aac.c revision 132771
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 132771 2004-07-28 06:21:53Z kan $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
79				   int nseg, int error);
80static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
81				       int nseg, int error);
82static int	aac_alloc_commands(struct aac_softc *sc);
83static void	aac_free_commands(struct aac_softc *sc);
84static void	aac_unmap_command(struct aac_command *cm);
85
86/* Hardware Interface */
87static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88			       int error);
89static int	aac_check_firmware(struct aac_softc *sc);
90static int	aac_init(struct aac_softc *sc);
91static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93				 u_int32_t arg3, u_int32_t *sp);
94static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95				struct aac_command *cm);
96static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97				u_int32_t *fib_size, struct aac_fib **fib_addr);
98static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99				     struct aac_fib *fib);
100
101/* Falcon/PPC interface */
102static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104static int	aac_fa_get_istatus(struct aac_softc *sc);
105static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107				   u_int32_t arg0, u_int32_t arg1,
108				   u_int32_t arg2, u_int32_t arg3);
109static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
110static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111
112struct aac_interface aac_fa_interface = {
113	aac_fa_get_fwstatus,
114	aac_fa_qnotify,
115	aac_fa_get_istatus,
116	aac_fa_clear_istatus,
117	aac_fa_set_mailbox,
118	aac_fa_get_mailbox,
119	aac_fa_set_interrupts
120};
121
122/* StrongARM interface */
123static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125static int	aac_sa_get_istatus(struct aac_softc *sc);
126static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128				   u_int32_t arg0, u_int32_t arg1,
129				   u_int32_t arg2, u_int32_t arg3);
130static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
131static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132
133struct aac_interface aac_sa_interface = {
134	aac_sa_get_fwstatus,
135	aac_sa_qnotify,
136	aac_sa_get_istatus,
137	aac_sa_clear_istatus,
138	aac_sa_set_mailbox,
139	aac_sa_get_mailbox,
140	aac_sa_set_interrupts
141};
142
143/* i960Rx interface */
144static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146static int	aac_rx_get_istatus(struct aac_softc *sc);
147static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149				   u_int32_t arg0, u_int32_t arg1,
150				   u_int32_t arg2, u_int32_t arg3);
151static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
152static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153
154struct aac_interface aac_rx_interface = {
155	aac_rx_get_fwstatus,
156	aac_rx_qnotify,
157	aac_rx_get_istatus,
158	aac_rx_clear_istatus,
159	aac_rx_set_mailbox,
160	aac_rx_get_mailbox,
161	aac_rx_set_interrupts
162};
163
164/* Debugging and Diagnostics */
165static void	aac_describe_controller(struct aac_softc *sc);
166static char	*aac_describe_code(struct aac_code_lookup *table,
167				   u_int32_t code);
168
169/* Management Interface */
170static d_open_t		aac_open;
171static d_close_t	aac_close;
172static d_ioctl_t	aac_ioctl;
173static d_poll_t		aac_poll;
174static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
175static void		aac_handle_aif(struct aac_softc *sc,
176					   struct aac_fib *fib);
177static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
178static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
179static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
180static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
181
182static struct cdevsw aac_cdevsw = {
183	.d_version =	D_VERSION,
184	.d_flags =	D_NEEDGIANT,
185	.d_open =	aac_open,
186	.d_close =	aac_close,
187	.d_ioctl =	aac_ioctl,
188	.d_poll =	aac_poll,
189	.d_name =	"aac",
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/*
237	 * Initialize locks
238	 */
239	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
240	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
241	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
242	TAILQ_INIT(&sc->aac_container_tqh);
243
244	/* Initialize the local AIF queue pointers */
245	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
246
247	/*
248	 * Initialise the adapter.
249	 */
250	if ((error = aac_init(sc)) != 0)
251		return(error);
252
253	/*
254	 * Print a little information about the controller.
255	 */
256	aac_describe_controller(sc);
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int count = 0, i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			printf("error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		/* XXX Need to check if count changed */
336		count = mir->MntRespCount;
337		aac_add_container(sc, mir, 0);
338		i++;
339	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340
341	aac_release_sync_fib(sc);
342
343	/* poke the bus to actually attach the child devices */
344	if (bus_generic_attach(sc->aac_dev))
345		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346
347	/* mark the controller up */
348	sc->aac_state &= ~AAC_STATE_SUSPEND;
349
350	/* enable interrupts now */
351	AAC_UNMASK_INTERRUPTS(sc);
352}
353
354/*
355 * Create a device to respresent a new container
356 */
357static void
358aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359{
360	struct aac_container *co;
361	device_t child;
362
363	/*
364	 * Check container volume type for validity.  Note that many of
365	 * the possible types may never show up.
366	 */
367	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369		       M_NOWAIT | M_ZERO);
370		if (co == NULL)
371			panic("Out of memory?!\n");
372		debug(1, "id %x  name '%.16s'  size %u  type %d",
373		      mir->MntTable[0].ObjectId,
374		      mir->MntTable[0].FileSystemName,
375		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376
377		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378			device_printf(sc->aac_dev, "device_add_child failed\n");
379		else
380			device_set_ivars(child, co);
381		device_set_desc(child, aac_describe_code(aac_container_types,
382				mir->MntTable[0].VolType));
383		co->co_disk = child;
384		co->co_found = f;
385		bcopy(&mir->MntTable[0], &co->co_mntobj,
386		      sizeof(struct aac_mntobj));
387		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390	}
391}
392
393/*
394 * Free all of the resources associated with (sc)
395 *
396 * Should not be called if the controller is active.
397 */
398void
399aac_free(struct aac_softc *sc)
400{
401
402	debug_called(1);
403
404	/* remove the control device */
405	if (sc->aac_dev_t != NULL)
406		destroy_dev(sc->aac_dev_t);
407
408	/* throw away any FIB buffers, discard the FIB DMA tag */
409	aac_free_commands(sc);
410	if (sc->aac_fib_dmat)
411		bus_dma_tag_destroy(sc->aac_fib_dmat);
412
413	free(sc->aac_commands, M_AACBUF);
414
415	/* destroy the common area */
416	if (sc->aac_common) {
417		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419				sc->aac_common_dmamap);
420	}
421	if (sc->aac_common_dmat)
422		bus_dma_tag_destroy(sc->aac_common_dmat);
423
424	/* disconnect the interrupt handler */
425	if (sc->aac_intr)
426		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427	if (sc->aac_irq != NULL)
428		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429				     sc->aac_irq);
430
431	/* destroy data-transfer DMA tag */
432	if (sc->aac_buffer_dmat)
433		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434
435	/* destroy the parent DMA tag */
436	if (sc->aac_parent_dmat)
437		bus_dma_tag_destroy(sc->aac_parent_dmat);
438
439	/* release the register window mapping */
440	if (sc->aac_regs_resource != NULL)
441		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442				     sc->aac_regs_rid, sc->aac_regs_resource);
443}
444
445/*
446 * Disconnect from the controller completely, in preparation for unload.
447 */
448int
449aac_detach(device_t dev)
450{
451	struct aac_softc *sc;
452	struct aac_container *co;
453	struct aac_sim	*sim;
454	int error;
455
456	debug_called(1);
457
458	sc = device_get_softc(dev);
459
460	if (sc->aac_state & AAC_STATE_OPEN)
461		return(EBUSY);
462
463	/* Remove the child containers */
464	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465		error = device_delete_child(dev, co->co_disk);
466		if (error)
467			return (error);
468		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469		free(co, M_AACBUF);
470	}
471
472	/* Remove the CAM SIMs */
473	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475		error = device_delete_child(dev, sim->sim_dev);
476		if (error)
477			return (error);
478		free(sim, M_AACBUF);
479	}
480
481	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483		wakeup(sc->aifthread);
484		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485	}
486
487	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488		panic("Cannot shutdown AIF thread\n");
489
490	if ((error = aac_shutdown(dev)))
491		return(error);
492
493	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494
495	aac_free(sc);
496
497	return(0);
498}
499
500/*
501 * Bring the controller down to a dormant state and detach all child devices.
502 *
503 * This function is called before detach or system shutdown.
504 *
505 * Note that we can assume that the bioq on the controller is empty, as we won't
506 * allow shutdown if any device is open.
507 */
508int
509aac_shutdown(device_t dev)
510{
511	struct aac_softc *sc;
512	struct aac_fib *fib;
513	struct aac_close_command *cc;
514
515	debug_called(1);
516
517	sc = device_get_softc(dev);
518
519	sc->aac_state |= AAC_STATE_SUSPEND;
520
521	/*
522	 * Send a Container shutdown followed by a HostShutdown FIB to the
523	 * controller to convince it that we don't want to talk to it anymore.
524	 * We've been closed and all I/O completed already
525	 */
526	device_printf(sc->aac_dev, "shutting down controller...");
527
528	aac_alloc_sync_fib(sc, &fib);
529	cc = (struct aac_close_command *)&fib->data[0];
530
531	bzero(cc, sizeof(struct aac_close_command));
532	cc->Command = VM_CloseAll;
533	cc->ContainerId = 0xffffffff;
534	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535	    sizeof(struct aac_close_command)))
536		printf("FAILED.\n");
537	else
538		printf("done\n");
539#if 0
540	else {
541		fib->data[0] = 0;
542		/*
543		 * XXX Issuing this command to the controller makes it shut down
544		 * but also keeps it from coming back up without a reset of the
545		 * PCI bus.  This is not desirable if you are just unloading the
546		 * driver module with the intent to reload it later.
