aac.c revision 119659
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 119659 2003-09-01 20:44:18Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static int	aac_map_command(struct aac_command *cm);
72static void	aac_complete(void *context, int pending);
73static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74static void	aac_bio_complete(struct aac_command *cm);
75static int	aac_wait_command(struct aac_command *cm, int timeout);
76static void	aac_command_thread(struct aac_softc *sc);
77
78/* Command Buffer Management */
79static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80				   int nseg, int error);
81static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82				       int nseg, int error);
83static int	aac_alloc_commands(struct aac_softc *sc);
84static void	aac_free_commands(struct aac_softc *sc);
85static void	aac_unmap_command(struct aac_command *cm);
86
87/* Hardware Interface */
88static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89			       int error);
90static int	aac_check_firmware(struct aac_softc *sc);
91static int	aac_init(struct aac_softc *sc);
92static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94				 u_int32_t arg3, u_int32_t *sp);
95static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96				struct aac_command *cm);
97static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98				u_int32_t *fib_size, struct aac_fib **fib_addr);
99static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100				     struct aac_fib *fib);
101
102/* Falcon/PPC interface */
103static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105static int	aac_fa_get_istatus(struct aac_softc *sc);
106static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108				   u_int32_t arg0, u_int32_t arg1,
109				   u_int32_t arg2, u_int32_t arg3);
110static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112
113struct aac_interface aac_fa_interface = {
114	aac_fa_get_fwstatus,
115	aac_fa_qnotify,
116	aac_fa_get_istatus,
117	aac_fa_clear_istatus,
118	aac_fa_set_mailbox,
119	aac_fa_get_mailbox,
120	aac_fa_set_interrupts
121};
122
123/* StrongARM interface */
124static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126static int	aac_sa_get_istatus(struct aac_softc *sc);
127static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129				   u_int32_t arg0, u_int32_t arg1,
130				   u_int32_t arg2, u_int32_t arg3);
131static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133
134struct aac_interface aac_sa_interface = {
135	aac_sa_get_fwstatus,
136	aac_sa_qnotify,
137	aac_sa_get_istatus,
138	aac_sa_clear_istatus,
139	aac_sa_set_mailbox,
140	aac_sa_get_mailbox,
141	aac_sa_set_interrupts
142};
143
144/* i960Rx interface */
145static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147static int	aac_rx_get_istatus(struct aac_softc *sc);
148static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150				   u_int32_t arg0, u_int32_t arg1,
151				   u_int32_t arg2, u_int32_t arg3);
152static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154
155struct aac_interface aac_rx_interface = {
156	aac_rx_get_fwstatus,
157	aac_rx_qnotify,
158	aac_rx_get_istatus,
159	aac_rx_clear_istatus,
160	aac_rx_set_mailbox,
161	aac_rx_get_mailbox,
162	aac_rx_set_interrupts
163};
164
165/* Debugging and Diagnostics */
166static void	aac_describe_controller(struct aac_softc *sc);
167static char	*aac_describe_code(struct aac_code_lookup *table,
168				   u_int32_t code);
169
170/* Management Interface */
171static d_open_t		aac_open;
172static d_close_t	aac_close;
173static d_ioctl_t	aac_ioctl;
174static d_poll_t		aac_poll;
175static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
176static void		aac_handle_aif(struct aac_softc *sc,
177					   struct aac_fib *fib);
178static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
179static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
180static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
181static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182
183#define AAC_CDEV_MAJOR	150
184
185static struct cdevsw aac_cdevsw = {
186	.d_open =	aac_open,
187	.d_close =	aac_close,
188	.d_ioctl =	aac_ioctl,
189	.d_poll =	aac_poll,
190	.d_name =	"aac",
191	.d_maj =	AAC_CDEV_MAJOR,
192};
193
194MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
195
196/* sysctl node */
197SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
198
199/*
200 * Device Interface
201 */
202
203/*
204 * Initialise the controller and softc
205 */
206int
207aac_attach(struct aac_softc *sc)
208{
209	int error, unit;
210
211	debug_called(1);
212
213	/*
214	 * Initialise per-controller queues.
215	 */
216	aac_initq_free(sc);
217	aac_initq_ready(sc);
218	aac_initq_busy(sc);
219	aac_initq_bio(sc);
220
221	/*
222	 * Initialise command-completion task.
223	 */
224	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
225
226	/* disable interrupts before we enable anything */
227	AAC_MASK_INTERRUPTS(sc);
228
229	/* mark controller as suspended until we get ourselves organised */
230	sc->aac_state |= AAC_STATE_SUSPEND;
231
232	/*
233	 * Check that the firmware on the card is supported.
234	 */
235	if ((error = aac_check_firmware(sc)) != 0)
236		return(error);
237
238	/*
239	 * Initialize locks
240	 */
241	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
242	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
243	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
244	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
245	TAILQ_INIT(&sc->aac_container_tqh);
246
247
248	/*
249	 * Initialise the adapter.
250	 */
251	if ((error = aac_init(sc)) != 0)
252		return(error);
253
254	/*
255	 * Print a little information about the controller.
256	 */
257	aac_describe_controller(sc);
258
259	/*
260	 * Register to probe our containers later.
261	 */
262	sc->aac_ich.ich_func = aac_startup;
263	sc->aac_ich.ich_arg = sc;
264	if (config_intrhook_establish(&sc->aac_ich) != 0) {
265		device_printf(sc->aac_dev,
266			      "can't establish configuration hook\n");
267		return(ENXIO);
268	}
269
270	/*
271	 * Make the control device.
272	 */
273	unit = device_get_unit(sc->aac_dev);
274	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
275				 0640, "aac%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
277	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
278	sc->aac_dev_t->si_drv1 = sc;
279
280	/* Create the AIF thread */
281	if (kthread_create((void(*)(void *))aac_command_thread, sc,
282			   &sc->aifthread, 0, 0, "aac%daif", unit))
283		panic("Could not create AIF thread\n");
284
285	/* Register the shutdown method to only be called post-dump */
286	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
287	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
288		device_printf(sc->aac_dev,
289			      "shutdown event registration failed\n");
290
291	/* Register with CAM for the non-DASD devices */
292	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
293		TAILQ_INIT(&sc->aac_sim_tqh);
294		aac_get_bus_info(sc);
295	}
296
297	return(0);
298}
299
300/*
301 * Probe for containers, create disks.
302 */
303static void
304aac_startup(void *arg)
305{
306	struct aac_softc *sc;
307	struct aac_fib *fib;
308	struct aac_mntinfo *mi;
309	struct aac_mntinforesp *mir = NULL;
310	int count = 0, i = 0;
311
312	debug_called(1);
313
314	sc = (struct aac_softc *)arg;
315
316	/* disconnect ourselves from the intrhook chain */
317	config_intrhook_disestablish(&sc->aac_ich);
318
319	aac_alloc_sync_fib(sc, &fib, 0);
320	mi = (struct aac_mntinfo *)&fib->data[0];
321
322	/* loop over possible containers */
323	do {
324		/* request information on this container */
325		bzero(mi, sizeof(struct aac_mntinfo));
326		mi->Command = VM_NameServe;
327		mi->MntType = FT_FILESYS;
328		mi->MntCount = i;
329		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
330				 sizeof(struct aac_mntinfo))) {
331			printf("error probing container %d", i);
332			continue;
333		}
334
335		mir = (struct aac_mntinforesp *)&fib->data[0];
336		/* XXX Need to check if count changed */
337		count = mir->MntRespCount;
338		aac_add_container(sc, mir, 0);
339		i++;
340	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
341
342	aac_release_sync_fib(sc);
343
344	/* poke the bus to actually attach the child devices */
345	if (bus_generic_attach(sc->aac_dev))
346		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
347
348	/* mark the controller up */
349	sc->aac_state &= ~AAC_STATE_SUSPEND;
350
351	/* enable interrupts now */
352	AAC_UNMASK_INTERRUPTS(sc);
353}
354
355/*
356 * Create a device to respresent a new container
357 */
358static void
359aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
360{
361	struct aac_container *co;
362	device_t child;
363
364	/*
365	 * Check container volume type for validity.  Note that many of
366	 * the possible types may never show up.
367	 */
368	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
369		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
370		       M_NOWAIT | M_ZERO);
371		if (co == NULL)
372			panic("Out of memory?!\n");
373		debug(1, "id %x  name '%.16s'  size %u  type %d",
374		      mir->MntTable[0].ObjectId,
375		      mir->MntTable[0].FileSystemName,
376		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
377
378		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
379			device_printf(sc->aac_dev, "device_add_child failed\n");
380		else
381			device_set_ivars(child, co);
382		device_set_desc(child, aac_describe_code(aac_container_types,
383				mir->MntTable[0].VolType));
384		co->co_disk = child;
385		co->co_found = f;
386		bcopy(&mir->MntTable[0], &co->co_mntobj,
387		      sizeof(struct aac_mntobj));
388		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
389		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
390		AAC_LOCK_RELEASE(&sc->aac_container_lock);
391	}
392}
393
394/*
395 * Free all of the resources associated with (sc)
396 *
397 * Should not be called if the controller is active.
398 */
399void
400aac_free(struct aac_softc *sc)
401{
402
403	debug_called(1);
404
405	/* remove the control device */
406	if (sc->aac_dev_t != NULL)
407		destroy_dev(sc->aac_dev_t);
408
409	/* throw away any FIB buffers, discard the FIB DMA tag */
410	aac_free_commands(sc);
411	if (sc->aac_fib_dmat)
412		bus_dma_tag_destroy(sc->aac_fib_dmat);
413
414	free(sc->aac_commands, M_AACBUF);
415
416	/* destroy the common area */
417	if (sc->aac_common) {
418		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
419		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
420				sc->aac_common_dmamap);
421	}
422	if (sc->aac_common_dmat)
423		bus_dma_tag_destroy(sc->aac_common_dmat);
424
425	/* disconnect the interrupt handler */
426	if (sc->aac_intr)
427		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
428	if (sc->aac_irq != NULL)
429		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
430				     sc->aac_irq);
431
432	/* destroy data-transfer DMA tag */
433	if (sc->aac_buffer_dmat)
434		bus_dma_tag_destroy(sc->aac_buffer_dmat);
435
436	/* destroy the parent DMA tag */
437	if (sc->aac_parent_dmat)
438		bus_dma_tag_destroy(sc->aac_parent_dmat);
439
440	/* release the register window mapping */
441	if (sc->aac_regs_resource != NULL)
442		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
443				     sc->aac_regs_rid, sc->aac_regs_resource);
444}
445
446/*
447 * Disconnect from the controller completely, in preparation for unload.
