aac.c revision 125574
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 125574 2004-02-07 17:40:38Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static int	aac_map_command(struct aac_command *cm);
72static void	aac_complete(void *context, int pending);
73static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74static void	aac_bio_complete(struct aac_command *cm);
75static int	aac_wait_command(struct aac_command *cm, int timeout);
76static void	aac_command_thread(struct aac_softc *sc);
77
78/* Command Buffer Management */
79static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80				   int nseg, int error);
81static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82				       int nseg, int error);
83static int	aac_alloc_commands(struct aac_softc *sc);
84static void	aac_free_commands(struct aac_softc *sc);
85static void	aac_unmap_command(struct aac_command *cm);
86
87/* Hardware Interface */
88static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89			       int error);
90static int	aac_check_firmware(struct aac_softc *sc);
91static int	aac_init(struct aac_softc *sc);
92static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94				 u_int32_t arg3, u_int32_t *sp);
95static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96				struct aac_command *cm);
97static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98				u_int32_t *fib_size, struct aac_fib **fib_addr);
99static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100				     struct aac_fib *fib);
101
102/* Falcon/PPC interface */
103static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105static int	aac_fa_get_istatus(struct aac_softc *sc);
106static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108				   u_int32_t arg0, u_int32_t arg1,
109				   u_int32_t arg2, u_int32_t arg3);
110static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112
113struct aac_interface aac_fa_interface = {
114	aac_fa_get_fwstatus,
115	aac_fa_qnotify,
116	aac_fa_get_istatus,
117	aac_fa_clear_istatus,
118	aac_fa_set_mailbox,
119	aac_fa_get_mailbox,
120	aac_fa_set_interrupts
121};
122
123/* StrongARM interface */
124static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126static int	aac_sa_get_istatus(struct aac_softc *sc);
127static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129				   u_int32_t arg0, u_int32_t arg1,
130				   u_int32_t arg2, u_int32_t arg3);
131static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133
134struct aac_interface aac_sa_interface = {
135	aac_sa_get_fwstatus,
136	aac_sa_qnotify,
137	aac_sa_get_istatus,
138	aac_sa_clear_istatus,
139	aac_sa_set_mailbox,
140	aac_sa_get_mailbox,
141	aac_sa_set_interrupts
142};
143
144/* i960Rx interface */
145static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147static int	aac_rx_get_istatus(struct aac_softc *sc);
148static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150				   u_int32_t arg0, u_int32_t arg1,
151				   u_int32_t arg2, u_int32_t arg3);
152static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154
155struct aac_interface aac_rx_interface = {
156	aac_rx_get_fwstatus,
157	aac_rx_qnotify,
158	aac_rx_get_istatus,
159	aac_rx_clear_istatus,
160	aac_rx_set_mailbox,
161	aac_rx_get_mailbox,
162	aac_rx_set_interrupts
163};
164
165/* Debugging and Diagnostics */
166static void	aac_describe_controller(struct aac_softc *sc);
167static char	*aac_describe_code(struct aac_code_lookup *table,
168				   u_int32_t code);
169
170/* Management Interface */
171static d_open_t		aac_open;
172static d_close_t	aac_close;
173static d_ioctl_t	aac_ioctl;
174static d_poll_t		aac_poll;
175static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
176static void		aac_handle_aif(struct aac_softc *sc,
177					   struct aac_fib *fib);
178static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
179static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
180static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
181static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189};
190
191MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
192
193/* sysctl node */
194SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
195
196/*
197 * Device Interface
198 */
199
200/*
201 * Initialise the controller and softc
202 */
203int
204aac_attach(struct aac_softc *sc)
205{
206	int error, unit;
207
208	debug_called(1);
209
210	/*
211	 * Initialise per-controller queues.
212	 */
213	aac_initq_free(sc);
214	aac_initq_ready(sc);
215	aac_initq_busy(sc);
216	aac_initq_bio(sc);
217
218	/*
219	 * Initialise command-completion task.
220	 */
221	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
222
223	/* disable interrupts before we enable anything */
224	AAC_MASK_INTERRUPTS(sc);
225
226	/* mark controller as suspended until we get ourselves organised */
227	sc->aac_state |= AAC_STATE_SUSPEND;
228
229	/*
230	 * Check that the firmware on the card is supported.
231	 */
232	if ((error = aac_check_firmware(sc)) != 0)
233		return(error);
234
235	/*
236	 * Initialize locks
237	 */
238	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
239	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
240	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
241	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
242	TAILQ_INIT(&sc->aac_container_tqh);
243
244	/* Initialize the local AIF queue pointers */
245	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
246
247	/*
248	 * Initialise the adapter.
249	 */
250	if ((error = aac_init(sc)) != 0)
251		return(error);
252
253	/*
254	 * Print a little information about the controller.
255	 */
256	aac_describe_controller(sc);
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int count = 0, i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib, 0);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			printf("error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		/* XXX Need to check if count changed */
336		count = mir->MntRespCount;
337		aac_add_container(sc, mir, 0);
338		i++;
339	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340
341	aac_release_sync_fib(sc);
342
343	/* poke the bus to actually attach the child devices */
344	if (bus_generic_attach(sc->aac_dev))
345		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346
347	/* mark the controller up */
348	sc->aac_state &= ~AAC_STATE_SUSPEND;
349
350	/* enable interrupts now */
351	AAC_UNMASK_INTERRUPTS(sc);
352}
353
354/*
355 * Create a device to respresent a new container
356 */
357static void
358aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359{
360	struct aac_container *co;
361	device_t child;
362
363	/*
364	 * Check container volume type for validity.  Note that many of
365	 * the possible types may never show up.
366	 */
367	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369		       M_NOWAIT | M_ZERO);
370		if (co == NULL)
371			panic("Out of memory?!\n");
372		debug(1, "id %x  name '%.16s'  size %u  type %d",
373		      mir->MntTable[0].ObjectId,
374		      mir->MntTable[0].FileSystemName,
375		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376
377		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378			device_printf(sc->aac_dev, "device_add_child failed\n");
379		else
380			device_set_ivars(child, co);
381		device_set_desc(child, aac_describe_code(aac_container_types,
382				mir->MntTable[0].VolType));
383		co->co_disk = child;
384		co->co_found = f;
385		bcopy(&mir->MntTable[0], &co->co_mntobj,
386		      sizeof(struct aac_mntobj));
387		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390	}
391}
392
393/*
394 * Free all of the resources associated with (sc)
395 *
396 * Should not be called if the controller is active.
397 */
398void
399aac_free(struct aac_softc *sc)
400{
401
402	debug_called(1);
403
404	/* remove the control device */
405	if (sc->aac_dev_t != NULL)
406		destroy_dev(sc->aac_dev_t);
407
408	/* throw away any FIB buffers, discard the FIB DMA tag */
409	aac_free_commands(sc);
410	if (sc->aac_fib_dmat)
411		bus_dma_tag_destroy(sc->aac_fib_dmat);
412
413	free(sc->aac_commands, M_AACBUF);
414
415	/* destroy the common area */
416	if (sc->aac_common) {
417		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419				sc->aac_common_dmamap);
420	}
421	if (sc->aac_common_dmat)
422		bus_dma_tag_destroy(sc->aac_common_dmat);
423
424	/* disconnect the interrupt handler */
425	if (sc->aac_intr)
426		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427	if (sc->aac_irq != NULL)
428		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429				     sc->aac_irq);
430
431	/* destroy data-transfer DMA tag */
432	if (sc->aac_buffer_dmat)
433		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434
435	/* destroy the parent DMA tag */
436	if (sc->aac_parent_dmat)
437		bus_dma_tag_destroy(sc->aac_parent_dmat);
438
439	/* release the register window mapping */
440	if (sc->aac_regs_resource != NULL)
441		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442				     sc->aac_regs_rid, sc->aac_regs_resource);
443}
444
445/*
446 * Disconnect from the controller completely, in preparation for unload.
447 */
448int
449aac_detach(device_t dev)
450{
451	struct aac_softc *sc;
452	struct aac_container *co;
453	struct aac_sim	*sim;
454	int error;
455
456	debug_called(1);
457
458	sc = device_get_softc(dev);
459
460	if (sc->aac_state & AAC_STATE_OPEN)
461		return(EBUSY);
462
463	/* Remove the child containers */
464	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465		error = device_delete_child(dev, co->co_disk);
466		if (error)
467			return (error);
468		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469		free(co, M_AACBUF);
470	}
471
472	/* Remove the CAM SIMs */
473	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475		error = device_delete_child(dev, sim->sim_dev);
476		if (error)
477			return (error);
478		free(sim, M_AACBUF);
479	}
480
481	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483		wakeup(sc->aifthread);
484		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485	}
486
487	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488		panic("Cannot shutdown AIF thread\n");
489
490	if ((error = aac_shutdown(dev)))
491		return(error);
492
493	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494
495	aac_free(sc);
496
497	return(0);
498}
499
500/*
501 * Bring the controller down to a dormant state and detach all child devices.
502 *
503 * This function is called before detach or system shutdown.
504 *
505 * Note that we can assume that the bioq on the controller is empty, as we won't
506 * allow shutdown if any device is open.
507 */
508int
509aac_shutdown(device_t dev)
510{
511	struct aac_softc *sc;
512	struct aac_fib *fib;
513	struct aac_close_command *cc;
514
515	debug_called(1);
516
517	sc = device_get_softc(dev);
518
519	sc->aac_state |= AAC_STATE_SUSPEND;
520
521	/*
522	 * Send a Container shutdown followed by a HostShutdown FIB to the
523	 * controller to convince it that we don't want to talk to it anymore.
