aac.c revision 133606
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 133606 2004-08-13 01:44:09Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
79				   int nseg, int error);
80static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
81				       int nseg, int error);
82static int	aac_alloc_commands(struct aac_softc *sc);
83static void	aac_free_commands(struct aac_softc *sc);
84static void	aac_unmap_command(struct aac_command *cm);
85
86/* Hardware Interface */
87static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88			       int error);
89static int	aac_check_firmware(struct aac_softc *sc);
90static int	aac_init(struct aac_softc *sc);
91static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93				 u_int32_t arg3, u_int32_t *sp);
94static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95				struct aac_command *cm);
96static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97				u_int32_t *fib_size, struct aac_fib **fib_addr);
98static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99				     struct aac_fib *fib);
100
101/* Falcon/PPC interface */
102static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104static int	aac_fa_get_istatus(struct aac_softc *sc);
105static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107				   u_int32_t arg0, u_int32_t arg1,
108				   u_int32_t arg2, u_int32_t arg3);
109static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
110static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111
112struct aac_interface aac_fa_interface = {
113	aac_fa_get_fwstatus,
114	aac_fa_qnotify,
115	aac_fa_get_istatus,
116	aac_fa_clear_istatus,
117	aac_fa_set_mailbox,
118	aac_fa_get_mailbox,
119	aac_fa_set_interrupts
120};
121
122/* StrongARM interface */
123static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125static int	aac_sa_get_istatus(struct aac_softc *sc);
126static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128				   u_int32_t arg0, u_int32_t arg1,
129				   u_int32_t arg2, u_int32_t arg3);
130static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
131static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132
133struct aac_interface aac_sa_interface = {
134	aac_sa_get_fwstatus,
135	aac_sa_qnotify,
136	aac_sa_get_istatus,
137	aac_sa_clear_istatus,
138	aac_sa_set_mailbox,
139	aac_sa_get_mailbox,
140	aac_sa_set_interrupts
141};
142
143/* i960Rx interface */
144static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146static int	aac_rx_get_istatus(struct aac_softc *sc);
147static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149				   u_int32_t arg0, u_int32_t arg1,
150				   u_int32_t arg2, u_int32_t arg3);
151static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
152static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153
154struct aac_interface aac_rx_interface = {
155	aac_rx_get_fwstatus,
156	aac_rx_qnotify,
157	aac_rx_get_istatus,
158	aac_rx_clear_istatus,
159	aac_rx_set_mailbox,
160	aac_rx_get_mailbox,
161	aac_rx_set_interrupts
162};
163
164/* Rocket/MIPS interface */
165static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
166static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
167static int	aac_rkt_get_istatus(struct aac_softc *sc);
168static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
169static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
170				    u_int32_t arg0, u_int32_t arg1,
171				    u_int32_t arg2, u_int32_t arg3);
172static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
173static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
174
175struct aac_interface aac_rkt_interface = {
176	aac_rkt_get_fwstatus,
177	aac_rkt_qnotify,
178	aac_rkt_get_istatus,
179	aac_rkt_clear_istatus,
180	aac_rkt_set_mailbox,
181	aac_rkt_get_mailbox,
182	aac_rkt_set_interrupts
183};
184
185/* Debugging and Diagnostics */
186static void	aac_describe_controller(struct aac_softc *sc);
187static char	*aac_describe_code(struct aac_code_lookup *table,
188				   u_int32_t code);
189
190/* Management Interface */
191static d_open_t		aac_open;
192static d_close_t	aac_close;
193static d_ioctl_t	aac_ioctl;
194static d_poll_t		aac_poll;
195static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
196static void		aac_handle_aif(struct aac_softc *sc,
197					   struct aac_fib *fib);
198static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
199static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
200static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
201static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
202
203static struct cdevsw aac_cdevsw = {
204	.d_version =	D_VERSION,
205	.d_flags =	D_NEEDGIANT,
206	.d_open =	aac_open,
207	.d_close =	aac_close,
208	.d_ioctl =	aac_ioctl,
209	.d_poll =	aac_poll,
210	.d_name =	"aac",
211};
212
213MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
214
215/* sysctl node */
216SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
217
218/*
219 * Device Interface
220 */
221
222/*
223 * Initialise the controller and softc
224 */
225int
226aac_attach(struct aac_softc *sc)
227{
228	int error, unit;
229
230	debug_called(1);
231
232	/*
233	 * Initialise per-controller queues.
234	 */
235	aac_initq_free(sc);
236	aac_initq_ready(sc);
237	aac_initq_busy(sc);
238	aac_initq_bio(sc);
239
240	/*
241	 * Initialise command-completion task.
242	 */
243	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
244
245	/* disable interrupts before we enable anything */
246	AAC_MASK_INTERRUPTS(sc);
247
248	/* mark controller as suspended until we get ourselves organised */
249	sc->aac_state |= AAC_STATE_SUSPEND;
250
251	/*
252	 * Check that the firmware on the card is supported.
253	 */
254	if ((error = aac_check_firmware(sc)) != 0)
255		return(error);
256
257	/*
258	 * Initialize locks
259	 */
260	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
261	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
262	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
263	TAILQ_INIT(&sc->aac_container_tqh);
264
265	/* Initialize the local AIF queue pointers */
266	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
267
268	/*
269	 * Initialise the adapter.
270	 */
271	if ((error = aac_init(sc)) != 0)
272		return(error);
273
274	/*
275	 * Print a little information about the controller.
276	 */
277	aac_describe_controller(sc);
278
279	/*
280	 * Register to probe our containers later.
281	 */
282	sc->aac_ich.ich_func = aac_startup;
283	sc->aac_ich.ich_arg = sc;
284	if (config_intrhook_establish(&sc->aac_ich) != 0) {
285		device_printf(sc->aac_dev,
286			      "can't establish configuration hook\n");
287		return(ENXIO);
288	}
289
290	/*
291	 * Make the control device.
292	 */
293	unit = device_get_unit(sc->aac_dev);
294	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
295				 0640, "aac%d", unit);
296	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
297	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
298	sc->aac_dev_t->si_drv1 = sc;
299
300	/* Create the AIF thread */
301	if (kthread_create((void(*)(void *))aac_command_thread, sc,
302			   &sc->aifthread, 0, 0, "aac%daif", unit))
303		panic("Could not create AIF thread\n");
304
305	/* Register the shutdown method to only be called post-dump */
306	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
307	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
308		device_printf(sc->aac_dev,
309			      "shutdown event registration failed\n");
310
311	/* Register with CAM for the non-DASD devices */
312	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
313		TAILQ_INIT(&sc->aac_sim_tqh);
314		aac_get_bus_info(sc);
315	}
316
317	return(0);
318}
319
320/*
321 * Probe for containers, create disks.
322 */
323static void
324aac_startup(void *arg)
325{
326	struct aac_softc *sc;
327	struct aac_fib *fib;
328	struct aac_mntinfo *mi;
329	struct aac_mntinforesp *mir = NULL;
330	int count = 0, i = 0;
331
332	debug_called(1);
333
334	sc = (struct aac_softc *)arg;
335
336	/* disconnect ourselves from the intrhook chain */
337	config_intrhook_disestablish(&sc->aac_ich);
338
339	aac_alloc_sync_fib(sc, &fib);
340	mi = (struct aac_mntinfo *)&fib->data[0];
341
342	/* loop over possible containers */
343	do {
344		/* request information on this container */
345		bzero(mi, sizeof(struct aac_mntinfo));
346		mi->Command = VM_NameServe;
347		mi->MntType = FT_FILESYS;
348		mi->MntCount = i;
349		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
350				 sizeof(struct aac_mntinfo))) {
351			printf("error probing container %d", i);
352			continue;
353		}
354
355		mir = (struct aac_mntinforesp *)&fib->data[0];
356		/* XXX Need to check if count changed */
357		count = mir->MntRespCount;
358		aac_add_container(sc, mir, 0);
359		i++;
360	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
361
362	aac_release_sync_fib(sc);
363
364	/* poke the bus to actually attach the child devices */
365	if (bus_generic_attach(sc->aac_dev))
366		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
367
368	/* mark the controller up */
369	sc->aac_state &= ~AAC_STATE_SUSPEND;
370
371	/* enable interrupts now */
372	AAC_UNMASK_INTERRUPTS(sc);
373}
374
375/*
376 * Create a device to respresent a new container
377 */
378static void
379aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
380{
381	struct aac_container *co;
382	device_t child;
383
384	/*
385	 * Check container volume type for validity.  Note that many of
386	 * the possible types may never show up.
387	 */
388	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
389		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
390		       M_NOWAIT | M_ZERO);
391		if (co == NULL)
392			panic("Out of memory?!\n");
393		debug(1, "id %x  name '%.16s'  size %u  type %d",
394		      mir->MntTable[0].ObjectId,
395		      mir->MntTable[0].FileSystemName,
396		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
397
398		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
399			device_printf(sc->aac_dev, "device_add_child failed\n");
400		else
401			device_set_ivars(child, co);
402		device_set_desc(child, aac_describe_code(aac_container_types,
403				mir->MntTable[0].VolType));
404		co->co_disk = child;
405		co->co_found = f;
406		bcopy(&mir->MntTable[0], &co->co_mntobj,
407		      sizeof(struct aac_mntobj));
408		mtx_lock(&sc->aac_container_lock);
409		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
410		mtx_unlock(&sc->aac_container_lock);
411	}
412}
413
414/*
415 * Free all of the resources associated with (sc)
416 *
417 * Should not be called if the controller is active.
