aac.c revision 117362
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 117362 2003-07-09 19:30:30Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46#include <sys/ioccom.h>
47
48#include <sys/bus.h>
49#include <sys/conf.h>
50#include <sys/signalvar.h>
51#include <sys/time.h>
52#include <sys/eventhandler.h>
53
54#include <machine/bus_memio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57
58#include <dev/aac/aacreg.h>
59#include <dev/aac/aac_ioctl.h>
60#include <dev/aac/aacvar.h>
61#include <dev/aac/aac_tables.h>
62
63static void	aac_startup(void *arg);
64static void	aac_add_container(struct aac_softc *sc,
65				  struct aac_mntinforesp *mir, int f);
66static void	aac_get_bus_info(struct aac_softc *sc);
67
68/* Command Processing */
69static void	aac_timeout(struct aac_softc *sc);
70static int	aac_start(struct aac_command *cm);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm, int timeout);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79				       int nseg, int error);
80static int	aac_alloc_commands(struct aac_softc *sc);
81static void	aac_free_commands(struct aac_softc *sc);
82static void	aac_map_command(struct aac_command *cm);
83static void	aac_unmap_command(struct aac_command *cm);
84
85/* Hardware Interface */
86static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87			       int error);
88static int	aac_check_firmware(struct aac_softc *sc);
89static int	aac_init(struct aac_softc *sc);
90static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92				 u_int32_t arg3, u_int32_t *sp);
93static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94				struct aac_command *cm);
95static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96				u_int32_t *fib_size, struct aac_fib **fib_addr);
97static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98				     struct aac_fib *fib);
99
100/* Falcon/PPC interface */
101static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103static int	aac_fa_get_istatus(struct aac_softc *sc);
104static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106				   u_int32_t arg0, u_int32_t arg1,
107				   u_int32_t arg2, u_int32_t arg3);
108static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110
111struct aac_interface aac_fa_interface = {
112	aac_fa_get_fwstatus,
113	aac_fa_qnotify,
114	aac_fa_get_istatus,
115	aac_fa_clear_istatus,
116	aac_fa_set_mailbox,
117	aac_fa_get_mailbox,
118	aac_fa_set_interrupts
119};
120
121/* StrongARM interface */
122static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124static int	aac_sa_get_istatus(struct aac_softc *sc);
125static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127				   u_int32_t arg0, u_int32_t arg1,
128				   u_int32_t arg2, u_int32_t arg3);
129static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131
132struct aac_interface aac_sa_interface = {
133	aac_sa_get_fwstatus,
134	aac_sa_qnotify,
135	aac_sa_get_istatus,
136	aac_sa_clear_istatus,
137	aac_sa_set_mailbox,
138	aac_sa_get_mailbox,
139	aac_sa_set_interrupts
140};
141
142/* i960Rx interface */
143static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145static int	aac_rx_get_istatus(struct aac_softc *sc);
146static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148				   u_int32_t arg0, u_int32_t arg1,
149				   u_int32_t arg2, u_int32_t arg3);
150static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152
153struct aac_interface aac_rx_interface = {
154	aac_rx_get_fwstatus,
155	aac_rx_qnotify,
156	aac_rx_get_istatus,
157	aac_rx_clear_istatus,
158	aac_rx_set_mailbox,
159	aac_rx_get_mailbox,
160	aac_rx_set_interrupts
161};
162
163/* Debugging and Diagnostics */
164static void	aac_describe_controller(struct aac_softc *sc);
165static char	*aac_describe_code(struct aac_code_lookup *table,
166				   u_int32_t code);
167
168/* Management Interface */
169static d_open_t		aac_open;
170static d_close_t	aac_close;
171static d_ioctl_t	aac_ioctl;
172static d_poll_t		aac_poll;
173static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174static void		aac_handle_aif(struct aac_softc *sc,
175					   struct aac_fib *fib);
176static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180
181#define AAC_CDEV_MAJOR	150
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189	.d_maj =	AAC_CDEV_MAJOR,
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/*
237	 * Initialize locks
238	 */
239	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
240	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
241	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
242	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
243	TAILQ_INIT(&sc->aac_container_tqh);
244
245
246	/*
247	 * Initialise the adapter.
248	 */
249	if ((error = aac_init(sc)) != 0)
250		return(error);
251
252	/*
253	 * Print a little information about the controller.
254	 */
255	aac_describe_controller(sc);
256
257	/*
258	 * Register to probe our containers later.
259	 */
260	sc->aac_ich.ich_func = aac_startup;
261	sc->aac_ich.ich_arg = sc;
262	if (config_intrhook_establish(&sc->aac_ich) != 0) {
263		device_printf(sc->aac_dev,
264			      "can't establish configuration hook\n");
265		return(ENXIO);
266	}
267
268	/*
269	 * Make the control device.
270	 */
271	unit = device_get_unit(sc->aac_dev);
272	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
273				 0640, "aac%d", unit);
274	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
276	sc->aac_dev_t->si_drv1 = sc;
277
278	/* Create the AIF thread */
279	if (kthread_create((void(*)(void *))aac_command_thread, sc,
280			   &sc->aifthread, 0, 0, "aac%daif", unit))
281		panic("Could not create AIF thread\n");
282
283	/* Register the shutdown method to only be called post-dump */
284	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
285	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
286		device_printf(sc->aac_dev,
287			      "shutdown event registration failed\n");
288
289	/* Register with CAM for the non-DASD devices */
290	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
291		TAILQ_INIT(&sc->aac_sim_tqh);
292		aac_get_bus_info(sc);
293	}
294
295	return(0);
296}
297
298/*
299 * Probe for containers, create disks.
300 */
301static void
302aac_startup(void *arg)
303{
304	struct aac_softc *sc;
305	struct aac_fib *fib;
306	struct aac_mntinfo *mi;
307	struct aac_mntinforesp *mir = NULL;
308	int count = 0, i = 0;
309
310	debug_called(1);
311
312	sc = (struct aac_softc *)arg;
313
314	/* disconnect ourselves from the intrhook chain */
315	config_intrhook_disestablish(&sc->aac_ich);
316
317	aac_alloc_sync_fib(sc, &fib, 0);
318	mi = (struct aac_mntinfo *)&fib->data[0];
319
320	/* loop over possible containers */
321	do {
322		/* request information on this container */
323		bzero(mi, sizeof(struct aac_mntinfo));
324		mi->Command = VM_NameServe;
325		mi->MntType = FT_FILESYS;
326		mi->MntCount = i;
327		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
328				 sizeof(struct aac_mntinfo))) {
329			printf("error probing container %d", i);
330			continue;
331		}
332
333		mir = (struct aac_mntinforesp *)&fib->data[0];
334		/* XXX Need to check if count changed */
335		count = mir->MntRespCount;
336		aac_add_container(sc, mir, 0);
337		i++;
338	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
339
340	aac_release_sync_fib(sc);
341
342	/* poke the bus to actually attach the child devices */
343	if (bus_generic_attach(sc->aac_dev))
344		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
345
346	/* mark the controller up */
347	sc->aac_state &= ~AAC_STATE_SUSPEND;
348
349	/* enable interrupts now */
350	AAC_UNMASK_INTERRUPTS(sc);
351}
352
353/*
354 * Create a device to respresent a new container
355 */
356static void
357aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
358{
359	struct aac_container *co;
360	device_t child;
361
362	/*
363	 * Check container volume type for validity.  Note that many of
364	 * the possible types may never show up.
365	 */
366	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
367		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
368		       M_NOWAIT | M_ZERO);
369		if (co == NULL)
370			panic("Out of memory?!\n");
371		debug(1, "id %x  name '%.16s'  size %u  type %d",
372		      mir->MntTable[0].ObjectId,
373		      mir->MntTable[0].FileSystemName,
374		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
375
376		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
377			device_printf(sc->aac_dev, "device_add_child failed\n");
378		else
379			device_set_ivars(child, co);
380		device_set_desc(child, aac_describe_code(aac_container_types,
381				mir->MntTable[0].VolType));
382		co->co_disk = child;
383		co->co_found = f;
384		bcopy(&mir->MntTable[0], &co->co_mntobj,
385		      sizeof(struct aac_mntobj));
386		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
387		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
388		AAC_LOCK_RELEASE(&sc->aac_container_lock);
389	}
390}
391
392/*
393 * Free all of the resources associated with (sc)
394 *
395 * Should not be called if the controller is active.
396 */
397void
398aac_free(struct aac_softc *sc)
399{
400
401	debug_called(1);
402
403	/* remove the control device */
404	if (sc->aac_dev_t != NULL)
405		destroy_dev(sc->aac_dev_t);
406
407	/* throw away any FIB buffers, discard the FIB DMA tag */
408	aac_free_commands(sc);
409	if (sc->aac_fib_dmat)
410		bus_dma_tag_destroy(sc->aac_fib_dmat);
411
412	free(sc->aac_commands, M_AACBUF);
413
414	/* destroy the common area */
415	if (sc->aac_common) {
416		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
417		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
418				sc->aac_common_dmamap);
419	}
420	if (sc->aac_common_dmat)
421		bus_dma_tag_destroy(sc->aac_common_dmat);
422
423	/* disconnect the interrupt handler */
424	if (sc->aac_intr)
425		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
426	if (sc->aac_irq != NULL)
427		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
428				     sc->aac_irq);
429
430	/* destroy data-transfer DMA tag */
431	if (sc->aac_buffer_dmat)
432		bus_dma_tag_destroy(sc->aac_buffer_dmat);
433
434	/* destroy the parent DMA tag */
435	if (sc->aac_parent_dmat)
436		bus_dma_tag_destroy(sc->aac_parent_dmat);
437
438	/* release the register window mapping */
439	if (sc->aac_regs_resource != NULL)
440		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
441				     sc->aac_regs_rid, sc->aac_regs_resource);
442}
443
444/*
445 * Disconnect from the controller completely, in preparation for unload.