524	 * We've been closed and all I/O completed already
525	 */
526	device_printf(sc->aac_dev, "shutting down controller...");
527
528	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
529	cc = (struct aac_close_command *)&fib->data[0];
530
531	bzero(cc, sizeof(struct aac_close_command));
532	cc->Command = VM_CloseAll;
533	cc->ContainerId = 0xffffffff;
534	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535	    sizeof(struct aac_close_command)))
536		printf("FAILED.\n");
537	else
538		printf("done\n");
539#if 0
540	else {
541		fib->data[0] = 0;
542		/*
543		 * XXX Issuing this command to the controller makes it shut down
544		 * but also keeps it from coming back up without a reset of the
545		 * PCI bus.  This is not desirable if you are just unloading the
546		 * driver module with the intent to reload it later.
547		 */
548		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549		    fib, 1)) {
550			printf("FAILED.\n");
551		} else {
552			printf("done.\n");
553		}
554	}
555#endif
556
557	AAC_MASK_INTERRUPTS(sc);
558
559	return(0);
560}
561
562/*
563 * Bring the controller to a quiescent state, ready for system suspend.
564 */
565int
566aac_suspend(device_t dev)
567{
568	struct aac_softc *sc;
569
570	debug_called(1);
571
572	sc = device_get_softc(dev);
573
574	sc->aac_state |= AAC_STATE_SUSPEND;
575
576	AAC_MASK_INTERRUPTS(sc);
577	return(0);
578}
579
580/*
581 * Bring the controller back to a state ready for operation.
582 */
583int
584aac_resume(device_t dev)
585{
586	struct aac_softc *sc;
587
588	debug_called(1);
589
590	sc = device_get_softc(dev);
591
592	sc->aac_state &= ~AAC_STATE_SUSPEND;
593	AAC_UNMASK_INTERRUPTS(sc);
594	return(0);
595}
596
597/*
598 * Take an interrupt.
599 */
600void
601aac_intr(void *arg)
602{
603	struct aac_softc *sc;
604	u_int16_t reason;
605
606	debug_called(2);
607
608	sc = (struct aac_softc *)arg;
609
610	/*
611	 * Read the status register directly.  This is faster than taking the
612	 * driver lock and reading the queues directly.  It also saves having
613	 * to turn parts of the driver lock into a spin mutex, which would be
614	 * ugly.
615	 */
616	reason = AAC_GET_ISTATUS(sc);
617	AAC_CLEAR_ISTATUS(sc, reason);
618
619	/* handle completion processing */
620	if (reason & AAC_DB_RESPONSE_READY)
621		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
622
623	/* controller wants to talk to us */
624	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
625		/*
626		 * XXX Make sure that we don't get fooled by strange messages
627		 * that start with a NULL.
628		 */
629		if ((reason & AAC_DB_PRINTF) &&
630		    (sc->aac_common->ac_printf[0] == 0))
631			sc->aac_common->ac_printf[0] = 32;
632
633		/*
634		 * This might miss doing the actual wakeup.  However, the
635		 * msleep that this is waking up has a timeout, so it will
636		 * wake up eventually.  AIFs and printfs are low enough
637		 * priority that they can handle hanging out for a few seconds
638		 * if needed.
639		 */
640		wakeup(sc->aifthread);
641	}
642}
643
644/*
645 * Command Processing
646 */
647
648/*
649 * Start as much queued I/O as possible on the controller
650 */
651void
652aac_startio(struct aac_softc *sc)
653{
654	struct aac_command *cm;
655
656	debug_called(2);
657
658	if (sc->flags & AAC_QUEUE_FRZN)
659		return;
660
661	for (;;) {
662		/*
663		 * Try to get a command that's been put off for lack of
664		 * resources
665		 */
666		cm = aac_dequeue_ready(sc);
667
668		/*
669		 * Try to build a command off the bio queue (ignore error
670		 * return)
671		 */
672		if (cm == NULL)
673			aac_bio_command(sc, &cm);
674
675		/* nothing to do? */
676		if (cm == NULL)
677			break;
678
679		/*
680		 * Try to give the command to the controller.  Any error is
681		 * catastrophic since it means that bus_dmamap_load() failed.
682		 */
683		if (aac_map_command(cm) != 0)
684			panic("aac: error mapping command %p\n", cm);
685	}
686}
687
688/*
689 * Deliver a command to the controller; allocate controller resources at the
690 * last moment when possible.
691 */
692static int
693aac_map_command(struct aac_command *cm)
694{
695	struct aac_softc *sc;
696	int error;
697
698	debug_called(2);
699
700	sc = cm->cm_sc;
701	error = 0;
702
703	/* don't map more than once */
704	if (cm->cm_flags & AAC_CMD_MAPPED)
705		panic("aac: command %p already mapped", cm);
706
707	if (cm->cm_datalen != 0) {
708		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
709					cm->cm_data, cm->cm_datalen,
710					aac_map_command_sg, cm, 0);
711		if (error == EINPROGRESS) {
712			debug(1, "freezing queue\n");
713			sc->flags |= AAC_QUEUE_FRZN;
714			error = 0;
715		}
716	} else {
717		aac_map_command_sg(cm, NULL, 0, 0);
718	}
719	return (error);
720}
721
722/*
723 * Handle notification of one or more FIBs coming from the controller.
724 */
725static void
726aac_command_thread(struct aac_softc *sc)
727{
728	struct aac_fib *fib;
729	u_int32_t fib_size;
730	int size, retval;
731
732	debug_called(2);
733
734	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
735	sc->aifflags = AAC_AIFFLAGS_RUNNING;
736
737	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
738
739		retval = 0;
740		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
741			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
742					"aifthd", AAC_PERIODIC_INTERVAL * hz);
743
744		/*
745		 * First see if any FIBs need to be allocated.  This needs
746		 * to be called without the driver lock because contigmalloc
747		 * will grab Giant, and would result in an LOR.
748		 */
749		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
750			AAC_LOCK_RELEASE(&sc->aac_io_lock);
751			aac_alloc_commands(sc);
752			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
753			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
754			aac_startio(sc);
755		}
756
757		/*
758		 * While we're here, check to see if any commands are stuck.
759		 * This is pretty low-priority, so it's ok if it doesn't
760		 * always fire.
761		 */
762		if (retval == EWOULDBLOCK)
763			aac_timeout(sc);
764
765		/* Check the hardware printf message buffer */
766		if (sc->aac_common->ac_printf[0] != 0)
767			aac_print_printf(sc);
768
769		/* Also check to see if the adapter has a command for us. */
770		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
771				       &fib_size, &fib) == 0) {
772
773			AAC_PRINT_FIB(sc, fib);
774
775			switch (fib->Header.Command) {
776			case AifRequest:
777				aac_handle_aif(sc, fib);
778				break;
779			default:
780				device_printf(sc->aac_dev, "unknown command "
781					      "from controller\n");
782				break;
783			}
784
785			if ((fib->Header.XferState == 0) ||
786			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
787				break;
788
789			/* Return the AIF to the controller. */
790			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
791				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
792				*(AAC_FSAStatus*)fib->data = ST_OK;
793
794				/* XXX Compute the Size field? */
795				size = fib->Header.Size;
796				if (size > sizeof(struct aac_fib)) {
797					size = sizeof(struct aac_fib);
798					fib->Header.Size = size;
799				}
800				/*
801				 * Since we did not generate this command, it
802				 * cannot go through the normal
803				 * enqueue->startio chain.
804				 */
805				aac_enqueue_response(sc,
806						     AAC_ADAP_NORM_RESP_QUEUE,
807						     fib);
808			}
809		}
810	}
811	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
812	AAC_LOCK_RELEASE(&sc->aac_io_lock);
813	wakeup(sc->aac_dev);
814
815	mtx_lock(&Giant);
816	kthread_exit(0);
817}
818
819/*
820 * Process completed commands.
821 */
822static void
823aac_complete(void *context, int pending)
824{
825	struct aac_softc *sc;
826	struct aac_command *cm;
827	struct aac_fib *fib;
828	u_int32_t fib_size;
829
830	debug_called(2);
831
832	sc = (struct aac_softc *)context;
833
834	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
835
836	/* pull completed commands off the queue */
837	for (;;) {
838		/* look for completed FIBs on our queue */
839		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
840				    &fib))
841			break;	/* nothing to do */
842
843		/* get the command, unmap and hand off for processing */
844		cm = sc->aac_commands + fib->Header.SenderData;
845		if (cm == NULL) {
846			AAC_PRINT_FIB(sc, fib);
847			break;
848		}
849
850		aac_remove_busy(cm);
851		aac_unmap_command(cm);
852		cm->cm_flags |= AAC_CMD_COMPLETED;
853
854		/* is there a completion handler? */
855		if (cm->cm_complete != NULL) {
856			cm->cm_complete(cm);
857		} else {
858			/* assume that someone is sleeping on this command */
859			wakeup(cm);
860		}
861	}
862
863	/* see if we can start some more I/O */
864	sc->flags &= ~AAC_QUEUE_FRZN;
865	aac_startio(sc);
866
867	AAC_LOCK_RELEASE(&sc->aac_io_lock);
868}
869
870/*
871 * Handle a bio submitted from a disk device.
872 */
873void
874aac_submit_bio(struct bio *bp)
875{
876	struct aac_disk *ad;
877	struct aac_softc *sc;
878
879	debug_called(2);
880
881	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
882	sc = ad->ad_controller;
883
884	/* queue the BIO and try to get some work done */
885	aac_enqueue_bio(sc, bp);
886	aac_startio(sc);
887}
888
889/*
890 * Get a bio and build a command to go with it.