418 */
419void
420aac_free(struct aac_softc *sc)
421{
422
423	debug_called(1);
424
425	/* remove the control device */
426	if (sc->aac_dev_t != NULL)
427		destroy_dev(sc->aac_dev_t);
428
429	/* throw away any FIB buffers, discard the FIB DMA tag */
430	aac_free_commands(sc);
431	if (sc->aac_fib_dmat)
432		bus_dma_tag_destroy(sc->aac_fib_dmat);
433
434	free(sc->aac_commands, M_AACBUF);
435
436	/* destroy the common area */
437	if (sc->aac_common) {
438		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
439		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
440				sc->aac_common_dmamap);
441	}
442	if (sc->aac_common_dmat)
443		bus_dma_tag_destroy(sc->aac_common_dmat);
444
445	/* disconnect the interrupt handler */
446	if (sc->aac_intr)
447		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
448	if (sc->aac_irq != NULL)
449		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
450				     sc->aac_irq);
451
452	/* destroy data-transfer DMA tag */
453	if (sc->aac_buffer_dmat)
454		bus_dma_tag_destroy(sc->aac_buffer_dmat);
455
456	/* destroy the parent DMA tag */
457	if (sc->aac_parent_dmat)
458		bus_dma_tag_destroy(sc->aac_parent_dmat);
459
460	/* release the register window mapping */
461	if (sc->aac_regs_resource != NULL)
462		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
463				     sc->aac_regs_rid, sc->aac_regs_resource);
464}
465
466/*
467 * Disconnect from the controller completely, in preparation for unload.
468 */
469int
470aac_detach(device_t dev)
471{
472	struct aac_softc *sc;
473	struct aac_container *co;
474	struct aac_sim	*sim;
475	int error;
476
477	debug_called(1);
478
479	sc = device_get_softc(dev);
480
481	if (sc->aac_state & AAC_STATE_OPEN)
482		return(EBUSY);
483
484	/* Remove the child containers */
485	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
486		error = device_delete_child(dev, co->co_disk);
487		if (error)
488			return (error);
489		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
490		free(co, M_AACBUF);
491	}
492
493	/* Remove the CAM SIMs */
494	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
495		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
496		error = device_delete_child(dev, sim->sim_dev);
497		if (error)
498			return (error);
499		free(sim, M_AACBUF);
500	}
501
502	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
503		sc->aifflags |= AAC_AIFFLAGS_EXIT;
504		wakeup(sc->aifthread);
505		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
506	}
507
508	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
509		panic("Cannot shutdown AIF thread\n");
510
511	if ((error = aac_shutdown(dev)))
512		return(error);
513
514	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
515
516	aac_free(sc);
517
518	mtx_destroy(&sc->aac_aifq_lock);
519	mtx_destroy(&sc->aac_io_lock);
520	mtx_destroy(&sc->aac_container_lock);
521
522	return(0);
523}
524
525/*
526 * Bring the controller down to a dormant state and detach all child devices.
527 *
528 * This function is called before detach or system shutdown.
529 *
530 * Note that we can assume that the bioq on the controller is empty, as we won't
531 * allow shutdown if any device is open.
532 */
533int
534aac_shutdown(device_t dev)
535{
536	struct aac_softc *sc;
537	struct aac_fib *fib;
538	struct aac_close_command *cc;
539
540	debug_called(1);
541
542	sc = device_get_softc(dev);
543
544	sc->aac_state |= AAC_STATE_SUSPEND;
545
546	/*
547	 * Send a Container shutdown followed by a HostShutdown FIB to the
548	 * controller to convince it that we don't want to talk to it anymore.
549	 * We've been closed and all I/O completed already
550	 */
551	device_printf(sc->aac_dev, "shutting down controller...");
552
553	aac_alloc_sync_fib(sc, &fib);
554	cc = (struct aac_close_command *)&fib->data[0];
555
556	bzero(cc, sizeof(struct aac_close_command));
557	cc->Command = VM_CloseAll;
558	cc->ContainerId = 0xffffffff;
559	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
560	    sizeof(struct aac_close_command)))
561		printf("FAILED.\n");
562	else
563		printf("done\n");
564#if 0
565	else {
566		fib->data[0] = 0;
567		/*
568		 * XXX Issuing this command to the controller makes it shut down
569		 * but also keeps it from coming back up without a reset of the
570		 * PCI bus.  This is not desirable if you are just unloading the
571		 * driver module with the intent to reload it later.
572		 */
573		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
574		    fib, 1)) {
575			printf("FAILED.\n");
576		} else {
577			printf("done.\n");
578		}
579	}
580#endif
581
582	AAC_MASK_INTERRUPTS(sc);
583	aac_release_sync_fib(sc);
584
585	return(0);
586}
587
588/*
589 * Bring the controller to a quiescent state, ready for system suspend.
590 */
591int
592aac_suspend(device_t dev)
593{
594	struct aac_softc *sc;
595
596	debug_called(1);
597
598	sc = device_get_softc(dev);
599
600	sc->aac_state |= AAC_STATE_SUSPEND;
601
602	AAC_MASK_INTERRUPTS(sc);
603	return(0);
604}
605
606/*
607 * Bring the controller back to a state ready for operation.
608 */
609int
610aac_resume(device_t dev)
611{
612	struct aac_softc *sc;
613
614	debug_called(1);
615
616	sc = device_get_softc(dev);
617
618	sc->aac_state &= ~AAC_STATE_SUSPEND;
619	AAC_UNMASK_INTERRUPTS(sc);
620	return(0);
621}
622
623/*
624 * Take an interrupt.
625 */
626void
627aac_intr(void *arg)
628{
629	struct aac_softc *sc;
630	u_int16_t reason;
631
632	debug_called(2);
633
634	sc = (struct aac_softc *)arg;
635
636	/*
637	 * Read the status register directly.  This is faster than taking the
638	 * driver lock and reading the queues directly.  It also saves having
639	 * to turn parts of the driver lock into a spin mutex, which would be
640	 * ugly.
641	 */
642	reason = AAC_GET_ISTATUS(sc);
643	AAC_CLEAR_ISTATUS(sc, reason);
644
645	/* handle completion processing */
646	if (reason & AAC_DB_RESPONSE_READY)
647		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
648
649	/* controller wants to talk to us */
650	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
651		/*
652		 * XXX Make sure that we don't get fooled by strange messages
653		 * that start with a NULL.
654		 */
655		if ((reason & AAC_DB_PRINTF) &&
656		    (sc->aac_common->ac_printf[0] == 0))
657			sc->aac_common->ac_printf[0] = 32;
658
659		/*
660		 * This might miss doing the actual wakeup.  However, the
661		 * msleep that this is waking up has a timeout, so it will
662		 * wake up eventually.  AIFs and printfs are low enough
663		 * priority that they can handle hanging out for a few seconds
664		 * if needed.
665		 */
666		wakeup(sc->aifthread);
667	}
668}
669
670/*
671 * Command Processing
672 */
673
674/*
675 * Start as much queued I/O as possible on the controller
676 */
677void
678aac_startio(struct aac_softc *sc)
679{
680	struct aac_command *cm;
681	int error;
682
683	debug_called(2);
684
685	for (;;) {
686		/*
687		 * This flag might be set if the card is out of resources.
688		 * Checking it here prevents an infinite loop of deferrals.
689		 */
690		if (sc->flags & AAC_QUEUE_FRZN)
691			break;
692
693		/*
694		 * Try to get a command that's been put off for lack of
695		 * resources
696		 */
697		cm = aac_dequeue_ready(sc);
698
699		/*
700		 * Try to build a command off the bio queue (ignore error
701		 * return)
702		 */
703		if (cm == NULL)
704			aac_bio_command(sc, &cm);
705
706		/* nothing to do? */
707		if (cm == NULL)
708			break;
709
710		/* don't map more than once */
711		if (cm->cm_flags & AAC_CMD_MAPPED)
712			panic("aac: command %p already mapped", cm);
713
714		/*
715		 * Set up the command to go to the controller.  If there are no
716		 * data buffers associated with the command then it can bypass
717		 * busdma.
718		 */
719		if (cm->cm_datalen != 0) {
720			error = bus_dmamap_load(sc->aac_buffer_dmat,
721						cm->cm_datamap, cm->cm_data,
722						cm->cm_datalen,
723						aac_map_command_sg, cm, 0);
724			if (error == EINPROGRESS) {
725				debug(1, "freezing queue\n");
726				sc->flags |= AAC_QUEUE_FRZN;
727				error = 0;
728			} else if (error != 0)
729				panic("aac_startio: unexpected error %d from "
730				      "busdma\n", error);
731		} else
732			aac_map_command_sg(cm, NULL, 0, 0);
733	}
734}
735
736/*
737 * Handle notification of one or more FIBs coming from the controller.
738 */
739static void
740aac_command_thread(struct aac_softc *sc)
741{
742	struct aac_fib *fib;
743	u_int32_t fib_size;
744	int size, retval;
745
746	debug_called(2);
747
748	mtx_lock(&sc->aac_io_lock);
749	sc->aifflags = AAC_AIFFLAGS_RUNNING;
750
751	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
752
753		retval = 0;
754		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
755			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
756					"aifthd", AAC_PERIODIC_INTERVAL * hz);
757
758		/*
759		 * First see if any FIBs need to be allocated.  This needs
760		 * to be called without the driver lock because contigmalloc
761		 * will grab Giant, and would result in an LOR.
762		 */
763		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
764			mtx_unlock(&sc->aac_io_lock);
765			aac_alloc_commands(sc);
766			mtx_lock(&sc->aac_io_lock);
767			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
768			aac_startio(sc);
769		}
770
771		/*
772		 * While we're here, check to see if any commands are stuck.
773		 * This is pretty low-priority, so it's ok if it doesn't
774		 * always fire.
775		 */
776		if (retval == EWOULDBLOCK)
777			aac_timeout(sc);
778
779		/* Check the hardware printf message buffer */
780		if (sc->aac_common->ac_printf[0] != 0)
781			aac_print_printf(sc);
782
783		/* Also check to see if the adapter has a command for us. */
784		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
785				       &fib_size, &fib) == 0) {
786
787			AAC_PRINT_FIB(sc, fib);
788
789			switch (fib->Header.Command) {
790			case AifRequest:
791				aac_handle_aif(sc, fib);
792				break;
793			default:
794				device_printf(sc->aac_dev, "unknown command "
795					      "from controller\n");
796				break;
797			}
798
799			if ((fib->Header.XferState == 0) ||
800			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
801				break;
802
803			/* Return the AIF to the controller. */
804			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
805				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
806				*(AAC_FSAStatus*)fib->data = ST_OK;
807
808				/* XXX Compute the Size field? */
809				size = fib->Header.Size;
810				if (size > sizeof(struct aac_fib)) {
811					size = sizeof(struct aac_fib);
812					fib->Header.Size = size;
813				}
814				/*
815				 * Since we did not generate this command, it
816				 * cannot go through the normal
817				 * enqueue->startio chain.
