aac.c revision 115760
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 115760 2003-06-03 02:10:55Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46#include <sys/ioccom.h>
47
48#include <sys/bus.h>
49#include <sys/conf.h>
50#include <sys/signalvar.h>
51#include <sys/time.h>
52#include <sys/eventhandler.h>
53
54#include <machine/bus_memio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57
58#include <dev/aac/aacreg.h>
59#include <dev/aac/aac_ioctl.h>
60#include <dev/aac/aacvar.h>
61#include <dev/aac/aac_tables.h>
62
63static void	aac_startup(void *arg);
64static void	aac_add_container(struct aac_softc *sc,
65				  struct aac_mntinforesp *mir, int f);
66static void	aac_get_bus_info(struct aac_softc *sc);
67
68/* Command Processing */
69static void	aac_timeout(struct aac_softc *sc);
70static int	aac_start(struct aac_command *cm);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm, int timeout);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79				       int nseg, int error);
80static int	aac_alloc_commands(struct aac_softc *sc);
81static void	aac_free_commands(struct aac_softc *sc);
82static void	aac_map_command(struct aac_command *cm);
83static void	aac_unmap_command(struct aac_command *cm);
84
85/* Hardware Interface */
86static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87			       int error);
88static int	aac_check_firmware(struct aac_softc *sc);
89static int	aac_init(struct aac_softc *sc);
90static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92				 u_int32_t arg3, u_int32_t *sp);
93static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94				struct aac_command *cm);
95static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96				u_int32_t *fib_size, struct aac_fib **fib_addr);
97static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98				     struct aac_fib *fib);
99
100/* Falcon/PPC interface */
101static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103static int	aac_fa_get_istatus(struct aac_softc *sc);
104static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106				   u_int32_t arg0, u_int32_t arg1,
107				   u_int32_t arg2, u_int32_t arg3);
108static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110
111struct aac_interface aac_fa_interface = {
112	aac_fa_get_fwstatus,
113	aac_fa_qnotify,
114	aac_fa_get_istatus,
115	aac_fa_clear_istatus,
116	aac_fa_set_mailbox,
117	aac_fa_get_mailbox,
118	aac_fa_set_interrupts
119};
120
121/* StrongARM interface */
122static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124static int	aac_sa_get_istatus(struct aac_softc *sc);
125static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127				   u_int32_t arg0, u_int32_t arg1,
128				   u_int32_t arg2, u_int32_t arg3);
129static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131
132struct aac_interface aac_sa_interface = {
133	aac_sa_get_fwstatus,
134	aac_sa_qnotify,
135	aac_sa_get_istatus,
136	aac_sa_clear_istatus,
137	aac_sa_set_mailbox,
138	aac_sa_get_mailbox,
139	aac_sa_set_interrupts
140};
141
142/* i960Rx interface */
143static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145static int	aac_rx_get_istatus(struct aac_softc *sc);
146static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148				   u_int32_t arg0, u_int32_t arg1,
149				   u_int32_t arg2, u_int32_t arg3);
150static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152
153struct aac_interface aac_rx_interface = {
154	aac_rx_get_fwstatus,
155	aac_rx_qnotify,
156	aac_rx_get_istatus,
157	aac_rx_clear_istatus,
158	aac_rx_set_mailbox,
159	aac_rx_get_mailbox,
160	aac_rx_set_interrupts
161};
162
163/* Debugging and Diagnostics */
164static void	aac_describe_controller(struct aac_softc *sc);
165static char	*aac_describe_code(struct aac_code_lookup *table,
166				   u_int32_t code);
167
168/* Management Interface */
169static d_open_t		aac_open;
170static d_close_t	aac_close;
171static d_ioctl_t	aac_ioctl;
172static d_poll_t		aac_poll;
173static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174static void		aac_handle_aif(struct aac_softc *sc,
175					   struct aac_fib *fib);
176static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180
181#define AAC_CDEV_MAJOR	150
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189	.d_maj =	AAC_CDEV_MAJOR,
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/* Init the sync fib lock */
237	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
238
239	/*
240	 * Initialise the adapter.