891 */
892static int
893aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
894{
895	struct aac_command *cm;
896	struct aac_fib *fib;
897	struct aac_disk *ad;
898	struct bio *bp;
899
900	debug_called(2);
901
902	/* get the resources we will need */
903	cm = NULL;
904	bp = NULL;
905	if (aac_alloc_command(sc, &cm))	/* get a command */
906		goto fail;
907	if ((bp = aac_dequeue_bio(sc)) == NULL)
908		goto fail;
909
910	/* fill out the command */
911	cm->cm_data = (void *)bp->bio_data;
912	cm->cm_datalen = bp->bio_bcount;
913	cm->cm_complete = aac_bio_complete;
914	cm->cm_private = bp;
915	cm->cm_timestamp = time_second;
916	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
917
918	/* build the FIB */
919	fib = cm->cm_fib;
920	fib->Header.Size = sizeof(struct aac_fib_header);
921	fib->Header.XferState =
922		AAC_FIBSTATE_HOSTOWNED   |
923		AAC_FIBSTATE_INITIALISED |
924		AAC_FIBSTATE_EMPTY	 |
925		AAC_FIBSTATE_FROMHOST	 |
926		AAC_FIBSTATE_REXPECTED   |
927		AAC_FIBSTATE_NORM	 |
928		AAC_FIBSTATE_ASYNC	 |
929		AAC_FIBSTATE_FAST_RESPONSE;
930
931	/* build the read/write request */
932	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
933
934	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
935		fib->Header.Command = ContainerCommand;
936		if (bp->bio_cmd == BIO_READ) {
937			struct aac_blockread *br;
938			br = (struct aac_blockread *)&fib->data[0];
939			br->Command = VM_CtBlockRead;
940			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
941			br->BlockNumber = bp->bio_pblkno;
942			br->ByteCount = bp->bio_bcount;
943			fib->Header.Size += sizeof(struct aac_blockread);
944			cm->cm_sgtable = &br->SgMap;
945			cm->cm_flags |= AAC_CMD_DATAIN;
946		} else {
947			struct aac_blockwrite *bw;
948			bw = (struct aac_blockwrite *)&fib->data[0];
949			bw->Command = VM_CtBlockWrite;
950			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
951			bw->BlockNumber = bp->bio_pblkno;
952			bw->ByteCount = bp->bio_bcount;
953			bw->Stable = CUNSTABLE;
954			fib->Header.Size += sizeof(struct aac_blockwrite);
955			cm->cm_flags |= AAC_CMD_DATAOUT;
956			cm->cm_sgtable = &bw->SgMap;
957		}
958	} else {
959		fib->Header.Command = ContainerCommand64;
960		if (bp->bio_cmd == BIO_READ) {
961			struct aac_blockread64 *br;
962			br = (struct aac_blockread64 *)&fib->data[0];
963			br->Command = VM_CtHostRead64;
964			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
965			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
966			br->BlockNumber = bp->bio_pblkno;
967			br->Pad = 0;
968			br->Flags = 0;
969			fib->Header.Size += sizeof(struct aac_blockread64);
970			cm->cm_flags |= AAC_CMD_DATAOUT;
971			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
972		} else {
973			struct aac_blockwrite64 *bw;
974			bw = (struct aac_blockwrite64 *)&fib->data[0];
975			bw->Command = VM_CtHostWrite64;
976			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
977			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
978			bw->BlockNumber = bp->bio_pblkno;
979			bw->Pad = 0;
980			bw->Flags = 0;
981			fib->Header.Size += sizeof(struct aac_blockwrite64);
982			cm->cm_flags |= AAC_CMD_DATAIN;
983			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
984		}
985	}
986
987	*cmp = cm;
988	return(0);
989
990fail:
991	if (bp != NULL)
992		aac_enqueue_bio(sc, bp);
993	if (cm != NULL)
994		aac_release_command(cm);
995	return(ENOMEM);
996}
997
998/*
999 * Handle a bio-instigated command that has been completed.
1000 */
1001static void
1002aac_bio_complete(struct aac_command *cm)
1003{
1004	struct aac_blockread_response *brr;
1005	struct aac_blockwrite_response *bwr;
1006	struct bio *bp;
1007	AAC_FSAStatus status;
1008
1009	/* fetch relevant status and then release the command */
1010	bp = (struct bio *)cm->cm_private;
1011	if (bp->bio_cmd == BIO_READ) {
1012		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1013		status = brr->Status;
1014	} else {
1015		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1016		status = bwr->Status;
1017	}
1018	aac_release_command(cm);
1019
1020	/* fix up the bio based on status */
1021	if (status == ST_OK) {
1022		bp->bio_resid = 0;
1023	} else {
1024		bp->bio_error = EIO;
1025		bp->bio_flags |= BIO_ERROR;
1026		/* pass an error string out to the disk layer */
1027		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1028						    status);
1029	}
1030	aac_biodone(bp);
1031}
1032
1033/*
1034 * Submit a command to the controller, return when it completes.
1035 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1036 *     be stuck here forever.  At the same time, signals are not caught
1037 *     because there is a risk that a signal could wakeup the tsleep before
1038 *     the card has a chance to complete the command.  The passed in timeout
1039 *     is ignored for the same reason.  Since there is no way to cancel a
1040 *     command in progress, we should probably create a 'dead' queue where
1041 *     commands go that have been interrupted/timed-out/etc, that keeps them
1042 *     out of the free pool.  That way, if the card is just slow, it won't
1043 *     spam the memory of a command that has been recycled.
1044 */
1045static int
1046aac_wait_command(struct aac_command *cm, int timeout)
1047{
1048	struct aac_softc *sc;
1049	int error = 0;
1050
1051	debug_called(2);
1052
1053	sc = cm->cm_sc;
1054
1055	/* Put the command on the ready queue and get things going */
1056	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1057	aac_enqueue_ready(cm);
1058	aac_startio(sc);
1059	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1060		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1061	}
1062	return(error);
1063}
1064
1065/*
1066 *Command Buffer Management
1067 */
1068
1069/*
1070 * Allocate a command.
1071 */
1072int
1073aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1074{
1075	struct aac_command *cm;
1076
1077	debug_called(3);
1078
1079	if ((cm = aac_dequeue_free(sc)) == NULL) {
1080		if (sc->total_fibs < sc->aac_max_fibs) {
1081			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1082			wakeup(sc->aifthread);
1083		}
1084		return (EBUSY);
1085	}
1086
1087	*cmp = cm;
1088	return(0);
1089}
1090
1091/*
1092 * Release a command back to the freelist.
1093 */
1094void
1095aac_release_command(struct aac_command *cm)
1096{
1097	debug_called(3);
1098
1099	/* (re)initialise the command/FIB */
1100	cm->cm_sgtable = NULL;
1101	cm->cm_flags = 0;
1102	cm->cm_complete = NULL;
1103	cm->cm_private = NULL;
1104	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1105	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1106	cm->cm_fib->Header.Flags = 0;
1107	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1108
1109	/*
1110	 * These are duplicated in aac_start to cover the case where an
1111	 * intermediate stage may have destroyed them.  They're left
1112	 * initialised here for debugging purposes only.
1113	 */
1114	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1115	cm->cm_fib->Header.SenderData = 0;
1116
1117	aac_enqueue_free(cm);
1118}
1119
1120/*
1121 * Map helper for command/FIB allocation.
1122 */
1123static void
1124aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1125{
1126	uint32_t	*fibphys;
1127
1128	fibphys = (uint32_t *)arg;
1129
1130	debug_called(3);
1131
1132	*fibphys = segs[0].ds_addr;
1133}
1134
1135/*
1136 * Allocate and initialise commands/FIBs for this adapter.
1137 */
1138static int
1139aac_alloc_commands(struct aac_softc *sc)
1140{
1141	struct aac_command *cm;
1142	struct aac_fibmap *fm;
1143	uint32_t fibphys;
1144	int i, error;
1145
1146	debug_called(2);
1147
1148	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1149		return (ENOMEM);
1150
1151	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1152	if (fm == NULL)
1153		return (ENOMEM);
1154
1155	/* allocate the FIBs in DMAable memory and load them */
1156	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1157			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1158		device_printf(sc->aac_dev,
1159			      "Not enough contiguous memory available.\n");
1160		free(fm, M_AACBUF);
1161		return (ENOMEM);
1162	}
1163
1164	/* Ignore errors since this doesn't bounce */
1165	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1166			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1167			      aac_map_command_helper, &fibphys, 0);
1168
1169	/* initialise constant fields in the command structure */
1170	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
1171	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1172	for (i = 0; i < AAC_FIB_COUNT; i++) {
1173		cm = sc->aac_commands + sc->total_fibs;
1174		fm->aac_commands = cm;
1175		cm->cm_sc = sc;
1176		cm->cm_fib = fm->aac_fibs + i;
1177		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1178		cm->cm_index = sc->total_fibs;
1179
1180		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1181					       &cm->cm_datamap)) == 0)
1182			aac_release_command(cm);
1183		else
1184			break;
1185		sc->total_fibs++;
1186	}
1187
1188	if (i > 0) {
1189		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1190		debug(1, "total_fibs= %d\n", sc->total_fibs);
1191		AAC_LOCK_RELEASE(&sc->aac_io_lock);
1192		return (0);
1193	}
1194
1195	AAC_LOCK_RELEASE(&sc->aac_io_lock);
1196	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1197	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1198	free(fm, M_AACBUF);
1199	return (ENOMEM);
1200}
1201
1202/*
1203 * Free FIBs owned by this adapter.