818				 */
819				aac_enqueue_response(sc,
820						     AAC_ADAP_NORM_RESP_QUEUE,
821						     fib);
822			}
823		}
824	}
825	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
826	mtx_unlock(&sc->aac_io_lock);
827	wakeup(sc->aac_dev);
828
829	kthread_exit(0);
830}
831
832/*
833 * Process completed commands.
834 */
835static void
836aac_complete(void *context, int pending)
837{
838	struct aac_softc *sc;
839	struct aac_command *cm;
840	struct aac_fib *fib;
841	u_int32_t fib_size;
842
843	debug_called(2);
844
845	sc = (struct aac_softc *)context;
846
847	mtx_lock(&sc->aac_io_lock);
848
849	/* pull completed commands off the queue */
850	for (;;) {
851		/* look for completed FIBs on our queue */
852		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
853				    &fib))
854			break;	/* nothing to do */
855
856		/* get the command, unmap and hand off for processing */
857		cm = sc->aac_commands + fib->Header.SenderData;
858		if (cm == NULL) {
859			AAC_PRINT_FIB(sc, fib);
860			break;
861		}
862
863		aac_remove_busy(cm);
864		aac_unmap_command(cm);
865		cm->cm_flags |= AAC_CMD_COMPLETED;
866
867		/* is there a completion handler? */
868		if (cm->cm_complete != NULL) {
869			cm->cm_complete(cm);
870		} else {
871			/* assume that someone is sleeping on this command */
872			wakeup(cm);
873		}
874	}
875
876	/* see if we can start some more I/O */
877	sc->flags &= ~AAC_QUEUE_FRZN;
878	aac_startio(sc);
879
880	mtx_unlock(&sc->aac_io_lock);
881}
882
883/*
884 * Handle a bio submitted from a disk device.
885 */
886void
887aac_submit_bio(struct bio *bp)
888{
889	struct aac_disk *ad;
890	struct aac_softc *sc;
891
892	debug_called(2);
893
894	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
895	sc = ad->ad_controller;
896
897	/* queue the BIO and try to get some work done */
898	aac_enqueue_bio(sc, bp);
899	aac_startio(sc);
900}
901
902/*
903 * Get a bio and build a command to go with it.
904 */
905static int
906aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
907{
908	struct aac_command *cm;
909	struct aac_fib *fib;
910	struct aac_disk *ad;
911	struct bio *bp;
912
913	debug_called(2);
914
915	/* get the resources we will need */
916	cm = NULL;
917	bp = NULL;
918	if (aac_alloc_command(sc, &cm))	/* get a command */
919		goto fail;
920	if ((bp = aac_dequeue_bio(sc)) == NULL)
921		goto fail;
922
923	/* fill out the command */
924	cm->cm_data = (void *)bp->bio_data;
925	cm->cm_datalen = bp->bio_bcount;
926	cm->cm_complete = aac_bio_complete;
927	cm->cm_private = bp;
928	cm->cm_timestamp = time_second;
929	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
930
931	/* build the FIB */
932	fib = cm->cm_fib;
933	fib->Header.Size = sizeof(struct aac_fib_header);
934	fib->Header.XferState =
935		AAC_FIBSTATE_HOSTOWNED   |
936		AAC_FIBSTATE_INITIALISED |
937		AAC_FIBSTATE_EMPTY	 |
938		AAC_FIBSTATE_FROMHOST	 |
939		AAC_FIBSTATE_REXPECTED   |
940		AAC_FIBSTATE_NORM	 |
941		AAC_FIBSTATE_ASYNC	 |
942		AAC_FIBSTATE_FAST_RESPONSE;
943
944	/* build the read/write request */
945	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
946
947	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
948		fib->Header.Command = ContainerCommand;
949		if (bp->bio_cmd == BIO_READ) {
950			struct aac_blockread *br;
951			br = (struct aac_blockread *)&fib->data[0];
952			br->Command = VM_CtBlockRead;
953			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
954			br->BlockNumber = bp->bio_pblkno;
955			br->ByteCount = bp->bio_bcount;
956			fib->Header.Size += sizeof(struct aac_blockread);
957			cm->cm_sgtable = &br->SgMap;
958			cm->cm_flags |= AAC_CMD_DATAIN;
959		} else {
960			struct aac_blockwrite *bw;
961			bw = (struct aac_blockwrite *)&fib->data[0];
962			bw->Command = VM_CtBlockWrite;
963			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
964			bw->BlockNumber = bp->bio_pblkno;
965			bw->ByteCount = bp->bio_bcount;
966			bw->Stable = CUNSTABLE;
967			fib->Header.Size += sizeof(struct aac_blockwrite);
968			cm->cm_flags |= AAC_CMD_DATAOUT;
969			cm->cm_sgtable = &bw->SgMap;
970		}
971	} else {
972		fib->Header.Command = ContainerCommand64;
973		if (bp->bio_cmd == BIO_READ) {
974			struct aac_blockread64 *br;
975			br = (struct aac_blockread64 *)&fib->data[0];
976			br->Command = VM_CtHostRead64;
977			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
978			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
979			br->BlockNumber = bp->bio_pblkno;
980			br->Pad = 0;
981			br->Flags = 0;
982			fib->Header.Size += sizeof(struct aac_blockread64);
983			cm->cm_flags |= AAC_CMD_DATAOUT;
984			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
985		} else {
986			struct aac_blockwrite64 *bw;
987			bw = (struct aac_blockwrite64 *)&fib->data[0];
988			bw->Command = VM_CtHostWrite64;
989			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
990			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
991			bw->BlockNumber = bp->bio_pblkno;
992			bw->Pad = 0;
993			bw->Flags = 0;
994			fib->Header.Size += sizeof(struct aac_blockwrite64);
995			cm->cm_flags |= AAC_CMD_DATAIN;
996			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
997		}
998	}
999
1000	*cmp = cm;
1001	return(0);
1002
1003fail:
1004	if (bp != NULL)
1005		aac_enqueue_bio(sc, bp);
1006	if (cm != NULL)
1007		aac_release_command(cm);
1008	return(ENOMEM);
1009}
1010
1011/*
1012 * Handle a bio-instigated command that has been completed.
1013 */
1014static void
1015aac_bio_complete(struct aac_command *cm)
1016{
1017	struct aac_blockread_response *brr;
1018	struct aac_blockwrite_response *bwr;
1019	struct bio *bp;
1020	AAC_FSAStatus status;
1021
1022	/* fetch relevant status and then release the command */
1023	bp = (struct bio *)cm->cm_private;
1024	if (bp->bio_cmd == BIO_READ) {
1025		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1026		status = brr->Status;
1027	} else {
1028		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1029		status = bwr->Status;
1030	}
1031	aac_release_command(cm);
1032
1033	/* fix up the bio based on status */
1034	if (status == ST_OK) {
1035		bp->bio_resid = 0;
1036	} else {
1037		bp->bio_error = EIO;
1038		bp->bio_flags |= BIO_ERROR;
1039		/* pass an error string out to the disk layer */
1040		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1041						    status);
1042	}
1043	aac_biodone(bp);
1044}
1045
1046/*
1047 * Submit a command to the controller, return when it completes.
1048 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1049 *     be stuck here forever.  At the same time, signals are not caught
1050 *     because there is a risk that a signal could wakeup the sleep before
1051 *     the card has a chance to complete the command.  Since there is no way
1052 *     to cancel a command that is in progress, we can't protect against the
1053 *     card completing a command late and spamming the command and data
1054 *     memory.  So, we are held hostage until the command completes.
1055 */
1056static int
1057aac_wait_command(struct aac_command *cm)
1058{
1059	struct aac_softc *sc;
1060	int error;
1061
1062	debug_called(2);
1063
1064	sc = cm->cm_sc;
1065
1066	/* Put the command on the ready queue and get things going */
1067	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1068	aac_enqueue_ready(cm);
1069	aac_startio(sc);
1070	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1071	return(error);
1072}
1073
1074/*
1075 *Command Buffer Management
1076 */
1077
1078/*
1079 * Allocate a command.
1080 */
1081int
1082aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1083{
1084	struct aac_command *cm;
1085
1086	debug_called(3);
1087
1088	if ((cm = aac_dequeue_free(sc)) == NULL) {
1089		if (sc->total_fibs < sc->aac_max_fibs) {
1090			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1091			wakeup(sc->aifthread);
1092		}
1093		return (EBUSY);
1094	}
1095
1096	*cmp = cm;
1097	return(0);
1098}
1099
1100/*
1101 * Release a command back to the freelist.
1102 */
1103void
1104aac_release_command(struct aac_command *cm)
1105{
1106	debug_called(3);
1107
1108	/* (re)initialise the command/FIB */
1109	cm->cm_sgtable = NULL;
1110	cm->cm_flags = 0;
1111	cm->cm_complete = NULL;
1112	cm->cm_private = NULL;
1113	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1114	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1115	cm->cm_fib->Header.Flags = 0;
1116	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1117
1118	/*
1119	 * These are duplicated in aac_start to cover the case where an
1120	 * intermediate stage may have destroyed them.  They're left
1121	 * initialised here for debugging purposes only.
1122	 */
1123	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1124	cm->cm_fib->Header.SenderData = 0;
1125
1126	aac_enqueue_free(cm);
1127}
1128
1129/*
1130 * Map helper for command/FIB allocation.
1131 */
1132static void
1133aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1134{
1135	uint32_t	*fibphys;
1136
1137	fibphys = (uint32_t *)arg;
1138
1139	debug_called(3);
1140
1141	*fibphys = segs[0].ds_addr;
1142}
1143
1144/*
1145 * Allocate and initialise commands/FIBs for this adapter.