446 */
447int
448aac_detach(device_t dev)
449{
450	struct aac_softc *sc;
451	struct aac_container *co;
452	struct aac_sim	*sim;
453	int error;
454
455	debug_called(1);
456
457	sc = device_get_softc(dev);
458
459	if (sc->aac_state & AAC_STATE_OPEN)
460		return(EBUSY);
461
462	/* Remove the child containers */
463	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
464		error = device_delete_child(dev, co->co_disk);
465		if (error)
466			return (error);
467		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
468		free(co, M_AACBUF);
469	}
470
471	/* Remove the CAM SIMs */
472	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
473		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
474		error = device_delete_child(dev, sim->sim_dev);
475		if (error)
476			return (error);
477		free(sim, M_AACBUF);
478	}
479
480	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
481		sc->aifflags |= AAC_AIFFLAGS_EXIT;
482		wakeup(sc->aifthread);
483		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
484	}
485
486	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
487		panic("Cannot shutdown AIF thread\n");
488
489	if ((error = aac_shutdown(dev)))
490		return(error);
491
492	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
493
494	aac_free(sc);
495
496	return(0);
497}
498
499/*
500 * Bring the controller down to a dormant state and detach all child devices.
501 *
502 * This function is called before detach or system shutdown.
503 *
504 * Note that we can assume that the bioq on the controller is empty, as we won't
505 * allow shutdown if any device is open.
506 */
507int
508aac_shutdown(device_t dev)
509{
510	struct aac_softc *sc;
511	struct aac_fib *fib;
512	struct aac_close_command *cc;
513
514	debug_called(1);
515
516	sc = device_get_softc(dev);
517
518	sc->aac_state |= AAC_STATE_SUSPEND;
519
520	/*
521	 * Send a Container shutdown followed by a HostShutdown FIB to the
522	 * controller to convince it that we don't want to talk to it anymore.
523	 * We've been closed and all I/O completed already
524	 */
525	device_printf(sc->aac_dev, "shutting down controller...");
526
527	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
528	cc = (struct aac_close_command *)&fib->data[0];
529
530	bzero(cc, sizeof(struct aac_close_command));
531	cc->Command = VM_CloseAll;
532	cc->ContainerId = 0xffffffff;
533	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
534	    sizeof(struct aac_close_command)))
535		printf("FAILED.\n");
536	else
537		printf("done\n");
538#if 0
539	else {
540		fib->data[0] = 0;
541		/*
542		 * XXX Issuing this command to the controller makes it shut down
543		 * but also keeps it from coming back up without a reset of the
544		 * PCI bus.  This is not desirable if you are just unloading the
545		 * driver module with the intent to reload it later.
546		 */
547		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
548		    fib, 1)) {
549			printf("FAILED.\n");
550		} else {
551			printf("done.\n");
552		}
553	}
554#endif
555
556	AAC_MASK_INTERRUPTS(sc);
557
558	return(0);
559}
560
561/*
562 * Bring the controller to a quiescent state, ready for system suspend.
563 */
564int
565aac_suspend(device_t dev)
566{
567	struct aac_softc *sc;
568
569	debug_called(1);
570
571	sc = device_get_softc(dev);
572
573	sc->aac_state |= AAC_STATE_SUSPEND;
574
575	AAC_MASK_INTERRUPTS(sc);
576	return(0);
577}
578
579/*
580 * Bring the controller back to a state ready for operation.
581 */
582int
583aac_resume(device_t dev)
584{
585	struct aac_softc *sc;
586
587	debug_called(1);
588
589	sc = device_get_softc(dev);
590
591	sc->aac_state &= ~AAC_STATE_SUSPEND;
592	AAC_UNMASK_INTERRUPTS(sc);
593	return(0);
594}
595
596/*
597 * Take an interrupt.
598 */
599void
600aac_intr(void *arg)
601{
602	struct aac_softc *sc;
603	u_int32_t *resp_queue;
604	u_int16_t reason;
605
606	debug_called(2);
607
608	sc = (struct aac_softc *)arg;
609
610	/*
611	 * Optimize the common case of adapter response interrupts.
612	 * We must read from the card prior to processing the responses
613	 * to ensure the clear is flushed prior to accessing the queues.
614	 * Reading the queues from local memory might save us a PCI read.
615	 */
616	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
617	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
618		reason = AAC_DB_RESPONSE_READY;
619	else
620		reason = AAC_GET_ISTATUS(sc);
621	AAC_CLEAR_ISTATUS(sc, reason);
622	(void)AAC_GET_ISTATUS(sc);
623
624	/* It's not ok to return here because of races with the previous step */
625	if (reason & AAC_DB_RESPONSE_READY)
626		/* handle completion processing */
627		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
628
629	/* controller wants to talk to the log */
630	if (reason & AAC_DB_PRINTF) {
631		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
633		} else
634			aac_print_printf(sc);
635	}
636
637	/* controller has a message for us? */
638	if (reason & AAC_DB_COMMAND_READY) {
639		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
640			sc->aifflags |= AAC_AIFFLAGS_AIF;
641		} else {
642			/*
643			 * XXX If the kthread is dead and we're at this point,
644			 * there are bigger problems than just figuring out
645			 * what to do with an AIF.
646			 */
647		}
648
649	}
650
651	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
652		/* XXX Should this be done with cv_signal? */
653		wakeup(sc->aifthread);
654}
655
656/*
657 * Command Processing
658 */
659
660/*
661 * Start as much queued I/O as possible on the controller
662 */
663void
664aac_startio(struct aac_softc *sc)
665{
666	struct aac_command *cm;
667
668	debug_called(2);
669
670	for (;;) {
671		/*
672		 * Try to get a command that's been put off for lack of
673		 * resources
674		 */
675		cm = aac_dequeue_ready(sc);
676
677		/*
678		 * Try to build a command off the bio queue (ignore error
679		 * return)
680		 */
681		if (cm == NULL)
682			aac_bio_command(sc, &cm);
683
684		/* nothing to do? */
685		if (cm == NULL)
686			break;
687
688		/* try to give the command to the controller */
689		if (aac_start(cm) == EBUSY) {
690			/* put it on the ready queue for later */
691			aac_requeue_ready(cm);
692			break;
693		}
694	}
695}
696
697/*
698 * Deliver a command to the controller; allocate controller resources at the
699 * last moment when possible.
700 */
701static int
702aac_start(struct aac_command *cm)
703{
704	struct aac_softc *sc;
705	int error;
706
707	debug_called(2);
708
709	sc = cm->cm_sc;
710
711	/* get the command mapped */
712	aac_map_command(cm);
713
714	/* Fix up the address values in the FIB.  Use the command array index
715	 * instead of a pointer since these fields are only 32 bits.  Shift
716	 * the SenderFibAddress over to make room for the fast response bit.
717	 */
718	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
719	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
720
721	/* save a pointer to the command for speedy reverse-lookup */
722	cm->cm_fib->Header.SenderData = cm->cm_index;
723	/* put the FIB on the outbound queue */
724	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
725	return(error);
726}
727
728/*
729 * Handle notification of one or more FIBs coming from the controller.
730 */
731static void
732aac_command_thread(struct aac_softc *sc)
733{
734	struct aac_fib *fib;
735	u_int32_t fib_size;
736	int size;
737
738	debug_called(2);
739
740	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
741
742	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
743		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
744			tsleep(sc->aifthread, PRIBIO, "aifthd",
745			       AAC_PERIODIC_INTERVAL * hz);
746
747		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
748			aac_timeout(sc);
749
750		/* Check the hardware printf message buffer */
751		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
752			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
753			aac_print_printf(sc);
754		}
755
756		/* See if any FIBs need to be allocated */
757		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
758			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
759			aac_alloc_commands(sc);
760			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
761			AAC_LOCK_RELEASE(&sc->aac_io_lock);
762		}
763
764		/* While we're here, check to see if any commands are stuck */
765		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
766			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
767					    &fib_size, &fib)) {
768				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
769				break;	/* nothing to do */
770			}
771
772			AAC_PRINT_FIB(sc, fib);
773
774			switch (fib->Header.Command) {
775			case AifRequest:
776				aac_handle_aif(sc, fib);
777				break;
778			default:
779				device_printf(sc->aac_dev, "unknown command "
780					      "from controller\n");
781				break;
782			}
783
784			if ((fib->Header.XferState == 0) ||
785			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
786				break;
787
788			/* Return the AIF to the controller. */
789			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
790				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
791				*(AAC_FSAStatus*)fib->data = ST_OK;
792
793				/* XXX Compute the Size field? */
794				size = fib->Header.Size;
795				if (size > sizeof(struct aac_fib)) {
796					size = sizeof(struct aac_fib);
797					fib->Header.Size = size;
798				}
799				/*
800				 * Since we did not generate this command, it
801				 * cannot go through the normal
802				 * enqueue->startio chain.
803				 */
804				aac_enqueue_response(sc,
805						     AAC_ADAP_NORM_RESP_QUEUE,
806						     fib);
807			}
808		}
809	}
810	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
811	wakeup(sc->aac_dev);
812
813	mtx_lock(&Giant);
814	kthread_exit(0);
815}
816
817/*
818 * Process completed commands.