241	 */
242	if ((error = aac_init(sc)) != 0)
243		return(error);
244
245	/*
246	 * Print a little information about the controller.
247	 */
248	aac_describe_controller(sc);
249
250	/*
251	 * Initialize locks
252	 */
253	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
254	TAILQ_INIT(&sc->aac_container_tqh);
255	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
256	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int count = 0, i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib, 0);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			printf("error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		/* XXX Need to check if count changed */
336		count = mir->MntRespCount;
337		aac_add_container(sc, mir, 0);
338		i++;
339	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340
341	aac_release_sync_fib(sc);
342
343	/* poke the bus to actually attach the child devices */
344	if (bus_generic_attach(sc->aac_dev))
345		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346
347	/* mark the controller up */
348	sc->aac_state &= ~AAC_STATE_SUSPEND;
349
350	/* enable interrupts now */
351	AAC_UNMASK_INTERRUPTS(sc);
352}
353
354/*
355 * Create a device to respresent a new container
356 */
357static void
358aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359{
360	struct aac_container *co;
361	device_t child;
362
363	/*
364	 * Check container volume type for validity.  Note that many of
365	 * the possible types may never show up.
366	 */
367	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369		       M_NOWAIT | M_ZERO);
370		if (co == NULL)
371			panic("Out of memory?!\n");
372		debug(1, "id %x  name '%.16s'  size %u  type %d",
373		      mir->MntTable[0].ObjectId,
374		      mir->MntTable[0].FileSystemName,
375		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376
377		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378			device_printf(sc->aac_dev, "device_add_child failed\n");
379		else
380			device_set_ivars(child, co);
381		device_set_desc(child, aac_describe_code(aac_container_types,
382				mir->MntTable[0].VolType));
383		co->co_disk = child;
384		co->co_found = f;
385		bcopy(&mir->MntTable[0], &co->co_mntobj,
386		      sizeof(struct aac_mntobj));
387		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390	}
391}
392
393/*
394 * Free all of the resources associated with (sc)
395 *
396 * Should not be called if the controller is active.
397 */
398void
399aac_free(struct aac_softc *sc)
400{
401
402	debug_called(1);
403
404	/* remove the control device */
405	if (sc->aac_dev_t != NULL)
406		destroy_dev(sc->aac_dev_t);
407
408	/* throw away any FIB buffers, discard the FIB DMA tag */
409	aac_free_commands(sc);
410	if (sc->aac_fib_dmat)
411		bus_dma_tag_destroy(sc->aac_fib_dmat);
412
413	free(sc->aac_commands, M_AACBUF);
414
415	/* destroy the common area */
416	if (sc->aac_common) {
417		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419				sc->aac_common_dmamap);
420	}
421	if (sc->aac_common_dmat)
422		bus_dma_tag_destroy(sc->aac_common_dmat);
423
424	/* disconnect the interrupt handler */
425	if (sc->aac_intr)
426		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427	if (sc->aac_irq != NULL)
428		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429				     sc->aac_irq);
430
431	/* destroy data-transfer DMA tag */
432	if (sc->aac_buffer_dmat)
433		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434
435	/* destroy the parent DMA tag */
436	if (sc->aac_parent_dmat)
437		bus_dma_tag_destroy(sc->aac_parent_dmat);
438
439	/* release the register window mapping */
440	if (sc->aac_regs_resource != NULL)
441		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442				     sc->aac_regs_rid, sc->aac_regs_resource);
443}
444
445/*
446 * Disconnect from the controller completely, in preparation for unload.
