumes
1887		 * that it's giving us an address into the array of AIF fibs.
1888		 * Therefore, we have to convert it to an index.
1889		 */
1890		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1891			sizeof(struct aac_fib);
1892		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1893		break;
1894
1895	case AAC_HOST_NORM_RESP_QUEUE:
1896	case AAC_HOST_HIGH_RESP_QUEUE:
1897	{
1898		struct aac_command *cm;
1899
1900		/*
1901		 * As above, an index is used instead of an actual address.
1902		 * Gotta shift the index to account for the fast response
1903		 * bit.  No other correction is needed since this value was
1904		 * originally provided by the driver via the SenderFibAddress
1905		 * field.
1906		 */
1907		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1908		cm = sc->aac_commands + (fib_index >> 1);
1909		*fib_addr = cm->cm_fib;
1910
1911		/*
1912		 * Is this a fast response? If it is, update the fib fields in
1913		 * local memory since the whole fib isn't DMA'd back up.
1914		 */
1915		if (fib_index & 0x01) {
1916			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1917			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1918		}
1919		break;
1920	}
1921	default:
1922		panic("Invalid queue in aac_dequeue_fib()");
1923		break;
1924	}
1925
1926	/* update consumer index */
1927	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1928
1929	/* if we have made the queue un-full, notify the adapter */
1930	if (notify && (aac_qinfo[queue].notify != 0))
1931		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1932	error = 0;
1933
1934out:
1935	return(error);
1936}
1937
1938/*
1939 * Put our response to an Adapter Initialed Fib on the response queue
1940 */
1941static int
1942aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1943{
1944	u_int32_t pi, ci;
1945	int error;
1946	u_int32_t fib_size;
1947	u_int32_t fib_addr;
1948
1949	debug_called(1);
1950
1951	/* Tell the adapter where the FIB is */
1952	fib_size = fib->Header.Size;
1953	fib_addr = fib->Header.SenderFibAddress;
1954	fib->Header.ReceiverFibAddress = fib_addr;
1955
1956	/* get the producer/consumer indices */
1957	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1958	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1959
1960	/* wrap the queue? */
1961	if (pi >= aac_qinfo[queue].size)
1962		pi = 0;
1963
1964	/* check for queue full */
1965	if ((pi + 1) == ci) {
1966		error = EBUSY;
1967		goto out;
1968	}
1969
1970	/* populate queue entry */
1971	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1972	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1973
1974	/* update producer index */
1975	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1976
1977	/* notify the adapter if we know how */
1978	if (aac_qinfo[queue].notify != 0)
1979		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1980
1981	error = 0;
1982
1983out:
1984	return(error);
1985}
1986
1987/*
1988 * Check for commands that have been outstanding for a suspiciously long time,
1989 * and complain about them.
1990 */
1991static void
1992aac_timeout(struct aac_softc *sc)
1993{
1994	struct aac_command *cm;
1995	time_t deadline;
1996	int timedout, code;
1997
1998	/*
1999	 * Traverse the busy command list, bitch about late commands once
2000	 * only.
2001	 */
2002	timedout = 0;
2003	deadline = time_second - AAC_CMD_TIMEOUT;
2004	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2005		if ((cm->cm_timestamp  < deadline)
2006			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2007			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2008			device_printf(sc->aac_dev,
2009				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2010				      cm, (int)(time_second-cm->cm_timestamp));
2011			AAC_PRINT_FIB(sc, cm->cm_fib);
2012			timedout++;
2013		}
2014	}
2015
2016	if (timedout) {
2017		code = AAC_GET_FWSTATUS(sc);
2018		if (code != AAC_UP_AND_RUNNING) {
2019			device_printf(sc->aac_dev, "WARNING! Controller is no "
2020				      "longer running! code= 0x%x\n", code);
2021		}
2022	}
2023	return;
2024}
2025
2026/*
2027 * Interface Function Vectors
2028 */
2029
2030/*
2031 * Read the current firmware status word.