448 */
449int
450aac_detach(device_t dev)
451{
452	struct aac_softc *sc;
453	struct aac_container *co;
454	struct aac_sim	*sim;
455	int error;
456
457	debug_called(1);
458
459	sc = device_get_softc(dev);
460
461	if (sc->aac_state & AAC_STATE_OPEN)
462		return(EBUSY);
463
464	/* Remove the child containers */
465	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
466		error = device_delete_child(dev, co->co_disk);
467		if (error)
468			return (error);
469		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
470		free(co, M_AACBUF);
471	}
472
473	/* Remove the CAM SIMs */
474	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
475		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
476		error = device_delete_child(dev, sim->sim_dev);
477		if (error)
478			return (error);
479		free(sim, M_AACBUF);
480	}
481
482	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
483		sc->aifflags |= AAC_AIFFLAGS_EXIT;
484		wakeup(sc->aifthread);
485		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
486	}
487
488	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
489		panic("Cannot shutdown AIF thread\n");
490
491	if ((error = aac_shutdown(dev)))
492		return(error);
493
494	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
495
496	aac_free(sc);
497
498	return(0);
499}
500
501/*
502 * Bring the controller down to a dormant state and detach all child devices.
503 *
504 * This function is called before detach or system shutdown.
505 *
506 * Note that we can assume that the bioq on the controller is empty, as we won't
507 * allow shutdown if any device is open.
508 */
509int
510aac_shutdown(device_t dev)
511{
512	struct aac_softc *sc;
513	struct aac_fib *fib;
514	struct aac_close_command *cc;
515
516	debug_called(1);
517
518	sc = device_get_softc(dev);
519
520	sc->aac_state |= AAC_STATE_SUSPEND;
521
522	/*
523	 * Send a Container shutdown followed by a HostShutdown FIB to the
524	 * controller to convince it that we don't want to talk to it anymore.
525	 * We've been closed and all I/O completed already
526	 */
527	device_printf(sc->aac_dev, "shutting down controller...");
528
529	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
530	cc = (struct aac_close_command *)&fib->data[0];
531
532	bzero(cc, sizeof(struct aac_close_command));
533	cc->Command = VM_CloseAll;
534	cc->ContainerId = 0xffffffff;
535	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
536	    sizeof(struct aac_close_command)))
537		printf("FAILED.\n");
538	else
539		printf("done\n");
540#if 0
541	else {
542		fib->data[0] = 0;
543		/*
544		 * XXX Issuing this command to the controller makes it shut down
545		 * but also keeps it from coming back up without a reset of the
546		 * PCI bus.  This is not desirable if you are just unloading the
547		 * driver module with the intent to reload it later.
548		 */
549		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
550		    fib, 1)) {
551			printf("FAILED.\n");
552		} else {
553			printf("done.\n");
554		}
555	}
556#endif
557
558	AAC_MASK_INTERRUPTS(sc);
559
560	return(0);
561}
562
563/*
564 * Bring the controller to a quiescent state, ready for system suspend.
565 */
566int
567aac_suspend(device_t dev)
568{
569	struct aac_softc *sc;
570
571	debug_called(1);
572
573	sc = device_get_softc(dev);
574
575	sc->aac_state |= AAC_STATE_SUSPEND;
576
577	AAC_MASK_INTERRUPTS(sc);
578	return(0);
579}
580
581/*
582 * Bring the controller back to a state ready for operation.
583 */
584int
585aac_resume(device_t dev)
586{
587	struct aac_softc *sc;
588
589	debug_called(1);
590
591	sc = device_get_softc(dev);
592
593	sc->aac_state &= ~AAC_STATE_SUSPEND;
594	AAC_UNMASK_INTERRUPTS(sc);
595	return(0);
596}
597
598/*
599 * Take an interrupt.
600 */
601void
602aac_intr(void *arg)
603{
604	struct aac_softc *sc;
605	u_int32_t *resp_queue;
606	u_int16_t reason;
607
608	debug_called(2);
609
610	sc = (struct aac_softc *)arg;
611
612	/*
613	 * Optimize the common case of adapter response interrupts.
614	 * We must read from the card prior to processing the responses
615	 * to ensure the clear is flushed prior to accessing the queues.
616	 * Reading the queues from local memory might save us a PCI read.
617	 */
618	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
619	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
620		reason = AAC_DB_RESPONSE_READY;
621	else
622		reason = AAC_GET_ISTATUS(sc);
623	AAC_CLEAR_ISTATUS(sc, reason);
624	(void)AAC_GET_ISTATUS(sc);
625
626	/* It's not ok to return here because of races with the previous step */
627	if (reason & AAC_DB_RESPONSE_READY)
628		/* handle completion processing */
629		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
630
631	/* controller wants to talk to the log */
632	if (reason & AAC_DB_PRINTF) {
633		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
634			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
635		} else
636			aac_print_printf(sc);
637	}
638
639	/* controller has a message for us? */
640	if (reason & AAC_DB_COMMAND_READY) {
641		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
642			sc->aifflags |= AAC_AIFFLAGS_AIF;
643		} else {
644			/*
645			 * XXX If the kthread is dead and we're at this point,
646			 * there are bigger problems than just figuring out
647			 * what to do with an AIF.
648			 */
649		}
650
651	}
652
653	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
654		/* XXX Should this be done with cv_signal? */
655		wakeup(sc->aifthread);
656}
657
658/*
659 * Command Processing
660 */
661
662/*
663 * Start as much queued I/O as possible on the controller
664 */
665void
666aac_startio(struct aac_softc *sc)
667{
668	struct aac_command *cm;
669
670	debug_called(2);
671
672	if (sc->flags & AAC_QUEUE_FRZN)
673		return;
674
675	for (;;) {
676		/*
677		 * Try to get a command that's been put off for lack of
678		 * resources
679		 */
680		cm = aac_dequeue_ready(sc);
681
682		/*
683		 * Try to build a command off the bio queue (ignore error
684		 * return)
685		 */
686		if (cm == NULL)
687			aac_bio_command(sc, &cm);
688
689		/* nothing to do? */
690		if (cm == NULL)
691			break;
692
693		/* try to give the command to the controller */
694		if (aac_map_command(cm) == EBUSY) {
695			/* put it on the ready queue for later */
696			aac_requeue_ready(cm);
697			break;
698		}
699	}
700}
701
702/*
703 * Deliver a command to the controller; allocate controller resources at the
704 * last moment when possible.
705 */
706static int
707aac_map_command(struct aac_command *cm)
708{
709	struct aac_softc *sc;
710	int error;
711
712	debug_called(2);
713
714	sc = cm->cm_sc;
715	error = 0;
716
717	/* don't map more than once */
718	if (cm->cm_flags & AAC_CMD_MAPPED)
719		return (0);
720
721	if (cm->cm_datalen != 0) {
722		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
723					cm->cm_data, cm->cm_datalen,
724					aac_map_command_sg, cm, 0);
725		if (error == EINPROGRESS) {
726			debug(1, "freezing queue\n");
727			sc->flags |= AAC_QUEUE_FRZN;
728			error = 0;
729		}
730	} else {
731		aac_map_command_sg(cm, NULL, 0, 0);
732	}
733	return (error);
734}
735
736/*
737 * Handle notification of one or more FIBs coming from the controller.
738 */
739static void
740aac_command_thread(struct aac_softc *sc)
741{
742	struct aac_fib *fib;
743	u_int32_t fib_size;
744	int size;
745
746	debug_called(2);
747
748	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749
750	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
752			tsleep(sc->aifthread, PRIBIO, "aifthd",
753			       AAC_PERIODIC_INTERVAL * hz);
754
755		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
756			aac_timeout(sc);
757
758		/* Check the hardware printf message buffer */
759		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
760			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
761			aac_print_printf(sc);
762		}
763
764		/* See if any FIBs need to be allocated */
765		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
766			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
767			aac_alloc_commands(sc);
768			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
769			AAC_LOCK_RELEASE(&sc->aac_io_lock);
770		}
771
772		/* While we're here, check to see if any commands are stuck */
773		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
774			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
775					    &fib_size, &fib)) {
776				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
777				break;	/* nothing to do */
778			}
779
780			AAC_PRINT_FIB(sc, fib);
781
782			switch (fib->Header.Command) {
783			case AifRequest:
784				aac_handle_aif(sc, fib);
785				break;
786			default:
787				device_printf(sc->aac_dev, "unknown command "
788					      "from controller\n");
789				break;
790			}
791
792			if ((fib->Header.XferState == 0) ||
793			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
794				break;
795
796			/* Return the AIF to the controller. */
797			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
798				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
799				*(AAC_FSAStatus*)fib->data = ST_OK;
800
801				/* XXX Compute the Size field? */
802				size = fib->Header.Size;
803				if (size > sizeof(struct aac_fib)) {
804					size = sizeof(struct aac_fib);
805					fib->Header.Size = size;
806				}
807				/*
808				 * Since we did not generate this command, it
809				 * cannot go through the normal
810				 * enqueue->startio chain.