1146 */
1147static int
1148aac_alloc_commands(struct aac_softc *sc)
1149{
1150	struct aac_command *cm;
1151	struct aac_fibmap *fm;
1152	uint32_t fibphys;
1153	int i, error;
1154
1155	debug_called(2);
1156
1157	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1158		return (ENOMEM);
1159
1160	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1161	if (fm == NULL)
1162		return (ENOMEM);
1163
1164	/* allocate the FIBs in DMAable memory and load them */
1165	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1166			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1167		device_printf(sc->aac_dev,
1168			      "Not enough contiguous memory available.\n");
1169		free(fm, M_AACBUF);
1170		return (ENOMEM);
1171	}
1172
1173	/* Ignore errors since this doesn't bounce */
1174	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1175			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1176			      aac_map_command_helper, &fibphys, 0);
1177
1178	/* initialise constant fields in the command structure */
1179	mtx_lock(&sc->aac_io_lock);
1180	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1181	for (i = 0; i < AAC_FIB_COUNT; i++) {
1182		cm = sc->aac_commands + sc->total_fibs;
1183		fm->aac_commands = cm;
1184		cm->cm_sc = sc;
1185		cm->cm_fib = fm->aac_fibs + i;
1186		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1187		cm->cm_index = sc->total_fibs;
1188
1189		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1190					       &cm->cm_datamap)) == 0)
1191			aac_release_command(cm);
1192		else
1193			break;
1194		sc->total_fibs++;
1195	}
1196
1197	if (i > 0) {
1198		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1199		debug(1, "total_fibs= %d\n", sc->total_fibs);
1200		mtx_unlock(&sc->aac_io_lock);
1201		return (0);
1202	}
1203
1204	mtx_unlock(&sc->aac_io_lock);
1205	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1206	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1207	free(fm, M_AACBUF);
1208	return (ENOMEM);
1209}
1210
1211/*
1212 * Free FIBs owned by this adapter.
1213 */
1214static void
1215aac_free_commands(struct aac_softc *sc)
1216{
1217	struct aac_fibmap *fm;
1218	struct aac_command *cm;
1219	int i;
1220
1221	debug_called(1);
1222
1223	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1224
1225		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1226		/*
1227		 * We check against total_fibs to handle partially
1228		 * allocated blocks.
1229		 */
1230		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1231			cm = fm->aac_commands + i;
1232			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1233		}
1234		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1235		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1236		free(fm, M_AACBUF);
1237	}
1238}
1239
1240/*
1241 * Command-mapping helper function - populate this command's s/g table.
1242 */
1243static void
1244aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1245{
1246	struct aac_softc *sc;
1247	struct aac_command *cm;
1248	struct aac_fib *fib;
1249	int i;
1250
1251	debug_called(3);
1252
1253	cm = (struct aac_command *)arg;
1254	sc = cm->cm_sc;
1255	fib = cm->cm_fib;
1256
1257	/* copy into the FIB */
1258	if (cm->cm_sgtable != NULL) {
1259		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1260			struct aac_sg_table *sg;
1261			sg = cm->cm_sgtable;
1262			sg->SgCount = nseg;
1263			for (i = 0; i < nseg; i++) {
1264				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1265				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1266			}
1267			/* update the FIB size for the s/g count */
1268			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1269		} else {
1270			struct aac_sg_table64 *sg;
1271			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1272			sg->SgCount = nseg;
1273			for (i = 0; i < nseg; i++) {
1274				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1275				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1276			}
1277			/* update the FIB size for the s/g count */
1278			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1279		}
1280	}
1281
1282	/* Fix up the address values in the FIB.  Use the command array index
1283	 * instead of a pointer since these fields are only 32 bits.  Shift
1284	 * the SenderFibAddress over to make room for the fast response bit.
1285	 */
1286	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1287	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1288
1289	/* save a pointer to the command for speedy reverse-lookup */
1290	cm->cm_fib->Header.SenderData = cm->cm_index;
1291
1292	if (cm->cm_flags & AAC_CMD_DATAIN)
1293		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1294				BUS_DMASYNC_PREREAD);
1295	if (cm->cm_flags & AAC_CMD_DATAOUT)
1296		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1297				BUS_DMASYNC_PREWRITE);
1298	cm->cm_flags |= AAC_CMD_MAPPED;
1299
1300	/* Put the FIB on the outbound queue */
1301	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1302		aac_unmap_command(cm);
1303		sc->flags |= AAC_QUEUE_FRZN;
1304		aac_requeue_ready(cm);
1305	}
1306
1307	return;
1308}
1309
1310/*
1311 * Unmap a command from controller-visible space.
1312 */
1313static void
1314aac_unmap_command(struct aac_command *cm)
1315{
1316	struct aac_softc *sc;
1317
1318	debug_called(2);
1319
1320	sc = cm->cm_sc;
1321
1322	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1323		return;
1324
1325	if (cm->cm_datalen != 0) {
1326		if (cm->cm_flags & AAC_CMD_DATAIN)
1327			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1328					BUS_DMASYNC_POSTREAD);
1329		if (cm->cm_flags & AAC_CMD_DATAOUT)
1330			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1331					BUS_DMASYNC_POSTWRITE);
1332
1333		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1334	}
1335	cm->cm_flags &= ~AAC_CMD_MAPPED;
1336}
1337
1338/*
1339 * Hardware Interface
1340 */
1341
1342/*
1343 * Initialise the adapter.
1344 */
1345static void
1346aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1347{
1348	struct aac_softc *sc;
1349
1350	debug_called(1);
1351
1352	sc = (struct aac_softc *)arg;
1353
1354	sc->aac_common_busaddr = segs[0].ds_addr;
1355}
1356
1357static int
1358aac_check_firmware(struct aac_softc *sc)
1359{
1360	u_int32_t major, minor, options;
1361
1362	debug_called(1);
1363
1364	/*
1365	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1366	 * firmware version 1.x are not compatible with this driver.
1367	 */
1368	if (sc->flags & AAC_FLAGS_PERC2QC) {
1369		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1370				     NULL)) {
1371			device_printf(sc->aac_dev,
1372				      "Error reading firmware version\n");
1373			return (EIO);
1374		}
1375
1376		/* These numbers are stored as ASCII! */
1377		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1378		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1379		if (major == 1) {
1380			device_printf(sc->aac_dev,
1381			    "Firmware version %d.%d is not supported.\n",
1382			    major, minor);
1383			return (EINVAL);
1384		}
1385	}
1386
1387	/*
1388	 * Retrieve the capabilities/supported options word so we know what
1389	 * work-arounds to enable.
1390	 */
1391	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1392		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1393		return (EIO);
1394	}
1395	options = AAC_GET_MAILBOX(sc, 1);
1396	sc->supported_options = options;
1397
1398	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1399	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1400		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1401	if (options & AAC_SUPPORTED_NONDASD)
1402		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1403	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1404	     && (sizeof(bus_addr_t) > 4)) {
1405		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1406		sc->flags |= AAC_FLAGS_SG_64BIT;
1407	}
1408
1409	/* Check for broken hardware that does a lower number of commands */
1410	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1411		sc->aac_max_fibs = AAC_MAX_FIBS;
1412	else
1413		sc->aac_max_fibs = 256;
1414
1415	return (0);
1416}
1417
1418static int
1419aac_init(struct aac_softc *sc)
1420{
1421	struct aac_adapter_init	*ip;
1422	time_t then;
1423	u_int32_t code, qoffset;
1424	int error;
1425
1426	debug_called(1);
1427
1428	/*
1429	 * First wait for the adapter to come ready.
1430	 */
1431	then = time_second;
1432	do {
1433		code = AAC_GET_FWSTATUS(sc);
1434		if (code & AAC_SELF_TEST_FAILED) {
1435			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1436			return(ENXIO);
1437		}
1438		if (code & AAC_KERNEL_PANIC) {
1439			device_printf(sc->aac_dev,
1440				      "FATAL: controller kernel panic\n");
1441			return(ENXIO);
1442		}
1443		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1444			device_printf(sc->aac_dev,
1445				      "FATAL: controller not coming ready, "
1446					   "status %x\n", code);
1447			return(ENXIO);
1448		}
1449	} while (!(code & AAC_UP_AND_RUNNING));
1450
1451	error = ENOMEM;
1452	/*
1453	 * Create DMA tag for mapping buffers into controller-addressable space.
1454	 */
1455	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1456			       1, 0, 			/* algnmnt, boundary */
1457			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1458			       BUS_SPACE_MAXADDR :
1459			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1460			       BUS_SPACE_MAXADDR, 	/* highaddr */
1461			       NULL, NULL, 		/* filter, filterarg */
1462			       MAXBSIZE,		/* maxsize */
1463			       AAC_MAXSGENTRIES,	/* nsegments */
1464			       MAXBSIZE,		/* maxsegsize */
1465			       BUS_DMA_ALLOCNOW,	/* flags */
1466			       busdma_lock_mutex,	/* lockfunc */
1467			       &sc->aac_io_lock,	/* lockfuncarg */
1468			       &sc->aac_buffer_dmat)) {
1469		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1470		goto out;
1471	}
1472
1473	/*
1474	 * Create DMA tag for mapping FIBs into controller-addressable space..
1475	 */
1476	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1477			       1, 0, 			/* algnmnt, boundary */
1478			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1479			       BUS_SPACE_MAXADDR_32BIT :
1480			       0x7fffffff,		/* lowaddr */
1481			       BUS_SPACE_MAXADDR, 	/* highaddr */
1482			       NULL, NULL, 		/* filter, filterarg */
1483			       AAC_FIB_COUNT *
1484			       sizeof(struct aac_fib),  /* maxsize */
1485			       1,			/* nsegments */
1486			       AAC_FIB_COUNT *
1487			       sizeof(struct aac_fib),	/* maxsegsize */
1488			       BUS_DMA_ALLOCNOW,	/* flags */
1489			       NULL, NULL,		/* No locking needed */
1490			       &sc->aac_fib_dmat)) {
1491		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1492		goto out;
1493	}
1494
1495	/*
1496	 * Create DMA tag for the common structure and allocate it.