819 */
820static void
821aac_complete(void *context, int pending)
822{
823	struct aac_softc *sc;
824	struct aac_command *cm;
825	struct aac_fib *fib;
826	u_int32_t fib_size;
827
828	debug_called(2);
829
830	sc = (struct aac_softc *)context;
831
832	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
833
834	/* pull completed commands off the queue */
835	for (;;) {
836		/* look for completed FIBs on our queue */
837		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
838				    &fib))
839			break;	/* nothing to do */
840
841		/* get the command, unmap and queue for later processing */
842		cm = sc->aac_commands + fib->Header.SenderData;
843		if (cm == NULL) {
844			AAC_PRINT_FIB(sc, fib);
845			break;
846		}
847
848		aac_remove_busy(cm);
849		aac_unmap_command(cm);		/* XXX defer? */
850		cm->cm_flags |= AAC_CMD_COMPLETED;
851
852		/* is there a completion handler? */
853		if (cm->cm_complete != NULL) {
854			cm->cm_complete(cm);
855		} else {
856			/* assume that someone is sleeping on this command */
857			wakeup(cm);
858		}
859	}
860
861	/* see if we can start some more I/O */
862	aac_startio(sc);
863
864	AAC_LOCK_RELEASE(&sc->aac_io_lock);
865}
866
867/*
868 * Handle a bio submitted from a disk device.
869 */
870void
871aac_submit_bio(struct bio *bp)
872{
873	struct aac_disk *ad;
874	struct aac_softc *sc;
875
876	debug_called(2);
877
878	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
879	sc = ad->ad_controller;
880
881	/* queue the BIO and try to get some work done */
882	aac_enqueue_bio(sc, bp);
883	aac_startio(sc);
884}
885
886/*
887 * Get a bio and build a command to go with it.
888 */
889static int
890aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
891{
892	struct aac_command *cm;
893	struct aac_fib *fib;
894	struct aac_disk *ad;
895	struct bio *bp;
896
897	debug_called(2);
898
899	/* get the resources we will need */
900	cm = NULL;
901	if ((bp = aac_dequeue_bio(sc)) == NULL)
902		goto fail;
903	if (aac_alloc_command(sc, &cm))	/* get a command */
904		goto fail;
905
906	/* fill out the command */
907	cm->cm_data = (void *)bp->bio_data;
908	cm->cm_datalen = bp->bio_bcount;
909	cm->cm_complete = aac_bio_complete;
910	cm->cm_private = bp;
911	cm->cm_timestamp = time_second;
912	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
913
914	/* build the FIB */
915	fib = cm->cm_fib;
916	fib->Header.Size = sizeof(struct aac_fib_header);
917	fib->Header.XferState =
918		AAC_FIBSTATE_HOSTOWNED   |
919		AAC_FIBSTATE_INITIALISED |
920		AAC_FIBSTATE_EMPTY	 |
921		AAC_FIBSTATE_FROMHOST	 |
922		AAC_FIBSTATE_REXPECTED   |
923		AAC_FIBSTATE_NORM	 |
924		AAC_FIBSTATE_ASYNC	 |
925		AAC_FIBSTATE_FAST_RESPONSE;
926
927	/* build the read/write request */
928	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
929
930	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
931		fib->Header.Command = ContainerCommand;
932		if (bp->bio_cmd == BIO_READ) {
933			struct aac_blockread *br;
934			br = (struct aac_blockread *)&fib->data[0];
935			br->Command = VM_CtBlockRead;
936			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
937			br->BlockNumber = bp->bio_pblkno;
938			br->ByteCount = bp->bio_bcount;
939			fib->Header.Size += sizeof(struct aac_blockread);
940			cm->cm_sgtable = &br->SgMap;
941			cm->cm_flags |= AAC_CMD_DATAIN;
942		} else {
943			struct aac_blockwrite *bw;
944			bw = (struct aac_blockwrite *)&fib->data[0];
945			bw->Command = VM_CtBlockWrite;
946			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947			bw->BlockNumber = bp->bio_pblkno;
948			bw->ByteCount = bp->bio_bcount;
949			bw->Stable = CUNSTABLE;
950			fib->Header.Size += sizeof(struct aac_blockwrite);
951			cm->cm_flags |= AAC_CMD_DATAOUT;
952			cm->cm_sgtable = &bw->SgMap;
953		}
954	} else {
955		fib->Header.Command = ContainerCommand64;
956		if (bp->bio_cmd == BIO_READ) {
957			struct aac_blockread64 *br;
958			br = (struct aac_blockread64 *)&fib->data[0];
959			br->Command = VM_CtHostRead64;
960			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
961			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
962			br->BlockNumber = bp->bio_pblkno;
963			br->Pad = 0;
964			br->Flags = 0;
965			fib->Header.Size += sizeof(struct aac_blockread64);
966			cm->cm_flags |= AAC_CMD_DATAOUT;
967			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
968		} else {
969			struct aac_blockwrite64 *bw;
970			bw = (struct aac_blockwrite64 *)&fib->data[0];
971			bw->Command = VM_CtHostWrite64;
972			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
973			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
974			bw->BlockNumber = bp->bio_pblkno;
975			bw->Pad = 0;
976			bw->Flags = 0;
977			fib->Header.Size += sizeof(struct aac_blockwrite64);
978			cm->cm_flags |= AAC_CMD_DATAIN;
979			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
980		}
981	}
982
983	*cmp = cm;
984	return(0);
985
986fail:
987	if (bp != NULL)
988		aac_enqueue_bio(sc, bp);
989	if (cm != NULL)
990		aac_release_command(cm);
991	return(ENOMEM);
992}
993
994/*
995 * Handle a bio-instigated command that has been completed.
996 */
997static void
998aac_bio_complete(struct aac_command *cm)
999{
1000	struct aac_blockread_response *brr;
1001	struct aac_blockwrite_response *bwr;
1002	struct bio *bp;
1003	AAC_FSAStatus status;
1004
1005	/* fetch relevant status and then release the command */
1006	bp = (struct bio *)cm->cm_private;
1007	if (bp->bio_cmd == BIO_READ) {
1008		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1009		status = brr->Status;
1010	} else {
1011		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1012		status = bwr->Status;
1013	}
1014	aac_release_command(cm);
1015
1016	/* fix up the bio based on status */
1017	if (status == ST_OK) {
1018		bp->bio_resid = 0;
1019	} else {
1020		bp->bio_error = EIO;
1021		bp->bio_flags |= BIO_ERROR;
1022		/* pass an error string out to the disk layer */
1023		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1024						    status);
1025	}
1026	aac_biodone(bp);
1027}
1028
1029/*
1030 * Submit a command to the controller, return when it completes.
1031 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1032 *     be stuck here forever.  At the same time, signals are not caught
1033 *     because there is a risk that a signal could wakeup the tsleep before
1034 *     the card has a chance to complete the command.  The passed in timeout
1035 *     is ignored for the same reason.  Since there is no way to cancel a
1036 *     command in progress, we should probably create a 'dead' queue where
1037 *     commands go that have been interrupted/timed-out/etc, that keeps them
1038 *     out of the free pool.  That way, if the card is just slow, it won't
1039 *     spam the memory of a command that has been recycled.
1040 */
1041static int
1042aac_wait_command(struct aac_command *cm, int timeout)
1043{
1044	struct aac_softc *sc;
1045	int error = 0;
1046
1047	debug_called(2);
1048
1049	sc = cm->cm_sc;
1050
1051	/* Put the command on the ready queue and get things going */
1052	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1053	aac_enqueue_ready(cm);
1054	aac_startio(sc);
1055	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1056		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1057	}
1058	return(error);
1059}
1060
1061/*
1062 *Command Buffer Management
1063 */
1064
1065/*
1066 * Allocate a command.
1067 */
1068int
1069aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1070{
1071	struct aac_command *cm;
1072
1073	debug_called(3);
1074
1075	if ((cm = aac_dequeue_free(sc)) == NULL) {
1076		if (sc->total_fibs < sc->aac_max_fibs) {
1077			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1078			wakeup(sc->aifthread);
1079		}
1080		return (EBUSY);
1081	}
1082
1083	*cmp = cm;
1084	return(0);
1085}
1086
1087/*
1088 * Release a command back to the freelist.
1089 */
1090void
1091aac_release_command(struct aac_command *cm)
1092{
1093	debug_called(3);
1094
1095	/* (re)initialise the command/FIB */
1096	cm->cm_sgtable = NULL;
1097	cm->cm_flags = 0;
1098	cm->cm_complete = NULL;
1099	cm->cm_private = NULL;
1100	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1101	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1102	cm->cm_fib->Header.Flags = 0;
1103	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1104
1105	/*
1106	 * These are duplicated in aac_start to cover the case where an
1107	 * intermediate stage may have destroyed them.  They're left
1108	 * initialised here for debugging purposes only.
1109	 */
1110	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1111	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1112	cm->cm_fib->Header.SenderData = 0;
1113
1114	aac_enqueue_free(cm);
1115}
1116
1117/*
1118 * Map helper for command/FIB allocation.
1119 */
1120static void
1121aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1122{
1123	uint32_t	*fibphys;
1124
1125	fibphys = (uint32_t *)arg;
1126
1127	debug_called(3);
1128
1129	*fibphys = segs[0].ds_addr;
1130}
1131
1132/*
1133 * Allocate and initialise commands/FIBs for this adapter.
1134 */
1135static int
1136aac_alloc_commands(struct aac_softc *sc)
1137{
1138	struct aac_command *cm;
1139	struct aac_fibmap *fm;
1140	uint32_t fibphys;
1141	int i, error;
1142
1143	debug_called(2);
1144
1145	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1146		return (ENOMEM);
1147
1148	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1149	if (fm == NULL)
1150		return (ENOMEM);
1151
1152	/* allocate the FIBs in DMAable memory and load them */
1153	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1154			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1155		device_printf(sc->aac_dev,
1156			      "Not enough contiguous memory available.\n");
1157		free(fm, M_AACBUF);
1158		return (ENOMEM);
1159	}
1160
1161	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1162			AAC_FIB_COUNT * sizeof(struct aac_fib),
1163			aac_map_command_helper, &fibphys, 0);
1164
1165	/* initialise constant fields in the command structure */
1166	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1167	for (i = 0; i < AAC_FIB_COUNT; i++) {
1168		cm = sc->aac_commands + sc->total_fibs;
1169		fm->aac_commands = cm;
1170		cm->cm_sc = sc;
1171		cm->cm_fib = fm->aac_fibs + i;
1172		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1173		cm->cm_index = sc->total_fibs;
1174
1175		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1176					       &cm->cm_datamap)) == 0)
1177			aac_release_command(cm);
1178		else
1179			break;
1180		sc->total_fibs++;
1181	}
1182
1183	if (i > 0) {
1184		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1185		debug(1, "total_fibs= %d\n", sc->total_fibs);
1186		return (0);
1187	}
1188
1189	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1190	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1191	free(fm, M_AACBUF);
1192	return (ENOMEM);
1193}
1194
1195/*
1196 * Free FIBs owned by this adapter.