2032 */
2033static int
2034aac_sa_get_fwstatus(struct aac_softc *sc)
2035{
2036	debug_called(3);
2037
2038	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2039}
2040
2041static int
2042aac_rx_get_fwstatus(struct aac_softc *sc)
2043{
2044	debug_called(3);
2045
2046	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2047}
2048
2049static int
2050aac_fa_get_fwstatus(struct aac_softc *sc)
2051{
2052	int val;
2053
2054	debug_called(3);
2055
2056	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2057	return (val);
2058}
2059
2060static int
2061aac_rkt_get_fwstatus(struct aac_softc *sc)
2062{
2063	debug_called(3);
2064
2065	return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
2066}
2067
2068/*
2069 * Notify the controller of a change in a given queue
2070 */
2071
2072static void
2073aac_sa_qnotify(struct aac_softc *sc, int qbit)
2074{
2075	debug_called(3);
2076
2077	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2078}
2079
2080static void
2081aac_rx_qnotify(struct aac_softc *sc, int qbit)
2082{
2083	debug_called(3);
2084
2085	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2086}
2087
2088static void
2089aac_fa_qnotify(struct aac_softc *sc, int qbit)
2090{
2091	debug_called(3);
2092
2093	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2094	AAC_FA_HACK(sc);
2095}
2096
2097static void
2098aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2099{
2100	debug_called(3);
2101
2102	AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
2103}
2104
2105/*
2106 * Get the interrupt reason bits
2107 */
2108static int
2109aac_sa_get_istatus(struct aac_softc *sc)
2110{
2111	debug_called(3);
2112
2113	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2114}
2115
2116static int
2117aac_rx_get_istatus(struct aac_softc *sc)
2118{
2119	debug_called(3);
2120
2121	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2122}
2123
2124static int
2125aac_fa_get_istatus(struct aac_softc *sc)
2126{
2127	int val;
2128
2129	debug_called(3);
2130
2131	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2132	return (val);
2133}
2134
2135static int
2136aac_rkt_get_istatus(struct aac_softc *sc)
2137{
2138	debug_called(3);
2139
2140	return(AAC_GETREG4(sc, AAC_RKT_ODBR));
2141}
2142
2143/*
2144 * Clear some interrupt reason bits
2145 */
2146static void
2147aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2148{
2149	debug_called(3);
2150
2151	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2152}
2153
2154static void
2155aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2156{
2157	debug_called(3);
2158
2159	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2160}
2161
2162static void
2163aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2164{
2165	debug_called(3);
2166
2167	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2168	AAC_FA_HACK(sc);
2169}
2170
2171static void
2172aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2173{
2174	debug_called(3);
2175
2176	AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
2177}
2178
2179/*
2180 * Populate the mailbox and set the command word
2181 */
2182static void
2183aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2184		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2185{
2186	debug_called(4);
2187
2188	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2189	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2190	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2191	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2192	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2193}
2194
2195static void
2196aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2197		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2198{
2199	debug_called(4);
2200
2201	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2202	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2203	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2204	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2205	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2206}
2207
2208static void
2209aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2210		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2211{
2212	debug_called(4);
2213
2214	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2215	AAC_FA_HACK(sc);
2216	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2217	AAC_FA_HACK(sc);
2218	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2219	AAC_FA_HACK(sc);
2220	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2221	AAC_FA_HACK(sc);
2222	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2223	AAC_FA_HACK(sc);
2224}