1497	 */
1498	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1499			       1, 0,			/* algnmnt, boundary */
1500			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1501			       BUS_SPACE_MAXADDR_32BIT :
1502			       0x7fffffff,		/* lowaddr */
1503			       BUS_SPACE_MAXADDR, 	/* highaddr */
1504			       NULL, NULL, 		/* filter, filterarg */
1505			       8192 + sizeof(struct aac_common), /* maxsize */
1506			       1,			/* nsegments */
1507			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1508			       BUS_DMA_ALLOCNOW,	/* flags */
1509			       NULL, NULL,		/* No locking needed */
1510			       &sc->aac_common_dmat)) {
1511		device_printf(sc->aac_dev,
1512			      "can't allocate common structure DMA tag\n");
1513		goto out;
1514	}
1515	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1516			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1517		device_printf(sc->aac_dev, "can't allocate common structure\n");
1518		goto out;
1519	}
1520
1521	/*
1522	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1523	 * below address 8192 in physical memory.
1524	 * XXX If the padding is not needed, can it be put to use instead
1525	 * of ignored?
1526	 */
1527	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1528			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1529			aac_common_map, sc, 0);
1530
1531	if (sc->aac_common_busaddr < 8192) {
1532		sc->aac_common = (struct aac_common *)
1533		    ((uint8_t *)sc->aac_common + 8192);
1534		sc->aac_common_busaddr += 8192;
1535	}
1536	bzero(sc->aac_common, sizeof(*sc->aac_common));
1537
1538	/* Allocate some FIBs and associated command structs */
1539	TAILQ_INIT(&sc->aac_fibmap_tqh);
1540	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1541				  M_AACBUF, M_WAITOK|M_ZERO);
1542	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1543		if (aac_alloc_commands(sc) != 0)
1544			break;
1545	}
1546	if (sc->total_fibs == 0)
1547		goto out;
1548
1549	/*
1550	 * Fill in the init structure.  This tells the adapter about the
1551	 * physical location of various important shared data structures.
1552	 */
1553	ip = &sc->aac_common->ac_init;
1554	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1555	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1556
1557	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1558					 offsetof(struct aac_common, ac_fibs);
1559	ip->AdapterFibsVirtualAddress = 0;
1560	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1561	ip->AdapterFibAlign = sizeof(struct aac_fib);
1562
1563	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1564				  offsetof(struct aac_common, ac_printf);
1565	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1566
1567	/*
1568	 * The adapter assumes that pages are 4K in size, except on some
1569 	 * broken firmware versions that do the page->byte conversion twice,
1570	 * therefore 'assuming' that this value is in 16MB units (2^24).
1571	 * Round up since the granularity is so high.
1572	 */
1573	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1574	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1575		ip->HostPhysMemPages =
1576		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1577	}
1578	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1579
1580	/*
1581	 * Initialise FIB queues.  Note that it appears that the layout of the
1582	 * indexes and the segmentation of the entries may be mandated by the
1583	 * adapter, which is only told about the base of the queue index fields.
1584	 *
1585	 * The initial values of the indices are assumed to inform the adapter
1586	 * of the sizes of the respective queues, and theoretically it could
1587	 * work out the entire layout of the queue structures from this.  We
1588	 * take the easy route and just lay this area out like everyone else
1589	 * does.
1590	 *
1591	 * The Linux driver uses a much more complex scheme whereby several
1592	 * header records are kept for each queue.  We use a couple of generic
1593	 * list manipulation functions which 'know' the size of each list by
1594	 * virtue of a table.
1595	 */
1596	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1597	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1598	sc->aac_queues =
1599	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1600	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1601
1602	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1603		AAC_HOST_NORM_CMD_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1605		AAC_HOST_NORM_CMD_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1607		AAC_HOST_HIGH_CMD_ENTRIES;
1608	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1609		AAC_HOST_HIGH_CMD_ENTRIES;
1610	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1611		AAC_ADAP_NORM_CMD_ENTRIES;
1612	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1613		AAC_ADAP_NORM_CMD_ENTRIES;
1614	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1615		AAC_ADAP_HIGH_CMD_ENTRIES;
1616	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1617		AAC_ADAP_HIGH_CMD_ENTRIES;
1618	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1619		AAC_HOST_NORM_RESP_ENTRIES;
1620	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1621		AAC_HOST_NORM_RESP_ENTRIES;
1622	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1623		AAC_HOST_HIGH_RESP_ENTRIES;
1624	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1625		AAC_HOST_HIGH_RESP_ENTRIES;
1626	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1627		AAC_ADAP_NORM_RESP_ENTRIES;
1628	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1629		AAC_ADAP_NORM_RESP_ENTRIES;
1630	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1631		AAC_ADAP_HIGH_RESP_ENTRIES;
1632	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1633		AAC_ADAP_HIGH_RESP_ENTRIES;
1634	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1635		&sc->aac_queues->qt_HostNormCmdQueue[0];
1636	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1637		&sc->aac_queues->qt_HostHighCmdQueue[0];
1638	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1639		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1640	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1641		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1642	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1643		&sc->aac_queues->qt_HostNormRespQueue[0];
1644	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1645		&sc->aac_queues->qt_HostHighRespQueue[0];
1646	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1647		&sc->aac_queues->qt_AdapNormRespQueue[0];
1648	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1649		&sc->aac_queues->qt_AdapHighRespQueue[0];
1650
1651	/*
1652	 * Do controller-type-specific initialisation
1653	 */
1654	switch (sc->aac_hwif) {
1655	case AAC_HWIF_I960RX:
1656		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1657		break;
1658	case AAC_HWIF_RKT:
1659		AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
1660		break;
1661	default:
1662		break;
1663	}
1664
1665	/*
1666	 * Give the init structure to the controller.
1667	 */
1668	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1669			     sc->aac_common_busaddr +
1670			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1671			     NULL)) {
1672		device_printf(sc->aac_dev,
1673			      "error establishing init structure\n");
1674		error = EIO;
1675		goto out;
1676	}
1677
1678	error = 0;
1679out:
1680	return(error);
1681}
1682
1683/*
1684 * Send a synchronous command to the controller and wait for a result.
1685 */
1686static int
1687aac_sync_command(struct aac_softc *sc, u_int32_t command,
1688		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1689		 u_int32_t *sp)
1690{
1691	time_t then;
1692	u_int32_t status;
1693
1694	debug_called(3);
1695
1696	/* populate the mailbox */
1697	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1698
1699	/* ensure the sync command doorbell flag is cleared */
1700	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1701
1702	/* then set it to signal the adapter */
1703	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1704
1705	/* spin waiting for the command to complete */
1706	then = time_second;
1707	do {
1708		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1709			debug(1, "timed out");
1710			return(EIO);
1711		}
1712	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1713
1714	/* clear the completion flag */
1715	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1716
1717	/* get the command status */
1718	status = AAC_GET_MAILBOX(sc, 0);
1719	if (sp != NULL)
1720		*sp = status;
1721	return(0);
1722}
1723
1724int
1725aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1726		 struct aac_fib *fib, u_int16_t datasize)
1727{
1728	debug_called(3);
1729
1730	if (datasize > AAC_FIB_DATASIZE)
1731		return(EINVAL);
1732
1733	/*
1734	 * Set up the sync FIB
1735	 */
1736	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1737				AAC_FIBSTATE_INITIALISED |
1738				AAC_FIBSTATE_EMPTY;
1739	fib->Header.XferState |= xferstate;
1740	fib->Header.Command = command;
1741	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1742	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1743	fib->Header.SenderSize = sizeof(struct aac_fib);
1744	fib->Header.SenderFibAddress = 0;	/* Not needed */
1745	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1746					 offsetof(struct aac_common,
1747						  ac_sync_fib);
1748
1749	/*
1750	 * Give the FIB to the controller, wait for a response.
1751	 */
1752	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1753			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1754		debug(2, "IO error");
1755		return(EIO);
1756	}
1757
1758	return (0);
1759}
1760
1761/*
1762 * Adapter-space FIB queue manipulation
1763 *
1764 * Note that the queue implementation here is a little funky; neither the PI or
1765 * CI will ever be zero.  This behaviour is a controller feature.
1766 */
1767static struct {
1768	int		size;
1769	int		notify;
1770} aac_qinfo[] = {
1771	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1772	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1773	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1774	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1775	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1776	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1777	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1778	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1779};
1780
1781/*
1782 * Atomically insert an entry into the nominated queue, returns 0 on success or
1783 * EBUSY if the queue is full.
1784 *
1785 * Note: it would be more efficient to defer notifying the controller in
1786 *	 the case where we may be inserting several entries in rapid succession,
1787 *	 but implementing this usefully may be difficult (it would involve a
1788 *	 separate queue/notify interface).
1789 */
1790static int
1791aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1792{
1793	u_int32_t pi, ci;
1794	int error;
1795	u_int32_t fib_size;
1796	u_int32_t fib_addr;
1797
1798	debug_called(3);
1799
1800	fib_size = cm->cm_fib->Header.Size;
1801	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1802
1803	/* get the producer/consumer indices */
1804	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1805	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1806
1807	/* wrap the queue? */
1808	if (pi >= aac_qinfo[queue].size)
1809		pi = 0;
1810
1811	/* check for queue full */
1812	if ((pi + 1) == ci) {
1813		error = EBUSY;
1814		goto out;
1815	}
1816
1817	/*
1818	 * To avoid a race with its completion interrupt, place this command on
1819	 * the busy queue prior to advertising it to the controller.
1820	 */
1821	aac_enqueue_busy(cm);
1822
1823	/* populate queue entry */
1824	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1825	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1826
1827	/* update producer index */
1828	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1829
1830	/* notify the adapter if we know how */
1831	if (aac_qinfo[queue].notify != 0)
1832		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1833
1834	error = 0;
1835
1836out:
1837	return(error);
1838}
1839
1840/*
1841 * Atomically remove one entry from the nominated queue, returns 0 on
1842 * success or ENOENT if the queue is empty.