1204 */
1205static void
1206aac_free_commands(struct aac_softc *sc)
1207{
1208	struct aac_fibmap *fm;
1209	struct aac_command *cm;
1210	int i;
1211
1212	debug_called(1);
1213
1214	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1215
1216		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1217		/*
1218		 * We check against total_fibs to handle partially
1219		 * allocated blocks.
1220		 */
1221		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1222			cm = fm->aac_commands + i;
1223			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1224		}
1225		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1226		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1227		free(fm, M_AACBUF);
1228	}
1229}
1230
1231/*
1232 * Command-mapping helper function - populate this command's s/g table.
1233 */
1234static void
1235aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1236{
1237	struct aac_softc *sc;
1238	struct aac_command *cm;
1239	struct aac_fib *fib;
1240	int i;
1241
1242	debug_called(3);
1243
1244	cm = (struct aac_command *)arg;
1245	sc = cm->cm_sc;
1246	fib = cm->cm_fib;
1247
1248	/* copy into the FIB */
1249	if (cm->cm_sgtable != NULL) {
1250		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1251			struct aac_sg_table *sg;
1252			sg = cm->cm_sgtable;
1253			sg->SgCount = nseg;
1254			for (i = 0; i < nseg; i++) {
1255				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1256				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1257			}
1258			/* update the FIB size for the s/g count */
1259			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1260		} else {
1261			struct aac_sg_table64 *sg;
1262			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1263			sg->SgCount = nseg;
1264			for (i = 0; i < nseg; i++) {
1265				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1266				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1267			}
1268			/* update the FIB size for the s/g count */
1269			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1270		}
1271	}
1272
1273	/* Fix up the address values in the FIB.  Use the command array index
1274	 * instead of a pointer since these fields are only 32 bits.  Shift
1275	 * the SenderFibAddress over to make room for the fast response bit.
1276	 */
1277	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1278	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1279
1280	/* save a pointer to the command for speedy reverse-lookup */
1281	cm->cm_fib->Header.SenderData = cm->cm_index;
1282
1283	if (cm->cm_flags & AAC_CMD_DATAIN)
1284		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1285				BUS_DMASYNC_PREREAD);
1286	if (cm->cm_flags & AAC_CMD_DATAOUT)
1287		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1288				BUS_DMASYNC_PREWRITE);
1289	cm->cm_flags |= AAC_CMD_MAPPED;
1290
1291	/* put the FIB on the outbound queue */
1292	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1293		aac_unmap_command(cm);
1294		aac_requeue_ready(cm);
1295	}
1296
1297	return;
1298}
1299
1300/*
1301 * Unmap a command from controller-visible space.
1302 */
1303static void
1304aac_unmap_command(struct aac_command *cm)
1305{
1306	struct aac_softc *sc;
1307
1308	debug_called(2);
1309
1310	sc = cm->cm_sc;
1311
1312	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1313		return;
1314
1315	if (cm->cm_datalen != 0) {
1316		if (cm->cm_flags & AAC_CMD_DATAIN)
1317			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318					BUS_DMASYNC_POSTREAD);
1319		if (cm->cm_flags & AAC_CMD_DATAOUT)
1320			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1321					BUS_DMASYNC_POSTWRITE);
1322
1323		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1324	}
1325	cm->cm_flags &= ~AAC_CMD_MAPPED;
1326}
1327
1328/*
1329 * Hardware Interface
1330 */
1331
1332/*
1333 * Initialise the adapter.
1334 */
1335static void
1336aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1337{
1338	struct aac_softc *sc;
1339
1340	debug_called(1);
1341
1342	sc = (struct aac_softc *)arg;
1343
1344	sc->aac_common_busaddr = segs[0].ds_addr;
1345}
1346
1347static int
1348aac_check_firmware(struct aac_softc *sc)
1349{
1350	u_int32_t major, minor, options;
1351
1352	debug_called(1);
1353
1354	/*
1355	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1356	 * firmware version 1.x are not compatible with this driver.
1357	 */
1358	if (sc->flags & AAC_FLAGS_PERC2QC) {
1359		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1360				     NULL)) {
1361			device_printf(sc->aac_dev,
1362				      "Error reading firmware version\n");
1363			return (EIO);
1364		}
1365
1366		/* These numbers are stored as ASCII! */
1367		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1368		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1369		if (major == 1) {
1370			device_printf(sc->aac_dev,
1371			    "Firmware version %d.%d is not supported.\n",
1372			    major, minor);
1373			return (EINVAL);
1374		}
1375	}
1376
1377	/*
1378	 * Retrieve the capabilities/supported options word so we know what
1379	 * work-arounds to enable.
1380	 */
1381	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1382		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1383		return (EIO);
1384	}
1385	options = AAC_GET_MAILBOX(sc, 1);
1386	sc->supported_options = options;
1387
1388	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1389	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1390		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1391	if (options & AAC_SUPPORTED_NONDASD)
1392		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1393	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1394	     && (sizeof(bus_addr_t) > 4)) {
1395		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1396		sc->flags |= AAC_FLAGS_SG_64BIT;
1397	}
1398
1399	/* Check for broken hardware that does a lower number of commands */
1400	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1401		sc->aac_max_fibs = AAC_MAX_FIBS;
1402	else
1403		sc->aac_max_fibs = 256;
1404
1405	return (0);
1406}
1407
1408static int
1409aac_init(struct aac_softc *sc)
1410{
1411	struct aac_adapter_init	*ip;
1412	time_t then;
1413	u_int32_t code, qoffset;
1414	int error;
1415
1416	debug_called(1);
1417
1418	/*
1419	 * First wait for the adapter to come ready.
1420	 */
1421	then = time_second;
1422	do {
1423		code = AAC_GET_FWSTATUS(sc);
1424		if (code & AAC_SELF_TEST_FAILED) {
1425			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426			return(ENXIO);
1427		}
1428		if (code & AAC_KERNEL_PANIC) {
1429			device_printf(sc->aac_dev,
1430				      "FATAL: controller kernel panic\n");
1431			return(ENXIO);
1432		}
1433		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434			device_printf(sc->aac_dev,
1435				      "FATAL: controller not coming ready, "
1436					   "status %x\n", code);
1437			return(ENXIO);
1438		}
1439	} while (!(code & AAC_UP_AND_RUNNING));
1440
1441	error = ENOMEM;
1442	/*
1443	 * Create DMA tag for mapping buffers into controller-addressable space.
1444	 */
1445	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1446			       1, 0, 			/* algnmnt, boundary */
1447			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1448			       BUS_SPACE_MAXADDR :
1449			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1450			       BUS_SPACE_MAXADDR, 	/* highaddr */
1451			       NULL, NULL, 		/* filter, filterarg */
1452			       MAXBSIZE,		/* maxsize */
1453			       AAC_MAXSGENTRIES,	/* nsegments */
1454			       MAXBSIZE,		/* maxsegsize */
1455			       BUS_DMA_ALLOCNOW,	/* flags */
1456			       busdma_lock_mutex,	/* lockfunc */
1457			       &sc->aac_io_lock,	/* lockfuncarg */
1458			       &sc->aac_buffer_dmat)) {
1459		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1460		goto out;
1461	}
1462
1463	/*
1464	 * Create DMA tag for mapping FIBs into controller-addressable space..
1465	 */
1466	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1467			       1, 0, 			/* algnmnt, boundary */
1468			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1469			       BUS_SPACE_MAXADDR_32BIT :
1470			       0x7fffffff,		/* lowaddr */
1471			       BUS_SPACE_MAXADDR, 	/* highaddr */
1472			       NULL, NULL, 		/* filter, filterarg */
1473			       AAC_FIB_COUNT *
1474			       sizeof(struct aac_fib),  /* maxsize */
1475			       1,			/* nsegments */
1476			       AAC_FIB_COUNT *
1477			       sizeof(struct aac_fib),	/* maxsegsize */
1478			       BUS_DMA_ALLOCNOW,	/* flags */
1479			       NULL, NULL,		/* No locking needed */
1480			       &sc->aac_fib_dmat)) {
1481		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1482		goto out;
1483	}
1484
1485	/*
1486	 * Create DMA tag for the common structure and allocate it.
1487	 */
1488	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1489			       1, 0,			/* algnmnt, boundary */
1490			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1491			       BUS_SPACE_MAXADDR_32BIT :
1492			       0x7fffffff,		/* lowaddr */
1493			       BUS_SPACE_MAXADDR, 	/* highaddr */
1494			       NULL, NULL, 		/* filter, filterarg */
1495			       8192 + sizeof(struct aac_common), /* maxsize */
1496			       1,			/* nsegments */
1497			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1498			       BUS_DMA_ALLOCNOW,	/* flags */
1499			       NULL, NULL,		/* No locking needed */
1500			       &sc->aac_common_dmat)) {
1501		device_printf(sc->aac_dev,
1502			      "can't allocate common structure DMA tag\n");
1503		goto out;
1504	}
1505	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1506			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1507		device_printf(sc->aac_dev, "can't allocate common structure\n");
1508		goto out;
1509	}
1510
1511	/*
1512	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1513	 * below address 8192 in physical memory.
1514	 * XXX If the padding is not needed, can it be put to use instead
1515	 * of ignored?
1516	 */
1517	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1518			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1519			aac_common_map, sc, 0);
1520
1521	if (sc->aac_common_busaddr < 8192) {
1522		(uint8_t *)sc->aac_common += 8192;
1523		sc->aac_common_busaddr += 8192;
1524	}
1525	bzero(sc->aac_common, sizeof(*sc->aac_common));
1526
1527	/* Allocate some FIBs and associated command structs */
1528	TAILQ_INIT(&sc->aac_fibmap_tqh);
1529	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1530				  M_AACBUF, M_WAITOK|M_ZERO);
1531	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1532		if (aac_alloc_commands(sc) != 0)
1533			break;
1534	}
1535	if (sc->total_fibs == 0)
1536		goto out;
1537
1538	/*
1539	 * Fill in the init structure.  This tells the adapter about the
1540	 * physical location of various important shared data structures.