1197 */
1198static void
1199aac_free_commands(struct aac_softc *sc)
1200{
1201	struct aac_fibmap *fm;
1202	struct aac_command *cm;
1203	int i;
1204
1205	debug_called(1);
1206
1207	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1208
1209		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1210		/*
1211		 * We check against total_fibs to handle partially
1212		 * allocated blocks.
1213		 */
1214		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1215			cm = fm->aac_commands + i;
1216			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1217		}
1218		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1219		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1220		free(fm, M_AACBUF);
1221	}
1222}
1223
1224/*
1225 * Command-mapping helper function - populate this command's s/g table.
1226 */
1227static void
1228aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1229{
1230	struct aac_command *cm;
1231	struct aac_fib *fib;
1232	int i;
1233
1234	debug_called(3);
1235
1236	cm = (struct aac_command *)arg;
1237	fib = cm->cm_fib;
1238
1239	/* copy into the FIB */
1240	if (cm->cm_sgtable != NULL) {
1241		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1242			struct aac_sg_table *sg;
1243			sg = cm->cm_sgtable;
1244			sg->SgCount = nseg;
1245			for (i = 0; i < nseg; i++) {
1246				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1247				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1248			}
1249			/* update the FIB size for the s/g count */
1250			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1251		} else {
1252			struct aac_sg_table64 *sg;
1253			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1254			sg->SgCount = nseg;
1255			for (i = 0; i < nseg; i++) {
1256				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1257				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1258			}
1259			/* update the FIB size for the s/g count */
1260			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1261		}
1262	}
1263}
1264
1265/*
1266 * Map a command into controller-visible space.
1267 */
1268static void
1269aac_map_command(struct aac_command *cm)
1270{
1271	struct aac_softc *sc;
1272
1273	debug_called(2);
1274
1275	sc = cm->cm_sc;
1276
1277	/* don't map more than once */
1278	if (cm->cm_flags & AAC_CMD_MAPPED)
1279		return;
1280
1281	if (cm->cm_datalen != 0) {
1282		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1283				cm->cm_data, cm->cm_datalen,
1284				aac_map_command_sg, cm, 0);
1285
1286		if (cm->cm_flags & AAC_CMD_DATAIN)
1287			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1288					BUS_DMASYNC_PREREAD);
1289		if (cm->cm_flags & AAC_CMD_DATAOUT)
1290			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1291					BUS_DMASYNC_PREWRITE);
1292	}
1293	cm->cm_flags |= AAC_CMD_MAPPED;
1294}
1295
1296/*
1297 * Unmap a command from controller-visible space.
1298 */
1299static void
1300aac_unmap_command(struct aac_command *cm)
1301{
1302	struct aac_softc *sc;
1303
1304	debug_called(2);
1305
1306	sc = cm->cm_sc;
1307
1308	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1309		return;
1310
1311	if (cm->cm_datalen != 0) {
1312		if (cm->cm_flags & AAC_CMD_DATAIN)
1313			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1314					BUS_DMASYNC_POSTREAD);
1315		if (cm->cm_flags & AAC_CMD_DATAOUT)
1316			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317					BUS_DMASYNC_POSTWRITE);
1318
1319		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1320	}
1321	cm->cm_flags &= ~AAC_CMD_MAPPED;
1322}
1323
1324/*
1325 * Hardware Interface
1326 */
1327
1328/*
1329 * Initialise the adapter.
1330 */
1331static void
1332aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1333{
1334	struct aac_softc *sc;
1335
1336	debug_called(1);
1337
1338	sc = (struct aac_softc *)arg;
1339
1340	sc->aac_common_busaddr = segs[0].ds_addr;
1341}
1342
1343static int
1344aac_check_firmware(struct aac_softc *sc)
1345{
1346	u_int32_t major, minor, options;
1347
1348	debug_called(1);
1349
1350	/*
1351	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1352	 * firmware version 1.x are not compatible with this driver.
1353	 */
1354	if (sc->flags & AAC_FLAGS_PERC2QC) {
1355		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1356				     NULL)) {
1357			device_printf(sc->aac_dev,
1358				      "Error reading firmware version\n");
1359			return (EIO);
1360		}
1361
1362		/* These numbers are stored as ASCII! */
1363		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1364		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1365		if (major == 1) {
1366			device_printf(sc->aac_dev,
1367			    "Firmware version %d.%d is not supported.\n",
1368			    major, minor);
1369			return (EINVAL);
1370		}
1371	}
1372
1373	/*
1374	 * Retrieve the capabilities/supported options word so we know what
1375	 * work-arounds to enable.
1376	 */
1377	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1378		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1379		return (EIO);
1380	}
1381	options = AAC_GET_MAILBOX(sc, 1);
1382	sc->supported_options = options;
1383
1384	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1385	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1386		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1387	if (options & AAC_SUPPORTED_NONDASD)
1388		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1389	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1390		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1391		sc->flags |= AAC_FLAGS_SG_64BIT;
1392	}
1393
1394	/* Check for broken hardware that does a lower number of commands */
1395	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1396		sc->aac_max_fibs = AAC_MAX_FIBS;
1397	else
1398		sc->aac_max_fibs = 256;
1399
1400	return (0);
1401}
1402
1403static int
1404aac_init(struct aac_softc *sc)
1405{
1406	struct aac_adapter_init	*ip;
1407	time_t then;
1408	u_int32_t code;
1409	u_int8_t *qaddr;
1410	int error;
1411
1412	debug_called(1);
1413
1414	/*
1415	 * First wait for the adapter to come ready.
1416	 */
1417	then = time_second;
1418	do {
1419		code = AAC_GET_FWSTATUS(sc);
1420		if (code & AAC_SELF_TEST_FAILED) {
1421			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1422			return(ENXIO);
1423		}
1424		if (code & AAC_KERNEL_PANIC) {
1425			device_printf(sc->aac_dev,
1426				      "FATAL: controller kernel panic\n");
1427			return(ENXIO);
1428		}
1429		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1430			device_printf(sc->aac_dev,
1431				      "FATAL: controller not coming ready, "
1432					   "status %x\n", code);
1433			return(ENXIO);
1434		}
1435	} while (!(code & AAC_UP_AND_RUNNING));
1436
1437	error = ENOMEM;
1438	/*
1439	 * Create DMA tag for mapping buffers into controller-addressable space.
1440	 */
1441	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1442			       1, 0, 			/* algnmnt, boundary */
1443			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1444			       BUS_SPACE_MAXADDR :
1445			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1446			       BUS_SPACE_MAXADDR, 	/* highaddr */
1447			       NULL, NULL, 		/* filter, filterarg */
1448			       MAXBSIZE,		/* maxsize */
1449			       AAC_MAXSGENTRIES,	/* nsegments */
1450			       MAXBSIZE,		/* maxsegsize */
1451			       BUS_DMA_ALLOCNOW,	/* flags */
1452			       busdma_lock_mutex,	/* lockfunc */
1453			       &sc->aac_io_lock,	/* lockfuncarg */
1454			       &sc->aac_buffer_dmat)) {
1455		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1456		goto out;
1457	}
1458
1459	/*
1460	 * Create DMA tag for mapping FIBs into controller-addressable space..
1461	 */
1462	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1463			       1, 0, 			/* algnmnt, boundary */
1464			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1465			       BUS_SPACE_MAXADDR_32BIT :
1466			       0x7fffffff,		/* lowaddr */
1467			       BUS_SPACE_MAXADDR, 	/* highaddr */
1468			       NULL, NULL, 		/* filter, filterarg */
1469			       AAC_FIB_COUNT *
1470			       sizeof(struct aac_fib),  /* maxsize */
1471			       1,			/* nsegments */
1472			       AAC_FIB_COUNT *
1473			       sizeof(struct aac_fib),	/* maxsegsize */
1474			       BUS_DMA_ALLOCNOW,	/* flags */
1475			       NULL, NULL,		/* No locking needed */
1476			       &sc->aac_fib_dmat)) {
1477		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1478		goto out;
1479	}
1480
1481	/*
1482	 * Create DMA tag for the common structure and allocate it.
1483	 */
1484	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1485			       1, 0,			/* algnmnt, boundary */
1486			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1487			       BUS_SPACE_MAXADDR_32BIT :
1488			       0x7fffffff,		/* lowaddr */
1489			       BUS_SPACE_MAXADDR, 	/* highaddr */
1490			       NULL, NULL, 		/* filter, filterarg */
1491			       8192 + sizeof(struct aac_common), /* maxsize */
1492			       1,			/* nsegments */
1493			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1494			       BUS_DMA_ALLOCNOW,	/* flags */
1495			       NULL, NULL,		/* No locking needed */
1496			       &sc->aac_common_dmat)) {
1497		device_printf(sc->aac_dev,
1498			      "can't allocate common structure DMA tag\n");
1499		goto out;
1500	}
1501	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1502			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1503		device_printf(sc->aac_dev, "can't allocate common structure\n");
1504		goto out;
1505	}
1506
1507	/*
1508	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1509	 * below address 8192 in physical memory.