2225
2226static void
2227aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2228		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2229{
2230	debug_called(4);
2231
2232	AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
2233	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2234	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2235	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2236	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2237}
2238
2239/*
2240 * Fetch the immediate command status word
2241 */
2242static int
2243aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2244{
2245	debug_called(4);
2246
2247	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2248}
2249
2250static int
2251aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2252{
2253	debug_called(4);
2254
2255	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2256}
2257
2258static int
2259aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2260{
2261	int val;
2262
2263	debug_called(4);
2264
2265	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2266	return (val);
2267}
2268
2269static int
2270aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2271{
2272	debug_called(4);
2273
2274	return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2275}
2276
2277/*
2278 * Set/clear interrupt masks
2279 */
2280static void
2281aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2282{
2283	debug(2, "%sable interrupts", enable ? "en" : "dis");
2284
2285	if (enable) {
2286		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2287	} else {
2288		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2289	}
2290}
2291
2292static void
2293aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2294{
2295	debug(2, "%sable interrupts", enable ? "en" : "dis");
2296
2297	if (enable) {
2298		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2299	} else {
2300		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2301	}
2302}
2303
2304static void
2305aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2306{
2307	debug(2, "%sable interrupts", enable ? "en" : "dis");
2308
2309	if (enable) {
2310		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2311		AAC_FA_HACK(sc);
2312	} else {
2313		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2314		AAC_FA_HACK(sc);
2315	}
2316}
2317
2318static void
2319aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2320{
2321	debug(2, "%sable interrupts", enable ? "en" : "dis");
2322
2323	if (enable) {
2324		AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2325	} else {
2326		AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
2327	}
2328}
2329
2330/*
2331 * Debugging and Diagnostics
2332 */
2333
2334/*
2335 * Print some information about the controller.
2336 */
2337static void
2338aac_describe_controller(struct aac_softc *sc)
2339{
2340	struct aac_fib *fib;
2341	struct aac_adapter_info	*info;
2342
2343	debug_called(2);
2344
2345	aac_alloc_sync_fib(sc, &fib);
2346
2347	fib->data[0] = 0;
2348	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2349		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2350		aac_release_sync_fib(sc);
2351		return;
2352	}
2353
2354	/* save the kernel revision structure for later use */
2355	info = (struct aac_adapter_info *)&fib->data[0];
2356	sc->aac_revision = info->KernelRevision;
2357
2358	if (bootverbose) {
2359		device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2360		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2361		    info->ClockSpeed, info->BufferMem / (1024 * 1024),
2362		    aac_describe_code(aac_battery_platform,
2363		    info->batteryPlatform));
2364
2365		device_printf(sc->aac_dev,
2366		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2367		    info->KernelRevision.external.comp.major,
2368		    info->KernelRevision.external.comp.minor,
2369		    info->KernelRevision.external.comp.dash,
2370		    info->KernelRevision.buildNumber,
2371		    (u_int32_t)(info->SerialNumber & 0xffffff));
2372
2373		device_printf(sc->aac_dev, "Supported Options=%b\n",
2374			      sc->supported_options,
2375			      "\20"
2376			      "\1SNAPSHOT"
2377			      "\2CLUSTERS"
2378			      "\3WCACHE"
2379			      "\4DATA64"
2380			      "\5HOSTTIME"
2381			      "\6RAID50"
2382			      "\7WINDOW4GB"
2383			      "\10SCSIUPGD"
2384			      "\11SOFTERR"
2385			      "\12NORECOND"
2386			      "\13SGMAP64"
2387			      "\14ALARM"
2388			      "\15NONDASD");
2389	}
2390	aac_release_sync_fib(sc);
2391}
2392
2393/*
2394 * Look up a text description of a numeric error code and return a pointer to
2395 * same.