1541	 */
1542	ip = &sc->aac_common->ac_init;
1543	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1544	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1545
1546	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1547					 offsetof(struct aac_common, ac_fibs);
1548	ip->AdapterFibsVirtualAddress = 0;
1549	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1550	ip->AdapterFibAlign = sizeof(struct aac_fib);
1551
1552	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1553				  offsetof(struct aac_common, ac_printf);
1554	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1555
1556	/*
1557	 * The adapter assumes that pages are 4K in size, except on some
1558 	 * broken firmware versions that do the page->byte conversion twice,
1559	 * therefore 'assuming' that this value is in 16MB units (2^24).
1560	 * Round up since the granularity is so high.
1561	 */
1562	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1563	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1564		ip->HostPhysMemPages =
1565		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1566	}
1567	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1568
1569	/*
1570	 * Initialise FIB queues.  Note that it appears that the layout of the
1571	 * indexes and the segmentation of the entries may be mandated by the
1572	 * adapter, which is only told about the base of the queue index fields.
1573	 *
1574	 * The initial values of the indices are assumed to inform the adapter
1575	 * of the sizes of the respective queues, and theoretically it could
1576	 * work out the entire layout of the queue structures from this.  We
1577	 * take the easy route and just lay this area out like everyone else
1578	 * does.
1579	 *
1580	 * The Linux driver uses a much more complex scheme whereby several
1581	 * header records are kept for each queue.  We use a couple of generic
1582	 * list manipulation functions which 'know' the size of each list by
1583	 * virtue of a table.
1584	 */
1585	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1586	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1587	sc->aac_queues =
1588	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1589	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1590
1591	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592		AAC_HOST_NORM_CMD_ENTRIES;
1593	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594		AAC_HOST_NORM_CMD_ENTRIES;
1595	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1596		AAC_HOST_HIGH_CMD_ENTRIES;
1597	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1598		AAC_HOST_HIGH_CMD_ENTRIES;
1599	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1600		AAC_ADAP_NORM_CMD_ENTRIES;
1601	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1602		AAC_ADAP_NORM_CMD_ENTRIES;
1603	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1604		AAC_ADAP_HIGH_CMD_ENTRIES;
1605	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1606		AAC_ADAP_HIGH_CMD_ENTRIES;
1607	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608		AAC_HOST_NORM_RESP_ENTRIES;
1609	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610		AAC_HOST_NORM_RESP_ENTRIES;
1611	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1612		AAC_HOST_HIGH_RESP_ENTRIES;
1613	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1614		AAC_HOST_HIGH_RESP_ENTRIES;
1615	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1616		AAC_ADAP_NORM_RESP_ENTRIES;
1617	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1618		AAC_ADAP_NORM_RESP_ENTRIES;
1619	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1620		AAC_ADAP_HIGH_RESP_ENTRIES;
1621	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1622		AAC_ADAP_HIGH_RESP_ENTRIES;
1623	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1624		&sc->aac_queues->qt_HostNormCmdQueue[0];
1625	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1626		&sc->aac_queues->qt_HostHighCmdQueue[0];
1627	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1628		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1629	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1630		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1631	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1632		&sc->aac_queues->qt_HostNormRespQueue[0];
1633	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1634		&sc->aac_queues->qt_HostHighRespQueue[0];
1635	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1636		&sc->aac_queues->qt_AdapNormRespQueue[0];
1637	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1638		&sc->aac_queues->qt_AdapHighRespQueue[0];
1639
1640	/*
1641	 * Do controller-type-specific initialisation
1642	 */
1643	switch (sc->aac_hwif) {
1644	case AAC_HWIF_I960RX:
1645		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1646		break;
1647	}
1648
1649	/*
1650	 * Give the init structure to the controller.
1651	 */
1652	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1653			     sc->aac_common_busaddr +
1654			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1655			     NULL)) {
1656		device_printf(sc->aac_dev,
1657			      "error establishing init structure\n");
1658		error = EIO;
1659		goto out;
1660	}
1661
1662	error = 0;
1663out:
1664	return(error);
1665}
1666
1667/*
1668 * Send a synchronous command to the controller and wait for a result.
1669 */
1670static int
1671aac_sync_command(struct aac_softc *sc, u_int32_t command,
1672		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1673		 u_int32_t *sp)
1674{
1675	time_t then;
1676	u_int32_t status;
1677
1678	debug_called(3);
1679
1680	/* populate the mailbox */
1681	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1682
1683	/* ensure the sync command doorbell flag is cleared */
1684	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685
1686	/* then set it to signal the adapter */
1687	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1688
1689	/* spin waiting for the command to complete */
1690	then = time_second;
1691	do {
1692		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1693			debug(1, "timed out");
1694			return(EIO);
1695		}
1696	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1697
1698	/* clear the completion flag */
1699	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1700
1701	/* get the command status */
1702	status = AAC_GET_MAILBOX(sc, 0);
1703	if (sp != NULL)
1704		*sp = status;
1705	return(0);
1706}
1707
1708/*
1709 * Grab the sync fib area.
1710 */
1711int
1712aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1713{
1714
1715	/*
1716	 * If the force flag is set, the system is shutting down, or in
1717	 * trouble.  Ignore the mutex.
1718	 */
1719	if (!(flags & AAC_SYNC_LOCK_FORCE))
1720		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1721
1722	*fib = &sc->aac_common->ac_sync_fib;
1723
1724	return (1);
1725}
1726
1727/*
1728 * Release the sync fib area.
1729 */
1730void
1731aac_release_sync_fib(struct aac_softc *sc)
1732{
1733
1734	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1735}
1736
1737/*
1738 * Send a synchronous FIB to the controller and wait for a result.
1739 */
1740int
1741aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1742		 struct aac_fib *fib, u_int16_t datasize)
1743{
1744	debug_called(3);
1745
1746	if (datasize > AAC_FIB_DATASIZE)
1747		return(EINVAL);
1748
1749	/*
1750	 * Set up the sync FIB
1751	 */
1752	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1753				AAC_FIBSTATE_INITIALISED |
1754				AAC_FIBSTATE_EMPTY;
1755	fib->Header.XferState |= xferstate;
1756	fib->Header.Command = command;
1757	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1758	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1759	fib->Header.SenderSize = sizeof(struct aac_fib);
1760	fib->Header.SenderFibAddress = 0;	/* Not needed */
1761	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1762					 offsetof(struct aac_common,
1763						  ac_sync_fib);
1764
1765	/*
1766	 * Give the FIB to the controller, wait for a response.
1767	 */
1768	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1769			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1770		debug(2, "IO error");
1771		return(EIO);
1772	}
1773
1774	return (0);
1775}
1776
1777/*
1778 * Adapter-space FIB queue manipulation
1779 *
1780 * Note that the queue implementation here is a little funky; neither the PI or
1781 * CI will ever be zero.  This behaviour is a controller feature.
1782 */
1783static struct {
1784	int		size;
1785	int		notify;
1786} aac_qinfo[] = {
1787	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1788	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1789	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1790	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1791	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1792	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1793	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1794	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1795};
1796
1797/*
1798 * Atomically insert an entry into the nominated queue, returns 0 on success or
1799 * EBUSY if the queue is full.
1800 *
1801 * Note: it would be more efficient to defer notifying the controller in
1802 *	 the case where we may be inserting several entries in rapid succession,
1803 *	 but implementing this usefully may be difficult (it would involve a
1804 *	 separate queue/notify interface).
1805 */
1806static int
1807aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1808{
1809	u_int32_t pi, ci;
1810	int error;
1811	u_int32_t fib_size;
1812	u_int32_t fib_addr;
1813
1814	debug_called(3);
1815
1816	fib_size = cm->cm_fib->Header.Size;
1817	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1818
1819	/* get the producer/consumer indices */
1820	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1821	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1822
1823	/* wrap the queue? */
1824	if (pi >= aac_qinfo[queue].size)
1825		pi = 0;
1826
1827	/* check for queue full */
1828	if ((pi + 1) == ci) {
1829		error = EBUSY;
1830		goto out;
1831	}
1832
1833	/* populate queue entry */
1834	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1835	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1836
1837	/* update producer index */
1838	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1839
1840	/*
1841	 * To avoid a race with its completion interrupt, place this command on
1842	 * the busy queue prior to advertising it to the controller.
1843	 */
1844	aac_enqueue_busy(cm);
1845
1846	/* notify the adapter if we know how */
1847	if (aac_qinfo[queue].notify != 0)
1848		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1849
1850	error = 0;
1851
1852out:
1853	return(error);
1854}
1855
1856/*
1857 * Atomically remove one entry from the nominated queue, returns 0 on
1858 * success or ENOENT if the queue is empty.
1859 */
1860static int
1861aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1862		struct aac_fib **fib_addr)
1863{
1864	u_int32_t pi, ci;
1865	u_int32_t fib_index;
1866	int error;
1867	int notify;
1868
1869	debug_called(3);
1870
1871	/* get the producer/consumer indices */
1872	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874
1875	/* check for queue empty */
1876	if (ci == pi) {
1877		error = ENOENT;
1878		goto out;
1879	}
1880
1881	/* wrap the pi so the following test works */
1882	if (pi >= aac_qinfo[queue].size)
1883		pi = 0;
1884
1885	notify = 0;
1886	if (ci == pi + 1)
1887		notify++;
1888
1889	/* wrap the queue? */
1890	if (ci >= aac_qinfo[queue].size)
1891		ci = 0;
1892
1893	/* fetch the entry */
1894	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1895
1896	switch (queue) {
1897	case AAC_HOST_NORM_CMD_QUEUE:
1898	case AAC_HOST_HIGH_CMD_QUEUE:
1899		/*
1900		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1901		 * on to hold an address.  For AIF's, the adapter assumes
1902		 * that it's giving us an address into the array of AIF fibs.