811				 */
812				aac_enqueue_response(sc,
813						     AAC_ADAP_NORM_RESP_QUEUE,
814						     fib);
815			}
816		}
817	}
818	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
819	wakeup(sc->aac_dev);
820
821	mtx_lock(&Giant);
822	kthread_exit(0);
823}
824
825/*
826 * Process completed commands.
827 */
828static void
829aac_complete(void *context, int pending)
830{
831	struct aac_softc *sc;
832	struct aac_command *cm;
833	struct aac_fib *fib;
834	u_int32_t fib_size;
835
836	debug_called(2);
837
838	sc = (struct aac_softc *)context;
839
840	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
841
842	/* pull completed commands off the queue */
843	for (;;) {
844		/* look for completed FIBs on our queue */
845		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
846				    &fib))
847			break;	/* nothing to do */
848
849		/* get the command, unmap and queue for later processing */
850		cm = sc->aac_commands + fib->Header.SenderData;
851		if (cm == NULL) {
852			AAC_PRINT_FIB(sc, fib);
853			break;
854		}
855
856		aac_remove_busy(cm);
857		aac_unmap_command(cm);		/* XXX defer? */
858		cm->cm_flags |= AAC_CMD_COMPLETED;
859
860		/* is there a completion handler? */
861		if (cm->cm_complete != NULL) {
862			cm->cm_complete(cm);
863		} else {
864			/* assume that someone is sleeping on this command */
865			wakeup(cm);
866		}
867	}
868
869	/* see if we can start some more I/O */
870	sc->flags &= ~AAC_QUEUE_FRZN;
871	aac_startio(sc);
872
873	AAC_LOCK_RELEASE(&sc->aac_io_lock);
874}
875
876/*
877 * Handle a bio submitted from a disk device.
878 */
879void
880aac_submit_bio(struct bio *bp)
881{
882	struct aac_disk *ad;
883	struct aac_softc *sc;
884
885	debug_called(2);
886
887	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
888	sc = ad->ad_controller;
889
890	/* queue the BIO and try to get some work done */
891	aac_enqueue_bio(sc, bp);
892	aac_startio(sc);
893}
894
895/*
896 * Get a bio and build a command to go with it.
897 */
898static int
899aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
900{
901	struct aac_command *cm;
902	struct aac_fib *fib;
903	struct aac_disk *ad;
904	struct bio *bp;
905
906	debug_called(2);
907
908	/* get the resources we will need */
909	cm = NULL;
910	if ((bp = aac_dequeue_bio(sc)) == NULL)
911		goto fail;
912	if (aac_alloc_command(sc, &cm))	/* get a command */
913		goto fail;
914
915	/* fill out the command */
916	cm->cm_data = (void *)bp->bio_data;
917	cm->cm_datalen = bp->bio_bcount;
918	cm->cm_complete = aac_bio_complete;
919	cm->cm_private = bp;
920	cm->cm_timestamp = time_second;
921	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
922
923	/* build the FIB */
924	fib = cm->cm_fib;
925	fib->Header.Size = sizeof(struct aac_fib_header);
926	fib->Header.XferState =
927		AAC_FIBSTATE_HOSTOWNED   |
928		AAC_FIBSTATE_INITIALISED |
929		AAC_FIBSTATE_EMPTY	 |
930		AAC_FIBSTATE_FROMHOST	 |
931		AAC_FIBSTATE_REXPECTED   |
932		AAC_FIBSTATE_NORM	 |
933		AAC_FIBSTATE_ASYNC	 |
934		AAC_FIBSTATE_FAST_RESPONSE;
935
936	/* build the read/write request */
937	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
938
939	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
940		fib->Header.Command = ContainerCommand;
941		if (bp->bio_cmd == BIO_READ) {
942			struct aac_blockread *br;
943			br = (struct aac_blockread *)&fib->data[0];
944			br->Command = VM_CtBlockRead;
945			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946			br->BlockNumber = bp->bio_pblkno;
947			br->ByteCount = bp->bio_bcount;
948			fib->Header.Size += sizeof(struct aac_blockread);
949			cm->cm_sgtable = &br->SgMap;
950			cm->cm_flags |= AAC_CMD_DATAIN;
951		} else {
952			struct aac_blockwrite *bw;
953			bw = (struct aac_blockwrite *)&fib->data[0];
954			bw->Command = VM_CtBlockWrite;
955			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
956			bw->BlockNumber = bp->bio_pblkno;
957			bw->ByteCount = bp->bio_bcount;
958			bw->Stable = CUNSTABLE;
959			fib->Header.Size += sizeof(struct aac_blockwrite);
960			cm->cm_flags |= AAC_CMD_DATAOUT;
961			cm->cm_sgtable = &bw->SgMap;
962		}
963	} else {
964		fib->Header.Command = ContainerCommand64;
965		if (bp->bio_cmd == BIO_READ) {
966			struct aac_blockread64 *br;
967			br = (struct aac_blockread64 *)&fib->data[0];
968			br->Command = VM_CtHostRead64;
969			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
970			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
971			br->BlockNumber = bp->bio_pblkno;
972			br->Pad = 0;
973			br->Flags = 0;
974			fib->Header.Size += sizeof(struct aac_blockread64);
975			cm->cm_flags |= AAC_CMD_DATAOUT;
976			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
977		} else {
978			struct aac_blockwrite64 *bw;
979			bw = (struct aac_blockwrite64 *)&fib->data[0];
980			bw->Command = VM_CtHostWrite64;
981			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
982			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
983			bw->BlockNumber = bp->bio_pblkno;
984			bw->Pad = 0;
985			bw->Flags = 0;
986			fib->Header.Size += sizeof(struct aac_blockwrite64);
987			cm->cm_flags |= AAC_CMD_DATAIN;
988			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
989		}
990	}
991
992	*cmp = cm;
993	return(0);
994
995fail:
996	if (bp != NULL)
997		aac_enqueue_bio(sc, bp);
998	if (cm != NULL)
999		aac_release_command(cm);
1000	return(ENOMEM);
1001}
1002
1003/*
1004 * Handle a bio-instigated command that has been completed.
1005 */
1006static void
1007aac_bio_complete(struct aac_command *cm)
1008{
1009	struct aac_blockread_response *brr;
1010	struct aac_blockwrite_response *bwr;
1011	struct bio *bp;
1012	AAC_FSAStatus status;
1013
1014	/* fetch relevant status and then release the command */
1015	bp = (struct bio *)cm->cm_private;
1016	if (bp->bio_cmd == BIO_READ) {
1017		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1018		status = brr->Status;
1019	} else {
1020		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1021		status = bwr->Status;
1022	}
1023	aac_release_command(cm);
1024
1025	/* fix up the bio based on status */
1026	if (status == ST_OK) {
1027		bp->bio_resid = 0;
1028	} else {
1029		bp->bio_error = EIO;
1030		bp->bio_flags |= BIO_ERROR;
1031		/* pass an error string out to the disk layer */
1032		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1033						    status);
1034	}
1035	aac_biodone(bp);
1036}
1037
1038/*
1039 * Submit a command to the controller, return when it completes.
1040 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1041 *     be stuck here forever.  At the same time, signals are not caught
1042 *     because there is a risk that a signal could wakeup the tsleep before
1043 *     the card has a chance to complete the command.  The passed in timeout
1044 *     is ignored for the same reason.  Since there is no way to cancel a
1045 *     command in progress, we should probably create a 'dead' queue where
1046 *     commands go that have been interrupted/timed-out/etc, that keeps them
1047 *     out of the free pool.  That way, if the card is just slow, it won't
1048 *     spam the memory of a command that has been recycled.
1049 */
1050static int
1051aac_wait_command(struct aac_command *cm, int timeout)
1052{
1053	struct aac_softc *sc;
1054	int error = 0;
1055
1056	debug_called(2);
1057
1058	sc = cm->cm_sc;
1059
1060	/* Put the command on the ready queue and get things going */
1061	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1062	aac_enqueue_ready(cm);
1063	aac_startio(sc);
1064	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1065		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1066	}
1067	return(error);
1068}
1069
1070/*
1071 *Command Buffer Management
1072 */
1073
1074/*
1075 * Allocate a command.
1076 */
1077int
1078aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1079{
1080	struct aac_command *cm;
1081
1082	debug_called(3);
1083
1084	if ((cm = aac_dequeue_free(sc)) == NULL) {
1085		if (sc->total_fibs < sc->aac_max_fibs) {
1086			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1087			wakeup(sc->aifthread);
1088		}
1089		return (EBUSY);
1090	}
1091
1092	*cmp = cm;
1093	return(0);
1094}
1095
1096/*
1097 * Release a command back to the freelist.
1098 */
1099void
1100aac_release_command(struct aac_command *cm)
1101{
1102	debug_called(3);
1103
1104	/* (re)initialise the command/FIB */
1105	cm->cm_sgtable = NULL;
1106	cm->cm_flags = 0;
1107	cm->cm_complete = NULL;
1108	cm->cm_private = NULL;
1109	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1110	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1111	cm->cm_fib->Header.Flags = 0;
1112	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1113
1114	/*
1115	 * These are duplicated in aac_start to cover the case where an
1116	 * intermediate stage may have destroyed them.  They're left
1117	 * initialised here for debugging purposes only.
1118	 */
1119	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1120	cm->cm_fib->Header.SenderData = 0;
1121
1122	aac_enqueue_free(cm);
1123}
1124
1125/*
1126 * Map helper for command/FIB allocation.
1127 */
1128static void
1129aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1130{
1131	uint32_t	*fibphys;
1132
1133	fibphys = (uint32_t *)arg;
1134
1135	debug_called(3);
1136
1137	*fibphys = segs[0].ds_addr;
1138}
1139
1140/*
1141 * Allocate and initialise commands/FIBs for this adapter.