547		 */
548		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549		    fib, 1)) {
550			printf("FAILED.\n");
551		} else {
552			printf("done.\n");
553		}
554	}
555#endif
556
557	AAC_MASK_INTERRUPTS(sc);
558
559	return(0);
560}
561
562/*
563 * Bring the controller to a quiescent state, ready for system suspend.
564 */
565int
566aac_suspend(device_t dev)
567{
568	struct aac_softc *sc;
569
570	debug_called(1);
571
572	sc = device_get_softc(dev);
573
574	sc->aac_state |= AAC_STATE_SUSPEND;
575
576	AAC_MASK_INTERRUPTS(sc);
577	return(0);
578}
579
580/*
581 * Bring the controller back to a state ready for operation.
582 */
583int
584aac_resume(device_t dev)
585{
586	struct aac_softc *sc;
587
588	debug_called(1);
589
590	sc = device_get_softc(dev);
591
592	sc->aac_state &= ~AAC_STATE_SUSPEND;
593	AAC_UNMASK_INTERRUPTS(sc);
594	return(0);
595}
596
597/*
598 * Take an interrupt.
599 */
600void
601aac_intr(void *arg)
602{
603	struct aac_softc *sc;
604	u_int16_t reason;
605
606	debug_called(2);
607
608	sc = (struct aac_softc *)arg;
609
610	/*
611	 * Read the status register directly.  This is faster than taking the
612	 * driver lock and reading the queues directly.  It also saves having
613	 * to turn parts of the driver lock into a spin mutex, which would be
614	 * ugly.
615	 */
616	reason = AAC_GET_ISTATUS(sc);
617	AAC_CLEAR_ISTATUS(sc, reason);
618
619	/* handle completion processing */
620	if (reason & AAC_DB_RESPONSE_READY)
621		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
622
623	/* controller wants to talk to us */
624	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
625		/*
626		 * XXX Make sure that we don't get fooled by strange messages
627		 * that start with a NULL.
628		 */
629		if ((reason & AAC_DB_PRINTF) &&
630		    (sc->aac_common->ac_printf[0] == 0))
631			sc->aac_common->ac_printf[0] = 32;
632
633		/*
634		 * This might miss doing the actual wakeup.  However, the
635		 * msleep that this is waking up has a timeout, so it will
636		 * wake up eventually.  AIFs and printfs are low enough
637		 * priority that they can handle hanging out for a few seconds
638		 * if needed.
639		 */
640		wakeup(sc->aifthread);
641	}
642}
643
644/*
645 * Command Processing
646 */
647
648/*
649 * Start as much queued I/O as possible on the controller
650 */
651void
652aac_startio(struct aac_softc *sc)
653{
654	struct aac_command *cm;
655	int error;
656
657	debug_called(2);
658
659	for (;;) {
660		/*
661		 * This flag might be set if the card is out of resources.
662		 * Checking it here prevents an infinite loop of deferrals.
663		 */
664		if (sc->flags & AAC_QUEUE_FRZN)
665			break;
666
667		/*
668		 * Try to get a command that's been put off for lack of
669		 * resources
670		 */
671		cm = aac_dequeue_ready(sc);
672
673		/*
674		 * Try to build a command off the bio queue (ignore error
675		 * return)
676		 */
677		if (cm == NULL)
678			aac_bio_command(sc, &cm);
679
680		/* nothing to do? */
681		if (cm == NULL)
682			break;
683
684		/* don't map more than once */
685		if (cm->cm_flags & AAC_CMD_MAPPED)
686			panic("aac: command %p already mapped", cm);
687
688		/*
689		 * Set up the command to go to the controller.  If there are no
690		 * data buffers associated with the command then it can bypass
691		 * busdma.
692		 */
693		if (cm->cm_datalen != 0) {
694			error = bus_dmamap_load(sc->aac_buffer_dmat,
695						cm->cm_datamap, cm->cm_data,
696						cm->cm_datalen,
697						aac_map_command_sg, cm, 0);
698			if (error == EINPROGRESS) {
699				debug(1, "freezing queue\n");
700				sc->flags |= AAC_QUEUE_FRZN;
701				error = 0;
702			} else if (error != 0)
703				panic("aac_startio: unexpected error %d from "
704				      "busdma\n", error);
705		} else
706			aac_map_command_sg(cm, NULL, 0, 0);
707	}
708}
709
710/*
711 * Handle notification of one or more FIBs coming from the controller.
712 */
713static void
714aac_command_thread(struct aac_softc *sc)
715{
716	struct aac_fib *fib;
717	u_int32_t fib_size;
718	int size, retval;
719
720	debug_called(2);
721
722	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
723	sc->aifflags = AAC_AIFFLAGS_RUNNING;
724
725	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
726
727		retval = 0;
728		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
729			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
730					"aifthd", AAC_PERIODIC_INTERVAL * hz);
731
732		/*
733		 * First see if any FIBs need to be allocated.  This needs
734		 * to be called without the driver lock because contigmalloc
735		 * will grab Giant, and would result in an LOR.
736		 */
737		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
738			AAC_LOCK_RELEASE(&sc->aac_io_lock);
739			aac_alloc_commands(sc);
740			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
741			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
742			aac_startio(sc);
743		}
744
745		/*
746		 * While we're here, check to see if any commands are stuck.
747		 * This is pretty low-priority, so it's ok if it doesn't
748		 * always fire.
749		 */
750		if (retval == EWOULDBLOCK)
751			aac_timeout(sc);
752
753		/* Check the hardware printf message buffer */
754		if (sc->aac_common->ac_printf[0] != 0)
755			aac_print_printf(sc);
756
757		/* Also check to see if the adapter has a command for us. */
758		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
759				       &fib_size, &fib) == 0) {
760
761			AAC_PRINT_FIB(sc, fib);
762
763			switch (fib->Header.Command) {
764			case AifRequest:
765				aac_handle_aif(sc, fib);
766				break;
767			default:
768				device_printf(sc->aac_dev, "unknown command "
769					      "from controller\n");
770				break;
771			}
772
773			if ((fib->Header.XferState == 0) ||
774			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775				break;
776
777			/* Return the AIF to the controller. */
778			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
779				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
780				*(AAC_FSAStatus*)fib->data = ST_OK;
781
782				/* XXX Compute the Size field? */
783				size = fib->Header.Size;
784				if (size > sizeof(struct aac_fib)) {
785					size = sizeof(struct aac_fib);
786					fib->Header.Size = size;
787				}
788				/*
789				 * Since we did not generate this command, it
790				 * cannot go through the normal
791				 * enqueue->startio chain.
792				 */
793				aac_enqueue_response(sc,
794						     AAC_ADAP_NORM_RESP_QUEUE,
795						     fib);
796			}
797		}
798	}
799	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
800	AAC_LOCK_RELEASE(&sc->aac_io_lock);
801	wakeup(sc->aac_dev);
802
803	kthread_exit(0);
804}
805
806/*
807 * Process completed commands.
808 */
809static void
810aac_complete(void *context, int pending)
811{
812	struct aac_softc *sc;
813	struct aac_command *cm;
814	struct aac_fib *fib;
815	u_int32_t fib_size;
816
817	debug_called(2);
818
819	sc = (struct aac_softc *)context;
820
821	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
822
823	/* pull completed commands off the queue */
824	for (;;) {
825		/* look for completed FIBs on our queue */
826		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
827				    &fib))
828			break;	/* nothing to do */
829
830		/* get the command, unmap and hand off for processing */
831		cm = sc->aac_commands + fib->Header.SenderData;
832		if (cm == NULL) {
833			AAC_PRINT_FIB(sc, fib);
834			break;
835		}
836
837		aac_remove_busy(cm);
838		aac_unmap_command(cm);
839		cm->cm_flags |= AAC_CMD_COMPLETED;
840
841		/* is there a completion handler? */
842		if (cm->cm_complete != NULL) {
843			cm->cm_complete(cm);
844		} else {
845			/* assume that someone is sleeping on this command */
846			wakeup(cm);
847		}
848	}
849
850	/* see if we can start some more I/O */
851	sc->flags &= ~AAC_QUEUE_FRZN;
852	aac_startio(sc);
853
854	AAC_LOCK_RELEASE(&sc->aac_io_lock);
855}
856
857/*
858 * Handle a bio submitted from a disk device.
859 */
860void
861aac_submit_bio(struct bio *bp)
862{
863	struct aac_disk *ad;
864	struct aac_softc *sc;
865
866	debug_called(2);
867
868	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
869	sc = ad->ad_controller;
870
871	/* queue the BIO and try to get some work done */
872	aac_enqueue_bio(sc, bp);
873	aac_startio(sc);
874}
875
876/*
877 * Get a bio and build a command to go with it.