1903		 * Therefore, we have to convert it to an index.
1904		 */
1905		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1906			sizeof(struct aac_fib);
1907		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1908		break;
1909
1910	case AAC_HOST_NORM_RESP_QUEUE:
1911	case AAC_HOST_HIGH_RESP_QUEUE:
1912	{
1913		struct aac_command *cm;
1914
1915		/*
1916		 * As above, an index is used instead of an actual address.
1917		 * Gotta shift the index to account for the fast response
1918		 * bit.  No other correction is needed since this value was
1919		 * originally provided by the driver via the SenderFibAddress
1920		 * field.
1921		 */
1922		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1923		cm = sc->aac_commands + (fib_index >> 1);
1924		*fib_addr = cm->cm_fib;
1925
1926		/*
1927		 * Is this a fast response? If it is, update the fib fields in
1928		 * local memory since the whole fib isn't DMA'd back up.
1929		 */
1930		if (fib_index & 0x01) {
1931			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1932			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1933		}
1934		break;
1935	}
1936	default:
1937		panic("Invalid queue in aac_dequeue_fib()");
1938		break;
1939	}
1940
1941	/* update consumer index */
1942	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1943
1944	/* if we have made the queue un-full, notify the adapter */
1945	if (notify && (aac_qinfo[queue].notify != 0))
1946		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1947	error = 0;
1948
1949out:
1950	return(error);
1951}
1952
1953/*
1954 * Put our response to an Adapter Initialed Fib on the response queue
1955 */
1956static int
1957aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1958{
1959	u_int32_t pi, ci;
1960	int error;
1961	u_int32_t fib_size;
1962	u_int32_t fib_addr;
1963
1964	debug_called(1);
1965
1966	/* Tell the adapter where the FIB is */
1967	fib_size = fib->Header.Size;
1968	fib_addr = fib->Header.SenderFibAddress;
1969	fib->Header.ReceiverFibAddress = fib_addr;
1970
1971	/* get the producer/consumer indices */
1972	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1973	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1974
1975	/* wrap the queue? */
1976	if (pi >= aac_qinfo[queue].size)
1977		pi = 0;
1978
1979	/* check for queue full */
1980	if ((pi + 1) == ci) {
1981		error = EBUSY;
1982		goto out;
1983	}
1984
1985	/* populate queue entry */
1986	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1987	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1988
1989	/* update producer index */
1990	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1991
1992	/* notify the adapter if we know how */
1993	if (aac_qinfo[queue].notify != 0)
1994		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1995
1996	error = 0;
1997
1998out:
1999	return(error);
2000}
2001
2002/*
2003 * Check for commands that have been outstanding for a suspiciously long time,
2004 * and complain about them.
2005 */
2006static void
2007aac_timeout(struct aac_softc *sc)
2008{
2009	struct aac_command *cm;
2010	time_t deadline;
2011
2012	/*
2013	 * Traverse the busy command list, bitch about late commands once
2014	 * only.
2015	 */
2016	deadline = time_second - AAC_CMD_TIMEOUT;
2017	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2018		if ((cm->cm_timestamp  < deadline)
2019			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2020			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2021			device_printf(sc->aac_dev,
2022				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2023				      cm, (int)(time_second-cm->cm_timestamp));
2024			AAC_PRINT_FIB(sc, cm->cm_fib);
2025		}
2026	}
2027
2028	return;
2029}
2030
2031/*
2032 * Interface Function Vectors
2033 */
2034
2035/*
2036 * Read the current firmware status word.
2037 */
2038static int
2039aac_sa_get_fwstatus(struct aac_softc *sc)
2040{
2041	debug_called(3);
2042
2043	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2044}
2045
2046static int
2047aac_rx_get_fwstatus(struct aac_softc *sc)
2048{
2049	debug_called(3);
2050
2051	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2052}
2053
2054static int
2055aac_fa_get_fwstatus(struct aac_softc *sc)
2056{
2057	int val;
2058
2059	debug_called(3);
2060
2061	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2062	return (val);
2063}
2064
2065/*
2066 * Notify the controller of a change in a given queue
2067 */
2068
2069static void
2070aac_sa_qnotify(struct aac_softc *sc, int qbit)
2071{
2072	debug_called(3);
2073
2074	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2075}
2076
2077static void
2078aac_rx_qnotify(struct aac_softc *sc, int qbit)
2079{
2080	debug_called(3);
2081
2082	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2083}
2084
2085static void
2086aac_fa_qnotify(struct aac_softc *sc, int qbit)
2087{
2088	debug_called(3);
2089
2090	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2091	AAC_FA_HACK(sc);
2092}
2093
2094/*
2095 * Get the interrupt reason bits
2096 */
2097static int
2098aac_sa_get_istatus(struct aac_softc *sc)
2099{
2100	debug_called(3);
2101
2102	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2103}
2104
2105static int
2106aac_rx_get_istatus(struct aac_softc *sc)
2107{
2108	debug_called(3);
2109
2110	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2111}
2112
2113static int
2114aac_fa_get_istatus(struct aac_softc *sc)
2115{
2116	int val;
2117
2118	debug_called(3);
2119
2120	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2121	return (val);
2122}
2123
2124/*
2125 * Clear some interrupt reason bits
2126 */
2127static void
2128aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2129{
2130	debug_called(3);
2131
2132	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2133}
2134
2135static void
2136aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2137{
2138	debug_called(3);
2139
2140	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2141}
2142
2143static void
2144aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2145{
2146	debug_called(3);
2147
2148	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2149	AAC_FA_HACK(sc);
2150}
2151
2152/*
2153 * Populate the mailbox and set the command word
2154 */
2155static void
2156aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2157		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2158{
2159	debug_called(4);
2160
2161	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2162	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2163	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2164	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2165	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2166}
2167
2168static void
2169aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2170		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2171{
2172	debug_called(4);
2173
2174	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2175	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2176	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2177	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2178	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2179}
2180
2181static void
2182aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2183		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2184{
2185	debug_called(4);
2186
2187	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2188	AAC_FA_HACK(sc);
2189	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2190	AAC_FA_HACK(sc);
2191	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2192	AAC_FA_HACK(sc);
2193	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2194	AAC_FA_HACK(sc);
2195	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2196	AAC_FA_HACK(sc);
2197}
2198
2199/*
2200 * Fetch the immediate command status word
2201 */
2202static int
2203aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2204{
2205	debug_called(4);
2206
2207	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2208}
2209
2210static int
2211aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2212{
2213	debug_called(4);
2214
2215	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2216}
2217
2218static int
2219aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2220{
2221	int val;
2222
2223	debug_called(4);
2224
2225	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2226	return (val);
2227}
2228
2229/*
2230 * Set/clear interrupt masks
2231 */
2232static void
2233aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2234{
2235	debug(2, "%sable interrupts", enable ? "en" : "dis");
2236
2237	if (enable) {
2238		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2239	} else {
2240		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2241	}
2242}
2243
2244static void
2245aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2246{
2247	debug(2, "%sable interrupts", enable ? "en" : "dis");
2248
2249	if (enable) {
2250		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2251	} else {
2252		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2253	}
2254}
2255
2256static void
2257aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2258{
2259	debug(2, "%sable interrupts", enable ? "en" : "dis");
2260
2261	if (enable) {
2262		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2263		AAC_FA_HACK(sc);
2264	} else {
2265		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2266		AAC_FA_HACK(sc);
2267	}
2268}
2269
2270/*
2271 * Debugging and Diagnostics
2272 */
2273
2274/*
2275 * Print some information about the controller.
2276 */
2277static void
2278aac_describe_controller(struct aac_softc *sc)
2279{
2280	struct aac_fib *fib;
2281	struct aac_adapter_info	*info;
2282
2283	debug_called(2);
2284
2285	aac_alloc_sync_fib(sc, &fib, 0);
2286
2287	fib->data[0] = 0;
2288	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2289		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2290		aac_release_sync_fib(sc);
2291		return;
2292	}
2293	info = (struct aac_adapter_info *)&fib->data[0];
2294
2295	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2296		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2297		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2298		      aac_describe_code(aac_battery_platform,
2299					info->batteryPlatform));
2300
2301	/* save the kernel revision structure for later use */
2302	sc->aac_revision = info->KernelRevision;
2303	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2304		      info->KernelRevision.external.comp.major,
2305		      info->KernelRevision.external.comp.minor,
2306		      info->KernelRevision.external.comp.dash,
2307		      info->KernelRevision.buildNumber,
2308		      (u_int32_t)(info->SerialNumber & 0xffffff));
2309
2310	aac_release_sync_fib(sc);
2311
2312	if (1 || bootverbose) {
2313		device_printf(sc->aac_dev, "Supported Options=%b\n",
2314			      sc->supported_options,
2315			      "\20"
2316			      "\1SNAPSHOT"
2317			      "\2CLUSTERS"
2318			      "\3WCACHE"
2319			      "\4DATA64"
2320			      "\5HOSTTIME"
2321			      "\6RAID50"
2322			      "\7WINDOW4GB"
2323			      "\10SCSIUPGD"
2324			      "\11SOFTERR"
2325			      "\12NORECOND"
2326			      "\13SGMAP64"
2327			      "\14ALARM"
2328			      "\15NONDASD");
2329	}
2330}
2331
2332/*
2333 * Look up a text description of a numeric error code and return a pointer to
2334 * same.