447 */
448int
449aac_detach(device_t dev)
450{
451	struct aac_softc *sc;
452	struct aac_container *co;
453	struct aac_sim	*sim;
454	int error;
455
456	debug_called(1);
457
458	sc = device_get_softc(dev);
459
460	if (sc->aac_state & AAC_STATE_OPEN)
461		return(EBUSY);
462
463	/* Remove the child containers */
464	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465		error = device_delete_child(dev, co->co_disk);
466		if (error)
467			return (error);
468		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469		free(co, M_AACBUF);
470	}
471
472	/* Remove the CAM SIMs */
473	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475		error = device_delete_child(dev, sim->sim_dev);
476		if (error)
477			return (error);
478		free(sim, M_AACBUF);
479	}
480
481	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483		wakeup(sc->aifthread);
484		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485	}
486
487	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488		panic("Cannot shutdown AIF thread\n");
489
490	if ((error = aac_shutdown(dev)))
491		return(error);
492
493	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494
495	aac_free(sc);
496
497	return(0);
498}
499
500/*
501 * Bring the controller down to a dormant state and detach all child devices.
502 *
503 * This function is called before detach or system shutdown.
504 *
505 * Note that we can assume that the bioq on the controller is empty, as we won't
506 * allow shutdown if any device is open.
507 */
508int
509aac_shutdown(device_t dev)
510{
511	struct aac_softc *sc;
512	struct aac_fib *fib;
513	struct aac_close_command *cc;
514
515	debug_called(1);
516
517	sc = device_get_softc(dev);
518
519	sc->aac_state |= AAC_STATE_SUSPEND;
520
521	/*
522	 * Send a Container shutdown followed by a HostShutdown FIB to the
523	 * controller to convince it that we don't want to talk to it anymore.
524	 * We've been closed and all I/O completed already
525	 */
526	device_printf(sc->aac_dev, "shutting down controller...");
527
528	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
529	cc = (struct aac_close_command *)&fib->data[0];
530
531	bzero(cc, sizeof(struct aac_close_command));
532	cc->Command = VM_CloseAll;
533	cc->ContainerId = 0xffffffff;
534	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535	    sizeof(struct aac_close_command)))
536		printf("FAILED.\n");
537	else
538		printf("done\n");
539#if 0
540	else {
541		fib->data[0] = 0;
542		/*
543		 * XXX Issuing this command to the controller makes it shut down
544		 * but also keeps it from coming back up without a reset of the
545		 * PCI bus.  This is not desirable if you are just unloading the
546		 * driver module with the intent to reload it later.
547		 */
548		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549		    fib, 1)) {
550			printf("FAILED.\n");
551		} else {
552			printf("done.\n");
553		}
554	}
555#endif
556
557	AAC_MASK_INTERRUPTS(sc);
558
559	return(0);
560}
561
562/*
563 * Bring the controller to a quiescent state, ready for system suspend.
564 */
565int
566aac_suspend(device_t dev)
567{
568	struct aac_softc *sc;
569
570	debug_called(1);
571
572	sc = device_get_softc(dev);
573
574	sc->aac_state |= AAC_STATE_SUSPEND;
575
576	AAC_MASK_INTERRUPTS(sc);
577	return(0);
578}
579
580/*
581 * Bring the controller back to a state ready for operation.
582 */
583int
584aac_resume(device_t dev)
585{
586	struct aac_softc *sc;
587
588	debug_called(1);
589
590	sc = device_get_softc(dev);
591
592	sc->aac_state &= ~AAC_STATE_SUSPEND;
593	AAC_UNMASK_INTERRUPTS(sc);
594	return(0);
595}
596
597/*
598 * Take an interrupt.
599 */
600void
601aac_intr(void *arg)
602{
603	struct aac_softc *sc;
604	u_int32_t *resp_queue;
605	u_int16_t reason;
606
607	debug_called(2);
608
609	sc = (struct aac_softc *)arg;
610
611	/*
612	 * Optimize the common case of adapter response interrupts.
613	 * We must read from the card prior to processing the responses
614	 * to ensure the clear is flushed prior to accessing the queues.