1510	 * XXX If the padding is not needed, can it be put to use instead
1511	 * of ignored?
1512	 */
1513	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1514			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1515			aac_common_map, sc, 0);
1516
1517	if (sc->aac_common_busaddr < 8192) {
1518		(uint8_t *)sc->aac_common += 8192;
1519		sc->aac_common_busaddr += 8192;
1520	}
1521	bzero(sc->aac_common, sizeof(*sc->aac_common));
1522
1523	/* Allocate some FIBs and associated command structs */
1524	TAILQ_INIT(&sc->aac_fibmap_tqh);
1525	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1526				  M_AACBUF, M_WAITOK|M_ZERO);
1527	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1528		if (aac_alloc_commands(sc) != 0)
1529			break;
1530	}
1531	if (sc->total_fibs == 0)
1532		goto out;
1533
1534	/*
1535	 * Fill in the init structure.  This tells the adapter about the
1536	 * physical location of various important shared data structures.
1537	 */
1538	ip = &sc->aac_common->ac_init;
1539	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1540	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1541
1542	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1543					 offsetof(struct aac_common, ac_fibs);
1544	ip->AdapterFibsVirtualAddress = 0;
1545	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1546	ip->AdapterFibAlign = sizeof(struct aac_fib);
1547
1548	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1549				  offsetof(struct aac_common, ac_printf);
1550	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1551
1552	/*
1553	 * The adapter assumes that pages are 4K in size, except on some
1554 	 * broken firmware versions that do the page->byte conversion twice,
1555	 * therefore 'assuming' that this value is in 16MB units (2^24).
1556	 * Round up since the granularity is so high.
1557	 */
1558	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1559	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1560		ip->HostPhysMemPages =
1561		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1562	}
1563	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1564
1565	/*
1566	 * Initialise FIB queues.  Note that it appears that the layout of the
1567	 * indexes and the segmentation of the entries may be mandated by the
1568	 * adapter, which is only told about the base of the queue index fields.
1569	 *
1570	 * The initial values of the indices are assumed to inform the adapter
1571	 * of the sizes of the respective queues, and theoretically it could
1572	 * work out the entire layout of the queue structures from this.  We
1573	 * take the easy route and just lay this area out like everyone else
1574	 * does.
1575	 *
1576	 * The Linux driver uses a much more complex scheme whereby several
1577	 * header records are kept for each queue.  We use a couple of generic
1578	 * list manipulation functions which 'know' the size of each list by
1579	 * virtue of a table.
1580	 */
1581	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1582	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1583	sc->aac_queues = (struct aac_queue_table *)qaddr;
1584	ip->CommHeaderAddress = sc->aac_common_busaddr +
1585				((u_int32_t)sc->aac_queues -
1586				(u_int32_t)sc->aac_common);
1587
1588	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589		AAC_HOST_NORM_CMD_ENTRIES;
1590	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591		AAC_HOST_NORM_CMD_ENTRIES;
1592	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1593		AAC_HOST_HIGH_CMD_ENTRIES;
1594	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1595		AAC_HOST_HIGH_CMD_ENTRIES;
1596	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1597		AAC_ADAP_NORM_CMD_ENTRIES;
1598	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1599		AAC_ADAP_NORM_CMD_ENTRIES;
1600	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1601		AAC_ADAP_HIGH_CMD_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1603		AAC_ADAP_HIGH_CMD_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605		AAC_HOST_NORM_RESP_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607		AAC_HOST_NORM_RESP_ENTRIES;
1608	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1609		AAC_HOST_HIGH_RESP_ENTRIES;
1610	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1611		AAC_HOST_HIGH_RESP_ENTRIES;
1612	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1613		AAC_ADAP_NORM_RESP_ENTRIES;
1614	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1615		AAC_ADAP_NORM_RESP_ENTRIES;
1616	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1617		AAC_ADAP_HIGH_RESP_ENTRIES;
1618	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1619		AAC_ADAP_HIGH_RESP_ENTRIES;
1620	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1621		&sc->aac_queues->qt_HostNormCmdQueue[0];
1622	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1623		&sc->aac_queues->qt_HostHighCmdQueue[0];
1624	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1625		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1626	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1627		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1628	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1629		&sc->aac_queues->qt_HostNormRespQueue[0];
1630	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1631		&sc->aac_queues->qt_HostHighRespQueue[0];
1632	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1633		&sc->aac_queues->qt_AdapNormRespQueue[0];
1634	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1635		&sc->aac_queues->qt_AdapHighRespQueue[0];
1636
1637	/*
1638	 * Do controller-type-specific initialisation
1639	 */
1640	switch (sc->aac_hwif) {
1641	case AAC_HWIF_I960RX:
1642		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1643		break;
1644	}
1645
1646	/*
1647	 * Give the init structure to the controller.
1648	 */
1649	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1650			     sc->aac_common_busaddr +
1651			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1652			     NULL)) {
1653		device_printf(sc->aac_dev,
1654			      "error establishing init structure\n");
1655		error = EIO;
1656		goto out;
1657	}
1658
1659	error = 0;
1660out:
1661	return(error);
1662}
1663
1664/*
1665 * Send a synchronous command to the controller and wait for a result.
1666 */
1667static int
1668aac_sync_command(struct aac_softc *sc, u_int32_t command,
1669		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1670		 u_int32_t *sp)
1671{
1672	time_t then;
1673	u_int32_t status;
1674
1675	debug_called(3);
1676
1677	/* populate the mailbox */
1678	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1679
1680	/* ensure the sync command doorbell flag is cleared */
1681	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1682
1683	/* then set it to signal the adapter */
1684	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1685
1686	/* spin waiting for the command to complete */
1687	then = time_second;
1688	do {
1689		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1690			debug(1, "timed out");
1691			return(EIO);
1692		}
1693	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1694
1695	/* clear the completion flag */
1696	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1697
1698	/* get the command status */
1699	status = AAC_GET_MAILBOX(sc, 0);
1700	if (sp != NULL)
1701		*sp = status;
1702	return(0);
1703}
1704
1705/*
1706 * Grab the sync fib area.
1707 */
1708int
1709aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1710{
1711
1712	/*
1713	 * If the force flag is set, the system is shutting down, or in
1714	 * trouble.  Ignore the mutex.
1715	 */
1716	if (!(flags & AAC_SYNC_LOCK_FORCE))
1717		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1718
1719	*fib = &sc->aac_common->ac_sync_fib;
1720
1721	return (1);
1722}
1723
1724/*
1725 * Release the sync fib area.
1726 */
1727void
1728aac_release_sync_fib(struct aac_softc *sc)
1729{
1730
1731	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1732}
1733
1734/*
1735 * Send a synchronous FIB to the controller and wait for a result.
1736 */
1737int
1738aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1739		 struct aac_fib *fib, u_int16_t datasize)
1740{
1741	debug_called(3);
1742
1743	if (datasize > AAC_FIB_DATASIZE)
1744		return(EINVAL);
1745
1746	/*
1747	 * Set up the sync FIB
1748	 */
1749	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1750				AAC_FIBSTATE_INITIALISED |
1751				AAC_FIBSTATE_EMPTY;
1752	fib->Header.XferState |= xferstate;
1753	fib->Header.Command = command;
1754	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1755	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1756	fib->Header.SenderSize = sizeof(struct aac_fib);
1757	fib->Header.SenderFibAddress = (u_int32_t)fib;
1758	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1759					 offsetof(struct aac_common,
1760						  ac_sync_fib);
1761
1762	/*
1763	 * Give the FIB to the controller, wait for a response.
1764	 */
1765	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1766			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1767		debug(2, "IO error");
1768		return(EIO);
1769	}
1770
1771	return (0);
1772}
1773
1774/*
1775 * Adapter-space FIB queue manipulation
1776 *
1777 * Note that the queue implementation here is a little funky; neither the PI or
1778 * CI will ever be zero.  This behaviour is a controller feature.
1779 */
1780static struct {
1781	int		size;
1782	int		notify;
1783} aac_qinfo[] = {
1784	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1785	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1786	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1787	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1788	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1789	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1790	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1791	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1792};
1793
1794/*
1795 * Atomically insert an entry into the nominated queue, returns 0 on success or
1796 * EBUSY if the queue is full.
1797 *
1798 * Note: it would be more efficient to defer notifying the controller in
1799 *	 the case where we may be inserting several entries in rapid succession,
1800 *	 but implementing this usefully may be difficult (it would involve a
1801 *	 separate queue/notify interface).
1802 */
1803static int
1804aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1805{
1806	u_int32_t pi, ci;
1807	int error;
1808	u_int32_t fib_size;
1809	u_int32_t fib_addr;
1810
1811	debug_called(3);
1812
1813	fib_size = cm->cm_fib->Header.Size;
1814	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1815
1816	/* get the producer/consumer indices */
1817	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1818	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1819
1820	/* wrap the queue? */
1821	if (pi >= aac_qinfo[queue].size)
1822		pi = 0;
1823
1824	/* check for queue full */
1825	if ((pi + 1) == ci) {
1826		error = EBUSY;
1827		goto out;
1828	}
1829
1830	/* populate queue entry */
1831	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1832	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1833
1834	/* update producer index */
1835	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1836
1837	/*
1838	 * To avoid a race with its completion interrupt, place this command on
1839	 * the busy queue prior to advertising it to the controller.
1840	 */
1841	aac_enqueue_busy(cm);
1842
1843	/* notify the adapter if we know how */
1844	if (aac_qinfo[queue].notify != 0)
1845		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1846
1847	error = 0;
1848
1849out:
1850	return(error);
1851}
1852
1853/*
1854 * Atomically remove one entry from the nominated queue, returns 0 on
1855 * success or ENOENT if the queue is empty.