1843 */
1844static int
1845aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1846		struct aac_fib **fib_addr)
1847{
1848	u_int32_t pi, ci;
1849	u_int32_t fib_index;
1850	int error;
1851	int notify;
1852
1853	debug_called(3);
1854
1855	/* get the producer/consumer indices */
1856	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1857	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1858
1859	/* check for queue empty */
1860	if (ci == pi) {
1861		error = ENOENT;
1862		goto out;
1863	}
1864
1865	/* wrap the pi so the following test works */
1866	if (pi >= aac_qinfo[queue].size)
1867		pi = 0;
1868
1869	notify = 0;
1870	if (ci == pi + 1)
1871		notify++;
1872
1873	/* wrap the queue? */
1874	if (ci >= aac_qinfo[queue].size)
1875		ci = 0;
1876
1877	/* fetch the entry */
1878	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1879
1880	switch (queue) {
1881	case AAC_HOST_NORM_CMD_QUEUE:
1882	case AAC_HOST_HIGH_CMD_QUEUE:
1883		/*
1884		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1885		 * on to hold an address.  For AIF's, the adapter assumes
1886		 * that it's giving us an address into the array of AIF fibs.
1887		 * Therefore, we have to convert it to an index.
1888		 */
1889		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1890			sizeof(struct aac_fib);
1891		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1892		break;
1893
1894	case AAC_HOST_NORM_RESP_QUEUE:
1895	case AAC_HOST_HIGH_RESP_QUEUE:
1896	{
1897		struct aac_command *cm;
1898
1899		/*
1900		 * As above, an index is used instead of an actual address.
1901		 * Gotta shift the index to account for the fast response
1902		 * bit.  No other correction is needed since this value was
1903		 * originally provided by the driver via the SenderFibAddress
1904		 * field.
1905		 */
1906		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1907		cm = sc->aac_commands + (fib_index >> 1);
1908		*fib_addr = cm->cm_fib;
1909
1910		/*
1911		 * Is this a fast response? If it is, update the fib fields in
1912		 * local memory since the whole fib isn't DMA'd back up.
1913		 */
1914		if (fib_index & 0x01) {
1915			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1916			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1917		}
1918		break;
1919	}
1920	default:
1921		panic("Invalid queue in aac_dequeue_fib()");
1922		break;
1923	}
1924
1925	/* update consumer index */
1926	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1927
1928	/* if we have made the queue un-full, notify the adapter */
1929	if (notify && (aac_qinfo[queue].notify != 0))
1930		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1931	error = 0;
1932
1933out:
1934	return(error);
1935}
1936
1937/*
1938 * Put our response to an Adapter Initialed Fib on the response queue
1939 */
1940static int
1941aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1942{
1943	u_int32_t pi, ci;
1944	int error;
1945	u_int32_t fib_size;
1946	u_int32_t fib_addr;
1947
1948	debug_called(1);
1949
1950	/* Tell the adapter where the FIB is */
1951	fib_size = fib->Header.Size;
1952	fib_addr = fib->Header.SenderFibAddress;
1953	fib->Header.ReceiverFibAddress = fib_addr;
1954
1955	/* get the producer/consumer indices */
1956	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1957	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1958
1959	/* wrap the queue? */
1960	if (pi >= aac_qinfo[queue].size)
1961		pi = 0;
1962
1963	/* check for queue full */
1964	if ((pi + 1) == ci) {
1965		error = EBUSY;
1966		goto out;
1967	}
1968
1969	/* populate queue entry */
1970	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1971	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1972
1973	/* update producer index */
1974	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1975
1976	/* notify the adapter if we know how */
1977	if (aac_qinfo[queue].notify != 0)
1978		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1979
1980	error = 0;
1981
1982out:
1983	return(error);
1984}
1985
1986/*
1987 * Check for commands that have been outstanding for a suspiciously long time,
1988 * and complain about them.
1989 */
1990static void
1991aac_timeout(struct aac_softc *sc)
1992{
1993	struct aac_command *cm;
1994	time_t deadline;
1995
1996	/*
1997	 * Traverse the busy command list, bitch about late commands once
1998	 * only.
1999	 */
2000	deadline = time_second - AAC_CMD_TIMEOUT;
2001	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2002		if ((cm->cm_timestamp  < deadline)
2003			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2004			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2005			device_printf(sc->aac_dev,
2006				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2007				      cm, (int)(time_second-cm->cm_timestamp));
2008			AAC_PRINT_FIB(sc, cm->cm_fib);
2009		}
2010	}
2011
2012	return;
2013}
2014
2015/*
2016 * Interface Function Vectors
2017 */
2018
2019/*
2020 * Read the current firmware status word.
2021 */
2022static int
2023aac_sa_get_fwstatus(struct aac_softc *sc)
2024{
2025	debug_called(3);
2026
2027	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2028}
2029
2030static int
2031aac_rx_get_fwstatus(struct aac_softc *sc)
2032{
2033	debug_called(3);
2034
2035	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2036}
2037
2038static int
2039aac_fa_get_fwstatus(struct aac_softc *sc)
2040{
2041	int val;
2042
2043	debug_called(3);
2044
2045	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2046	return (val);
2047}
2048
2049static int
2050aac_rkt_get_fwstatus(struct aac_softc *sc)
2051{
2052	debug_called(3);
2053
2054	return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
2055}
2056
2057/*
2058 * Notify the controller of a change in a given queue
2059 */
2060
2061static void
2062aac_sa_qnotify(struct aac_softc *sc, int qbit)
2063{
2064	debug_called(3);
2065
2066	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2067}
2068
2069static void
2070aac_rx_qnotify(struct aac_softc *sc, int qbit)
2071{
2072	debug_called(3);
2073
2074	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2075}
2076
2077static void
2078aac_fa_qnotify(struct aac_softc *sc, int qbit)
2079{
2080	debug_called(3);
2081
2082	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2083	AAC_FA_HACK(sc);
2084}
2085
2086static void
2087aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2088{
2089	debug_called(3);
2090
2091	AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
2092}
2093
2094/*
2095 * Get the interrupt reason bits
2096 */
2097static int
2098aac_sa_get_istatus(struct aac_softc *sc)
2099{
2100	debug_called(3);
2101
2102	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2103}
2104
2105static int
2106aac_rx_get_istatus(struct aac_softc *sc)
2107{
2108	debug_called(3);
2109
2110	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2111}
2112
2113static int
2114aac_fa_get_istatus(struct aac_softc *sc)
2115{
2116	int val;
2117
2118	debug_called(3);
2119
2120	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2121	return (val);
2122}
2123
2124static int
2125aac_rkt_get_istatus(struct aac_softc *sc)
2126{
2127	debug_called(3);
2128
2129	return(AAC_GETREG4(sc, AAC_RKT_ODBR));
2130}
2131
2132/*
2133 * Clear some interrupt reason bits
2134 */
2135static void
2136aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2137{
2138	debug_called(3);
2139
2140	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2141}
2142
2143static void
2144aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2145{
2146	debug_called(3);
2147
2148	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2149}
2150
2151static void
2152aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2153{
2154	debug_called(3);
2155
2156	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2157	AAC_FA_HACK(sc);
2158}
2159
2160static void
2161aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2162{
2163	debug_called(3);
2164
2165	AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
2166}
2167
2168/*
2169 * Populate the mailbox and set the command word
2170 */
2171static void
2172aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2173		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2174{
2175	debug_called(4);
2176
2177	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2178	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2179	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2180	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2181	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2182}
2183
2184static void
2185aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2186		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2187{
2188	debug_called(4);
2189
2190	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2191	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2192	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2193	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2194	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2195}
2196
2197static void
2198aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2199		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2200{
2201	debug_called(4);
2202
2203	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2204	AAC_FA_HACK(sc);
2205	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2206	AAC_FA_HACK(sc);
2207	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2208	AAC_FA_HACK(sc);
2209	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2210	AAC_FA_HACK(sc);
2211	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2212	AAC_FA_HACK(sc);
2213}
2214
2215static void
2216aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2217		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2218{
2219	debug_called(4);
2220
2221	AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
2222	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2223	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2224	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2225	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2226}
2227
2228/*
2229 * Fetch the immediate command status word
2230 */
2231static int
2232aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2233{
2234	debug_called(4);
2235
2236	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2237}
2238
2239static int
2240aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2241{
2242	debug_called(4);
2243
2244	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2245}
2246
2247static int
2248aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2249{
2250	int val;
2251
2252	debug_called(4);
2253
2254	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2255	return (val);
2256}
2257
2258static int
2259aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2260{
2261	debug_called(4);
2262
2263	return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2264}
2265
2266/*
2267 * Set/clear interrupt masks
2268 */
2269static void
2270aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2271{
2272	debug(2, "%sable interrupts", enable ? "en" : "dis");
2273
2274	if (enable) {
2275		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2276	} else {
2277		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2278	}
2279}
2280
2281static void
2282aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2283{
2284	debug(2, "%sable interrupts", enable ? "en" : "dis");
2285
2286	if (enable) {
2287		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2288	} else {
2289		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2290	}
2291}
2292
2293static void
2294aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2295{
2296	debug(2, "%sable interrupts", enable ? "en" : "dis");
2297
2298	if (enable) {
2299		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2300		AAC_FA_HACK(sc);
2301	} else {
2302		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2303		AAC_FA_HACK(sc);
2304	}
2305}
2306
2307static void
2308aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2309{
2310	debug(2, "%sable interrupts", enable ? "en" : "dis");
2311
2312	if (enable) {
2313		AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2314	} else {
2315		AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
2316	}
2317}
2318
2319/*
2320 * Debugging and Diagnostics
2321 */
2322
2323/*
2324 * Print some information about the controller.
2325 */
2326static void
2327aac_describe_controller(struct aac_softc *sc)
2328{
2329	struct aac_fib *fib;
2330	struct aac_adapter_info	*info;
2331
2332	debug_called(2);
2333
2334	aac_alloc_sync_fib(sc, &fib);
2335
2336	fib->data[0] = 0;
2337	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2338		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2339		aac_release_sync_fib(sc);
2340		return;
2341	}
2342	info = (struct aac_adapter_info *)&fib->data[0];
2343
2344	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2345		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2346		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2347		      aac_describe_code(aac_battery_platform,
2348					info->batteryPlatform));
2349
2350	/* save the kernel revision structure for later use */
2351	sc->aac_revision = info->KernelRevision;
2352	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2353		      info->KernelRevision.external.comp.major,
2354		      info->KernelRevision.external.comp.minor,
2355		      info->KernelRevision.external.comp.dash,
2356		      info->KernelRevision.buildNumber,
2357		      (u_int32_t)(info->SerialNumber & 0xffffff));
2358
2359	aac_release_sync_fib(sc);
2360
2361	if (1 || bootverbose) {
2362		device_printf(sc->aac_dev, "Supported Options=%b\n",
2363			      sc->supported_options,
2364			      "\20"
2365			      "\1SNAPSHOT"
2366			      "\2CLUSTERS"
2367			      "\3WCACHE"
2368			      "\4DATA64"
2369			      "\5HOSTTIME"
2370			      "\6RAID50"
2371			      "\7WINDOW4GB"
2372			      "\10SCSIUPGD"
2373			      "\11SOFTERR"
2374			      "\12NORECOND"
2375			      "\13SGMAP64"
2376			      "\14ALARM"
2377			      "\15NONDASD");
2378	}
2379}
2380
2381/*
2382 * Look up a text description of a numeric error code and return a pointer to
2383 * same.