2396 */
2397static char *
2398aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2399{
2400	int i;
2401
2402	for (i = 0; table[i].string != NULL; i++)
2403		if (table[i].code == code)
2404			return(table[i].string);
2405	return(table[i + 1].string);
2406}
2407
2408/*
2409 * Management Interface
2410 */
2411
2412static int
2413aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2414{
2415	struct aac_softc *sc;
2416
2417	debug_called(2);
2418
2419	sc = dev->si_drv1;
2420
2421	/* Check to make sure the device isn't already open */
2422	if (sc->aac_state & AAC_STATE_OPEN) {
2423		return EBUSY;
2424	}
2425	sc->aac_state |= AAC_STATE_OPEN;
2426
2427	return 0;
2428}
2429
2430static int
2431aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2432{
2433	struct aac_softc *sc;
2434
2435	debug_called(2);
2436
2437	sc = dev->si_drv1;
2438
2439	/* Mark this unit as no longer open  */
2440	sc->aac_state &= ~AAC_STATE_OPEN;
2441
2442	return 0;
2443}
2444
2445static int
2446aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2447{
2448	union aac_statrequest *as;
2449	struct aac_softc *sc;
2450	int error = 0;
2451	uint32_t cookie;
2452
2453	debug_called(2);
2454
2455	as = (union aac_statrequest *)arg;
2456	sc = dev->si_drv1;
2457
2458	switch (cmd) {
2459	case AACIO_STATS:
2460		switch (as->as_item) {
2461		case AACQ_FREE:
2462		case AACQ_BIO:
2463		case AACQ_READY:
2464		case AACQ_BUSY:
2465			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2466			      sizeof(struct aac_qstat));
2467			break;
2468		default:
2469			error = ENOENT;
2470			break;
2471		}
2472	break;
2473
2474	case FSACTL_SENDFIB:
2475		arg = *(caddr_t*)arg;
2476	case FSACTL_LNX_SENDFIB:
2477		debug(1, "FSACTL_SENDFIB");
2478		error = aac_ioctl_sendfib(sc, arg);
2479		break;
2480	case FSACTL_AIF_THREAD:
2481	case FSACTL_LNX_AIF_THREAD:
2482		debug(1, "FSACTL_AIF_THREAD");
2483		error = EINVAL;
2484		break;
2485	case FSACTL_OPEN_GET_ADAPTER_FIB:
2486		arg = *(caddr_t*)arg;
2487	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2488		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2489		/*
2490		 * Pass the caller out an AdapterFibContext.
2491		 *
2492		 * Note that because we only support one opener, we
2493		 * basically ignore this.  Set the caller's context to a magic
2494		 * number just in case.
2495		 *
2496		 * The Linux code hands the driver a pointer into kernel space,
2497		 * and then trusts it when the caller hands it back.  Aiee!
2498		 * Here, we give it the proc pointer of the per-adapter aif
2499		 * thread. It's only used as a sanity check in other calls.
2500		 */
2501		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2502		error = copyout(&cookie, arg, sizeof(cookie));
2503		break;
2504	case FSACTL_GET_NEXT_ADAPTER_FIB:
2505		arg = *(caddr_t*)arg;
2506	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2507		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2508		error = aac_getnext_aif(sc, arg);
2509		break;
2510	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2511	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2512		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2513		/* don't do anything here */
2514		break;
2515	case FSACTL_MINIPORT_REV_CHECK:
2516		arg = *(caddr_t*)arg;
2517	case FSACTL_LNX_MINIPORT_REV_CHECK:
2518		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2519		error = aac_rev_check(sc, arg);
2520		break;
2521	case FSACTL_QUERY_DISK:
2522		arg = *(caddr_t*)arg;
2523	case FSACTL_LNX_QUERY_DISK:
2524		debug(1, "FSACTL_QUERY_DISK");
2525		error = aac_query_disk(sc, arg);
2526			break;
2527	case FSACTL_DELETE_DISK:
2528	case FSACTL_LNX_DELETE_DISK:
2529		/*
2530		 * We don't trust the underland to tell us when to delete a
2531		 * container, rather we rely on an AIF coming from the
2532		 * controller
2533		 */
2534		error = 0;
2535		break;
2536	default:
2537		debug(1, "unsupported cmd 0x%lx\n", cmd);
2538		error = EINVAL;
2539		break;
2540	}
2541	return(error);
2542}
2543
2544static int
2545aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2546{
2547	struct aac_softc *sc;
2548	int revents;
2549
2550	sc = dev->si_drv1;
2551	revents = 0;
2552
2553	mtx_lock(&sc->aac_aifq_lock);
2554	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2555		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2556			revents |= poll_events & (POLLIN | POLLRDNORM);
2557	}
2558	mtx_unlock(&sc->aac_aifq_lock);
2559
2560	if (revents == 0) {
2561		if (poll_events & (POLLIN | POLLRDNORM))
2562			selrecord(td, &sc->rcv_select);
2563	}
2564
2565	return (revents);
2566}
2567
2568/*
2569 * Send a FIB supplied from userspace
2570 */
2571static int
2572aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2573{
2574	struct aac_command *cm;
2575	int size, error;
2576
2577	debug_called(2);
2578
2579	cm = NULL;
2580
2581	/*
2582	 * Get a command
2583	 */
2584	mtx_lock(&sc->aac_io_lock);
2585	if (aac_alloc_command(sc, &cm)) {
2586		error = EBUSY;
2587		goto out;
2588	}
2589
2590	/*
2591	 * Fetch the FIB header, then re-copy to get data as well.