878 */
879static int
880aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
881{
882	struct aac_command *cm;
883	struct aac_fib *fib;
884	struct aac_disk *ad;
885	struct bio *bp;
886
887	debug_called(2);
888
889	/* get the resources we will need */
890	cm = NULL;
891	bp = NULL;
892	if (aac_alloc_command(sc, &cm))	/* get a command */
893		goto fail;
894	if ((bp = aac_dequeue_bio(sc)) == NULL)
895		goto fail;
896
897	/* fill out the command */
898	cm->cm_data = (void *)bp->bio_data;
899	cm->cm_datalen = bp->bio_bcount;
900	cm->cm_complete = aac_bio_complete;
901	cm->cm_private = bp;
902	cm->cm_timestamp = time_second;
903	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
904
905	/* build the FIB */
906	fib = cm->cm_fib;
907	fib->Header.Size = sizeof(struct aac_fib_header);
908	fib->Header.XferState =
909		AAC_FIBSTATE_HOSTOWNED   |
910		AAC_FIBSTATE_INITIALISED |
911		AAC_FIBSTATE_EMPTY	 |
912		AAC_FIBSTATE_FROMHOST	 |
913		AAC_FIBSTATE_REXPECTED   |
914		AAC_FIBSTATE_NORM	 |
915		AAC_FIBSTATE_ASYNC	 |
916		AAC_FIBSTATE_FAST_RESPONSE;
917
918	/* build the read/write request */
919	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
920
921	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
922		fib->Header.Command = ContainerCommand;
923		if (bp->bio_cmd == BIO_READ) {
924			struct aac_blockread *br;
925			br = (struct aac_blockread *)&fib->data[0];
926			br->Command = VM_CtBlockRead;
927			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
928			br->BlockNumber = bp->bio_pblkno;
929			br->ByteCount = bp->bio_bcount;
930			fib->Header.Size += sizeof(struct aac_blockread);
931			cm->cm_sgtable = &br->SgMap;
932			cm->cm_flags |= AAC_CMD_DATAIN;
933		} else {
934			struct aac_blockwrite *bw;
935			bw = (struct aac_blockwrite *)&fib->data[0];
936			bw->Command = VM_CtBlockWrite;
937			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938			bw->BlockNumber = bp->bio_pblkno;
939			bw->ByteCount = bp->bio_bcount;
940			bw->Stable = CUNSTABLE;
941			fib->Header.Size += sizeof(struct aac_blockwrite);
942			cm->cm_flags |= AAC_CMD_DATAOUT;
943			cm->cm_sgtable = &bw->SgMap;
944		}
945	} else {
946		fib->Header.Command = ContainerCommand64;
947		if (bp->bio_cmd == BIO_READ) {
948			struct aac_blockread64 *br;
949			br = (struct aac_blockread64 *)&fib->data[0];
950			br->Command = VM_CtHostRead64;
951			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
952			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
953			br->BlockNumber = bp->bio_pblkno;
954			br->Pad = 0;
955			br->Flags = 0;
956			fib->Header.Size += sizeof(struct aac_blockread64);
957			cm->cm_flags |= AAC_CMD_DATAOUT;
958			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
959		} else {
960			struct aac_blockwrite64 *bw;
961			bw = (struct aac_blockwrite64 *)&fib->data[0];
962			bw->Command = VM_CtHostWrite64;
963			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
964			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
965			bw->BlockNumber = bp->bio_pblkno;
966			bw->Pad = 0;
967			bw->Flags = 0;
968			fib->Header.Size += sizeof(struct aac_blockwrite64);
969			cm->cm_flags |= AAC_CMD_DATAIN;
970			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
971		}
972	}
973
974	*cmp = cm;
975	return(0);
976
977fail:
978	if (bp != NULL)
979		aac_enqueue_bio(sc, bp);
980	if (cm != NULL)
981		aac_release_command(cm);
982	return(ENOMEM);
983}
984
985/*
986 * Handle a bio-instigated command that has been completed.
987 */
988static void
989aac_bio_complete(struct aac_command *cm)
990{
991	struct aac_blockread_response *brr;
992	struct aac_blockwrite_response *bwr;
993	struct bio *bp;
994	AAC_FSAStatus status;
995
996	/* fetch relevant status and then release the command */
997	bp = (struct bio *)cm->cm_private;
998	if (bp->bio_cmd == BIO_READ) {
999		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1000		status = brr->Status;
1001	} else {
1002		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1003		status = bwr->Status;
1004	}
1005	aac_release_command(cm);
1006
1007	/* fix up the bio based on status */
1008	if (status == ST_OK) {
1009		bp->bio_resid = 0;
1010	} else {
1011		bp->bio_error = EIO;
1012		bp->bio_flags |= BIO_ERROR;
1013		/* pass an error string out to the disk layer */
1014		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1015						    status);
1016	}
1017	aac_biodone(bp);
1018}
1019
1020/*
1021 * Submit a command to the controller, return when it completes.
1022 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1023 *     be stuck here forever.  At the same time, signals are not caught
1024 *     because there is a risk that a signal could wakeup the sleep before
1025 *     the card has a chance to complete the command.  Since there is no way
1026 *     to cancel a command that is in progress, we can't protect against the
1027 *     card completing a command late and spamming the command and data
1028 *     memory.  So, we are held hostage until the command completes.
1029 */
1030static int
1031aac_wait_command(struct aac_command *cm)
1032{
1033	struct aac_softc *sc;
1034	int error;
1035
1036	debug_called(2);
1037
1038	sc = cm->cm_sc;
1039
1040	/* Put the command on the ready queue and get things going */
1041	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1042	aac_enqueue_ready(cm);
1043	aac_startio(sc);
1044	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1045	return(error);
1046}
1047
1048/*
1049 *Command Buffer Management
1050 */
1051
1052/*
1053 * Allocate a command.
1054 */
1055int
1056aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1057{
1058	struct aac_command *cm;
1059
1060	debug_called(3);
1061
1062	if ((cm = aac_dequeue_free(sc)) == NULL) {
1063		if (sc->total_fibs < sc->aac_max_fibs) {
1064			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1065			wakeup(sc->aifthread);
1066		}
1067		return (EBUSY);
1068	}
1069
1070	*cmp = cm;
1071	return(0);
1072}
1073
1074/*
1075 * Release a command back to the freelist.
1076 */
1077void
1078aac_release_command(struct aac_command *cm)
1079{
1080	debug_called(3);
1081
1082	/* (re)initialise the command/FIB */
1083	cm->cm_sgtable = NULL;
1084	cm->cm_flags = 0;
1085	cm->cm_complete = NULL;
1086	cm->cm_private = NULL;
1087	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1088	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1089	cm->cm_fib->Header.Flags = 0;
1090	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1091
1092	/*
1093	 * These are duplicated in aac_start to cover the case where an
1094	 * intermediate stage may have destroyed them.  They're left
1095	 * initialised here for debugging purposes only.
1096	 */
1097	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1098	cm->cm_fib->Header.SenderData = 0;
1099
1100	aac_enqueue_free(cm);
1101}
1102
1103/*
1104 * Map helper for command/FIB allocation.
1105 */
1106static void
1107aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1108{
1109	uint32_t	*fibphys;
1110
1111	fibphys = (uint32_t *)arg;
1112
1113	debug_called(3);
1114
1115	*fibphys = segs[0].ds_addr;
1116}
1117
1118/*
1119 * Allocate and initialise commands/FIBs for this adapter.
1120 */
1121static int
1122aac_alloc_commands(struct aac_softc *sc)
1123{
1124	struct aac_command *cm;
1125	struct aac_fibmap *fm;
1126	uint32_t fibphys;
1127	int i, error;
1128
1129	debug_called(2);
1130
1131	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1132		return (ENOMEM);
1133
1134	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1135	if (fm == NULL)
1136		return (ENOMEM);
1137
1138	/* allocate the FIBs in DMAable memory and load them */
1139	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1140			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1141		device_printf(sc->aac_dev,
1142			      "Not enough contiguous memory available.\n");
1143		free(fm, M_AACBUF);
1144		return (ENOMEM);
1145	}
1146
1147	/* Ignore errors since this doesn't bounce */
1148	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1149			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1150			      aac_map_command_helper, &fibphys, 0);
1151
1152	/* initialise constant fields in the command structure */
1153	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
1154	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1155	for (i = 0; i < AAC_FIB_COUNT; i++) {
1156		cm = sc->aac_commands + sc->total_fibs;
1157		fm->aac_commands = cm;
1158		cm->cm_sc = sc;
1159		cm->cm_fib = fm->aac_fibs + i;
1160		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1161		cm->cm_index = sc->total_fibs;
1162
1163		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1164					       &cm->cm_datamap)) == 0)
1165			aac_release_command(cm);
1166		else
1167			break;
1168		sc->total_fibs++;
1169	}
1170
1171	if (i > 0) {
1172		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1173		debug(1, "total_fibs= %d\n", sc->total_fibs);
1174		AAC_LOCK_RELEASE(&sc->aac_io_lock);
1175		return (0);
1176	}
1177
1178	AAC_LOCK_RELEASE(&sc->aac_io_lock);
1179	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1180	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1181	free(fm, M_AACBUF);
1182	return (ENOMEM);
1183}
1184
1185/*
1186 * Free FIBs owned by this adapter.
1187 */
1188static void
1189aac_free_commands(struct aac_softc *sc)
1190{
1191	struct aac_fibmap *fm;
1192	struct aac_command *cm;
1193	int i;
1194
1195	debug_called(1);
1196
1197	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1198
1199		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1200		/*
1201		 * We check against total_fibs to handle partially
1202		 * allocated blocks.
1203		 */
1204		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1205			cm = fm->aac_commands + i;
1206			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1207		}
1208		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1209		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1210		free(fm, M_AACBUF);
1211	}
1212}
1213
1214/*
1215 * Command-mapping helper function - populate this command's s/g table.