1856 */
1857static int
1858aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1859		struct aac_fib **fib_addr)
1860{
1861	u_int32_t pi, ci;
1862	u_int32_t fib_index;
1863	int error;
1864	int notify;
1865
1866	debug_called(3);
1867
1868	/* get the producer/consumer indices */
1869	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1870	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1871
1872	/* check for queue empty */
1873	if (ci == pi) {
1874		error = ENOENT;
1875		goto out;
1876	}
1877
1878	notify = 0;
1879	if (ci == pi + 1)
1880		notify++;
1881
1882	/* wrap the queue? */
1883	if (ci >= aac_qinfo[queue].size)
1884		ci = 0;
1885
1886	/* fetch the entry */
1887	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1888
1889	switch (queue) {
1890	case AAC_HOST_NORM_CMD_QUEUE:
1891	case AAC_HOST_HIGH_CMD_QUEUE:
1892		/*
1893		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1894		 * on to hold an address.  For AIF's, the adapter assumes
1895		 * that it's giving us an address into the array of AIF fibs.
1896		 * Therefore, we have to convert it to an index.
1897		 */
1898		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1899			sizeof(struct aac_fib);
1900		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1901		break;
1902
1903	case AAC_HOST_NORM_RESP_QUEUE:
1904	case AAC_HOST_HIGH_RESP_QUEUE:
1905	{
1906		struct aac_command *cm;
1907
1908		/*
1909		 * As above, an index is used instead of an actual address.
1910		 * Gotta shift the index to account for the fast response
1911		 * bit.  No other correction is needed since this value was
1912		 * originally provided by the driver via the SenderFibAddress
1913		 * field.
1914		 */
1915		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1916		cm = sc->aac_commands + (fib_index >> 1);
1917		*fib_addr = cm->cm_fib;
1918
1919		/*
1920		 * Is this a fast response? If it is, update the fib fields in
1921		 * local memory since the whole fib isn't DMA'd back up.
1922		 */
1923		if (fib_index & 0x01) {
1924			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1925			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1926		}
1927		break;
1928	}
1929	default:
1930		panic("Invalid queue in aac_dequeue_fib()");
1931		break;
1932	}
1933
1934	/* update consumer index */
1935	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1936
1937	/* if we have made the queue un-full, notify the adapter */
1938	if (notify && (aac_qinfo[queue].notify != 0))
1939		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1940	error = 0;
1941
1942out:
1943	return(error);
1944}
1945
1946/*
1947 * Put our response to an Adapter Initialed Fib on the response queue
1948 */
1949static int
1950aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1951{
1952	u_int32_t pi, ci;
1953	int error;
1954	u_int32_t fib_size;
1955	u_int32_t fib_addr;
1956
1957	debug_called(1);
1958
1959	/* Tell the adapter where the FIB is */
1960	fib_size = fib->Header.Size;
1961	fib_addr = fib->Header.SenderFibAddress;
1962	fib->Header.ReceiverFibAddress = fib_addr;
1963
1964	/* get the producer/consumer indices */
1965	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1966	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1967
1968	/* wrap the queue? */
1969	if (pi >= aac_qinfo[queue].size)
1970		pi = 0;
1971
1972	/* check for queue full */
1973	if ((pi + 1) == ci) {
1974		error = EBUSY;
1975		goto out;
1976	}
1977
1978	/* populate queue entry */
1979	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1980	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1981
1982	/* update producer index */
1983	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1984
1985	/* notify the adapter if we know how */
1986	if (aac_qinfo[queue].notify != 0)
1987		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1988
1989	error = 0;
1990
1991out:
1992	return(error);
1993}
1994
1995/*
1996 * Check for commands that have been outstanding for a suspiciously long time,
1997 * and complain about them.
1998 */
1999static void
2000aac_timeout(struct aac_softc *sc)
2001{
2002	struct aac_command *cm;
2003	time_t deadline;
2004
2005	/*
2006	 * Traverse the busy command list, bitch about late commands once
2007	 * only.
2008	 */
2009	deadline = time_second - AAC_CMD_TIMEOUT;
2010	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2011		if ((cm->cm_timestamp  < deadline)
2012			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2013			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2014			device_printf(sc->aac_dev,
2015				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2016				      cm, (int)(time_second-cm->cm_timestamp));
2017			AAC_PRINT_FIB(sc, cm->cm_fib);
2018		}
2019	}
2020
2021	return;
2022}
2023
2024/*
2025 * Interface Function Vectors
2026 */
2027
2028/*
2029 * Read the current firmware status word.
2030 */
2031static int
2032aac_sa_get_fwstatus(struct aac_softc *sc)
2033{
2034	debug_called(3);
2035
2036	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2037}
2038
2039static int
2040aac_rx_get_fwstatus(struct aac_softc *sc)
2041{
2042	debug_called(3);
2043
2044	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2045}
2046
2047static int
2048aac_fa_get_fwstatus(struct aac_softc *sc)
2049{
2050	int val;
2051
2052	debug_called(3);
2053
2054	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2055	return (val);
2056}
2057
2058/*
2059 * Notify the controller of a change in a given queue
2060 */
2061
2062static void
2063aac_sa_qnotify(struct aac_softc *sc, int qbit)
2064{
2065	debug_called(3);
2066
2067	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2068}
2069
2070static void
2071aac_rx_qnotify(struct aac_softc *sc, int qbit)
2072{
2073	debug_called(3);
2074
2075	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2076}
2077
2078static void
2079aac_fa_qnotify(struct aac_softc *sc, int qbit)
2080{
2081	debug_called(3);
2082
2083	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2084	AAC_FA_HACK(sc);
2085}
2086
2087/*
2088 * Get the interrupt reason bits
2089 */
2090static int
2091aac_sa_get_istatus(struct aac_softc *sc)
2092{
2093	debug_called(3);
2094
2095	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2096}
2097
2098static int
2099aac_rx_get_istatus(struct aac_softc *sc)
2100{
2101	debug_called(3);
2102
2103	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2104}
2105
2106static int
2107aac_fa_get_istatus(struct aac_softc *sc)
2108{
2109	int val;
2110
2111	debug_called(3);
2112
2113	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2114	return (val);
2115}
2116
2117/*
2118 * Clear some interrupt reason bits
2119 */
2120static void
2121aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2122{
2123	debug_called(3);
2124
2125	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2126}
2127
2128static void
2129aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2130{
2131	debug_called(3);
2132
2133	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2134}
2135
2136static void
2137aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2138{
2139	debug_called(3);
2140
2141	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2142	AAC_FA_HACK(sc);
2143}
2144
2145/*
2146 * Populate the mailbox and set the command word
2147 */
2148static void
2149aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2150		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2151{
2152	debug_called(4);
2153
2154	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2155	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2156	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2157	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2158	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2159}
2160
2161static void
2162aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2163		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2164{
2165	debug_called(4);
2166
2167	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2168	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2169	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2170	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2171	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2172}
2173
2174static void
2175aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2176		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2177{
2178	debug_called(4);
2179
2180	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2181	AAC_FA_HACK(sc);
2182	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2183	AAC_FA_HACK(sc);
2184	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2185	AAC_FA_HACK(sc);
2186	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2187	AAC_FA_HACK(sc);
2188	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2189	AAC_FA_HACK(sc);
2190}
2191
2192/*
2193 * Fetch the immediate command status word
2194 */
2195static int
2196aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2197{
2198	debug_called(4);
2199
2200	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2201}
2202
2203static int
2204aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2205{
2206	debug_called(4);
2207
2208	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2209}
2210
2211static int
2212aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2213{
2214	int val;
2215
2216	debug_called(4);
2217
2218	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2219	return (val);
2220}
2221
2222/*
2223 * Set/clear interrupt masks
2224 */
2225static void
2226aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2227{
2228	debug(2, "%sable interrupts", enable ? "en" : "dis");
2229
2230	if (enable) {
2231		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2232	} else {
2233		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2234	}
2235}
2236
2237static void
2238aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2239{
2240	debug(2, "%sable interrupts", enable ? "en" : "dis");
2241
2242	if (enable) {
2243		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2244	} else {
2245		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2246	}
2247}
2248
2249static void
2250aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2251{
2252	debug(2, "%sable interrupts", enable ? "en" : "dis");
2253
2254	if (enable) {
2255		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2256		AAC_FA_HACK(sc);
2257	} else {
2258		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2259		AAC_FA_HACK(sc);
2260	}
2261}
2262
2263/*
2264 * Debugging and Diagnostics
2265 */
2266
2267/*
2268 * Print some information about the controller.
2269 */
2270static void
2271aac_describe_controller(struct aac_softc *sc)
2272{
2273	struct aac_fib *fib;
2274	struct aac_adapter_info	*info;
2275
2276	debug_called(2);
2277
2278	aac_alloc_sync_fib(sc, &fib, 0);
2279
2280	fib->data[0] = 0;
2281	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2282		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2283		aac_release_sync_fib(sc);
2284		return;
2285	}
2286	info = (struct aac_adapter_info *)&fib->data[0];
2287
2288	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2289		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2290		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2291		      aac_describe_code(aac_battery_platform,
2292					info->batteryPlatform));
2293
2294	/* save the kernel revision structure for later use */
2295	sc->aac_revision = info->KernelRevision;
2296	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2297		      info->KernelRevision.external.comp.major,
2298		      info->KernelRevision.external.comp.minor,
2299		      info->KernelRevision.external.comp.dash,
2300		      info->KernelRevision.buildNumber,
2301		      (u_int32_t)(info->SerialNumber & 0xffffff));
2302
2303	aac_release_sync_fib(sc);
2304
2305	if (1 || bootverbose) {
2306		device_printf(sc->aac_dev, "Supported Options=%b\n",
2307			      sc->supported_options,
2308			      "\20"
2309			      "\1SNAPSHOT"
2310			      "\2CLUSTERS"
2311			      "\3WCACHE"
2312			      "\4DATA64"
2313			      "\5HOSTTIME"
2314			      "\6RAID50"
2315			      "\7WINDOW4GB"
2316			      "\10SCSIUPGD"
2317			      "\11SOFTERR"
2318			      "\12NORECOND"
2319			      "\13SGMAP64"
2320			      "\14ALARM"
2321			      "\15NONDASD");
2322	}
2323}
2324
2325/*
2326 * Look up a text description of a numeric error code and return a pointer to
2327 * same.