2592	 */
2593	if ((error = copyin(ufib, cm->cm_fib,
2594			    sizeof(struct aac_fib_header))) != 0)
2595		goto out;
2596	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2597	if (size > sizeof(struct aac_fib)) {
2598		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2599			      size, sizeof(struct aac_fib));
2600		size = sizeof(struct aac_fib);
2601	}
2602	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2603		goto out;
2604	cm->cm_fib->Header.Size = size;
2605	cm->cm_timestamp = time_second;
2606
2607	/*
2608	 * Pass the FIB to the controller, wait for it to complete.
2609	 */
2610	if ((error = aac_wait_command(cm)) != 0) {
2611		device_printf(sc->aac_dev,
2612			      "aac_wait_command return %d\n", error);
2613		goto out;
2614	}
2615
2616	/*
2617	 * Copy the FIB and data back out to the caller.
2618	 */
2619	size = cm->cm_fib->Header.Size;
2620	if (size > sizeof(struct aac_fib)) {
2621		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2622			      size, sizeof(struct aac_fib));
2623		size = sizeof(struct aac_fib);
2624	}
2625	error = copyout(cm->cm_fib, ufib, size);
2626
2627out:
2628	if (cm != NULL) {
2629		aac_release_command(cm);
2630	}
2631
2632	mtx_unlock(&sc->aac_io_lock);
2633	return(error);
2634}
2635
2636/*
2637 * Handle an AIF sent to us by the controller; queue it for later reference.
2638 * If the queue fills up, then drop the older entries.
2639 */
2640static void
2641aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2642{
2643	struct aac_aif_command *aif;
2644	struct aac_container *co, *co_next;
2645	struct aac_mntinfo *mi;
2646	struct aac_mntinforesp *mir = NULL;
2647	u_int16_t rsize;
2648	int next, found;
2649	int count = 0, added = 0, i = 0;
2650
2651	debug_called(2);
2652
2653	aif = (struct aac_aif_command*)&fib->data[0];
2654	aac_print_aif(sc, aif);
2655
2656	/* Is it an event that we should care about? */
2657	switch (aif->command) {
2658	case AifCmdEventNotify:
2659		switch (aif->data.EN.type) {
2660		case AifEnAddContainer:
2661		case AifEnDeleteContainer:
2662			/*
2663			 * A container was added or deleted, but the message
2664			 * doesn't tell us anything else!  Re-enumerate the
2665			 * containers and sort things out.
2666			 */
2667			aac_alloc_sync_fib(sc, &fib);
2668			mi = (struct aac_mntinfo *)&fib->data[0];
2669			do {
2670				/*
2671				 * Ask the controller for its containers one at
2672				 * a time.
2673				 * XXX What if the controller's list changes
2674				 * midway through this enumaration?
2675				 * XXX This should be done async.