1216 */
1217static void
1218aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1219{
1220	struct aac_softc *sc;
1221	struct aac_command *cm;
1222	struct aac_fib *fib;
1223	int i;
1224
1225	debug_called(3);
1226
1227	cm = (struct aac_command *)arg;
1228	sc = cm->cm_sc;
1229	fib = cm->cm_fib;
1230
1231	/* copy into the FIB */
1232	if (cm->cm_sgtable != NULL) {
1233		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1234			struct aac_sg_table *sg;
1235			sg = cm->cm_sgtable;
1236			sg->SgCount = nseg;
1237			for (i = 0; i < nseg; i++) {
1238				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1239				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1240			}
1241			/* update the FIB size for the s/g count */
1242			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1243		} else {
1244			struct aac_sg_table64 *sg;
1245			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1246			sg->SgCount = nseg;
1247			for (i = 0; i < nseg; i++) {
1248				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1249				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1250			}
1251			/* update the FIB size for the s/g count */
1252			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1253		}
1254	}
1255
1256	/* Fix up the address values in the FIB.  Use the command array index
1257	 * instead of a pointer since these fields are only 32 bits.  Shift
1258	 * the SenderFibAddress over to make room for the fast response bit.
1259	 */
1260	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1261	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1262
1263	/* save a pointer to the command for speedy reverse-lookup */
1264	cm->cm_fib->Header.SenderData = cm->cm_index;
1265
1266	if (cm->cm_flags & AAC_CMD_DATAIN)
1267		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1268				BUS_DMASYNC_PREREAD);
1269	if (cm->cm_flags & AAC_CMD_DATAOUT)
1270		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1271				BUS_DMASYNC_PREWRITE);
1272	cm->cm_flags |= AAC_CMD_MAPPED;
1273
1274	/* Put the FIB on the outbound queue */
1275	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1276		aac_unmap_command(cm);
1277		sc->flags |= AAC_QUEUE_FRZN;
1278		aac_requeue_ready(cm);
1279	}
1280
1281	return;
1282}
1283
1284/*
1285 * Unmap a command from controller-visible space.
1286 */
1287static void
1288aac_unmap_command(struct aac_command *cm)
1289{
1290	struct aac_softc *sc;
1291
1292	debug_called(2);
1293
1294	sc = cm->cm_sc;
1295
1296	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1297		return;
1298
1299	if (cm->cm_datalen != 0) {
1300		if (cm->cm_flags & AAC_CMD_DATAIN)
1301			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1302					BUS_DMASYNC_POSTREAD);
1303		if (cm->cm_flags & AAC_CMD_DATAOUT)
1304			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305					BUS_DMASYNC_POSTWRITE);
1306
1307		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1308	}
1309	cm->cm_flags &= ~AAC_CMD_MAPPED;
1310}
1311
1312/*
1313 * Hardware Interface
1314 */
1315
1316/*
1317 * Initialise the adapter.
1318 */
1319static void
1320aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1321{
1322	struct aac_softc *sc;
1323
1324	debug_called(1);
1325
1326	sc = (struct aac_softc *)arg;
1327
1328	sc->aac_common_busaddr = segs[0].ds_addr;
1329}
1330
1331static int
1332aac_check_firmware(struct aac_softc *sc)
1333{
1334	u_int32_t major, minor, options;
1335
1336	debug_called(1);
1337
1338	/*
1339	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1340	 * firmware version 1.x are not compatible with this driver.
1341	 */
1342	if (sc->flags & AAC_FLAGS_PERC2QC) {
1343		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1344				     NULL)) {
1345			device_printf(sc->aac_dev,
1346				      "Error reading firmware version\n");
1347			return (EIO);
1348		}
1349
1350		/* These numbers are stored as ASCII! */
1351		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1352		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1353		if (major == 1) {
1354			device_printf(sc->aac_dev,
1355			    "Firmware version %d.%d is not supported.\n",
1356			    major, minor);
1357			return (EINVAL);
1358		}
1359	}
1360
1361	/*
1362	 * Retrieve the capabilities/supported options word so we know what
1363	 * work-arounds to enable.
1364	 */
1365	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1366		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1367		return (EIO);
1368	}
1369	options = AAC_GET_MAILBOX(sc, 1);
1370	sc->supported_options = options;
1371
1372	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1373	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1374		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1375	if (options & AAC_SUPPORTED_NONDASD)
1376		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1377	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1378	     && (sizeof(bus_addr_t) > 4)) {
1379		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1380		sc->flags |= AAC_FLAGS_SG_64BIT;
1381	}
1382
1383	/* Check for broken hardware that does a lower number of commands */
1384	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1385		sc->aac_max_fibs = AAC_MAX_FIBS;
1386	else
1387		sc->aac_max_fibs = 256;
1388
1389	return (0);
1390}
1391
1392static int
1393aac_init(struct aac_softc *sc)
1394{
1395	struct aac_adapter_init	*ip;
1396	time_t then;
1397	u_int32_t code, qoffset;
1398	int error;
1399
1400	debug_called(1);
1401
1402	/*
1403	 * First wait for the adapter to come ready.
1404	 */
1405	then = time_second;
1406	do {
1407		code = AAC_GET_FWSTATUS(sc);
1408		if (code & AAC_SELF_TEST_FAILED) {
1409			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1410			return(ENXIO);
1411		}
1412		if (code & AAC_KERNEL_PANIC) {
1413			device_printf(sc->aac_dev,
1414				      "FATAL: controller kernel panic\n");
1415			return(ENXIO);
1416		}
1417		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1418			device_printf(sc->aac_dev,
1419				      "FATAL: controller not coming ready, "
1420					   "status %x\n", code);
1421			return(ENXIO);
1422		}
1423	} while (!(code & AAC_UP_AND_RUNNING));
1424
1425	error = ENOMEM;
1426	/*
1427	 * Create DMA tag for mapping buffers into controller-addressable space.
1428	 */
1429	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1430			       1, 0, 			/* algnmnt, boundary */
1431			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1432			       BUS_SPACE_MAXADDR :
1433			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1434			       BUS_SPACE_MAXADDR, 	/* highaddr */
1435			       NULL, NULL, 		/* filter, filterarg */
1436			       MAXBSIZE,		/* maxsize */
1437			       AAC_MAXSGENTRIES,	/* nsegments */
1438			       MAXBSIZE,		/* maxsegsize */
1439			       BUS_DMA_ALLOCNOW,	/* flags */
1440			       busdma_lock_mutex,	/* lockfunc */
1441			       &sc->aac_io_lock,	/* lockfuncarg */
1442			       &sc->aac_buffer_dmat)) {
1443		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1444		goto out;
1445	}
1446
1447	/*
1448	 * Create DMA tag for mapping FIBs into controller-addressable space..
1449	 */
1450	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1451			       1, 0, 			/* algnmnt, boundary */
1452			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1453			       BUS_SPACE_MAXADDR_32BIT :
1454			       0x7fffffff,		/* lowaddr */
1455			       BUS_SPACE_MAXADDR, 	/* highaddr */
1456			       NULL, NULL, 		/* filter, filterarg */
1457			       AAC_FIB_COUNT *
1458			       sizeof(struct aac_fib),  /* maxsize */
1459			       1,			/* nsegments */
1460			       AAC_FIB_COUNT *
1461			       sizeof(struct aac_fib),	/* maxsegsize */
1462			       BUS_DMA_ALLOCNOW,	/* flags */
1463			       NULL, NULL,		/* No locking needed */
1464			       &sc->aac_fib_dmat)) {
1465		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1466		goto out;
1467	}
1468
1469	/*
1470	 * Create DMA tag for the common structure and allocate it.
1471	 */
1472	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1473			       1, 0,			/* algnmnt, boundary */
1474			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1475			       BUS_SPACE_MAXADDR_32BIT :
1476			       0x7fffffff,		/* lowaddr */
1477			       BUS_SPACE_MAXADDR, 	/* highaddr */
1478			       NULL, NULL, 		/* filter, filterarg */
1479			       8192 + sizeof(struct aac_common), /* maxsize */
1480			       1,			/* nsegments */
1481			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1482			       BUS_DMA_ALLOCNOW,	/* flags */
1483			       NULL, NULL,		/* No locking needed */
1484			       &sc->aac_common_dmat)) {
1485		device_printf(sc->aac_dev,
1486			      "can't allocate common structure DMA tag\n");
1487		goto out;
1488	}
1489	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1490			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1491		device_printf(sc->aac_dev, "can't allocate common structure\n");
1492		goto out;
1493	}
1494
1495	/*
1496	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1497	 * below address 8192 in physical memory.
1498	 * XXX If the padding is not needed, can it be put to use instead
1499	 * of ignored?
1500	 */
1501	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1502			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1503			aac_common_map, sc, 0);
1504
1505	if (sc->aac_common_busaddr < 8192) {
1506		sc->aac_common = (struct aac_common *)
1507		    ((uint8_t *)sc->aac_common + 8192);
1508		sc->aac_common_busaddr += 8192;
1509	}
1510	bzero(sc->aac_common, sizeof(*sc->aac_common));
1511
1512	/* Allocate some FIBs and associated command structs */
1513	TAILQ_INIT(&sc->aac_fibmap_tqh);
1514	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1515				  M_AACBUF, M_WAITOK|M_ZERO);
1516	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1517		if (aac_alloc_commands(sc) != 0)
1518			break;
1519	}
1520	if (sc->total_fibs == 0)
1521		goto out;
1522
1523	/*
1524	 * Fill in the init structure.  This tells the adapter about the
1525	 * physical location of various important shared data structures.