2328 */
2329static char *
2330aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2331{
2332	int i;
2333
2334	for (i = 0; table[i].string != NULL; i++)
2335		if (table[i].code == code)
2336			return(table[i].string);
2337	return(table[i + 1].string);
2338}
2339
2340/*
2341 * Management Interface
2342 */
2343
2344static int
2345aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2346{
2347	struct aac_softc *sc;
2348
2349	debug_called(2);
2350
2351	sc = dev->si_drv1;
2352
2353	/* Check to make sure the device isn't already open */
2354	if (sc->aac_state & AAC_STATE_OPEN) {
2355		return EBUSY;
2356	}
2357	sc->aac_state |= AAC_STATE_OPEN;
2358
2359	return 0;
2360}
2361
2362static int
2363aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2364{
2365	struct aac_softc *sc;
2366
2367	debug_called(2);
2368
2369	sc = dev->si_drv1;
2370
2371	/* Mark this unit as no longer open  */
2372	sc->aac_state &= ~AAC_STATE_OPEN;
2373
2374	return 0;
2375}
2376
2377static int
2378aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2379{
2380	union aac_statrequest *as;
2381	struct aac_softc *sc;
2382	int error = 0;
2383	int i;
2384
2385	debug_called(2);
2386
2387	as = (union aac_statrequest *)arg;
2388	sc = dev->si_drv1;
2389
2390	switch (cmd) {
2391	case AACIO_STATS:
2392		switch (as->as_item) {
2393		case AACQ_FREE:
2394		case AACQ_BIO:
2395		case AACQ_READY:
2396		case AACQ_BUSY:
2397		case AACQ_COMPLETE:
2398			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2399			      sizeof(struct aac_qstat));
2400			break;
2401		default:
2402			error = ENOENT;
2403			break;
2404		}
2405	break;
2406
2407	case FSACTL_SENDFIB:
2408		arg = *(caddr_t*)arg;
2409	case FSACTL_LNX_SENDFIB:
2410		debug(1, "FSACTL_SENDFIB");
2411		error = aac_ioctl_sendfib(sc, arg);
2412		break;
2413	case FSACTL_AIF_THREAD:
2414	case FSACTL_LNX_AIF_THREAD:
2415		debug(1, "FSACTL_AIF_THREAD");
2416		error = EINVAL;
2417		break;
2418	case FSACTL_OPEN_GET_ADAPTER_FIB:
2419		arg = *(caddr_t*)arg;
2420	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2421		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2422		/*
2423		 * Pass the caller out an AdapterFibContext.
2424		 *
2425		 * Note that because we only support one opener, we
2426		 * basically ignore this.  Set the caller's context to a magic
2427		 * number just in case.
2428		 *
2429		 * The Linux code hands the driver a pointer into kernel space,
2430		 * and then trusts it when the caller hands it back.  Aiee!
2431		 * Here, we give it the proc pointer of the per-adapter aif
2432		 * thread. It's only used as a sanity check in other calls.
2433		 */
2434		i = (int)sc->aifthread;
2435		error = copyout(&i, arg, sizeof(i));
2436		break;
2437	case FSACTL_GET_NEXT_ADAPTER_FIB:
2438		arg = *(caddr_t*)arg;
2439	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2440		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2441		error = aac_getnext_aif(sc, arg);
2442		break;
2443	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2444	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2445		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2446		/* don't do anything here */
2447		break;
2448	case FSACTL_MINIPORT_REV_CHECK:
2449		arg = *(caddr_t*)arg;
2450	case FSACTL_LNX_MINIPORT_REV_CHECK:
2451		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2452		error = aac_rev_check(sc, arg);
2453		break;
2454	case FSACTL_QUERY_DISK:
2455		arg = *(caddr_t*)arg;
2456	case FSACTL_LNX_QUERY_DISK:
2457		debug(1, "FSACTL_QUERY_DISK");
2458		error = aac_query_disk(sc, arg);
2459			break;
2460	case FSACTL_DELETE_DISK:
2461	case FSACTL_LNX_DELETE_DISK:
2462		/*
2463		 * We don't trust the underland to tell us when to delete a
2464		 * container, rather we rely on an AIF coming from the
2465		 * controller
2466		 */
2467		error = 0;
2468		break;
2469	default:
2470		debug(1, "unsupported cmd 0x%lx\n", cmd);
2471		error = EINVAL;
2472		break;
2473	}
2474	return(error);
2475}
2476
2477static int
2478aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2479{
2480	struct aac_softc *sc;
2481	int revents;
2482
2483	sc = dev->si_drv1;
2484	revents = 0;
2485
2486	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2487	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2488		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2489			revents |= poll_events & (POLLIN | POLLRDNORM);
2490	}
2491	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2492
2493	if (revents == 0) {
2494		if (poll_events & (POLLIN | POLLRDNORM))
2495			selrecord(td, &sc->rcv_select);
2496	}
2497
2498	return (revents);
2499}
2500
2501/*
2502 * Send a FIB supplied from userspace
2503 */
2504static int
2505aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2506{
2507	struct aac_command *cm;
2508	int size, error;
2509
2510	debug_called(2);
2511
2512	cm = NULL;
2513
2514	/*
2515	 * Get a command
2516	 */
2517	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2518	if (aac_alloc_command(sc, &cm)) {
2519		error = EBUSY;
2520		goto out;
2521	}
2522
2523	/*
2524	 * Fetch the FIB header, then re-copy to get data as well.
2525	 */
2526	if ((error = copyin(ufib, cm->cm_fib,
2527			    sizeof(struct aac_fib_header))) != 0)
2528		goto out;
2529	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2530	if (size > sizeof(struct aac_fib)) {
2531		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2532			      size, sizeof(struct aac_fib));
2533		size = sizeof(struct aac_fib);
2534	}
2535	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2536		goto out;
2537	cm->cm_fib->Header.Size = size;
2538	cm->cm_timestamp = time_second;
2539
2540	/*
2541	 * Pass the FIB to the controller, wait for it to complete.
2542	 */
2543	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2544		device_printf(sc->aac_dev,
2545			      "aac_wait_command return %d\n", error);
2546		goto out;
2547	}
2548
2549	/*
2550	 * Copy the FIB and data back out to the caller.
2551	 */
2552	size = cm->cm_fib->Header.Size;
2553	if (size > sizeof(struct aac_fib)) {
2554		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2555			      size, sizeof(struct aac_fib));
2556		size = sizeof(struct aac_fib);
2557	}
2558	error = copyout(cm->cm_fib, ufib, size);
2559
2560out:
2561	if (cm != NULL) {
2562		aac_release_command(cm);
2563	}
2564
2565	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2566	return(error);
2567}
2568
2569/*
2570 * Handle an AIF sent to us by the controller; queue it for later reference.
2571 * If the queue fills up, then drop the older entries.
2572 */
2573static void
2574aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2575{
2576	struct aac_aif_command *aif;
2577	struct aac_container *co, *co_next;
2578	struct aac_mntinfo *mi;
2579	struct aac_mntinforesp *mir = NULL;
2580	u_int16_t rsize;
2581	int next, found;
2582	int count = 0, added = 0, i = 0;
2583
2584	debug_called(2);
2585
2586	aif = (struct aac_aif_command*)&fib->data[0];
2587	aac_print_aif(sc, aif);
2588
2589	/* Is it an event that we should care about? */
2590	switch (aif->command) {
2591	case AifCmdEventNotify:
2592		switch (aif->data.EN.type) {
2593		case AifEnAddContainer:
2594		case AifEnDeleteContainer:
2595			/*
2596			 * A container was added or deleted, but the message
2597			 * doesn't tell us anything else!  Re-enumerate the
2598			 * containers and sort things out.
2599			 */
2600			aac_alloc_sync_fib(sc, &fib, 0);
2601			mi = (struct aac_mntinfo *)&fib->data[0];
2602			do {
2603				/*
2604				 * Ask the controller for its containers one at
2605				 * a time.
2606				 * XXX What if the controller's list changes
2607				 * midway through this enumaration?
2608				 * XXX This should be done async.
2609				 */
2610				bzero(mi, sizeof(struct aac_mntinfo));
2611				mi->Command = VM_NameServe;
2612				mi->MntType = FT_FILESYS;
2613				mi->MntCount = i;
2614				rsize = sizeof(mir);
2615				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2616						 sizeof(struct aac_mntinfo))) {
2617					printf("Error probing container %d\n",
2618					      i);
2619					continue;
2620				}
2621				mir = (struct aac_mntinforesp *)&fib->data[0];
2622				/* XXX Need to check if count changed */
2623				count = mir->MntRespCount;
2624				/*
2625				 * Check the container against our list.
2626				 * co->co_found was already set to 0 in a
2627				 * previous run.
2628				 */
2629				if ((mir->Status == ST_OK) &&
2630				    (mir->MntTable[0].VolType != CT_NONE)) {
2631					found = 0;
2632					TAILQ_FOREACH(co,
2633						      &sc->aac_container_tqh,
2634						      co_link) {
2635						if (co->co_mntobj.ObjectId ==
2636						    mir->MntTable[0].ObjectId) {
2637							co->co_found = 1;
2638							found = 1;
2639							break;
2640						}
2641					}
2642					/*
2643					 * If the container matched, continue
2644					 * in the list.