2676				 */
2677				bzero(mi, sizeof(struct aac_mntinfo));
2678				mi->Command = VM_NameServe;
2679				mi->MntType = FT_FILESYS;
2680				mi->MntCount = i;
2681				rsize = sizeof(mir);
2682				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2683						 sizeof(struct aac_mntinfo))) {
2684					printf("Error probing container %d\n",
2685					      i);
2686					continue;
2687				}
2688				mir = (struct aac_mntinforesp *)&fib->data[0];
2689				/* XXX Need to check if count changed */
2690				count = mir->MntRespCount;
2691				/*
2692				 * Check the container against our list.
2693				 * co->co_found was already set to 0 in a
2694				 * previous run.
2695				 */
2696				if ((mir->Status == ST_OK) &&
2697				    (mir->MntTable[0].VolType != CT_NONE)) {
2698					found = 0;
2699					TAILQ_FOREACH(co,
2700						      &sc->aac_container_tqh,
2701						      co_link) {
2702						if (co->co_mntobj.ObjectId ==
2703						    mir->MntTable[0].ObjectId) {
2704							co->co_found = 1;
2705							found = 1;
2706							break;
2707						}
2708					}
2709					/*
2710					 * If the container matched, continue
2711					 * in the list.
2712					 */
2713					if (found) {
2714						i++;
2715						continue;
2716					}
2717
2718					/*
2719					 * This is a new container.  Do all the
2720					 * appropriate things to set it up.
2721					 */
2722					aac_add_container(sc, mir, 1);
2723					added = 1;
2724				}
2725				i++;
2726			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2727			aac_release_sync_fib(sc);
2728
2729			/*
2730			 * Go through our list of containers and see which ones
2731			 * were not marked 'found'.  Since the controller didn't
2732			 * list them they must have been deleted.  Do the
2733			 * appropriate steps to destroy the device.  Also reset
2734			 * the co->co_found field.
2735			 */
2736			co = TAILQ_FIRST(&sc->aac_container_tqh);
2737			while (co != NULL) {
2738				if (co->co_found == 0) {
2739					device_delete_child(sc->aac_dev,
2740							    co->co_disk);
2741					co_next = TAILQ_NEXT(co, co_link);
2742					mtx_lock(&sc->aac_container_lock);
2743					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2744						     co_link);
2745					mtx_unlock(&sc->aac_container_lock);
2746					free(co, M_AACBUF);
2747					co = co_next;
2748				} else {
2749					co->co_found = 0;
2750					co = TAILQ_NEXT(co, co_link);
2751				}
2752			}
2753
2754			/* Attach the newly created containers */
2755			if (added)
2756				bus_generic_attach(sc->aac_dev);
2757
2758			break;
2759
2760		default:
2761			break;
2762		}
2763
2764	default:
2765		break;
2766	}
2767
2768	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2769	mtx_lock(&sc->aac_aifq_lock);
2770	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2771	if (next != sc->aac_aifq_tail) {
2772		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2773		sc->aac_aifq_head = next;
2774
2775		/* On the off chance that someone is sleeping for an aif... */
2776		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2777			wakeup(sc->aac_aifq);
2778		/* Wakeup any poll()ers */
2779		selwakeuppri(&sc->rcv_select, PRIBIO);
2780	}
2781	mtx_unlock(&sc->aac_aifq_lock);
2782
2783	return;
2784}
2785
2786/*
2787 * Return the Revision of the driver to userspace and check to see if the
2788 * userspace app is possibly compatible.  This is extremely bogus since
2789 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2790 * returning what the card reported.