1526	 */
1527	ip = &sc->aac_common->ac_init;
1528	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1529	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1530
1531	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1532					 offsetof(struct aac_common, ac_fibs);
1533	ip->AdapterFibsVirtualAddress = 0;
1534	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1535	ip->AdapterFibAlign = sizeof(struct aac_fib);
1536
1537	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1538				  offsetof(struct aac_common, ac_printf);
1539	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1540
1541	/*
1542	 * The adapter assumes that pages are 4K in size, except on some
1543 	 * broken firmware versions that do the page->byte conversion twice,
1544	 * therefore 'assuming' that this value is in 16MB units (2^24).
1545	 * Round up since the granularity is so high.
1546	 */
1547	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1548	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1549		ip->HostPhysMemPages =
1550		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1551	}
1552	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1553
1554	/*
1555	 * Initialise FIB queues.  Note that it appears that the layout of the
1556	 * indexes and the segmentation of the entries may be mandated by the
1557	 * adapter, which is only told about the base of the queue index fields.
1558	 *
1559	 * The initial values of the indices are assumed to inform the adapter
1560	 * of the sizes of the respective queues, and theoretically it could
1561	 * work out the entire layout of the queue structures from this.  We
1562	 * take the easy route and just lay this area out like everyone else
1563	 * does.
1564	 *
1565	 * The Linux driver uses a much more complex scheme whereby several
1566	 * header records are kept for each queue.  We use a couple of generic
1567	 * list manipulation functions which 'know' the size of each list by
1568	 * virtue of a table.
1569	 */
1570	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1571	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1572	sc->aac_queues =
1573	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1574	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1575
1576	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1577		AAC_HOST_NORM_CMD_ENTRIES;
1578	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1579		AAC_HOST_NORM_CMD_ENTRIES;
1580	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1581		AAC_HOST_HIGH_CMD_ENTRIES;
1582	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1583		AAC_HOST_HIGH_CMD_ENTRIES;
1584	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1585		AAC_ADAP_NORM_CMD_ENTRIES;
1586	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1587		AAC_ADAP_NORM_CMD_ENTRIES;
1588	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589		AAC_ADAP_HIGH_CMD_ENTRIES;
1590	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591		AAC_ADAP_HIGH_CMD_ENTRIES;
1592	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1593		AAC_HOST_NORM_RESP_ENTRIES;
1594	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1595		AAC_HOST_NORM_RESP_ENTRIES;
1596	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1597		AAC_HOST_HIGH_RESP_ENTRIES;
1598	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1599		AAC_HOST_HIGH_RESP_ENTRIES;
1600	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1601		AAC_ADAP_NORM_RESP_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1603		AAC_ADAP_NORM_RESP_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605		AAC_ADAP_HIGH_RESP_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607		AAC_ADAP_HIGH_RESP_ENTRIES;
1608	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1609		&sc->aac_queues->qt_HostNormCmdQueue[0];
1610	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1611		&sc->aac_queues->qt_HostHighCmdQueue[0];
1612	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1613		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1614	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1615		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1616	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1617		&sc->aac_queues->qt_HostNormRespQueue[0];
1618	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1619		&sc->aac_queues->qt_HostHighRespQueue[0];
1620	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1621		&sc->aac_queues->qt_AdapNormRespQueue[0];
1622	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1623		&sc->aac_queues->qt_AdapHighRespQueue[0];
1624
1625	/*
1626	 * Do controller-type-specific initialisation
1627	 */
1628	switch (sc->aac_hwif) {
1629	case AAC_HWIF_I960RX:
1630		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1631		break;
1632	}
1633
1634	/*
1635	 * Give the init structure to the controller.
1636	 */
1637	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1638			     sc->aac_common_busaddr +
1639			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1640			     NULL)) {
1641		device_printf(sc->aac_dev,
1642			      "error establishing init structure\n");
1643		error = EIO;
1644		goto out;
1645	}
1646
1647	error = 0;
1648out:
1649	return(error);
1650}
1651
1652/*
1653 * Send a synchronous command to the controller and wait for a result.
1654 */
1655static int
1656aac_sync_command(struct aac_softc *sc, u_int32_t command,
1657		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1658		 u_int32_t *sp)
1659{
1660	time_t then;
1661	u_int32_t status;
1662
1663	debug_called(3);
1664
1665	/* populate the mailbox */
1666	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1667
1668	/* ensure the sync command doorbell flag is cleared */
1669	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1670
1671	/* then set it to signal the adapter */
1672	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1673
1674	/* spin waiting for the command to complete */
1675	then = time_second;
1676	do {
1677		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1678			debug(1, "timed out");
1679			return(EIO);
1680		}
1681	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1682
1683	/* clear the completion flag */
1684	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685
1686	/* get the command status */
1687	status = AAC_GET_MAILBOX(sc, 0);
1688	if (sp != NULL)
1689		*sp = status;
1690	return(0);
1691}
1692
1693int
1694aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1695		 struct aac_fib *fib, u_int16_t datasize)
1696{
1697	debug_called(3);
1698
1699	if (datasize > AAC_FIB_DATASIZE)
1700		return(EINVAL);
1701
1702	/*
1703	 * Set up the sync FIB
1704	 */
1705	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1706				AAC_FIBSTATE_INITIALISED |
1707				AAC_FIBSTATE_EMPTY;
1708	fib->Header.XferState |= xferstate;
1709	fib->Header.Command = command;
1710	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1711	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1712	fib->Header.SenderSize = sizeof(struct aac_fib);
1713	fib->Header.SenderFibAddress = 0;	/* Not needed */
1714	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1715					 offsetof(struct aac_common,
1716						  ac_sync_fib);
1717
1718	/*
1719	 * Give the FIB to the controller, wait for a response.
1720	 */
1721	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1722			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1723		debug(2, "IO error");
1724		return(EIO);
1725	}
1726
1727	return (0);
1728}
1729
1730/*
1731 * Adapter-space FIB queue manipulation
1732 *
1733 * Note that the queue implementation here is a little funky; neither the PI or
1734 * CI will ever be zero.  This behaviour is a controller feature.
1735 */
1736static struct {
1737	int		size;
1738	int		notify;
1739} aac_qinfo[] = {
1740	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1741	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1742	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1743	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1744	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1745	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1746	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1747	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1748};
1749
1750/*
1751 * Atomically insert an entry into the nominated queue, returns 0 on success or
1752 * EBUSY if the queue is full.
1753 *
1754 * Note: it would be more efficient to defer notifying the controller in
1755 *	 the case where we may be inserting several entries in rapid succession,
1756 *	 but implementing this usefully may be difficult (it would involve a
1757 *	 separate queue/notify interface).
1758 */
1759static int
1760aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1761{
1762	u_int32_t pi, ci;
1763	int error;
1764	u_int32_t fib_size;
1765	u_int32_t fib_addr;
1766
1767	debug_called(3);
1768
1769	fib_size = cm->cm_fib->Header.Size;
1770	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1771
1772	/* get the producer/consumer indices */
1773	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1774	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1775
1776	/* wrap the queue? */
1777	if (pi >= aac_qinfo[queue].size)
1778		pi = 0;
1779
1780	/* check for queue full */
1781	if ((pi + 1) == ci) {
1782		error = EBUSY;
1783		goto out;
1784	}
1785
1786	/*
1787	 * To avoid a race with its completion interrupt, place this command on
1788	 * the busy queue prior to advertising it to the controller.
1789	 */
1790	aac_enqueue_busy(cm);
1791
1792	/* populate queue entry */
1793	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1794	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1795
1796	/* update producer index */
1797	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1798
1799	/* notify the adapter if we know how */
1800	if (aac_qinfo[queue].notify != 0)
1801		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1802
1803	error = 0;
1804
1805out:
1806	return(error);
1807}
1808
1809/*
1810 * Atomically remove one entry from the nominated queue, returns 0 on
1811 * success or ENOENT if the queue is empty.
1812 */
1813static int
1814aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1815		struct aac_fib **fib_addr)
1816{
1817	u_int32_t pi, ci;
1818	u_int32_t fib_index;
1819	int error;
1820	int notify;
1821
1822	debug_called(3);
1823
1824	/* get the producer/consumer indices */
1825	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1826	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1827
1828	/* check for queue empty */
1829	if (ci == pi) {
1830		error = ENOENT;
1831		goto out;
1832	}
1833
1834	/* wrap the pi so the following test works */
1835	if (pi >= aac_qinfo[queue].size)
1836		pi = 0;
1837
1838	notify = 0;
1839	if (ci == pi + 1)
1840		notify++;
1841
1842	/* wrap the queue? */
1843	if (ci >= aac_qinfo[queue].size)
1844		ci = 0;
1845
1846	/* fetch the entry */
1847	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1848
1849	switch (queue) {
1850	case AAC_HOST_NORM_CMD_QUEUE:
1851	case AAC_HOST_HIGH_CMD_QUEUE:
1852		/*
1853		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1854		 * on to hold an address.  For AIF's, the adapter assumes
1855		 * that it's giving us an address into the array of AIF fibs.
1856		 * Therefore, we have to convert it to an index.