2645					 */
2646					if (found) {
2647						i++;
2648						continue;
2649					}
2650
2651					/*
2652					 * This is a new container.  Do all the
2653					 * appropriate things to set it up.
2654					 */
2655					aac_add_container(sc, mir, 1);
2656					added = 1;
2657				}
2658				i++;
2659			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2660			aac_release_sync_fib(sc);
2661
2662			/*
2663			 * Go through our list of containers and see which ones
2664			 * were not marked 'found'.  Since the controller didn't
2665			 * list them they must have been deleted.  Do the
2666			 * appropriate steps to destroy the device.  Also reset
2667			 * the co->co_found field.
2668			 */
2669			co = TAILQ_FIRST(&sc->aac_container_tqh);
2670			while (co != NULL) {
2671				if (co->co_found == 0) {
2672					device_delete_child(sc->aac_dev,
2673							    co->co_disk);
2674					co_next = TAILQ_NEXT(co, co_link);
2675					AAC_LOCK_ACQUIRE(&sc->
2676							aac_container_lock);
2677					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2678						     co_link);
2679					AAC_LOCK_RELEASE(&sc->
2680							 aac_container_lock);
2681					FREE(co, M_AACBUF);
2682					co = co_next;
2683				} else {
2684					co->co_found = 0;
2685					co = TAILQ_NEXT(co, co_link);
2686				}
2687			}
2688
2689			/* Attach the newly created containers */
2690			if (added)
2691				bus_generic_attach(sc->aac_dev);
2692
2693			break;
2694
2695		default:
2696			break;
2697		}
2698
2699	default:
2700		break;
2701	}
2702
2703	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2704	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2705	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2706	if (next != sc->aac_aifq_tail) {
2707		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2708		sc->aac_aifq_head = next;
2709
2710		/* On the off chance that someone is sleeping for an aif... */
2711		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2712			wakeup(sc->aac_aifq);
2713		/* Wakeup any poll()ers */
2714		selwakeup(&sc->rcv_select);
2715	}
2716	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2717
2718	return;
2719}
2720
2721/*
2722 * Return the Revision of the driver to userspace and check to see if the
2723 * userspace app is possibly compatible.  This is extremely bogus since
2724 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2725 * returning what the card reported.
2726 */
2727static int
2728aac_rev_check(struct aac_softc *sc, caddr_t udata)
2729{
2730	struct aac_rev_check rev_check;
2731	struct aac_rev_check_resp rev_check_resp;
2732	int error = 0;
2733
2734	debug_called(2);
2735
2736	/*
2737	 * Copyin the revision struct from userspace
2738	 */
2739	if ((error = copyin(udata, (caddr_t)&rev_check,
2740			sizeof(struct aac_rev_check))) != 0) {
2741		return error;
2742	}
2743
2744	debug(2, "Userland revision= %d\n",
2745	      rev_check.callingRevision.buildNumber);
2746
2747	/*
2748	 * Doctor up the response struct.
2749	 */
2750	rev_check_resp.possiblyCompatible = 1;
2751	rev_check_resp.adapterSWRevision.external.ul =
2752	    sc->aac_revision.external.ul;
2753	rev_check_resp.adapterSWRevision.buildNumber =
2754	    sc->aac_revision.buildNumber;
2755
2756	return(copyout((caddr_t)&rev_check_resp, udata,
2757			sizeof(struct aac_rev_check_resp)));
2758}
2759
2760/*
2761 * Pass the caller the next AIF in their queue
2762 */
2763static int
2764aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2765{
2766	struct get_adapter_fib_ioctl agf;
2767	int error;
2768
2769	debug_called(2);
2770
2771	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2772
2773		/*
2774		 * Check the magic number that we gave the caller.
2775		 */
2776		if (agf.AdapterFibContext != (int)sc->aifthread) {
2777			error = EFAULT;
2778		} else {
2779			error = aac_return_aif(sc, agf.AifFib);
2780			if ((error == EAGAIN) && (agf.Wait)) {
2781				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2782				while (error == EAGAIN) {
2783					error = tsleep(sc->aac_aifq, PRIBIO |
2784						       PCATCH, "aacaif", 0);
2785					if (error == 0)
2786						error = aac_return_aif(sc,
2787						    agf.AifFib);
2788				}
2789				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2790			}
2791		}
2792	}
2793	return(error);
2794}
2795
2796/*
2797 * Hand the next AIF off the top of the queue out to userspace.
2798 */
2799static int
2800aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2801{
2802	int error;
2803
2804	debug_called(2);
2805
2806	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2807	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2808		error = EAGAIN;
2809	} else {
2810		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2811				sizeof(struct aac_aif_command));
2812		if (error)
2813			device_printf(sc->aac_dev,
2814			    "aac_return_aif: copyout returned %d\n", error);
2815		if (!error)
2816			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2817					    AAC_AIFQ_LENGTH;
2818	}
2819	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2820	return(error);
2821}
2822
2823/*
2824 * Give the userland some information about the container.  The AAC arch
2825 * expects the driver to be a SCSI passthrough type driver, so it expects
2826 * the containers to have b:t:l numbers.  Fake it.
2827 */
2828static int
2829aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2830{
2831	struct aac_query_disk query_disk;
2832	struct aac_container *co;
2833	struct aac_disk	*disk;
2834	int error, id;
2835
2836	debug_called(2);
2837
2838	disk = NULL;
2839
2840	error = copyin(uptr, (caddr_t)&query_disk,
2841		       sizeof(struct aac_query_disk));
2842	if (error)
2843		return (error);
2844
2845	id = query_disk.ContainerNumber;
2846	if (id == -1)
2847		return (EINVAL);
2848
2849	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2850	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2851		if (co->co_mntobj.ObjectId == id)
2852			break;
2853		}
2854
2855	if (co == NULL) {
2856			query_disk.Valid = 0;
2857			query_disk.Locked = 0;
2858			query_disk.Deleted = 1;		/* XXX is this right? */
2859	} else {
2860		disk = device_get_softc(co->co_disk);
2861		query_disk.Valid = 1;
2862		query_disk.Locked =
2863		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2864		query_disk.Deleted = 0;
2865		query_disk.Bus = device_get_unit(sc->aac_dev);
2866		query_disk.Target = disk->unit;
2867		query_disk.Lun = 0;
2868		query_disk.UnMapped = 0;
2869		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2870		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2871	}
2872	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2873
2874	error = copyout((caddr_t)&query_disk, uptr,
2875			sizeof(struct aac_query_disk));
2876
2877	return (error);
2878}
2879
2880static void
2881aac_get_bus_info(struct aac_softc *sc)
2882{
2883	struct aac_fib *fib;
2884	struct aac_ctcfg *c_cmd;
2885	struct aac_ctcfg_resp *c_resp;
2886	struct aac_vmioctl *vmi;
2887	struct aac_vmi_businf_resp *vmi_resp;
2888	struct aac_getbusinf businfo;
2889	struct aac_sim *caminf;
2890	device_t child;
2891	int i, found, error;
2892
2893	aac_alloc_sync_fib(sc, &fib, 0);
2894	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2895	bzero(c_cmd, sizeof(struct aac_ctcfg));
2896
2897	c_cmd->Command = VM_ContainerConfig;
2898	c_cmd->cmd = CT_GET_SCSI_METHOD;
2899	c_cmd->param = 0;
2900
2901	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2902	    sizeof(struct aac_ctcfg));
2903	if (error) {
2904		device_printf(sc->aac_dev, "Error %d sending "
2905		    "VM_ContainerConfig command\n", error);
2906		aac_release_sync_fib(sc);
2907		return;
2908	}
2909
2910	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2911	if (c_resp->Status != ST_OK) {
2912		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2913		    c_resp->Status);
2914		aac_release_sync_fib(sc);
2915		return;
2916	}
2917
2918	sc->scsi_method_id = c_resp->param;
2919
2920	vmi = (struct aac_vmioctl *)&fib->data[0];
2921	bzero(vmi, sizeof(struct aac_vmioctl));
2922
2923	vmi->Command = VM_Ioctl;
2924	vmi->ObjType = FT_DRIVE;
2925	vmi->MethId = sc->scsi_method_id;
2926	vmi->ObjId = 0;
2927	vmi->IoctlCmd = GetBusInfo;
2928
2929	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2930	    sizeof(struct aac_vmioctl));
2931	if (error) {
2932		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2933		    error);
2934		aac_release_sync_fib(sc);
2935		return;
2936	}
2937
2938	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2939	if (vmi_resp->Status != ST_OK) {
2940		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2941		    vmi_resp->Status);
2942		aac_release_sync_fib(sc);
2943		return;
2944	}
2945
2946	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2947	aac_release_sync_fib(sc);
2948
2949	found = 0;
2950	for (i = 0; i < businfo.BusCount; i++) {
2951		if (businfo.BusValid[i] != AAC_BUS_VALID)
2952			continue;
2953
2954		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2955		    M_AACBUF, M_NOWAIT | M_ZERO);
2956		if (caminf == NULL)
2957			continue;
2958
2959		child = device_add_child(sc->aac_dev, "aacp", -1);
2960		if (child == NULL) {
2961			device_printf(sc->aac_dev, "device_add_child failed\n");
2962			continue;
2963		}
2964
2965		caminf->TargetsPerBus = businfo.TargetsPerBus;
2966		caminf->BusNumber = i;
2967		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2968		caminf->aac_sc = sc;
2969		caminf->sim_dev = child;
2970
2971		device_set_ivars(child, caminf);
2972		device_set_desc(child, "SCSI Passthrough Bus");
2973		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2974
2975		found = 1;
2976	}
2977
2978	if (found)
2979		bus_generic_attach(sc->aac_dev);
2980
2981	return;
2982}
2983