2791 */
2792static int
2793aac_rev_check(struct aac_softc *sc, caddr_t udata)
2794{
2795	struct aac_rev_check rev_check;
2796	struct aac_rev_check_resp rev_check_resp;
2797	int error = 0;
2798
2799	debug_called(2);
2800
2801	/*
2802	 * Copyin the revision struct from userspace
2803	 */
2804	if ((error = copyin(udata, (caddr_t)&rev_check,
2805			sizeof(struct aac_rev_check))) != 0) {
2806		return error;
2807	}
2808
2809	debug(2, "Userland revision= %d\n",
2810	      rev_check.callingRevision.buildNumber);
2811
2812	/*
2813	 * Doctor up the response struct.
2814	 */
2815	rev_check_resp.possiblyCompatible = 1;
2816	rev_check_resp.adapterSWRevision.external.ul =
2817	    sc->aac_revision.external.ul;
2818	rev_check_resp.adapterSWRevision.buildNumber =
2819	    sc->aac_revision.buildNumber;
2820
2821	return(copyout((caddr_t)&rev_check_resp, udata,
2822			sizeof(struct aac_rev_check_resp)));
2823}
2824
2825/*
2826 * Pass the caller the next AIF in their queue
2827 */
2828static int
2829aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2830{
2831	struct get_adapter_fib_ioctl agf;
2832	int error;
2833
2834	debug_called(2);
2835
2836	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2837
2838		/*
2839		 * Check the magic number that we gave the caller.
2840		 */
2841		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2842			error = EFAULT;
2843		} else {
2844			error = aac_return_aif(sc, agf.AifFib);
2845			if ((error == EAGAIN) && (agf.Wait)) {
2846				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2847				while (error == EAGAIN) {
2848					error = tsleep(sc->aac_aifq, PRIBIO |
2849						       PCATCH, "aacaif", 0);
2850					if (error == 0)
2851						error = aac_return_aif(sc,
2852						    agf.AifFib);
2853				}
2854				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2855			}
2856		}
2857	}
2858	return(error);
2859}
2860
2861/*
2862 * Hand the next AIF off the top of the queue out to userspace.
2863 */
2864static int
2865aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2866{
2867	int next, error;
2868
2869	debug_called(2);
2870
2871	mtx_lock(&sc->aac_aifq_lock);
2872	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2873		mtx_unlock(&sc->aac_aifq_lock);
2874		return (EAGAIN);
2875	}
2876
2877	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2878	error = copyout(&sc->aac_aifq[next], uptr,
2879			sizeof(struct aac_aif_command));
2880	if (error)
2881		device_printf(sc->aac_dev,
2882		    "aac_return_aif: copyout returned %d\n", error);
2883	else
2884		sc->aac_aifq_tail = next;
2885
2886	mtx_unlock(&sc->aac_aifq_lock);
2887	return(error);
2888}
2889
2890/*
2891 * Give the userland some information about the container.  The AAC arch
2892 * expects the driver to be a SCSI passthrough type driver, so it expects
2893 * the containers to have b:t:l numbers.  Fake it.