1857		 */
1858		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1859			sizeof(struct aac_fib);
1860		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1861		break;
1862
1863	case AAC_HOST_NORM_RESP_QUEUE:
1864	case AAC_HOST_HIGH_RESP_QUEUE:
1865	{
1866		struct aac_command *cm;
1867
1868		/*
1869		 * As above, an index is used instead of an actual address.
1870		 * Gotta shift the index to account for the fast response
1871		 * bit.  No other correction is needed since this value was
1872		 * originally provided by the driver via the SenderFibAddress
1873		 * field.
1874		 */
1875		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1876		cm = sc->aac_commands + (fib_index >> 1);
1877		*fib_addr = cm->cm_fib;
1878
1879		/*
1880		 * Is this a fast response? If it is, update the fib fields in
1881		 * local memory since the whole fib isn't DMA'd back up.
1882		 */
1883		if (fib_index & 0x01) {
1884			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1885			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1886		}
1887		break;
1888	}
1889	default:
1890		panic("Invalid queue in aac_dequeue_fib()");
1891		break;
1892	}
1893
1894	/* update consumer index */
1895	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1896
1897	/* if we have made the queue un-full, notify the adapter */
1898	if (notify && (aac_qinfo[queue].notify != 0))
1899		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1900	error = 0;
1901
1902out:
1903	return(error);
1904}
1905
1906/*
1907 * Put our response to an Adapter Initialed Fib on the response queue
1908 */
1909static int
1910aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1911{
1912	u_int32_t pi, ci;
1913	int error;
1914	u_int32_t fib_size;
1915	u_int32_t fib_addr;
1916
1917	debug_called(1);
1918
1919	/* Tell the adapter where the FIB is */
1920	fib_size = fib->Header.Size;
1921	fib_addr = fib->Header.SenderFibAddress;
1922	fib->Header.ReceiverFibAddress = fib_addr;
1923
1924	/* get the producer/consumer indices */
1925	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1926	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1927
1928	/* wrap the queue? */
1929	if (pi >= aac_qinfo[queue].size)
1930		pi = 0;
1931
1932	/* check for queue full */
1933	if ((pi + 1) == ci) {
1934		error = EBUSY;
1935		goto out;
1936	}
1937
1938	/* populate queue entry */
1939	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1940	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1941
1942	/* update producer index */
1943	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1944
1945	/* notify the adapter if we know how */
1946	if (aac_qinfo[queue].notify != 0)
1947		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1948
1949	error = 0;
1950
1951out:
1952	return(error);
1953}
1954
1955/*
1956 * Check for commands that have been outstanding for a suspiciously long time,
1957 * and complain about them.
1958 */
1959static void
1960aac_timeout(struct aac_softc *sc)
1961{
1962	struct aac_command *cm;
1963	time_t deadline;
1964
1965	/*
1966	 * Traverse the busy command list, bitch about late commands once
1967	 * only.
1968	 */
1969	deadline = time_second - AAC_CMD_TIMEOUT;
1970	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1971		if ((cm->cm_timestamp  < deadline)
1972			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1973			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1974			device_printf(sc->aac_dev,
1975				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1976				      cm, (int)(time_second-cm->cm_timestamp));
1977			AAC_PRINT_FIB(sc, cm->cm_fib);
1978		}
1979	}
1980
1981	return;
1982}
1983
1984/*
1985 * Interface Function Vectors
1986 */
1987
1988/*
1989 * Read the current firmware status word.
1990 */
1991static int
1992aac_sa_get_fwstatus(struct aac_softc *sc)
1993{
1994	debug_called(3);
1995
1996	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1997}
1998
1999static int
2000aac_rx_get_fwstatus(struct aac_softc *sc)
2001{
2002	debug_called(3);
2003
2004	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2005}
2006
2007static int
2008aac_fa_get_fwstatus(struct aac_softc *sc)
2009{
2010	int val;
2011
2012	debug_called(3);
2013
2014	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2015	return (val);
2016}
2017
2018/*
2019 * Notify the controller of a change in a given queue
2020 */
2021
2022static void
2023aac_sa_qnotify(struct aac_softc *sc, int qbit)
2024{
2025	debug_called(3);
2026
2027	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2028}
2029
2030static void
2031aac_rx_qnotify(struct aac_softc *sc, int qbit)
2032{
2033	debug_called(3);
2034
2035	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2036}
2037
2038static void
2039aac_fa_qnotify(struct aac_softc *sc, int qbit)
2040{
2041	debug_called(3);
2042
2043	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2044	AAC_FA_HACK(sc);
2045}
2046
2047/*
2048 * Get the interrupt reason bits
2049 */
2050static int
2051aac_sa_get_istatus(struct aac_softc *sc)
2052{
2053	debug_called(3);
2054
2055	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2056}
2057
2058static int
2059aac_rx_get_istatus(struct aac_softc *sc)
2060{
2061	debug_called(3);
2062
2063	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2064}
2065
2066static int
2067aac_fa_get_istatus(struct aac_softc *sc)
2068{
2069	int val;
2070
2071	debug_called(3);
2072
2073	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2074	return (val);
2075}
2076
2077/*
2078 * Clear some interrupt reason bits
2079 */
2080static void
2081aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2082{
2083	debug_called(3);
2084
2085	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2086}
2087
2088static void
2089aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2090{
2091	debug_called(3);
2092
2093	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2094}
2095
2096static void
2097aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2098{
2099	debug_called(3);
2100
2101	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2102	AAC_FA_HACK(sc);
2103}
2104
2105/*
2106 * Populate the mailbox and set the command word
2107 */
2108static void
2109aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2110		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2111{
2112	debug_called(4);
2113
2114	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2115	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2116	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2117	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2118	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2119}
2120
2121static void
2122aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2123		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2124{
2125	debug_called(4);
2126
2127	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2128	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2129	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2130	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2131	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2132}
2133
2134static void
2135aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2136		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2137{
2138	debug_called(4);
2139
2140	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2141	AAC_FA_HACK(sc);
2142	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2143	AAC_FA_HACK(sc);
2144	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2145	AAC_FA_HACK(sc);
2146	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2147	AAC_FA_HACK(sc);
2148	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2149	AAC_FA_HACK(sc);
2150}
2151
2152/*
2153 * Fetch the immediate command status word
2154 */
2155static int
2156aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2157{
2158	debug_called(4);
2159
2160	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2161}
2162
2163static int
2164aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2165{
2166	debug_called(4);
2167
2168	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2169}
2170
2171static int
2172aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2173{
2174	int val;
2175
2176	debug_called(4);
2177
2178	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2179	return (val);
2180}
2181
2182/*
2183 * Set/clear interrupt masks
2184 */
2185static void
2186aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2187{
2188	debug(2, "%sable interrupts", enable ? "en" : "dis");
2189
2190	if (enable) {
2191		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2192	} else {
2193		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2194	}
2195}
2196
2197static void
2198aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2199{
2200	debug(2, "%sable interrupts", enable ? "en" : "dis");
2201
2202	if (enable) {
2203		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2204	} else {
2205		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2206	}
2207}
2208
2209static void
2210aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2211{
2212	debug(2, "%sable interrupts", enable ? "en" : "dis");
2213
2214	if (enable) {
2215		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2216		AAC_FA_HACK(sc);
2217	} else {
2218		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2219		AAC_FA_HACK(sc);
2220	}
2221}
2222
2223/*
2224 * Debugging and Diagnostics
2225 */
2226
2227/*
2228 * Print some information about the controller.
2229 */
2230static void
2231aac_describe_controller(struct aac_softc *sc)
2232{
2233	struct aac_fib *fib;
2234	struct aac_adapter_info	*info;
2235
2236	debug_called(2);
2237
2238	aac_alloc_sync_fib(sc, &fib);
2239
2240	fib->data[0] = 0;
2241	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2242		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2243		aac_release_sync_fib(sc);
2244		return;
2245	}
2246	info = (struct aac_adapter_info *)&fib->data[0];
2247
2248	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2249		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2250		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2251		      aac_describe_code(aac_battery_platform,
2252					info->batteryPlatform));
2253
2254	/* save the kernel revision structure for later use */
2255	sc->aac_revision = info->KernelRevision;
2256	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2257		      info->KernelRevision.external.comp.major,
2258		      info->KernelRevision.external.comp.minor,
2259		      info->KernelRevision.external.comp.dash,
2260		      info->KernelRevision.buildNumber,
2261		      (u_int32_t)(info->SerialNumber & 0xffffff));
2262
2263	aac_release_sync_fib(sc);
2264
2265	if (1 || bootverbose) {
2266		device_printf(sc->aac_dev, "Supported Options=%b\n",
2267			      sc->supported_options,
2268			      "\20"
2269			      "\1SNAPSHOT"
2270			      "\2CLUSTERS"
2271			      "\3WCACHE"
2272			      "\4DATA64"
2273			      "\5HOSTTIME"
2274			      "\6RAID50"
2275			      "\7WINDOW4GB"
2276			      "\10SCSIUPGD"
2277			      "\11SOFTERR"
2278			      "\12NORECOND"
2279			      "\13SGMAP64"
2280			      "\14ALARM"
2281			      "\15NONDASD");
2282	}
2283}
2284
2285/*
2286 * Look up a text description of a numeric error code and return a pointer to
2287 * same.