2335 */
2336static char *
2337aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2338{
2339	int i;
2340
2341	for (i = 0; table[i].string != NULL; i++)
2342		if (table[i].code == code)
2343			return(table[i].string);
2344	return(table[i + 1].string);
2345}
2346
2347/*
2348 * Management Interface
2349 */
2350
2351static int
2352aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2353{
2354	struct aac_softc *sc;
2355
2356	debug_called(2);
2357
2358	sc = dev->si_drv1;
2359
2360	/* Check to make sure the device isn't already open */
2361	if (sc->aac_state & AAC_STATE_OPEN) {
2362		return EBUSY;
2363	}
2364	sc->aac_state |= AAC_STATE_OPEN;
2365
2366	return 0;
2367}
2368
2369static int
2370aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2371{
2372	struct aac_softc *sc;
2373
2374	debug_called(2);
2375
2376	sc = dev->si_drv1;
2377
2378	/* Mark this unit as no longer open  */
2379	sc->aac_state &= ~AAC_STATE_OPEN;
2380
2381	return 0;
2382}
2383
2384static int
2385aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2386{
2387	union aac_statrequest *as;
2388	struct aac_softc *sc;
2389	int error = 0;
2390	uint32_t cookie;
2391
2392	debug_called(2);
2393
2394	as = (union aac_statrequest *)arg;
2395	sc = dev->si_drv1;
2396
2397	switch (cmd) {
2398	case AACIO_STATS:
2399		switch (as->as_item) {
2400		case AACQ_FREE:
2401		case AACQ_BIO:
2402		case AACQ_READY:
2403		case AACQ_BUSY:
2404			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2405			      sizeof(struct aac_qstat));
2406			break;
2407		default:
2408			error = ENOENT;
2409			break;
2410		}
2411	break;
2412
2413	case FSACTL_SENDFIB:
2414		arg = *(caddr_t*)arg;
2415	case FSACTL_LNX_SENDFIB:
2416		debug(1, "FSACTL_SENDFIB");
2417		error = aac_ioctl_sendfib(sc, arg);
2418		break;
2419	case FSACTL_AIF_THREAD:
2420	case FSACTL_LNX_AIF_THREAD:
2421		debug(1, "FSACTL_AIF_THREAD");
2422		error = EINVAL;
2423		break;
2424	case FSACTL_OPEN_GET_ADAPTER_FIB:
2425		arg = *(caddr_t*)arg;
2426	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2427		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2428		/*
2429		 * Pass the caller out an AdapterFibContext.
2430		 *
2431		 * Note that because we only support one opener, we
2432		 * basically ignore this.  Set the caller's context to a magic
2433		 * number just in case.
2434		 *
2435		 * The Linux code hands the driver a pointer into kernel space,
2436		 * and then trusts it when the caller hands it back.  Aiee!
2437		 * Here, we give it the proc pointer of the per-adapter aif
2438		 * thread. It's only used as a sanity check in other calls.
2439		 */
2440		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2441		error = copyout(&cookie, arg, sizeof(cookie));
2442		break;
2443	case FSACTL_GET_NEXT_ADAPTER_FIB:
2444		arg = *(caddr_t*)arg;
2445	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2446		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2447		error = aac_getnext_aif(sc, arg);
2448		break;
2449	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2450	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2451		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2452		/* don't do anything here */
2453		break;
2454	case FSACTL_MINIPORT_REV_CHECK:
2455		arg = *(caddr_t*)arg;
2456	case FSACTL_LNX_MINIPORT_REV_CHECK:
2457		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2458		error = aac_rev_check(sc, arg);
2459		break;
2460	case FSACTL_QUERY_DISK:
2461		arg = *(caddr_t*)arg;
2462	case FSACTL_LNX_QUERY_DISK:
2463		debug(1, "FSACTL_QUERY_DISK");
2464		error = aac_query_disk(sc, arg);
2465			break;
2466	case FSACTL_DELETE_DISK:
2467	case FSACTL_LNX_DELETE_DISK:
2468		/*
2469		 * We don't trust the underland to tell us when to delete a
2470		 * container, rather we rely on an AIF coming from the
2471		 * controller
2472		 */
2473		error = 0;
2474		break;
2475	default:
2476		debug(1, "unsupported cmd 0x%lx\n", cmd);
2477		error = EINVAL;
2478		break;
2479	}
2480	return(error);
2481}
2482
2483static int
2484aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2485{
2486	struct aac_softc *sc;
2487	int revents;
2488
2489	sc = dev->si_drv1;
2490	revents = 0;
2491
2492	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2493	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2494		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2495			revents |= poll_events & (POLLIN | POLLRDNORM);
2496	}
2497	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2498
2499	if (revents == 0) {
2500		if (poll_events & (POLLIN | POLLRDNORM))
2501			selrecord(td, &sc->rcv_select);
2502	}
2503
2504	return (revents);
2505}
2506
2507/*
2508 * Send a FIB supplied from userspace
2509 */
2510static int
2511aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2512{
2513	struct aac_command *cm;
2514	int size, error;
2515
2516	debug_called(2);
2517
2518	cm = NULL;
2519
2520	/*
2521	 * Get a command
2522	 */
2523	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2524	if (aac_alloc_command(sc, &cm)) {
2525		error = EBUSY;
2526		goto out;
2527	}
2528
2529	/*
2530	 * Fetch the FIB header, then re-copy to get data as well.
2531	 */
2532	if ((error = copyin(ufib, cm->cm_fib,
2533			    sizeof(struct aac_fib_header))) != 0)
2534		goto out;
2535	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2536	if (size > sizeof(struct aac_fib)) {
2537		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2538			      size, sizeof(struct aac_fib));
2539		size = sizeof(struct aac_fib);
2540	}
2541	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2542		goto out;
2543	cm->cm_fib->Header.Size = size;
2544	cm->cm_timestamp = time_second;
2545
2546	/*
2547	 * Pass the FIB to the controller, wait for it to complete.
2548	 */
2549	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2550		device_printf(sc->aac_dev,
2551			      "aac_wait_command return %d\n", error);
2552		goto out;
2553	}
2554
2555	/*
2556	 * Copy the FIB and data back out to the caller.
2557	 */
2558	size = cm->cm_fib->Header.Size;
2559	if (size > sizeof(struct aac_fib)) {
2560		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2561			      size, sizeof(struct aac_fib));
2562		size = sizeof(struct aac_fib);
2563	}
2564	error = copyout(cm->cm_fib, ufib, size);
2565
2566out:
2567	if (cm != NULL) {
2568		aac_release_command(cm);
2569	}
2570
2571	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2572	return(error);
2573}
2574
2575/*
2576 * Handle an AIF sent to us by the controller; queue it for later reference.
2577 * If the queue fills up, then drop the older entries.
2578 */
2579static void
2580aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2581{
2582	struct aac_aif_command *aif;
2583	struct aac_container *co, *co_next;
2584	struct aac_mntinfo *mi;
2585	struct aac_mntinforesp *mir = NULL;
2586	u_int16_t rsize;
2587	int next, found;
2588	int count = 0, added = 0, i = 0;
2589
2590	debug_called(2);
2591
2592	aif = (struct aac_aif_command*)&fib->data[0];
2593	aac_print_aif(sc, aif);
2594
2595	/* Is it an event that we should care about? */
2596	switch (aif->command) {
2597	case AifCmdEventNotify:
2598		switch (aif->data.EN.type) {
2599		case AifEnAddContainer:
2600		case AifEnDeleteContainer:
2601			/*
2602			 * A container was added or deleted, but the message
2603			 * doesn't tell us anything else!  Re-enumerate the
2604			 * containers and sort things out.
2605			 */
2606			aac_alloc_sync_fib(sc, &fib, 0);
2607			mi = (struct aac_mntinfo *)&fib->data[0];
2608			do {
2609				/*
2610				 * Ask the controller for its containers one at
2611				 * a time.
2612				 * XXX What if the controller's list changes
2613				 * midway through this enumaration?
2614				 * XXX This should be done async.
2615				 */
2616				bzero(mi, sizeof(struct aac_mntinfo));
2617				mi->Command = VM_NameServe;
2618				mi->MntType = FT_FILESYS;
2619				mi->MntCount = i;
2620				rsize = sizeof(mir);
2621				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2622						 sizeof(struct aac_mntinfo))) {
2623					printf("Error probing container %d\n",
2624					      i);
2625					continue;
2626				}
2627				mir = (struct aac_mntinforesp *)&fib->data[0];
2628				/* XXX Need to check if count changed */
2629				count = mir->MntRespCount;
2630				/*
2631				 * Check the container against our list.
2632				 * co->co_found was already set to 0 in a
2633				 * previous run.
2634				 */
2635				if ((mir->Status == ST_OK) &&
2636				    (mir->MntTable[0].VolType != CT_NONE)) {
2637					found = 0;
2638					TAILQ_FOREACH(co,
2639						      &sc->aac_container_tqh,
2640						      co_link) {
2641						if (co->co_mntobj.ObjectId ==
2642						    mir->MntTable[0].ObjectId) {
2643							co->co_found = 1;
2644							found = 1;
2645							break;
2646						}
2647					}
2648					/*
2649					 * If the container matched, continue
2650					 * in the list.
2651					 */
2652					if (found) {
2653						i++;
2654						continue;
2655					}
2656
2657					/*
2658					 * This is a new container.  Do all the
2659					 * appropriate things to set it up.