615	 * Reading the queues from local memory might save us a PCI read.
616	 */
617	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
618	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
619		reason = AAC_DB_RESPONSE_READY;
620	else
621		reason = AAC_GET_ISTATUS(sc);
622	AAC_CLEAR_ISTATUS(sc, reason);
623	(void)AAC_GET_ISTATUS(sc);
624
625	/* It's not ok to return here because of races with the previous step */
626	if (reason & AAC_DB_RESPONSE_READY)
627		/* handle completion processing */
628		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
629
630	/* controller wants to talk to the log */
631	if (reason & AAC_DB_PRINTF) {
632		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
633			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
634		} else
635			aac_print_printf(sc);
636	}
637
638	/* controller has a message for us? */
639	if (reason & AAC_DB_COMMAND_READY) {
640		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
641			sc->aifflags |= AAC_AIFFLAGS_AIF;
642		} else {
643			/*
644			 * XXX If the kthread is dead and we're at this point,
645			 * there are bigger problems than just figuring out
646			 * what to do with an AIF.
647			 */
648		}
649
650	}
651
652	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
653		/* XXX Should this be done with cv_signal? */
654		wakeup(sc->aifthread);
655}
656
657/*
658 * Command Processing
659 */
660
661/*
662 * Start as much queued I/O as possible on the controller
663 */
664void
665aac_startio(struct aac_softc *sc)
666{
667	struct aac_command *cm;
668
669	debug_called(2);
670
671	for (;;) {
672		/*
673		 * Try to get a command that's been put off for lack of
674		 * resources
675		 */
676		cm = aac_dequeue_ready(sc);
677
678		/*
679		 * Try to build a command off the bio queue (ignore error
680		 * return)
681		 */
682		if (cm == NULL)
683			aac_bio_command(sc, &cm);
684
685		/* nothing to do? */
686		if (cm == NULL)
687			break;
688
689		/* try to give the command to the controller */
690		if (aac_start(cm) == EBUSY) {
691			/* put it on the ready queue for later */
692			aac_requeue_ready(cm);
693			break;
694		}
695	}
696}
697
698/*
699 * Deliver a command to the controller; allocate controller resources at the
700 * last moment when possible.
701 */
702static int
703aac_start(struct aac_command *cm)
704{
705	struct aac_softc *sc;
706	int error;
707
708	debug_called(2);
709
710	sc = cm->cm_sc;
711
712	/* get the command mapped */
713	aac_map_command(cm);
714
715	/* Fix up the address values in the FIB.  Use the command array index
716	 * instead of a pointer since these fields are only 32 bits.  Shift
717	 * the SenderFibAddress over to make room for the fast response bit.
718	 */
719	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
720	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
721
722	/* save a pointer to the command for speedy reverse-lookup */
723	cm->cm_fib->Header.SenderData = cm->cm_index;
724	/* put the FIB on the outbound queue */
725	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
726	return(error);
727}
728
729/*
730 * Handle notification of one or more FIBs coming from the controller.