2288 */
2289static char *
2290aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2291{
2292	int i;
2293
2294	for (i = 0; table[i].string != NULL; i++)
2295		if (table[i].code == code)
2296			return(table[i].string);
2297	return(table[i + 1].string);
2298}
2299
2300/*
2301 * Management Interface
2302 */
2303
2304static int
2305aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2306{
2307	struct aac_softc *sc;
2308
2309	debug_called(2);
2310
2311	sc = dev->si_drv1;
2312
2313	/* Check to make sure the device isn't already open */
2314	if (sc->aac_state & AAC_STATE_OPEN) {
2315		return EBUSY;
2316	}
2317	sc->aac_state |= AAC_STATE_OPEN;
2318
2319	return 0;
2320}
2321
2322static int
2323aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2324{
2325	struct aac_softc *sc;
2326
2327	debug_called(2);
2328
2329	sc = dev->si_drv1;
2330
2331	/* Mark this unit as no longer open  */
2332	sc->aac_state &= ~AAC_STATE_OPEN;
2333
2334	return 0;
2335}
2336
2337static int
2338aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2339{
2340	union aac_statrequest *as;
2341	struct aac_softc *sc;
2342	int error = 0;
2343	uint32_t cookie;
2344
2345	debug_called(2);
2346
2347	as = (union aac_statrequest *)arg;
2348	sc = dev->si_drv1;
2349
2350	switch (cmd) {
2351	case AACIO_STATS:
2352		switch (as->as_item) {
2353		case AACQ_FREE:
2354		case AACQ_BIO:
2355		case AACQ_READY:
2356		case AACQ_BUSY:
2357			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2358			      sizeof(struct aac_qstat));
2359			break;
2360		default:
2361			error = ENOENT;
2362			break;
2363		}
2364	break;
2365
2366	case FSACTL_SENDFIB:
2367		arg = *(caddr_t*)arg;
2368	case FSACTL_LNX_SENDFIB:
2369		debug(1, "FSACTL_SENDFIB");
2370		error = aac_ioctl_sendfib(sc, arg);
2371		break;
2372	case FSACTL_AIF_THREAD:
2373	case FSACTL_LNX_AIF_THREAD:
2374		debug(1, "FSACTL_AIF_THREAD");
2375		error = EINVAL;
2376		break;
2377	case FSACTL_OPEN_GET_ADAPTER_FIB:
2378		arg = *(caddr_t*)arg;
2379	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2380		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2381		/*
2382		 * Pass the caller out an AdapterFibContext.
2383		 *
2384		 * Note that because we only support one opener, we
2385		 * basically ignore this.  Set the caller's context to a magic
2386		 * number just in case.
2387		 *
2388		 * The Linux code hands the driver a pointer into kernel space,
2389		 * and then trusts it when the caller hands it back.  Aiee!
2390		 * Here, we give it the proc pointer of the per-adapter aif
2391		 * thread. It's only used as a sanity check in other calls.
2392		 */
2393		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2394		error = copyout(&cookie, arg, sizeof(cookie));
2395		break;
2396	case FSACTL_GET_NEXT_ADAPTER_FIB:
2397		arg = *(caddr_t*)arg;
2398	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2399		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2400		error = aac_getnext_aif(sc, arg);
2401		break;
2402	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2403	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2404		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2405		/* don't do anything here */
2406		break;
2407	case FSACTL_MINIPORT_REV_CHECK:
2408		arg = *(caddr_t*)arg;
2409	case FSACTL_LNX_MINIPORT_REV_CHECK:
2410		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2411		error = aac_rev_check(sc, arg);
2412		break;
2413	case FSACTL_QUERY_DISK:
2414		arg = *(caddr_t*)arg;
2415	case FSACTL_LNX_QUERY_DISK:
2416		debug(1, "FSACTL_QUERY_DISK");
2417		error = aac_query_disk(sc, arg);
2418			break;
2419	case FSACTL_DELETE_DISK:
2420	case FSACTL_LNX_DELETE_DISK:
2421		/*
2422		 * We don't trust the underland to tell us when to delete a
2423		 * container, rather we rely on an AIF coming from the
2424		 * controller
2425		 */
2426		error = 0;
2427		break;
2428	default:
2429		debug(1, "unsupported cmd 0x%lx\n", cmd);
2430		error = EINVAL;
2431		break;
2432	}
2433	return(error);
2434}
2435
2436static int
2437aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2438{
2439	struct aac_softc *sc;
2440	int revents;
2441
2442	sc = dev->si_drv1;
2443	revents = 0;
2444
2445	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2446	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2447		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2448			revents |= poll_events & (POLLIN | POLLRDNORM);
2449	}
2450	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2451
2452	if (revents == 0) {
2453		if (poll_events & (POLLIN | POLLRDNORM))
2454			selrecord(td, &sc->rcv_select);
2455	}
2456
2457	return (revents);
2458}
2459
2460/*
2461 * Send a FIB supplied from userspace
2462 */
2463static int
2464aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2465{
2466	struct aac_command *cm;
2467	int size, error;
2468
2469	debug_called(2);
2470
2471	cm = NULL;
2472
2473	/*
2474	 * Get a command
2475	 */
2476	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2477	if (aac_alloc_command(sc, &cm)) {
2478		error = EBUSY;
2479		goto out;
2480	}
2481
2482	/*
2483	 * Fetch the FIB header, then re-copy to get data as well.
2484	 */
2485	if ((error = copyin(ufib, cm->cm_fib,
2486			    sizeof(struct aac_fib_header))) != 0)
2487		goto out;
2488	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2489	if (size > sizeof(struct aac_fib)) {
2490		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2491			      size, sizeof(struct aac_fib));
2492		size = sizeof(struct aac_fib);
2493	}
2494	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2495		goto out;
2496	cm->cm_fib->Header.Size = size;
2497	cm->cm_timestamp = time_second;
2498
2499	/*
2500	 * Pass the FIB to the controller, wait for it to complete.
2501	 */
2502	if ((error = aac_wait_command(cm)) != 0) {
2503		device_printf(sc->aac_dev,
2504			      "aac_wait_command return %d\n", error);
2505		goto out;
2506	}
2507
2508	/*
2509	 * Copy the FIB and data back out to the caller.
2510	 */
2511	size = cm->cm_fib->Header.Size;
2512	if (size > sizeof(struct aac_fib)) {
2513		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2514			      size, sizeof(struct aac_fib));
2515		size = sizeof(struct aac_fib);
2516	}
2517	error = copyout(cm->cm_fib, ufib, size);
2518
2519out:
2520	if (cm != NULL) {
2521		aac_release_command(cm);
2522	}
2523
2524	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2525	return(error);
2526}
2527
2528/*
2529 * Handle an AIF sent to us by the controller; queue it for later reference.
2530 * If the queue fills up, then drop the older entries.
2531 */
2532static void
2533aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2534{
2535	struct aac_aif_command *aif;
2536	struct aac_container *co, *co_next;
2537	struct aac_mntinfo *mi;
2538	struct aac_mntinforesp *mir = NULL;
2539	u_int16_t rsize;
2540	int next, found;
2541	int count = 0, added = 0, i = 0;
2542
2543	debug_called(2);
2544
2545	aif = (struct aac_aif_command*)&fib->data[0];
2546	aac_print_aif(sc, aif);
2547
2548	/* Is it an event that we should care about? */
2549	switch (aif->command) {
2550	case AifCmdEventNotify:
2551		switch (aif->data.EN.type) {
2552		case AifEnAddContainer:
2553		case AifEnDeleteContainer:
2554			/*
2555			 * A container was added or deleted, but the message
2556			 * doesn't tell us anything else!  Re-enumerate the
2557			 * containers and sort things out.
2558			 */
2559			aac_alloc_sync_fib(sc, &fib);
2560			mi = (struct aac_mntinfo *)&fib->data[0];
2561			do {
2562				/*
2563				 * Ask the controller for its containers one at
2564				 * a time.
2565				 * XXX What if the controller's list changes
2566				 * midway through this enumaration?
2567				 * XXX This should be done async.
2568				 */
2569				bzero(mi, sizeof(struct aac_mntinfo));
2570				mi->Command = VM_NameServe;
2571				mi->MntType = FT_FILESYS;
2572				mi->MntCount = i;
2573				rsize = sizeof(mir);
2574				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2575						 sizeof(struct aac_mntinfo))) {
2576					printf("Error probing container %d\n",
2577					      i);
2578					continue;
2579				}
2580				mir = (struct aac_mntinforesp *)&fib->data[0];
2581				/* XXX Need to check if count changed */
2582				count = mir->MntRespCount;
2583				/*
2584				 * Check the container against our list.
2585				 * co->co_found was already set to 0 in a
2586				 * previous run.
2587				 */
2588				if ((mir->Status == ST_OK) &&
2589				    (mir->MntTable[0].VolType != CT_NONE)) {
2590					found = 0;
2591					TAILQ_FOREACH(co,
2592						      &sc->aac_container_tqh,
2593						      co_link) {
2594						if (co->co_mntobj.ObjectId ==
2595						    mir->MntTable[0].ObjectId) {
2596							co->co_found = 1;
2597							found = 1;
2598							break;
2599						}
2600					}
2601					/*
2602					 * If the container matched, continue
2603					 * in the list.
2604					 */
2605					if (found) {
2606						i++;
2607						continue;
2608					}
2609
2610					/*
2611					 * This is a new container.  Do all the
2612					 * appropriate things to set it up.