1142 */
1143static int
1144aac_alloc_commands(struct aac_softc *sc)
1145{
1146	struct aac_command *cm;
1147	struct aac_fibmap *fm;
1148	uint32_t fibphys;
1149	int i, error;
1150
1151	debug_called(2);
1152
1153	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1154		return (ENOMEM);
1155
1156	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1157	if (fm == NULL)
1158		return (ENOMEM);
1159
1160	/* allocate the FIBs in DMAable memory and load them */
1161	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1162			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1163		device_printf(sc->aac_dev,
1164			      "Not enough contiguous memory available.\n");
1165		free(fm, M_AACBUF);
1166		return (ENOMEM);
1167	}
1168
1169	/* Ignore errors since this doesn't bounce */
1170	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1171			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1172			      aac_map_command_helper, &fibphys, 0);
1173
1174	/* initialise constant fields in the command structure */
1175	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1176	for (i = 0; i < AAC_FIB_COUNT; i++) {
1177		cm = sc->aac_commands + sc->total_fibs;
1178		fm->aac_commands = cm;
1179		cm->cm_sc = sc;
1180		cm->cm_fib = fm->aac_fibs + i;
1181		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1182		cm->cm_index = sc->total_fibs;
1183
1184		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1185					       &cm->cm_datamap)) == 0)
1186			aac_release_command(cm);
1187		else
1188			break;
1189		sc->total_fibs++;
1190	}
1191
1192	if (i > 0) {
1193		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1194		debug(1, "total_fibs= %d\n", sc->total_fibs);
1195		return (0);
1196	}
1197
1198	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1199	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1200	free(fm, M_AACBUF);
1201	return (ENOMEM);
1202}
1203
1204/*
1205 * Free FIBs owned by this adapter.
1206 */
1207static void
1208aac_free_commands(struct aac_softc *sc)
1209{
1210	struct aac_fibmap *fm;
1211	struct aac_command *cm;
1212	int i;
1213
1214	debug_called(1);
1215
1216	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1217
1218		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1219		/*
1220		 * We check against total_fibs to handle partially
1221		 * allocated blocks.
1222		 */
1223		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1224			cm = fm->aac_commands + i;
1225			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1226		}
1227		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1228		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1229		free(fm, M_AACBUF);
1230	}
1231}
1232
1233/*
1234 * Command-mapping helper function - populate this command's s/g table.
1235 */
1236static void
1237aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1238{
1239	struct aac_softc *sc;
1240	struct aac_command *cm;
1241	struct aac_fib *fib;
1242	int i;
1243
1244	debug_called(3);
1245
1246	cm = (struct aac_command *)arg;
1247	sc = cm->cm_sc;
1248	fib = cm->cm_fib;
1249
1250	/* copy into the FIB */
1251	if (cm->cm_sgtable != NULL) {
1252		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1253			struct aac_sg_table *sg;
1254			sg = cm->cm_sgtable;
1255			sg->SgCount = nseg;
1256			for (i = 0; i < nseg; i++) {
1257				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1258				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1259			}
1260			/* update the FIB size for the s/g count */
1261			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1262		} else {
1263			struct aac_sg_table64 *sg;
1264			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1265			sg->SgCount = nseg;
1266			for (i = 0; i < nseg; i++) {
1267				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1268				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1269			}
1270			/* update the FIB size for the s/g count */
1271			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1272		}
1273	}
1274
1275	/* Fix up the address values in the FIB.  Use the command array index
1276	 * instead of a pointer since these fields are only 32 bits.  Shift
1277	 * the SenderFibAddress over to make room for the fast response bit.
1278	 */
1279	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1280	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1281
1282	/* save a pointer to the command for speedy reverse-lookup */
1283	cm->cm_fib->Header.SenderData = cm->cm_index;
1284
1285	if (cm->cm_flags & AAC_CMD_DATAIN)
1286		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1287				BUS_DMASYNC_PREREAD);
1288	if (cm->cm_flags & AAC_CMD_DATAOUT)
1289		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1290				BUS_DMASYNC_PREWRITE);
1291	cm->cm_flags |= AAC_CMD_MAPPED;
1292
1293	/* put the FIB on the outbound queue */
1294	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY)
1295		aac_requeue_ready(cm);
1296
1297	return;
1298}
1299
1300/*
1301 * Unmap a command from controller-visible space.
1302 */
1303static void
1304aac_unmap_command(struct aac_command *cm)
1305{
1306	struct aac_softc *sc;
1307
1308	debug_called(2);
1309
1310	sc = cm->cm_sc;
1311
1312	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1313		return;
1314
1315	if (cm->cm_datalen != 0) {
1316		if (cm->cm_flags & AAC_CMD_DATAIN)
1317			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318					BUS_DMASYNC_POSTREAD);
1319		if (cm->cm_flags & AAC_CMD_DATAOUT)
1320			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1321					BUS_DMASYNC_POSTWRITE);
1322
1323		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1324	}
1325	cm->cm_flags &= ~AAC_CMD_MAPPED;
1326}
1327
1328/*
1329 * Hardware Interface
1330 */
1331
1332/*
1333 * Initialise the adapter.
1334 */
1335static void
1336aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1337{
1338	struct aac_softc *sc;
1339
1340	debug_called(1);
1341
1342	sc = (struct aac_softc *)arg;
1343
1344	sc->aac_common_busaddr = segs[0].ds_addr;
1345}
1346
1347static int
1348aac_check_firmware(struct aac_softc *sc)
1349{
1350	u_int32_t major, minor, options;
1351
1352	debug_called(1);
1353
1354	/*
1355	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1356	 * firmware version 1.x are not compatible with this driver.
1357	 */
1358	if (sc->flags & AAC_FLAGS_PERC2QC) {
1359		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1360				     NULL)) {
1361			device_printf(sc->aac_dev,
1362				      "Error reading firmware version\n");
1363			return (EIO);
1364		}
1365
1366		/* These numbers are stored as ASCII! */
1367		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1368		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1369		if (major == 1) {
1370			device_printf(sc->aac_dev,
1371			    "Firmware version %d.%d is not supported.\n",
1372			    major, minor);
1373			return (EINVAL);
1374		}
1375	}
1376
1377	/*
1378	 * Retrieve the capabilities/supported options word so we know what
1379	 * work-arounds to enable.
1380	 */
1381	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1382		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1383		return (EIO);
1384	}
1385	options = AAC_GET_MAILBOX(sc, 1);
1386	sc->supported_options = options;
1387
1388	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1389	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1390		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1391	if (options & AAC_SUPPORTED_NONDASD)
1392		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1393	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1394	     && (sizeof(bus_addr_t) > 4)) {
1395		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1396		sc->flags |= AAC_FLAGS_SG_64BIT;
1397	}
1398
1399	/* Check for broken hardware that does a lower number of commands */
1400	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1401		sc->aac_max_fibs = AAC_MAX_FIBS;
1402	else
1403		sc->aac_max_fibs = 256;
1404
1405	return (0);
1406}
1407
1408static int
1409aac_init(struct aac_softc *sc)
1410{
1411	struct aac_adapter_init	*ip;
1412	time_t then;
1413	u_int32_t code, qoffset;
1414	int error;
1415
1416	debug_called(1);
1417
1418	/*
1419	 * First wait for the adapter to come ready.
1420	 */
1421	then = time_second;
1422	do {
1423		code = AAC_GET_FWSTATUS(sc);
1424		if (code & AAC_SELF_TEST_FAILED) {
1425			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426			return(ENXIO);
1427		}
1428		if (code & AAC_KERNEL_PANIC) {
1429			device_printf(sc->aac_dev,
1430				      "FATAL: controller kernel panic\n");
1431			return(ENXIO);
1432		}
1433		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434			device_printf(sc->aac_dev,
1435				      "FATAL: controller not coming ready, "
1436					   "status %x\n", code);
1437			return(ENXIO);
1438		}
1439	} while (!(code & AAC_UP_AND_RUNNING));
1440
1441	error = ENOMEM;
1442	/*
1443	 * Create DMA tag for mapping buffers into controller-addressable space.
1444	 */
1445	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1446			       1, 0, 			/* algnmnt, boundary */
1447			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1448			       BUS_SPACE_MAXADDR :
1449			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1450			       BUS_SPACE_MAXADDR, 	/* highaddr */
1451			       NULL, NULL, 		/* filter, filterarg */
1452			       MAXBSIZE,		/* maxsize */
1453			       AAC_MAXSGENTRIES,	/* nsegments */
1454			       MAXBSIZE,		/* maxsegsize */
1455			       BUS_DMA_ALLOCNOW,	/* flags */
1456			       busdma_lock_mutex,	/* lockfunc */
1457			       &sc->aac_io_lock,	/* lockfuncarg */
1458			       &sc->aac_buffer_dmat)) {
1459		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1460		goto out;
1461	}
1462
1463	/*
1464	 * Create DMA tag for mapping FIBs into controller-addressable space..
1465	 */
1466	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1467			       1, 0, 			/* algnmnt, boundary */
1468			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1469			       BUS_SPACE_MAXADDR_32BIT :
1470			       0x7fffffff,		/* lowaddr */
1471			       BUS_SPACE_MAXADDR, 	/* highaddr */
1472			       NULL, NULL, 		/* filter, filterarg */
1473			       AAC_FIB_COUNT *
1474			       sizeof(struct aac_fib),  /* maxsize */
1475			       1,			/* nsegments */
1476			       AAC_FIB_COUNT *
1477			       sizeof(struct aac_fib),	/* maxsegsize */
1478			       BUS_DMA_ALLOCNOW,	/* flags */
1479			       NULL, NULL,		/* No locking needed */
1480			       &sc->aac_fib_dmat)) {
1481		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1482		goto out;
1483	}
1484
1485	/*
1486	 * Create DMA tag for the common structure and allocate it.