2384 */
2385static char *
2386aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2387{
2388	int i;
2389
2390	for (i = 0; table[i].string != NULL; i++)
2391		if (table[i].code == code)
2392			return(table[i].string);
2393	return(table[i + 1].string);
2394}
2395
2396/*
2397 * Management Interface
2398 */
2399
2400static int
2401aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2402{
2403	struct aac_softc *sc;
2404
2405	debug_called(2);
2406
2407	sc = dev->si_drv1;
2408
2409	/* Check to make sure the device isn't already open */
2410	if (sc->aac_state & AAC_STATE_OPEN) {
2411		return EBUSY;
2412	}
2413	sc->aac_state |= AAC_STATE_OPEN;
2414
2415	return 0;
2416}
2417
2418static int
2419aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2420{
2421	struct aac_softc *sc;
2422
2423	debug_called(2);
2424
2425	sc = dev->si_drv1;
2426
2427	/* Mark this unit as no longer open  */
2428	sc->aac_state &= ~AAC_STATE_OPEN;
2429
2430	return 0;
2431}
2432
2433static int
2434aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2435{
2436	union aac_statrequest *as;
2437	struct aac_softc *sc;
2438	int error = 0;
2439	uint32_t cookie;
2440
2441	debug_called(2);
2442
2443	as = (union aac_statrequest *)arg;
2444	sc = dev->si_drv1;
2445
2446	switch (cmd) {
2447	case AACIO_STATS:
2448		switch (as->as_item) {
2449		case AACQ_FREE:
2450		case AACQ_BIO:
2451		case AACQ_READY:
2452		case AACQ_BUSY:
2453			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2454			      sizeof(struct aac_qstat));
2455			break;
2456		default:
2457			error = ENOENT;
2458			break;
2459		}
2460	break;
2461
2462	case FSACTL_SENDFIB:
2463		arg = *(caddr_t*)arg;
2464	case FSACTL_LNX_SENDFIB:
2465		debug(1, "FSACTL_SENDFIB");
2466		error = aac_ioctl_sendfib(sc, arg);
2467		break;
2468	case FSACTL_AIF_THREAD:
2469	case FSACTL_LNX_AIF_THREAD:
2470		debug(1, "FSACTL_AIF_THREAD");
2471		error = EINVAL;
2472		break;
2473	case FSACTL_OPEN_GET_ADAPTER_FIB:
2474		arg = *(caddr_t*)arg;
2475	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2476		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2477		/*
2478		 * Pass the caller out an AdapterFibContext.
2479		 *
2480		 * Note that because we only support one opener, we
2481		 * basically ignore this.  Set the caller's context to a magic
2482		 * number just in case.
2483		 *
2484		 * The Linux code hands the driver a pointer into kernel space,
2485		 * and then trusts it when the caller hands it back.  Aiee!
2486		 * Here, we give it the proc pointer of the per-adapter aif
2487		 * thread. It's only used as a sanity check in other calls.
2488		 */
2489		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2490		error = copyout(&cookie, arg, sizeof(cookie));
2491		break;
2492	case FSACTL_GET_NEXT_ADAPTER_FIB:
2493		arg = *(caddr_t*)arg;
2494	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2495		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2496		error = aac_getnext_aif(sc, arg);
2497		break;
2498	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2499	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2500		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2501		/* don't do anything here */
2502		break;
2503	case FSACTL_MINIPORT_REV_CHECK:
2504		arg = *(caddr_t*)arg;
2505	case FSACTL_LNX_MINIPORT_REV_CHECK:
2506		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2507		error = aac_rev_check(sc, arg);
2508		break;
2509	case FSACTL_QUERY_DISK:
2510		arg = *(caddr_t*)arg;
2511	case FSACTL_LNX_QUERY_DISK:
2512		debug(1, "FSACTL_QUERY_DISK");
2513		error = aac_query_disk(sc, arg);
2514			break;
2515	case FSACTL_DELETE_DISK:
2516	case FSACTL_LNX_DELETE_DISK:
2517		/*
2518		 * We don't trust the underland to tell us when to delete a
2519		 * container, rather we rely on an AIF coming from the
2520		 * controller
2521		 */
2522		error = 0;
2523		break;
2524	default:
2525		debug(1, "unsupported cmd 0x%lx\n", cmd);
2526		error = EINVAL;
2527		break;
2528	}
2529	return(error);
2530}
2531
2532static int
2533aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2534{
2535	struct aac_softc *sc;
2536	int revents;
2537
2538	sc = dev->si_drv1;
2539	revents = 0;
2540
2541	mtx_lock(&sc->aac_aifq_lock);
2542	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2543		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2544			revents |= poll_events & (POLLIN | POLLRDNORM);
2545	}
2546	mtx_unlock(&sc->aac_aifq_lock);
2547
2548	if (revents == 0) {
2549		if (poll_events & (POLLIN | POLLRDNORM))
2550			selrecord(td, &sc->rcv_select);
2551	}
2552
2553	return (revents);
2554}
2555
2556/*
2557 * Send a FIB supplied from userspace
2558 */
2559static int
2560aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2561{
2562	struct aac_command *cm;
2563	int size, error;
2564
2565	debug_called(2);
2566
2567	cm = NULL;
2568
2569	/*
2570	 * Get a command
2571	 */
2572	mtx_lock(&sc->aac_io_lock);
2573	if (aac_alloc_command(sc, &cm)) {
2574		error = EBUSY;
2575		goto out;
2576	}
2577
2578	/*
2579	 * Fetch the FIB header, then re-copy to get data as well.
2580	 */
2581	if ((error = copyin(ufib, cm->cm_fib,
2582			    sizeof(struct aac_fib_header))) != 0)
2583		goto out;
2584	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2585	if (size > sizeof(struct aac_fib)) {
2586		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2587			      size, sizeof(struct aac_fib));
2588		size = sizeof(struct aac_fib);
2589	}
2590	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2591		goto out;
2592	cm->cm_fib->Header.Size = size;
2593	cm->cm_timestamp = time_second;
2594
2595	/*
2596	 * Pass the FIB to the controller, wait for it to complete.
2597	 */
2598	if ((error = aac_wait_command(cm)) != 0) {
2599		device_printf(sc->aac_dev,
2600			      "aac_wait_command return %d\n", error);
2601		goto out;
2602	}
2603
2604	/*
2605	 * Copy the FIB and data back out to the caller.
2606	 */
2607	size = cm->cm_fib->Header.Size;
2608	if (size > sizeof(struct aac_fib)) {
2609		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2610			      size, sizeof(struct aac_fib));
2611		size = sizeof(struct aac_fib);
2612	}
2613	error = copyout(cm->cm_fib, ufib, size);
2614
2615out:
2616	if (cm != NULL) {
2617		aac_release_command(cm);
2618	}
2619
2620	mtx_unlock(&sc->aac_io_lock);
2621	return(error);
2622}
2623
2624/*
2625 * Handle an AIF sent to us by the controller; queue it for later reference.
2626 * If the queue fills up, then drop the older entries.
2627 */
2628static void
2629aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2630{
2631	struct aac_aif_command *aif;
2632	struct aac_container *co, *co_next;
2633	struct aac_mntinfo *mi;
2634	struct aac_mntinforesp *mir = NULL;
2635	u_int16_t rsize;
2636	int next, found;
2637	int count = 0, added = 0, i = 0;
2638
2639	debug_called(2);
2640
2641	aif = (struct aac_aif_command*)&fib->data[0];
2642	aac_print_aif(sc, aif);
2643
2644	/* Is it an event that we should care about? */
2645	switch (aif->command) {
2646	case AifCmdEventNotify:
2647		switch (aif->data.EN.type) {
2648		case AifEnAddContainer:
2649		case AifEnDeleteContainer:
2650			/*
2651			 * A container was added or deleted, but the message
2652			 * doesn't tell us anything else!  Re-enumerate the
2653			 * containers and sort things out.
2654			 */
2655			aac_alloc_sync_fib(sc, &fib);
2656			mi = (struct aac_mntinfo *)&fib->data[0];
2657			do {
2658				/*
2659				 * Ask the controller for its containers one at
2660				 * a time.
2661				 * XXX What if the controller's list changes
2662				 * midway through this enumaration?
2663				 * XXX This should be done async.
2664				 */
2665				bzero(mi, sizeof(struct aac_mntinfo));
2666				mi->Command = VM_NameServe;
2667				mi->MntType = FT_FILESYS;
2668				mi->MntCount = i;
2669				rsize = sizeof(mir);
2670				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2671						 sizeof(struct aac_mntinfo))) {
2672					printf("Error probing container %d\n",
2673					      i);
2674					continue;
2675				}
2676				mir = (struct aac_mntinforesp *)&fib->data[0];
2677				/* XXX Need to check if count changed */
2678				count = mir->MntRespCount;
2679				/*
2680				 * Check the container against our list.
2681				 * co->co_found was already set to 0 in a
2682				 * previous run.
2683				 */
2684				if ((mir->Status == ST_OK) &&
2685				    (mir->MntTable[0].VolType != CT_NONE)) {
2686					found = 0;
2687					TAILQ_FOREACH(co,
2688						      &sc->aac_container_tqh,
2689						      co_link) {
2690						if (co->co_mntobj.ObjectId ==
2691						    mir->MntTable[0].ObjectId) {
2692							co->co_found = 1;
2693							found = 1;
2694							break;
2695						}
2696					}
2697					/*
2698					 * If the container matched, continue
2699					 * in the list.