2613					 */
2614					aac_add_container(sc, mir, 1);
2615					added = 1;
2616				}
2617				i++;
2618			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2619			aac_release_sync_fib(sc);
2620
2621			/*
2622			 * Go through our list of containers and see which ones
2623			 * were not marked 'found'.  Since the controller didn't
2624			 * list them they must have been deleted.  Do the
2625			 * appropriate steps to destroy the device.  Also reset
2626			 * the co->co_found field.
2627			 */
2628			co = TAILQ_FIRST(&sc->aac_container_tqh);
2629			while (co != NULL) {
2630				if (co->co_found == 0) {
2631					device_delete_child(sc->aac_dev,
2632							    co->co_disk);
2633					co_next = TAILQ_NEXT(co, co_link);
2634					AAC_LOCK_ACQUIRE(&sc->
2635							aac_container_lock);
2636					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2637						     co_link);
2638					AAC_LOCK_RELEASE(&sc->
2639							 aac_container_lock);
2640					FREE(co, M_AACBUF);
2641					co = co_next;
2642				} else {
2643					co->co_found = 0;
2644					co = TAILQ_NEXT(co, co_link);
2645				}
2646			}
2647
2648			/* Attach the newly created containers */
2649			if (added)
2650				bus_generic_attach(sc->aac_dev);
2651
2652			break;
2653
2654		default:
2655			break;
2656		}
2657
2658	default:
2659		break;
2660	}
2661
2662	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2663	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2664	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2665	if (next != sc->aac_aifq_tail) {
2666		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2667		sc->aac_aifq_head = next;
2668
2669		/* On the off chance that someone is sleeping for an aif... */
2670		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2671			wakeup(sc->aac_aifq);
2672		/* Wakeup any poll()ers */
2673		selwakeuppri(&sc->rcv_select, PRIBIO);
2674	}
2675	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2676
2677	return;
2678}
2679
2680/*
2681 * Return the Revision of the driver to userspace and check to see if the
2682 * userspace app is possibly compatible.  This is extremely bogus since
2683 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2684 * returning what the card reported.
2685 */
2686static int
2687aac_rev_check(struct aac_softc *sc, caddr_t udata)
2688{
2689	struct aac_rev_check rev_check;
2690	struct aac_rev_check_resp rev_check_resp;
2691	int error = 0;
2692
2693	debug_called(2);
2694
2695	/*
2696	 * Copyin the revision struct from userspace
2697	 */
2698	if ((error = copyin(udata, (caddr_t)&rev_check,
2699			sizeof(struct aac_rev_check))) != 0) {
2700		return error;
2701	}
2702
2703	debug(2, "Userland revision= %d\n",
2704	      rev_check.callingRevision.buildNumber);
2705
2706	/*
2707	 * Doctor up the response struct.
2708	 */
2709	rev_check_resp.possiblyCompatible = 1;
2710	rev_check_resp.adapterSWRevision.external.ul =
2711	    sc->aac_revision.external.ul;
2712	rev_check_resp.adapterSWRevision.buildNumber =
2713	    sc->aac_revision.buildNumber;
2714
2715	return(copyout((caddr_t)&rev_check_resp, udata,
2716			sizeof(struct aac_rev_check_resp)));
2717}
2718
2719/*
2720 * Pass the caller the next AIF in their queue
2721 */
2722static int
2723aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2724{
2725	struct get_adapter_fib_ioctl agf;
2726	int error;
2727
2728	debug_called(2);
2729
2730	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2731
2732		/*
2733		 * Check the magic number that we gave the caller.
2734		 */
2735		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2736			error = EFAULT;
2737		} else {
2738			error = aac_return_aif(sc, agf.AifFib);
2739			if ((error == EAGAIN) && (agf.Wait)) {
2740				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2741				while (error == EAGAIN) {
2742					error = tsleep(sc->aac_aifq, PRIBIO |
2743						       PCATCH, "aacaif", 0);
2744					if (error == 0)
2745						error = aac_return_aif(sc,
2746						    agf.AifFib);
2747				}
2748				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2749			}
2750		}
2751	}
2752	return(error);
2753}
2754
2755/*
2756 * Hand the next AIF off the top of the queue out to userspace.
2757 */
2758static int
2759aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2760{
2761	int next, error;
2762
2763	debug_called(2);
2764
2765	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2766	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2767		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2768		return (EAGAIN);
2769	}
2770
2771	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2772	error = copyout(&sc->aac_aifq[next], uptr,
2773			sizeof(struct aac_aif_command));
2774	if (error)
2775		device_printf(sc->aac_dev,
2776		    "aac_return_aif: copyout returned %d\n", error);
2777	else
2778		sc->aac_aifq_tail = next;
2779
2780	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2781	return(error);
2782}
2783
2784/*
2785 * Give the userland some information about the container.  The AAC arch
2786 * expects the driver to be a SCSI passthrough type driver, so it expects
2787 * the containers to have b:t:l numbers.  Fake it.
2788 */
2789static int
2790aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2791{
2792	struct aac_query_disk query_disk;
2793	struct aac_container *co;
2794	struct aac_disk	*disk;
2795	int error, id;
2796
2797	debug_called(2);
2798
2799	disk = NULL;
2800
2801	error = copyin(uptr, (caddr_t)&query_disk,
2802		       sizeof(struct aac_query_disk));
2803	if (error)
2804		return (error);
2805
2806	id = query_disk.ContainerNumber;
2807	if (id == -1)
2808		return (EINVAL);
2809
2810	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2811	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2812		if (co->co_mntobj.ObjectId == id)
2813			break;
2814		}
2815
2816	if (co == NULL) {
2817			query_disk.Valid = 0;
2818			query_disk.Locked = 0;
2819			query_disk.Deleted = 1;		/* XXX is this right? */
2820	} else {
2821		disk = device_get_softc(co->co_disk);
2822		query_disk.Valid = 1;
2823		query_disk.Locked =
2824		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2825		query_disk.Deleted = 0;
2826		query_disk.Bus = device_get_unit(sc->aac_dev);
2827		query_disk.Target = disk->unit;
2828		query_disk.Lun = 0;
2829		query_disk.UnMapped = 0;
2830		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2831		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2832	}
2833	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2834
2835	error = copyout((caddr_t)&query_disk, uptr,
2836			sizeof(struct aac_query_disk));
2837
2838	return (error);
2839}
2840
2841static void
2842aac_get_bus_info(struct aac_softc *sc)
2843{
2844	struct aac_fib *fib;
2845	struct aac_ctcfg *c_cmd;
2846	struct aac_ctcfg_resp *c_resp;
2847	struct aac_vmioctl *vmi;
2848	struct aac_vmi_businf_resp *vmi_resp;
2849	struct aac_getbusinf businfo;
2850	struct aac_sim *caminf;
2851	device_t child;
2852	int i, found, error;
2853
2854	aac_alloc_sync_fib(sc, &fib);
2855	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2856	bzero(c_cmd, sizeof(struct aac_ctcfg));
2857
2858	c_cmd->Command = VM_ContainerConfig;
2859	c_cmd->cmd = CT_GET_SCSI_METHOD;
2860	c_cmd->param = 0;
2861
2862	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2863	    sizeof(struct aac_ctcfg));
2864	if (error) {
2865		device_printf(sc->aac_dev, "Error %d sending "
2866		    "VM_ContainerConfig command\n", error);
2867		aac_release_sync_fib(sc);
2868		return;
2869	}
2870
2871	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2872	if (c_resp->Status != ST_OK) {
2873		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2874		    c_resp->Status);
2875		aac_release_sync_fib(sc);
2876		return;
2877	}
2878
2879	sc->scsi_method_id = c_resp->param;
2880
2881	vmi = (struct aac_vmioctl *)&fib->data[0];
2882	bzero(vmi, sizeof(struct aac_vmioctl));
2883
2884	vmi->Command = VM_Ioctl;
2885	vmi->ObjType = FT_DRIVE;
2886	vmi->MethId = sc->scsi_method_id;
2887	vmi->ObjId = 0;
2888	vmi->IoctlCmd = GetBusInfo;
2889
2890	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2891	    sizeof(struct aac_vmioctl));
2892	if (error) {
2893		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2894		    error);
2895		aac_release_sync_fib(sc);
2896		return;
2897	}
2898
2899	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2900	if (vmi_resp->Status != ST_OK) {
2901		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2902		    vmi_resp->Status);
2903		aac_release_sync_fib(sc);
2904		return;
2905	}
2906
2907	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2908	aac_release_sync_fib(sc);
2909
2910	found = 0;
2911	for (i = 0; i < businfo.BusCount; i++) {
2912		if (businfo.BusValid[i] != AAC_BUS_VALID)
2913			continue;
2914
2915		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2916		    M_AACBUF, M_NOWAIT | M_ZERO);
2917		if (caminf == NULL)
2918			continue;
2919
2920		child = device_add_child(sc->aac_dev, "aacp", -1);
2921		if (child == NULL) {
2922			device_printf(sc->aac_dev, "device_add_child failed\n");
2923			continue;
2924		}
2925
2926		caminf->TargetsPerBus = businfo.TargetsPerBus;
2927		caminf->BusNumber = i;
2928		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2929		caminf->aac_sc = sc;
2930		caminf->sim_dev = child;
2931
2932		device_set_ivars(child, caminf);
2933		device_set_desc(child, "SCSI Passthrough Bus");
2934		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2935
2936		found = 1;
2937	}
2938
2939	if (found)
2940		bus_generic_attach(sc->aac_dev);
2941
2942	return;
2943}
2944