1487	 */
1488	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1489			       1, 0,			/* algnmnt, boundary */
1490			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1491			       BUS_SPACE_MAXADDR_32BIT :
1492			       0x7fffffff,		/* lowaddr */
1493			       BUS_SPACE_MAXADDR, 	/* highaddr */
1494			       NULL, NULL, 		/* filter, filterarg */
1495			       8192 + sizeof(struct aac_common), /* maxsize */
1496			       1,			/* nsegments */
1497			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1498			       BUS_DMA_ALLOCNOW,	/* flags */
1499			       NULL, NULL,		/* No locking needed */
1500			       &sc->aac_common_dmat)) {
1501		device_printf(sc->aac_dev,
1502			      "can't allocate common structure DMA tag\n");
1503		goto out;
1504	}
1505	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1506			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1507		device_printf(sc->aac_dev, "can't allocate common structure\n");
1508		goto out;
1509	}
1510
1511	/*
1512	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1513	 * below address 8192 in physical memory.
1514	 * XXX If the padding is not needed, can it be put to use instead
1515	 * of ignored?
1516	 */
1517	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1518			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1519			aac_common_map, sc, 0);
1520
1521	if (sc->aac_common_busaddr < 8192) {
1522		(uint8_t *)sc->aac_common += 8192;
1523		sc->aac_common_busaddr += 8192;
1524	}
1525	bzero(sc->aac_common, sizeof(*sc->aac_common));
1526
1527	/* Allocate some FIBs and associated command structs */
1528	TAILQ_INIT(&sc->aac_fibmap_tqh);
1529	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1530				  M_AACBUF, M_WAITOK|M_ZERO);
1531	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1532		if (aac_alloc_commands(sc) != 0)
1533			break;
1534	}
1535	if (sc->total_fibs == 0)
1536		goto out;
1537
1538	/*
1539	 * Fill in the init structure.  This tells the adapter about the
1540	 * physical location of various important shared data structures.
1541	 */
1542	ip = &sc->aac_common->ac_init;
1543	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1544	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1545
1546	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1547					 offsetof(struct aac_common, ac_fibs);
1548	ip->AdapterFibsVirtualAddress = 0;
1549	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1550	ip->AdapterFibAlign = sizeof(struct aac_fib);
1551
1552	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1553				  offsetof(struct aac_common, ac_printf);
1554	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1555
1556	/*
1557	 * The adapter assumes that pages are 4K in size, except on some
1558 	 * broken firmware versions that do the page->byte conversion twice,
1559	 * therefore 'assuming' that this value is in 16MB units (2^24).
1560	 * Round up since the granularity is so high.
1561	 */
1562	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1563	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1564		ip->HostPhysMemPages =
1565		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1566	}
1567	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1568
1569	/*
1570	 * Initialise FIB queues.  Note that it appears that the layout of the
1571	 * indexes and the segmentation of the entries may be mandated by the
1572	 * adapter, which is only told about the base of the queue index fields.
1573	 *
1574	 * The initial values of the indices are assumed to inform the adapter
1575	 * of the sizes of the respective queues, and theoretically it could
1576	 * work out the entire layout of the queue structures from this.  We
1577	 * take the easy route and just lay this area out like everyone else
1578	 * does.
1579	 *
1580	 * The Linux driver uses a much more complex scheme whereby several
1581	 * header records are kept for each queue.  We use a couple of generic
1582	 * list manipulation functions which 'know' the size of each list by
1583	 * virtue of a table.
1584	 */
1585	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1586	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1587	sc->aac_queues =
1588	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1589	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1590
1591	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592		AAC_HOST_NORM_CMD_ENTRIES;
1593	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594		AAC_HOST_NORM_CMD_ENTRIES;
1595	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1596		AAC_HOST_HIGH_CMD_ENTRIES;
1597	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1598		AAC_HOST_HIGH_CMD_ENTRIES;
1599	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1600		AAC_ADAP_NORM_CMD_ENTRIES;
1601	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1602		AAC_ADAP_NORM_CMD_ENTRIES;
1603	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1604		AAC_ADAP_HIGH_CMD_ENTRIES;
1605	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1606		AAC_ADAP_HIGH_CMD_ENTRIES;
1607	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608		AAC_HOST_NORM_RESP_ENTRIES;
1609	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610		AAC_HOST_NORM_RESP_ENTRIES;
1611	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1612		AAC_HOST_HIGH_RESP_ENTRIES;
1613	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1614		AAC_HOST_HIGH_RESP_ENTRIES;
1615	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1616		AAC_ADAP_NORM_RESP_ENTRIES;
1617	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1618		AAC_ADAP_NORM_RESP_ENTRIES;
1619	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1620		AAC_ADAP_HIGH_RESP_ENTRIES;
1621	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1622		AAC_ADAP_HIGH_RESP_ENTRIES;
1623	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1624		&sc->aac_queues->qt_HostNormCmdQueue[0];
1625	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1626		&sc->aac_queues->qt_HostHighCmdQueue[0];
1627	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1628		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1629	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1630		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1631	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1632		&sc->aac_queues->qt_HostNormRespQueue[0];
1633	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1634		&sc->aac_queues->qt_HostHighRespQueue[0];
1635	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1636		&sc->aac_queues->qt_AdapNormRespQueue[0];
1637	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1638		&sc->aac_queues->qt_AdapHighRespQueue[0];
1639
1640	/*
1641	 * Do controller-type-specific initialisation
1642	 */
1643	switch (sc->aac_hwif) {
1644	case AAC_HWIF_I960RX:
1645		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1646		break;
1647	}
1648
1649	/*
1650	 * Give the init structure to the controller.
1651	 */
1652	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1653			     sc->aac_common_busaddr +
1654			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1655			     NULL)) {
1656		device_printf(sc->aac_dev,
1657			      "error establishing init structure\n");
1658		error = EIO;
1659		goto out;
1660	}
1661
1662	error = 0;
1663out:
1664	return(error);
1665}
1666
1667/*
1668 * Send a synchronous command to the controller and wait for a result.
1669 */
1670static int
1671aac_sync_command(struct aac_softc *sc, u_int32_t command,
1672		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1673		 u_int32_t *sp)
1674{
1675	time_t then;
1676	u_int32_t status;
1677
1678	debug_called(3);
1679
1680	/* populate the mailbox */
1681	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1682
1683	/* ensure the sync command doorbell flag is cleared */
1684	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685
1686	/* then set it to signal the adapter */
1687	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1688
1689	/* spin waiting for the command to complete */
1690	then = time_second;
1691	do {
1692		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1693			debug(1, "timed out");
1694			return(EIO);
1695		}
1696	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1697
1698	/* clear the completion flag */
1699	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1700
1701	/* get the command status */
1702	status = AAC_GET_MAILBOX(sc, 0);
1703	if (sp != NULL)
1704		*sp = status;
1705	return(0);
1706}
1707
1708/*
1709 * Grab the sync fib area.
1710 */
1711int
1712aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1713{
1714
1715	/*
1716	 * If the force flag is set, the system is shutting down, or in
1717	 * trouble.  Ignore the mutex.
1718	 */
1719	if (!(flags & AAC_SYNC_LOCK_FORCE))
1720		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1721
1722	*fib = &sc->aac_common->ac_sync_fib;
1723
1724	return (1);
1725}
1726
1727/*
1728 * Release the sync fib area.
1729 */
1730void
1731aac_release_sync_fib(struct aac_softc *sc)
1732{
1733
1734	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1735}
1736
1737/*
1738 * Send a synchronous FIB to the controller and wait for a result.
1739 */
1740int
1741aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1742		 struct aac_fib *fib, u_int16_t datasize)
1743{
1744	debug_called(3);
1745
1746	if (datasize > AAC_FIB_DATASIZE)
1747		return(EINVAL);
1748
1749	/*
1750	 * Set up the sync FIB
1751	 */
1752	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1753				AAC_FIBSTATE_INITIALISED |
1754				AAC_FIBSTATE_EMPTY;
1755	fib->Header.XferState |= xferstate;
1756	fib->Header.Command = command;
1757	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1758	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1759	fib->Header.SenderSize = sizeof(struct aac_fib);
1760	fib->Header.SenderFibAddress = 0;	/* Not needed */
1761	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1762					 offsetof(struct aac_common,
1763						  ac_sync_fib);
1764
1765	/*
1766	 * Give the FIB to the controller, wait for a response.
1767	 */
1768	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1769			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1770		debug(2, "IO error");
1771		return(EIO);
1772	}
1773
1774	return (0);
1775}
1776
1777/*
1778 * Adapter-space FIB queue manipulation
1779 *
1780 * Note that the queue implementation here is a little funky; neither the PI or
1781 * CI will ever be zero.  This behaviour is a controller feature.
1782 */
1783static struct {
1784	int		size;
1785	int		notify;
1786} aac_qinfo[] = {
1787	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1788	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1789	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1790	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1791	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1792	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1793	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1794	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1795};
1796
1797/*
1798 * Atomically insert an entry into the nominated queue, returns 0 on success or
1799 * EBUSY if the queue is full.
1800 *
1801 * Note: it would be more efficient to defer notifying the controller in
1802 *	 the case where we may be inserting several entries in rapid succession,
1803 *	 but implementing this usefully may be difficult (it would involve a
1804 *	 separate queue/notify interface).
1805 */
1806static int
1807aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1808{
1809	u_int32_t pi, ci;
1810	int error;
1811	u_int32_t fib_size;
1812	u_int32_t fib_addr;
1813
1814	debug_called(3);
1815
1816	fib_size = cm->cm_fib->Header.Size;
1817	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1818
1819	/* get the producer/consumer indices */
1820	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1821	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1822
1823	/* wrap the queue? */
1824	if (pi >= aac_qinfo[queue].size)
1825		pi = 0;
1826
1827	/* check for queue full */
1828	if ((pi + 1) == ci) {
1829		error = EBUSY;
1830		goto out;
1831	}
1832
1833	/* populate queue entry */
1834	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1835	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1836
1837	/* update producer index */
1838	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1839
1840	/*
1841	 * To avoid a race with its completion interrupt, place this command on
1842	 * the busy queue prior to advertising it to the controller.