2660					 */
2661					aac_add_container(sc, mir, 1);
2662					added = 1;
2663				}
2664				i++;
2665			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2666			aac_release_sync_fib(sc);
2667
2668			/*
2669			 * Go through our list of containers and see which ones
2670			 * were not marked 'found'.  Since the controller didn't
2671			 * list them they must have been deleted.  Do the
2672			 * appropriate steps to destroy the device.  Also reset
2673			 * the co->co_found field.
2674			 */
2675			co = TAILQ_FIRST(&sc->aac_container_tqh);
2676			while (co != NULL) {
2677				if (co->co_found == 0) {
2678					device_delete_child(sc->aac_dev,
2679							    co->co_disk);
2680					co_next = TAILQ_NEXT(co, co_link);
2681					AAC_LOCK_ACQUIRE(&sc->
2682							aac_container_lock);
2683					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2684						     co_link);
2685					AAC_LOCK_RELEASE(&sc->
2686							 aac_container_lock);
2687					FREE(co, M_AACBUF);
2688					co = co_next;
2689				} else {
2690					co->co_found = 0;
2691					co = TAILQ_NEXT(co, co_link);
2692				}
2693			}
2694
2695			/* Attach the newly created containers */
2696			if (added)
2697				bus_generic_attach(sc->aac_dev);
2698
2699			break;
2700
2701		default:
2702			break;
2703		}
2704
2705	default:
2706		break;
2707	}
2708
2709	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2710	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2711	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2712	if (next != sc->aac_aifq_tail) {
2713		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2714		sc->aac_aifq_head = next;
2715
2716		/* On the off chance that someone is sleeping for an aif... */
2717		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2718			wakeup(sc->aac_aifq);
2719		/* Wakeup any poll()ers */
2720		selwakeuppri(&sc->rcv_select, PRIBIO);
2721	}
2722	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2723
2724	return;
2725}
2726
2727/*
2728 * Return the Revision of the driver to userspace and check to see if the
2729 * userspace app is possibly compatible.  This is extremely bogus since
2730 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2731 * returning what the card reported.
2732 */
2733static int
2734aac_rev_check(struct aac_softc *sc, caddr_t udata)
2735{
2736	struct aac_rev_check rev_check;
2737	struct aac_rev_check_resp rev_check_resp;
2738	int error = 0;
2739
2740	debug_called(2);
2741
2742	/*
2743	 * Copyin the revision struct from userspace
2744	 */
2745	if ((error = copyin(udata, (caddr_t)&rev_check,
2746			sizeof(struct aac_rev_check))) != 0) {
2747		return error;
2748	}
2749
2750	debug(2, "Userland revision= %d\n",
2751	      rev_check.callingRevision.buildNumber);
2752
2753	/*
2754	 * Doctor up the response struct.
2755	 */
2756	rev_check_resp.possiblyCompatible = 1;
2757	rev_check_resp.adapterSWRevision.external.ul =
2758	    sc->aac_revision.external.ul;
2759	rev_check_resp.adapterSWRevision.buildNumber =
2760	    sc->aac_revision.buildNumber;
2761
2762	return(copyout((caddr_t)&rev_check_resp, udata,
2763			sizeof(struct aac_rev_check_resp)));
2764}
2765
2766/*
2767 * Pass the caller the next AIF in their queue
2768 */
2769static int
2770aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2771{
2772	struct get_adapter_fib_ioctl agf;
2773	int error;
2774
2775	debug_called(2);
2776
2777	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2778
2779		/*
2780		 * Check the magic number that we gave the caller.
2781		 */
2782		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2783			error = EFAULT;
2784		} else {
2785			error = aac_return_aif(sc, agf.AifFib);
2786			if ((error == EAGAIN) && (agf.Wait)) {
2787				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2788				while (error == EAGAIN) {
2789					error = tsleep(sc->aac_aifq, PRIBIO |
2790						       PCATCH, "aacaif", 0);
2791					if (error == 0)
2792						error = aac_return_aif(sc,
2793						    agf.AifFib);
2794				}
2795				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2796			}
2797		}
2798	}
2799	return(error);
2800}
2801
2802/*
2803 * Hand the next AIF off the top of the queue out to userspace.
2804 */
2805static int
2806aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2807{
2808	int next, error;
2809
2810	debug_called(2);
2811
2812	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2813	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2814		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2815		return (EAGAIN);
2816	}
2817
2818	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2819	error = copyout(&sc->aac_aifq[next], uptr,
2820			sizeof(struct aac_aif_command));
2821	if (error)
2822		device_printf(sc->aac_dev,
2823		    "aac_return_aif: copyout returned %d\n", error);
2824	else
2825		sc->aac_aifq_tail = next;
2826
2827	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2828	return(error);
2829}
2830
2831/*
2832 * Give the userland some information about the container.  The AAC arch
2833 * expects the driver to be a SCSI passthrough type driver, so it expects
2834 * the containers to have b:t:l numbers.  Fake it.
2835 */
2836static int
2837aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2838{
2839	struct aac_query_disk query_disk;
2840	struct aac_container *co;
2841	struct aac_disk	*disk;
2842	int error, id;
2843
2844	debug_called(2);
2845
2846	disk = NULL;
2847
2848	error = copyin(uptr, (caddr_t)&query_disk,
2849		       sizeof(struct aac_query_disk));
2850	if (error)
2851		return (error);
2852
2853	id = query_disk.ContainerNumber;
2854	if (id == -1)
2855		return (EINVAL);
2856
2857	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2858	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2859		if (co->co_mntobj.ObjectId == id)
2860			break;
2861		}
2862
2863	if (co == NULL) {
2864			query_disk.Valid = 0;
2865			query_disk.Locked = 0;
2866			query_disk.Deleted = 1;		/* XXX is this right? */
2867	} else {
2868		disk = device_get_softc(co->co_disk);
2869		query_disk.Valid = 1;
2870		query_disk.Locked =
2871		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2872		query_disk.Deleted = 0;
2873		query_disk.Bus = device_get_unit(sc->aac_dev);
2874		query_disk.Target = disk->unit;
2875		query_disk.Lun = 0;
2876		query_disk.UnMapped = 0;
2877		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2878		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2879	}
2880	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2881
2882	error = copyout((caddr_t)&query_disk, uptr,
2883			sizeof(struct aac_query_disk));
2884
2885	return (error);
2886}
2887
2888static void
2889aac_get_bus_info(struct aac_softc *sc)
2890{
2891	struct aac_fib *fib;
2892	struct aac_ctcfg *c_cmd;
2893	struct aac_ctcfg_resp *c_resp;
2894	struct aac_vmioctl *vmi;
2895	struct aac_vmi_businf_resp *vmi_resp;
2896	struct aac_getbusinf businfo;
2897	struct aac_sim *caminf;
2898	device_t child;
2899	int i, found, error;
2900
2901	aac_alloc_sync_fib(sc, &fib, 0);
2902	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2903	bzero(c_cmd, sizeof(struct aac_ctcfg));
2904
2905	c_cmd->Command = VM_ContainerConfig;
2906	c_cmd->cmd = CT_GET_SCSI_METHOD;
2907	c_cmd->param = 0;
2908
2909	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2910	    sizeof(struct aac_ctcfg));
2911	if (error) {
2912		device_printf(sc->aac_dev, "Error %d sending "
2913		    "VM_ContainerConfig command\n", error);
2914		aac_release_sync_fib(sc);
2915		return;
2916	}
2917
2918	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2919	if (c_resp->Status != ST_OK) {
2920		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2921		    c_resp->Status);
2922		aac_release_sync_fib(sc);
2923		return;
2924	}
2925
2926	sc->scsi_method_id = c_resp->param;
2927
2928	vmi = (struct aac_vmioctl *)&fib->data[0];
2929	bzero(vmi, sizeof(struct aac_vmioctl));
2930
2931	vmi->Command = VM_Ioctl;
2932	vmi->ObjType = FT_DRIVE;
2933	vmi->MethId = sc->scsi_method_id;
2934	vmi->ObjId = 0;
2935	vmi->IoctlCmd = GetBusInfo;
2936
2937	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2938	    sizeof(struct aac_vmioctl));
2939	if (error) {
2940		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2941		    error);
2942		aac_release_sync_fib(sc);
2943		return;
2944	}
2945
2946	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2947	if (vmi_resp->Status != ST_OK) {
2948		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2949		    vmi_resp->Status);
2950		aac_release_sync_fib(sc);
2951		return;
2952	}
2953
2954	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2955	aac_release_sync_fib(sc);
2956
2957	found = 0;
2958	for (i = 0; i < businfo.BusCount; i++) {
2959		if (businfo.BusValid[i] != AAC_BUS_VALID)
2960			continue;
2961
2962		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2963		    M_AACBUF, M_NOWAIT | M_ZERO);
2964		if (caminf == NULL)
2965			continue;
2966
2967		child = device_add_child(sc->aac_dev, "aacp", -1);
2968		if (child == NULL) {
2969			device_printf(sc->aac_dev, "device_add_child failed\n");
2970			continue;
2971		}
2972
2973		caminf->TargetsPerBus = businfo.TargetsPerBus;
2974		caminf->BusNumber = i;
2975		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2976		caminf->aac_sc = sc;
2977		caminf->sim_dev = child;
2978
2979		device_set_ivars(child, caminf);
2980		device_set_desc(child, "SCSI Passthrough Bus");
2981		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2982
2983		found = 1;
2984	}
2985
2986	if (found)
2987		bus_generic_attach(sc->aac_dev);
2988
2989	return;
2990}
2991