2700					 */
2701					if (found) {
2702						i++;
2703						continue;
2704					}
2705
2706					/*
2707					 * This is a new container.  Do all the
2708					 * appropriate things to set it up.
2709					 */
2710					aac_add_container(sc, mir, 1);
2711					added = 1;
2712				}
2713				i++;
2714			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2715			aac_release_sync_fib(sc);
2716
2717			/*
2718			 * Go through our list of containers and see which ones
2719			 * were not marked 'found'.  Since the controller didn't
2720			 * list them they must have been deleted.  Do the
2721			 * appropriate steps to destroy the device.  Also reset
2722			 * the co->co_found field.
2723			 */
2724			co = TAILQ_FIRST(&sc->aac_container_tqh);
2725			while (co != NULL) {
2726				if (co->co_found == 0) {
2727					device_delete_child(sc->aac_dev,
2728							    co->co_disk);
2729					co_next = TAILQ_NEXT(co, co_link);
2730					mtx_lock(&sc->aac_container_lock);
2731					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2732						     co_link);
2733					mtx_unlock(&sc->aac_container_lock);
2734					free(co, M_AACBUF);
2735					co = co_next;
2736				} else {
2737					co->co_found = 0;
2738					co = TAILQ_NEXT(co, co_link);
2739				}
2740			}
2741
2742			/* Attach the newly created containers */
2743			if (added)
2744				bus_generic_attach(sc->aac_dev);
2745
2746			break;
2747
2748		default:
2749			break;
2750		}
2751
2752	default:
2753		break;
2754	}
2755
2756	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2757	mtx_lock(&sc->aac_aifq_lock);
2758	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2759	if (next != sc->aac_aifq_tail) {
2760		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2761		sc->aac_aifq_head = next;
2762
2763		/* On the off chance that someone is sleeping for an aif... */
2764		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2765			wakeup(sc->aac_aifq);
2766		/* Wakeup any poll()ers */
2767		selwakeuppri(&sc->rcv_select, PRIBIO);
2768	}
2769	mtx_unlock(&sc->aac_aifq_lock);
2770
2771	return;
2772}
2773
2774/*
2775 * Return the Revision of the driver to userspace and check to see if the
2776 * userspace app is possibly compatible.  This is extremely bogus since
2777 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2778 * returning what the card reported.
2779 */
2780static int
2781aac_rev_check(struct aac_softc *sc, caddr_t udata)
2782{
2783	struct aac_rev_check rev_check;
2784	struct aac_rev_check_resp rev_check_resp;
2785	int error = 0;
2786
2787	debug_called(2);
2788
2789	/*
2790	 * Copyin the revision struct from userspace
2791	 */
2792	if ((error = copyin(udata, (caddr_t)&rev_check,
2793			sizeof(struct aac_rev_check))) != 0) {
2794		return error;
2795	}
2796
2797	debug(2, "Userland revision= %d\n",
2798	      rev_check.callingRevision.buildNumber);
2799
2800	/*
2801	 * Doctor up the response struct.
2802	 */
2803	rev_check_resp.possiblyCompatible = 1;
2804	rev_check_resp.adapterSWRevision.external.ul =
2805	    sc->aac_revision.external.ul;
2806	rev_check_resp.adapterSWRevision.buildNumber =
2807	    sc->aac_revision.buildNumber;
2808
2809	return(copyout((caddr_t)&rev_check_resp, udata,
2810			sizeof(struct aac_rev_check_resp)));
2811}
2812
2813/*
2814 * Pass the caller the next AIF in their queue
2815 */
2816static int
2817aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2818{
2819	struct get_adapter_fib_ioctl agf;
2820	int error;
2821
2822	debug_called(2);
2823
2824	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2825
2826		/*
2827		 * Check the magic number that we gave the caller.
2828		 */
2829		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2830			error = EFAULT;
2831		} else {
2832			error = aac_return_aif(sc, agf.AifFib);
2833			if ((error == EAGAIN) && (agf.Wait)) {
2834				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2835				while (error == EAGAIN) {
2836					error = tsleep(sc->aac_aifq, PRIBIO |
2837						       PCATCH, "aacaif", 0);
2838					if (error == 0)
2839						error = aac_return_aif(sc,
2840						    agf.AifFib);
2841				}
2842				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2843			}
2844		}
2845	}
2846	return(error);
2847}
2848
2849/*
2850 * Hand the next AIF off the top of the queue out to userspace.
2851 */
2852static int
2853aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2854{
2855	int next, error;
2856
2857	debug_called(2);
2858
2859	mtx_lock(&sc->aac_aifq_lock);
2860	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2861		mtx_unlock(&sc->aac_aifq_lock);
2862		return (EAGAIN);
2863	}
2864
2865	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2866	error = copyout(&sc->aac_aifq[next], uptr,
2867			sizeof(struct aac_aif_command));
2868	if (error)
2869		device_printf(sc->aac_dev,
2870		    "aac_return_aif: copyout returned %d\n", error);
2871	else
2872		sc->aac_aifq_tail = next;
2873
2874	mtx_unlock(&sc->aac_aifq_lock);
2875	return(error);
2876}
2877
2878/*
2879 * Give the userland some information about the container.  The AAC arch
2880 * expects the driver to be a SCSI passthrough type driver, so it expects
2881 * the containers to have b:t:l numbers.  Fake it.
2882 */
2883static int
2884aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2885{
2886	struct aac_query_disk query_disk;
2887	struct aac_container *co;
2888	struct aac_disk	*disk;
2889	int error, id;
2890
2891	debug_called(2);
2892
2893	disk = NULL;
2894
2895	error = copyin(uptr, (caddr_t)&query_disk,
2896		       sizeof(struct aac_query_disk));
2897	if (error)
2898		return (error);
2899
2900	id = query_disk.ContainerNumber;
2901	if (id == -1)
2902		return (EINVAL);
2903
2904	mtx_lock(&sc->aac_container_lock);
2905	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2906		if (co->co_mntobj.ObjectId == id)
2907			break;
2908		}
2909
2910	if (co == NULL) {
2911			query_disk.Valid = 0;
2912			query_disk.Locked = 0;
2913			query_disk.Deleted = 1;		/* XXX is this right? */
2914	} else {
2915		disk = device_get_softc(co->co_disk);
2916		query_disk.Valid = 1;
2917		query_disk.Locked =
2918		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2919		query_disk.Deleted = 0;
2920		query_disk.Bus = device_get_unit(sc->aac_dev);
2921		query_disk.Target = disk->unit;
2922		query_disk.Lun = 0;
2923		query_disk.UnMapped = 0;
2924		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2925		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2926	}
2927	mtx_unlock(&sc->aac_container_lock);
2928
2929	error = copyout((caddr_t)&query_disk, uptr,
2930			sizeof(struct aac_query_disk));
2931
2932	return (error);
2933}
2934
2935static void
2936aac_get_bus_info(struct aac_softc *sc)
2937{
2938	struct aac_fib *fib;
2939	struct aac_ctcfg *c_cmd;
2940	struct aac_ctcfg_resp *c_resp;
2941	struct aac_vmioctl *vmi;
2942	struct aac_vmi_businf_resp *vmi_resp;
2943	struct aac_getbusinf businfo;
2944	struct aac_sim *caminf;
2945	device_t child;
2946	int i, found, error;
2947
2948	aac_alloc_sync_fib(sc, &fib);
2949	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2950	bzero(c_cmd, sizeof(struct aac_ctcfg));
2951
2952	c_cmd->Command = VM_ContainerConfig;
2953	c_cmd->cmd = CT_GET_SCSI_METHOD;
2954	c_cmd->param = 0;
2955
2956	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2957	    sizeof(struct aac_ctcfg));
2958	if (error) {
2959		device_printf(sc->aac_dev, "Error %d sending "
2960		    "VM_ContainerConfig command\n", error);
2961		aac_release_sync_fib(sc);
2962		return;
2963	}
2964
2965	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2966	if (c_resp->Status != ST_OK) {
2967		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2968		    c_resp->Status);
2969		aac_release_sync_fib(sc);
2970		return;
2971	}
2972
2973	sc->scsi_method_id = c_resp->param;
2974
2975	vmi = (struct aac_vmioctl *)&fib->data[0];
2976	bzero(vmi, sizeof(struct aac_vmioctl));
2977
2978	vmi->Command = VM_Ioctl;
2979	vmi->ObjType = FT_DRIVE;
2980	vmi->MethId = sc->scsi_method_id;
2981	vmi->ObjId = 0;
2982	vmi->IoctlCmd = GetBusInfo;
2983
2984	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2985	    sizeof(struct aac_vmioctl));
2986	if (error) {
2987		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2988		    error);
2989		aac_release_sync_fib(sc);
2990		return;
2991	}
2992
2993	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2994	if (vmi_resp->Status != ST_OK) {
2995		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2996		    vmi_resp->Status);
2997		aac_release_sync_fib(sc);
2998		return;
2999	}
3000
3001	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3002	aac_release_sync_fib(sc);
3003
3004	found = 0;
3005	for (i = 0; i < businfo.BusCount; i++) {
3006		if (businfo.BusValid[i] != AAC_BUS_VALID)
3007			continue;
3008
3009		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3010		    M_AACBUF, M_NOWAIT | M_ZERO);
3011		if (caminf == NULL)
3012			continue;
3013
3014		child = device_add_child(sc->aac_dev, "aacp", -1);
3015		if (child == NULL) {
3016			device_printf(sc->aac_dev, "device_add_child failed\n");
3017			continue;
3018		}
3019
3020		caminf->TargetsPerBus = businfo.TargetsPerBus;
3021		caminf->BusNumber = i;
3022		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3023		caminf->aac_sc = sc;
3024		caminf->sim_dev = child;
3025
3026		device_set_ivars(child, caminf);
3027		device_set_desc(child, "SCSI Passthrough Bus");
3028		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3029
3030		found = 1;
3031	}
3032
3033	if (found)
3034		bus_generic_attach(sc->aac_dev);
3035
3036	return;
3037}
3038