1843	 */
1844	aac_enqueue_busy(cm);
1845
1846	/* notify the adapter if we know how */
1847	if (aac_qinfo[queue].notify != 0)
1848		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1849
1850	error = 0;
1851
1852out:
1853	return(error);
1854}
1855
1856/*
1857 * Atomically remove one entry from the nominated queue, returns 0 on
1858 * success or ENOENT if the queue is empty.
1859 */
1860static int
1861aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1862		struct aac_fib **fib_addr)
1863{
1864	u_int32_t pi, ci;
1865	u_int32_t fib_index;
1866	int error;
1867	int notify;
1868
1869	debug_called(3);
1870
1871	/* get the producer/consumer indices */
1872	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874
1875	/* check for queue empty */
1876	if (ci == pi) {
1877		error = ENOENT;
1878		goto out;
1879	}
1880
1881	notify = 0;
1882	if (ci == pi + 1)
1883		notify++;
1884
1885	/* wrap the queue? */
1886	if (ci >= aac_qinfo[queue].size)
1887		ci = 0;
1888
1889	/* fetch the entry */
1890	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1891
1892	switch (queue) {
1893	case AAC_HOST_NORM_CMD_QUEUE:
1894	case AAC_HOST_HIGH_CMD_QUEUE:
1895		/*
1896		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1897		 * on to hold an address.  For AIF's, the adapter assumes
1898		 * that it's giving us an address into the array of AIF fibs.
1899		 * Therefore, we have to convert it to an index.
1900		 */
1901		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1902			sizeof(struct aac_fib);
1903		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1904		break;
1905
1906	case AAC_HOST_NORM_RESP_QUEUE:
1907	case AAC_HOST_HIGH_RESP_QUEUE:
1908	{
1909		struct aac_command *cm;
1910
1911		/*
1912		 * As above, an index is used instead of an actual address.
1913		 * Gotta shift the index to account for the fast response
1914		 * bit.  No other correction is needed since this value was
1915		 * originally provided by the driver via the SenderFibAddress
1916		 * field.
1917		 */
1918		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1919		cm = sc->aac_commands + (fib_index >> 1);
1920		*fib_addr = cm->cm_fib;
1921
1922		/*
1923		 * Is this a fast response? If it is, update the fib fields in
1924		 * local memory since the whole fib isn't DMA'd back up.
1925		 */
1926		if (fib_index & 0x01) {
1927			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1928			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1929		}
1930		break;
1931	}
1932	default:
1933		panic("Invalid queue in aac_dequeue_fib()");
1934		break;
1935	}
1936
1937	/* update consumer index */
1938	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1939
1940	/* if we have made the queue un-full, notify the adapter */
1941	if (notify && (aac_qinfo[queue].notify != 0))
1942		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1943	error = 0;
1944
1945out:
1946	return(error);
1947}
1948
1949/*
1950 * Put our response to an Adapter Initialed Fib on the response queue
1951 */
1952static int
1953aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1954{
1955	u_int32_t pi, ci;
1956	int error;
1957	u_int32_t fib_size;
1958	u_int32_t fib_addr;
1959
1960	debug_called(1);
1961
1962	/* Tell the adapter where the FIB is */
1963	fib_size = fib->Header.Size;
1964	fib_addr = fib->Header.SenderFibAddress;
1965	fib->Header.ReceiverFibAddress = fib_addr;
1966
1967	/* get the producer/consumer indices */
1968	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1969	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1970
1971	/* wrap the queue? */
1972	if (pi >= aac_qinfo[queue].size)
1973		pi = 0;
1974
1975	/* check for queue full */
1976	if ((pi + 1) == ci) {
1977		error = EBUSY;
1978		goto out;
1979	}
1980
1981	/* populate queue entry */
1982	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1983	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1984
1985	/* update producer index */
1986	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1987
1988	/* notify the adapter if we know how */
1989	if (aac_qinfo[queue].notify != 0)
1990		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1991
1992	error = 0;
1993
1994out:
1995	return(error);
1996}
1997
1998/*
1999 * Check for commands that have been outstanding for a suspiciously long time,
2000 * and complain about them.
2001 */
2002static void
2003aac_timeout(struct aac_softc *sc)
2004{
2005	struct aac_command *cm;
2006	time_t deadline;
2007
2008	/*
2009	 * Traverse the busy command list, bitch about late commands once
2010	 * only.
2011	 */
2012	deadline = time_second - AAC_CMD_TIMEOUT;
2013	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2014		if ((cm->cm_timestamp  < deadline)
2015			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2016			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2017			device_printf(sc->aac_dev,
2018				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2019				      cm, (int)(time_second-cm->cm_timestamp));
2020			AAC_PRINT_FIB(sc, cm->cm_fib);
2021		}
2022	}
2023
2024	return;
2025}
2026
2027/*
2028 * Interface Function Vectors
2029 */
2030
2031/*
2032 * Read the current firmware status word.
2033 */
2034static int
2035aac_sa_get_fwstatus(struct aac_softc *sc)
2036{
2037	debug_called(3);
2038
2039	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2040}
2041
2042static int
2043aac_rx_get_fwstatus(struct aac_softc *sc)
2044{
2045	debug_called(3);
2046
2047	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2048}
2049
2050static int
2051aac_fa_get_fwstatus(struct aac_softc *sc)
2052{
2053	int val;
2054
2055	debug_called(3);
2056
2057	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2058	return (val);
2059}
2060
2061/*
2062 * Notify the controller of a change in a given queue
2063 */
2064
2065static void
2066aac_sa_qnotify(struct aac_softc *sc, int qbit)
2067{
2068	debug_called(3);
2069
2070	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2071}
2072
2073static void
2074aac_rx_qnotify(struct aac_softc *sc, int qbit)
2075{
2076	debug_called(3);
2077
2078	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2079}
2080
2081static void
2082aac_fa_qnotify(struct aac_softc *sc, int qbit)
2083{
2084	debug_called(3);
2085
2086	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2087	AAC_FA_HACK(sc);
2088}
2089
2090/*
2091 * Get the interrupt reason bits
2092 */
2093static int
2094aac_sa_get_istatus(struct aac_softc *sc)
2095{
2096	debug_called(3);
2097
2098	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2099}
2100
2101static int
2102aac_rx_get_istatus(struct aac_softc *sc)
2103{
2104	debug_called(3);
2105
2106	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2107}
2108
2109static int
2110aac_fa_get_istatus(struct aac_softc *sc)
2111{
2112	int val;
2113
2114	debug_called(3);
2115
2116	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2117	return (val);
2118}
2119
2120/*
2121 * Clear some interrupt reason bits
2122 */
2123static void
2124aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2125{
2126	debug_called(3);
2127
2128	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2129}
2130
2131static void
2132aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2133{
2134	debug_called(3);
2135
2136	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2137}
2138
2139static void
2140aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2141{
2142	debug_called(3);
2143
2144	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2145	AAC_FA_HACK(sc);
2146}
2147
2148/*
2149 * Populate the mailbox and set the command word
2150 */
2151static void
2152aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2153		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2154{
2155	debug_called(4);
2156
2157	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2158	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2159	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2160	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2161	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2162}
2163
2164static void
2165aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2166		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2167{
2168	debug_called(4);
2169
2170	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2171	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2172	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2173	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2174	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2175}
2176
2177static void
2178aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2179		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2180{
2181	debug_called(4);
2182
2183	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2184	AAC_FA_HACK(sc);
2185	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2186	AAC_FA_HACK(sc);
2187	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2188	AAC_FA_HACK(sc);
2189	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2190	AAC_FA_HACK(sc);
2191	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2192	AAC_FA_HACK(sc);
2193}
2194
2195/*
2196 * Fetch the immediate command status word
2197 */
2198static int
2199aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2200{
2201	debug_called(4);
2202
2203	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2204}
2205
2206static int
2207aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2208{
2209	debug_called(4);
2210
2211	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2212}
2213
2214static int
2215aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2216{
2217	int val;
2218
2219	debug_called(4);
2220
2221	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2222	return (val);
2223}
2224
2225/*
2226 * Set/clear interrupt masks
2227 */
2228static void
2229aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2230{
2231	debug(2, "%sable interrupts", enable ? "en" : "dis");
2232
2233	if (enable) {
2234		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2235	} else {
2236		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2237	}
2238}
2239
2240static void
2241aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2242{
2243	debug(2, "%sable interrupts", enable ? "en" : "dis");
2244
2245	if (enable) {
2246		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2247	} else {
2248		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2249	}
2250}
2251
2252static void
2253aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2254{
2255	debug(2, "%sable interrupts", enable ? "en" : "dis");
2256
2257	if (enable) {
2258		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2259		AAC_FA_HACK(sc);
2260	} else {
2261		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2262		AAC_FA_HACK(sc);
2263	}
2264}
2265
2266/*
2267 * Debugging and Diagnostics
2268 */
2269
2270/*
2271 * Print some information about the controller.
2272 */
2273static void
2274aac_describe_controller(struct aac_softc *sc)
2275{
2276	struct aac_fib *fib;
2277	struct aac_adapter_info	*info;
2278
2279	debug_called(2);
2280
2281	aac_alloc_sync_fib(sc, &fib, 0);
2282
2283	fib->data[0] = 0;
2284	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2285		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2286		aac_release_sync_fib(sc);
2287		return;
2288	}
2289	info = (struct aac_adapter_info *)&fib->data[0];
2290
2291	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2292		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2293		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2294		      aac_describe_code(aac_battery_platform,
2295					info->batteryPlatform));
2296
2297	/* save the kernel revision structure for later use */
2298	sc->aac_revision = info->KernelRevision;
2299	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2300		      info->KernelRevision.external.comp.major,
2301		      info->KernelRevision.external.comp.minor,
2302		      info->KernelRevision.external.comp.dash,
2303		      info->KernelRevision.buildNumber,
2304		      (u_int32_t)(info->SerialNumber & 0xffffff));
2305
2306	aac_release_sync_fib(sc);
2307
2308	if (1 || bootverbose) {
2309		device_printf(sc->aac_dev, "Supported Options=%b\n",
2310			      sc->supported_options,
2311			      "\20"
2312			      "\1SNAPSHOT"
2313			      "\2CLUSTERS"
2314			      "\3WCACHE"
2315			      "\4DATA64"
2316			      "\5HOSTTIME"
2317			      "\6RAID50"
2318			      "\7WINDOW4GB"
2319			      "\10SCSIUPGD"
2320			      "\11SOFTERR"
2321			      "\12NORECOND"
2322			      "\13SGMAP64"
2323			      "\14ALARM"
2324			      "\15NONDASD");
2325	}
2326}
2327
2328/*
2329 * Look up a text description of a numeric error code and return a pointer to
2330 * same.