2894 */
2895static int
2896aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2897{
2898	struct aac_query_disk query_disk;
2899	struct aac_container *co;
2900	struct aac_disk	*disk;
2901	int error, id;
2902
2903	debug_called(2);
2904
2905	disk = NULL;
2906
2907	error = copyin(uptr, (caddr_t)&query_disk,
2908		       sizeof(struct aac_query_disk));
2909	if (error)
2910		return (error);
2911
2912	id = query_disk.ContainerNumber;
2913	if (id == -1)
2914		return (EINVAL);
2915
2916	mtx_lock(&sc->aac_container_lock);
2917	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2918		if (co->co_mntobj.ObjectId == id)
2919			break;
2920		}
2921
2922	if (co == NULL) {
2923			query_disk.Valid = 0;
2924			query_disk.Locked = 0;
2925			query_disk.Deleted = 1;		/* XXX is this right? */
2926	} else {
2927		disk = device_get_softc(co->co_disk);
2928		query_disk.Valid = 1;
2929		query_disk.Locked =
2930		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2931		query_disk.Deleted = 0;
2932		query_disk.Bus = device_get_unit(sc->aac_dev);
2933		query_disk.Target = disk->unit;
2934		query_disk.Lun = 0;
2935		query_disk.UnMapped = 0;
2936		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2937		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2938	}
2939	mtx_unlock(&sc->aac_container_lock);
2940
2941	error = copyout((caddr_t)&query_disk, uptr,
2942			sizeof(struct aac_query_disk));
2943
2944	return (error);
2945}
2946
2947static void
2948aac_get_bus_info(struct aac_softc *sc)
2949{
2950	struct aac_fib *fib;
2951	struct aac_ctcfg *c_cmd;
2952	struct aac_ctcfg_resp *c_resp;
2953	struct aac_vmioctl *vmi;
2954	struct aac_vmi_businf_resp *vmi_resp;
2955	struct aac_getbusinf businfo;
2956	struct aac_sim *caminf;
2957	device_t child;
2958	int i, found, error;
2959
2960	aac_alloc_sync_fib(sc, &fib);
2961	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2962	bzero(c_cmd, sizeof(struct aac_ctcfg));
2963
2964	c_cmd->Command = VM_ContainerConfig;
2965	c_cmd->cmd = CT_GET_SCSI_METHOD;
2966	c_cmd->param = 0;
2967
2968	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2969	    sizeof(struct aac_ctcfg));
2970	if (error) {
2971		device_printf(sc->aac_dev, "Error %d sending "
2972		    "VM_ContainerConfig command\n", error);
2973		aac_release_sync_fib(sc);
2974		return;
2975	}
2976
2977	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2978	if (c_resp->Status != ST_OK) {
2979		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2980		    c_resp->Status);
2981		aac_release_sync_fib(sc);
2982		return;
2983	}
2984
2985	sc->scsi_method_id = c_resp->param;
2986
2987	vmi = (struct aac_vmioctl *)&fib->data[0];
2988	bzero(vmi, sizeof(struct aac_vmioctl));
2989
2990	vmi->Command = VM_Ioctl;
2991	vmi->ObjType = FT_DRIVE;
2992	vmi->MethId = sc->scsi_method_id;
2993	vmi->ObjId = 0;
2994	vmi->IoctlCmd = GetBusInfo;
2995
2996	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2997	    sizeof(struct aac_vmioctl));
2998	if (error) {
2999		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3000		    error);
3001		aac_release_sync_fib(sc);
3002		return;
3003	}
3004
3005	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3006	if (vmi_resp->Status != ST_OK) {
3007		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3008		    vmi_resp->Status);
3009		aac_release_sync_fib(sc);
3010		return;
3011	}
3012
3013	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3014	aac_release_sync_fib(sc);
3015
3016	found = 0;
3017	for (i = 0; i < businfo.BusCount; i++) {
3018		if (businfo.BusValid[i] != AAC_BUS_VALID)
3019			continue;
3020
3021		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3022		    M_AACBUF, M_NOWAIT | M_ZERO);
3023		if (caminf == NULL) {
3024			device_printf(sc->aac_dev,
3025			    "No memory to add passthrough bus %d\n", i);
3026			break;
3027		}
3028
3029		child = device_add_child(sc->aac_dev, "aacp", -1);
3030		if (child == NULL) {
3031			device_printf(sc->aac_dev,
3032			    "device_add_child failed for passthrough bus %d\n",
3033			    i);
3034			free(caminf, M_AACBUF);
3035			break;
3036		}
3037
3038		caminf->TargetsPerBus = businfo.TargetsPerBus;
3039		caminf->BusNumber = i;
3040		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3041		caminf->aac_sc = sc;
3042		caminf->sim_dev = child;
3043
3044		device_set_ivars(child, caminf);
3045		device_set_desc(child, "SCSI Passthrough Bus");
3046		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3047
3048		found = 1;
3049	}
3050
3051	if (found)
3052		bus_generic_attach(sc->aac_dev);
3053
3054	return;
3055}
3056