2331 */
2332static char *
2333aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2334{
2335	int i;
2336
2337	for (i = 0; table[i].string != NULL; i++)
2338		if (table[i].code == code)
2339			return(table[i].string);
2340	return(table[i + 1].string);
2341}
2342
2343/*
2344 * Management Interface
2345 */
2346
2347static int
2348aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2349{
2350	struct aac_softc *sc;
2351
2352	debug_called(2);
2353
2354	sc = dev->si_drv1;
2355
2356	/* Check to make sure the device isn't already open */
2357	if (sc->aac_state & AAC_STATE_OPEN) {
2358		return EBUSY;
2359	}
2360	sc->aac_state |= AAC_STATE_OPEN;
2361
2362	return 0;
2363}
2364
2365static int
2366aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2367{
2368	struct aac_softc *sc;
2369
2370	debug_called(2);
2371
2372	sc = dev->si_drv1;
2373
2374	/* Mark this unit as no longer open  */
2375	sc->aac_state &= ~AAC_STATE_OPEN;
2376
2377	return 0;
2378}
2379
2380static int
2381aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2382{
2383	union aac_statrequest *as;
2384	struct aac_softc *sc;
2385	int error = 0;
2386	uint32_t cookie;
2387
2388	debug_called(2);
2389
2390	as = (union aac_statrequest *)arg;
2391	sc = dev->si_drv1;
2392
2393	switch (cmd) {
2394	case AACIO_STATS:
2395		switch (as->as_item) {
2396		case AACQ_FREE:
2397		case AACQ_BIO:
2398		case AACQ_READY:
2399		case AACQ_BUSY:
2400		case AACQ_COMPLETE:
2401			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2402			      sizeof(struct aac_qstat));
2403			break;
2404		default:
2405			error = ENOENT;
2406			break;
2407		}
2408	break;
2409
2410	case FSACTL_SENDFIB:
2411		arg = *(caddr_t*)arg;
2412	case FSACTL_LNX_SENDFIB:
2413		debug(1, "FSACTL_SENDFIB");
2414		error = aac_ioctl_sendfib(sc, arg);
2415		break;
2416	case FSACTL_AIF_THREAD:
2417	case FSACTL_LNX_AIF_THREAD:
2418		debug(1, "FSACTL_AIF_THREAD");
2419		error = EINVAL;
2420		break;
2421	case FSACTL_OPEN_GET_ADAPTER_FIB:
2422		arg = *(caddr_t*)arg;
2423	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2424		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2425		/*
2426		 * Pass the caller out an AdapterFibContext.
2427		 *
2428		 * Note that because we only support one opener, we
2429		 * basically ignore this.  Set the caller's context to a magic
2430		 * number just in case.
2431		 *
2432		 * The Linux code hands the driver a pointer into kernel space,
2433		 * and then trusts it when the caller hands it back.  Aiee!
2434		 * Here, we give it the proc pointer of the per-adapter aif
2435		 * thread. It's only used as a sanity check in other calls.
2436		 */
2437		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2438		error = copyout(&cookie, arg, sizeof(cookie));
2439		break;
2440	case FSACTL_GET_NEXT_ADAPTER_FIB:
2441		arg = *(caddr_t*)arg;
2442	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2443		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2444		error = aac_getnext_aif(sc, arg);
2445		break;
2446	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2447	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2448		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2449		/* don't do anything here */
2450		break;
2451	case FSACTL_MINIPORT_REV_CHECK:
2452		arg = *(caddr_t*)arg;
2453	case FSACTL_LNX_MINIPORT_REV_CHECK:
2454		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2455		error = aac_rev_check(sc, arg);
2456		break;
2457	case FSACTL_QUERY_DISK:
2458		arg = *(caddr_t*)arg;
2459	case FSACTL_LNX_QUERY_DISK:
2460		debug(1, "FSACTL_QUERY_DISK");
2461		error = aac_query_disk(sc, arg);
2462			break;
2463	case FSACTL_DELETE_DISK:
2464	case FSACTL_LNX_DELETE_DISK:
2465		/*
2466		 * We don't trust the underland to tell us when to delete a
2467		 * container, rather we rely on an AIF coming from the
2468		 * controller
2469		 */
2470		error = 0;
2471		break;
2472	default:
2473		debug(1, "unsupported cmd 0x%lx\n", cmd);
2474		error = EINVAL;
2475		break;
2476	}
2477	return(error);
2478}
2479
2480static int
2481aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2482{
2483	struct aac_softc *sc;
2484	int revents;
2485
2486	sc = dev->si_drv1;
2487	revents = 0;
2488
2489	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2490	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2491		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2492			revents |= poll_events & (POLLIN | POLLRDNORM);
2493	}
2494	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2495
2496	if (revents == 0) {
2497		if (poll_events & (POLLIN | POLLRDNORM))
2498			selrecord(td, &sc->rcv_select);
2499	}
2500
2501	return (revents);
2502}
2503
2504/*
2505 * Send a FIB supplied from userspace
2506 */
2507static int
2508aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2509{
2510	struct aac_command *cm;
2511	int size, error;
2512
2513	debug_called(2);
2514
2515	cm = NULL;
2516
2517	/*
2518	 * Get a command
2519	 */
2520	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2521	if (aac_alloc_command(sc, &cm)) {
2522		error = EBUSY;
2523		goto out;
2524	}
2525
2526	/*
2527	 * Fetch the FIB header, then re-copy to get data as well.
2528	 */
2529	if ((error = copyin(ufib, cm->cm_fib,
2530			    sizeof(struct aac_fib_header))) != 0)
2531		goto out;
2532	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2533	if (size > sizeof(struct aac_fib)) {
2534		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2535			      size, sizeof(struct aac_fib));
2536		size = sizeof(struct aac_fib);
2537	}
2538	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2539		goto out;
2540	cm->cm_fib->Header.Size = size;
2541	cm->cm_timestamp = time_second;
2542
2543	/*
2544	 * Pass the FIB to the controller, wait for it to complete.
2545	 */
2546	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2547		device_printf(sc->aac_dev,
2548			      "aac_wait_command return %d\n", error);
2549		goto out;
2550	}
2551
2552	/*
2553	 * Copy the FIB and data back out to the caller.
2554	 */
2555	size = cm->cm_fib->Header.Size;
2556	if (size > sizeof(struct aac_fib)) {
2557		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2558			      size, sizeof(struct aac_fib));
2559		size = sizeof(struct aac_fib);
2560	}
2561	error = copyout(cm->cm_fib, ufib, size);
2562
2563out:
2564	if (cm != NULL) {
2565		aac_release_command(cm);
2566	}
2567
2568	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2569	return(error);
2570}
2571
2572/*
2573 * Handle an AIF sent to us by the controller; queue it for later reference.
2574 * If the queue fills up, then drop the older entries.
2575 */
2576static void
2577aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2578{
2579	struct aac_aif_command *aif;
2580	struct aac_container *co, *co_next;
2581	struct aac_mntinfo *mi;
2582	struct aac_mntinforesp *mir = NULL;
2583	u_int16_t rsize;
2584	int next, found;
2585	int count = 0, added = 0, i = 0;
2586
2587	debug_called(2);
2588
2589	aif = (struct aac_aif_command*)&fib->data[0];
2590	aac_print_aif(sc, aif);
2591
2592	/* Is it an event that we should care about? */
2593	switch (aif->command) {
2594	case AifCmdEventNotify:
2595		switch (aif->data.EN.type) {
2596		case AifEnAddContainer:
2597		case AifEnDeleteContainer:
2598			/*
2599			 * A container was added or deleted, but the message
2600			 * doesn't tell us anything else!  Re-enumerate the
2601			 * containers and sort things out.
2602			 */
2603			aac_alloc_sync_fib(sc, &fib, 0);
2604			mi = (struct aac_mntinfo *)&fib->data[0];
2605			do {
2606				/*
2607				 * Ask the controller for its containers one at
2608				 * a time.
2609				 * XXX What if the controller's list changes
2610				 * midway through this enumaration?
2611				 * XXX This should be done async.
2612				 */
2613				bzero(mi, sizeof(struct aac_mntinfo));
2614				mi->Command = VM_NameServe;
2615				mi->MntType = FT_FILESYS;
2616				mi->MntCount = i;
2617				rsize = sizeof(mir);
2618				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2619						 sizeof(struct aac_mntinfo))) {
2620					printf("Error probing container %d\n",
2621					      i);
2622					continue;
2623				}
2624				mir = (struct aac_mntinforesp *)&fib->data[0];
2625				/* XXX Need to check if count changed */
2626				count = mir->MntRespCount;
2627				/*
2628				 * Check the container against our list.
2629				 * co->co_found was already set to 0 in a
2630				 * previous run.
2631				 */
2632				if ((mir->Status == ST_OK) &&
2633				    (mir->MntTable[0].VolType != CT_NONE)) {
2634					found = 0;
2635					TAILQ_FOREACH(co,
2636						      &sc->aac_container_tqh,
2637						      co_link) {
2638						if (co->co_mntobj.ObjectId ==
2639						    mir->MntTable[0].ObjectId) {
2640							co->co_found = 1;
2641							found = 1;
2642							break;
2643						}
2644					}
2645					/*
2646					 * If the container matched, continue
2647					 * in the list.
2648					 */
2649					if (found) {
2650						i++;
2651						continue;
2652					}
2653
2654					/*
2655					 * This is a new container.  Do all the
2656					 * appropriate things to set it up.
2657					 */
2658					aac_add_container(sc, mir, 1);
2659					added = 1;
2660				}
2661				i++;
2662			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2663			aac_release_sync_fib(sc);
2664
2665			/*
2666			 * Go through our list of containers and see which ones
2667			 * were not marked 'found'.  Since the controller didn't
2668			 * list them they must have been deleted.  Do the
2669			 * appropriate steps to destroy the device.  Also reset
2670			 * the co->co_found field.
2671			 */
2672			co = TAILQ_FIRST(&sc->aac_container_tqh);
2673			while (co != NULL) {
2674				if (co->co_found == 0) {
2675					device_delete_child(sc->aac_dev,
2676							    co->co_disk);
2677					co_next = TAILQ_NEXT(co, co_link);
2678					AAC_LOCK_ACQUIRE(&sc->
2679							aac_container_lock);
2680					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2681						     co_link);
2682					AAC_LOCK_RELEASE(&sc->
2683							 aac_container_lock);
2684					FREE(co, M_AACBUF);
2685					co = co_next;
2686				} else {
2687					co->co_found = 0;
2688					co = TAILQ_NEXT(co, co_link);
2689				}
2690			}
2691
2692			/* Attach the newly created containers */
2693			if (added)
2694				bus_generic_attach(sc->aac_dev);
2695
2696			break;
2697
2698		default:
2699			break;
2700		}
2701
2702	default:
2703		break;
2704	}
2705
2706	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2707	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2708	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2709	if (next != sc->aac_aifq_tail) {
2710		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2711		sc->aac_aifq_head = next;
2712
2713		/* On the off chance that someone is sleeping for an aif... */
2714		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2715			wakeup(sc->aac_aifq);
2716		/* Wakeup any poll()ers */
2717		selwakeup(&sc->rcv_select);
2718	}
2719	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2720
2721	return;
2722}
2723
2724/*
2725 * Return the Revision of the driver to userspace and check to see if the
2726 * userspace app is possibly compatible.  This is extremely bogus since
2727 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2728 * returning what the card reported.
2729 */
2730static int
2731aac_rev_check(struct aac_softc *sc, caddr_t udata)
2732{
2733	struct aac_rev_check rev_check;
2734	struct aac_rev_check_resp rev_check_resp;
2735	int error = 0;
2736
2737	debug_called(2);
2738
2739	/*
2740	 * Copyin the revision struct from userspace
2741	 */
2742	if ((error = copyin(udata, (caddr_t)&rev_check,
2743			sizeof(struct aac_rev_check))) != 0) {
2744		return error;
2745	}
2746
2747	debug(2, "Userland revision= %d\n",
2748	      rev_check.callingRevision.buildNumber);
2749
2750	/*
2751	 * Doctor up the response struct.
2752	 */
2753	rev_check_resp.possiblyCompatible = 1;
2754	rev_check_resp.adapterSWRevision.external.ul =
2755	    sc->aac_revision.external.ul;
2756	rev_check_resp.adapterSWRevision.buildNumber =
2757	    sc->aac_revision.buildNumber;
2758
2759	return(copyout((caddr_t)&rev_check_resp, udata,
2760			sizeof(struct aac_rev_check_resp)));
2761}
2762
2763/*
2764 * Pass the caller the next AIF in their queue
2765 */
2766static int
2767aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2768{
2769	struct get_adapter_fib_ioctl agf;
2770	int error;
2771
2772	debug_called(2);
2773
2774	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2775
2776		/*
2777		 * Check the magic number that we gave the caller.
2778		 */
2779		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2780			error = EFAULT;
2781		} else {
2782			error = aac_return_aif(sc, agf.AifFib);
2783			if ((error == EAGAIN) && (agf.Wait)) {
2784				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2785				while (error == EAGAIN) {
2786					error = tsleep(sc->aac_aifq, PRIBIO |
2787						       PCATCH, "aacaif", 0);
2788					if (error == 0)
2789						error = aac_return_aif(sc,
2790						    agf.AifFib);
2791				}
2792				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2793			}
2794		}
2795	}
2796	return(error);
2797}
2798
2799/*
2800 * Hand the next AIF off the top of the queue out to userspace.
2801 */
2802static int
2803aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2804{
2805	int error;
2806
2807	debug_called(2);
2808
2809	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2810	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2811		error = EAGAIN;
2812	} else {
2813		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2814				sizeof(struct aac_aif_command));
2815		if (error)
2816			device_printf(sc->aac_dev,
2817			    "aac_return_aif: copyout returned %d\n", error);
2818		if (!error)
2819			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2820					    AAC_AIFQ_LENGTH;
2821	}
2822	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2823	return(error);
2824}
2825
2826/*
2827 * Give the userland some information about the container.  The AAC arch
2828 * expects the driver to be a SCSI passthrough type driver, so it expects
2829 * the containers to have b:t:l numbers.  Fake it.
2830 */
2831static int
2832aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2833{
2834	struct aac_query_disk query_disk;
2835	struct aac_container *co;
2836	struct aac_disk	*disk;
2837	int error, id;
2838
2839	debug_called(2);
2840
2841	disk = NULL;
2842
2843	error = copyin(uptr, (caddr_t)&query_disk,
2844		       sizeof(struct aac_query_disk));
2845	if (error)
2846		return (error);
2847
2848	id = query_disk.ContainerNumber;
2849	if (id == -1)
2850		return (EINVAL);
2851
2852	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2853	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2854		if (co->co_mntobj.ObjectId == id)
2855			break;
2856		}
2857
2858	if (co == NULL) {
2859			query_disk.Valid = 0;
2860			query_disk.Locked = 0;
2861			query_disk.Deleted = 1;		/* XXX is this right? */
2862	} else {
2863		disk = device_get_softc(co->co_disk);
2864		query_disk.Valid = 1;
2865		query_disk.Locked =
2866		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2867		query_disk.Deleted = 0;
2868		query_disk.Bus = device_get_unit(sc->aac_dev);
2869		query_disk.Target = disk->unit;
2870		query_disk.Lun = 0;
2871		query_disk.UnMapped = 0;
2872		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2873		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2874	}
2875	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2876
2877	error = copyout((caddr_t)&query_disk, uptr,
2878			sizeof(struct aac_query_disk));
2879
2880	return (error);
2881}
2882
2883static void
2884aac_get_bus_info(struct aac_softc *sc)
2885{
2886	struct aac_fib *fib;
2887	struct aac_ctcfg *c_cmd;
2888	struct aac_ctcfg_resp *c_resp;
2889	struct aac_vmioctl *vmi;
2890	struct aac_vmi_businf_resp *vmi_resp;
2891	struct aac_getbusinf businfo;
2892	struct aac_sim *caminf;
2893	device_t child;
2894	int i, found, error;
2895
2896	aac_alloc_sync_fib(sc, &fib, 0);
2897	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2898	bzero(c_cmd, sizeof(struct aac_ctcfg));
2899
2900	c_cmd->Command = VM_ContainerConfig;
2901	c_cmd->cmd = CT_GET_SCSI_METHOD;
2902	c_cmd->param = 0;
2903
2904	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2905	    sizeof(struct aac_ctcfg));
2906	if (error) {
2907		device_printf(sc->aac_dev, "Error %d sending "
2908		    "VM_ContainerConfig command\n", error);
2909		aac_release_sync_fib(sc);
2910		return;
2911	}
2912
2913	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2914	if (c_resp->Status != ST_OK) {
2915		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2916		    c_resp->Status);
2917		aac_release_sync_fib(sc);
2918		return;
2919	}
2920
2921	sc->scsi_method_id = c_resp->param;
2922
2923	vmi = (struct aac_vmioctl *)&fib->data[0];
2924	bzero(vmi, sizeof(struct aac_vmioctl));
2925
2926	vmi->Command = VM_Ioctl;
2927	vmi->ObjType = FT_DRIVE;
2928	vmi->MethId = sc->scsi_method_id;
2929	vmi->ObjId = 0;
2930	vmi->IoctlCmd = GetBusInfo;
2931
2932	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2933	    sizeof(struct aac_vmioctl));
2934	if (error) {
2935		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2936		    error);
2937		aac_release_sync_fib(sc);
2938		return;
2939	}
2940
2941	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2942	if (vmi_resp->Status != ST_OK) {
2943		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2944		    vmi_resp->Status);
2945		aac_release_sync_fib(sc);
2946		return;
2947	}
2948
2949	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2950	aac_release_sync_fib(sc);
2951
2952	found = 0;
2953	for (i = 0; i < businfo.BusCount; i++) {
2954		if (businfo.BusValid[i] != AAC_BUS_VALID)
2955			continue;
2956
2957		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2958		    M_AACBUF, M_NOWAIT | M_ZERO);
2959		if (caminf == NULL)
2960			continue;
2961
2962		child = device_add_child(sc->aac_dev, "aacp", -1);
2963		if (child == NULL) {
2964			device_printf(sc->aac_dev, "device_add_child failed\n");
2965			continue;
2966		}
2967
2968		caminf->TargetsPerBus = businfo.TargetsPerBus;
2969		caminf->BusNumber = i;
2970		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2971		caminf->aac_sc = sc;
2972		caminf->sim_dev = child;
2973
2974		device_set_ivars(child, caminf);
2975		device_set_desc(child, "SCSI Passthrough Bus");
2976		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2977
2978		found = 1;
2979	}
2980
2981	if (found)
2982		bus_generic_attach(sc->aac_dev);
2983
2984	return;
2985}
2986