731 */
732static void
733aac_command_thread(struct aac_softc *sc)
734{
735	struct aac_fib *fib;
736	u_int32_t fib_size;
737	int size;
738
739	debug_called(2);
740
741	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
742
743	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
744		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
745			tsleep(sc->aifthread, PRIBIO, "aifthd",
746			       AAC_PERIODIC_INTERVAL * hz);
747
748		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
749			aac_timeout(sc);
750
751		/* Check the hardware printf message buffer */
752		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
753			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
754			aac_print_printf(sc);
755		}
756
757		/* See if any FIBs need to be allocated */
758		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
759			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
760			aac_alloc_commands(sc);
761			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
762			AAC_LOCK_RELEASE(&sc->aac_io_lock);
763		}
764
765		/* While we're here, check to see if any commands are stuck */
766		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
767			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
768					    &fib_size, &fib)) {
769				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
770				break;	/* nothing to do */
771			}
772
773			AAC_PRINT_FIB(sc, fib);
774
775			switch (fib->Header.Command) {
776			case AifRequest:
777				aac_handle_aif(sc, fib);
778				break;
779			default:
780				device_printf(sc->aac_dev, "unknown command "
781					      "from controller\n");
782				break;
783			}
784
785			if ((fib->Header.XferState == 0) ||
786			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
787				break;
788
789			/* Return the AIF to the controller. */
790			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
791				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
792				*(AAC_FSAStatus*)fib->data = ST_OK;
793
794				/* XXX Compute the Size field? */
795				size = fib->Header.Size;
796				if (size > sizeof(struct aac_fib)) {
797					size = sizeof(struct aac_fib);
798					fib->Header.Size = size;
799				}
800				/*
801				 * Since we did not generate this command, it
802				 * cannot go through the normal
803				 * enqueue->startio chain.
804				 */
805				aac_enqueue_response(sc,
806						     AAC_ADAP_NORM_RESP_QUEUE,
807						     fib);
808			}
809		}
810	}
811	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
812	wakeup(sc->aac_dev);
813
814	mtx_lock(&Giant);
815	kthread_exit(0);
816}
817
818/*
819 * Process completed commands.
820 */
821static void
822aac_complete(void *context, int pending)
823{
824	struct aac_softc *sc;
825	struct aac_command *cm;
826	struct aac_fib *fib;
827	u_int32_t fib_size;
828
829	debug_called(2);
830
831	sc = (struct aac_softc *)context;
832
833	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
834
835	/* pull completed commands off the queue */
836	for (;;) {
837		/* look for completed FIBs on our queue */
838		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
839				    &fib))
840			break;	/* nothing to do */
841
842		/* get the command, unmap and queue for later processing */
843		cm = sc->aac_commands + fib->Header.SenderData;
844		if (cm == NULL) {
845			AAC_PRINT_FIB(sc, fib);
846			break;
847		}
848
849		aac_remove_busy(cm);
850		aac_unmap_command(cm);		/* XXX defer? */
851		cm->cm_flags |= AAC_CMD_COMPLETED;
852
853		/* is there a completion handler? */
854		if (cm->cm_complete != NULL) {
855			cm->cm_complete(cm);
856		} else {
857			/* assume that someone is sleeping on this command */
858			wakeup(cm);
859		}
860	}
861
862	/* see if we can start some more I/O */
863	aac_startio(sc);
864
865	AAC_LOCK_RELEASE(&sc->aac_io_lock);
866}
867
868/*
869 * Handle a bio submitted from a disk device.
870 */
871void
872aac_submit_bio(struct bio *bp)
873{
874	struct aac_disk *ad;
875	struct aac_softc *sc;
876
877	debug_called(2);
878
879	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
880	sc = ad->ad_controller;
881
882	/* queue the BIO and try to get some work done */
883	aac_enqueue_bio(sc, bp);
884	aac_startio(sc);
885}
886
887/*
888 * Get a bio and build a command to go with it.
889 */
890static int
891aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
892{
893	struct aac_command *cm;
894	struct aac_fib *fib;
895	struct aac_disk *ad;
896	struct bio *bp;
897
898	debug_called(2);
899
900	/* get the resources we will need */
901	cm = NULL;
902	if ((bp = aac_dequeue_bio(sc)) == NULL)
903		goto fail;
904	if (aac_alloc_command(sc, &cm))	/* get a command */
905		goto fail;
906
907	/* fill out the command */
908	cm->cm_data = (void *)bp->bio_data;
909	cm->cm_datalen = bp->bio_bcount;
910	cm->cm_complete = aac_bio_complete;
911	cm->cm_private = bp;
912	cm->cm_timestamp = time_second;
913	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914
915	/* build the FIB */
916	fib = cm->cm_fib;
917	fib->Header.Size = sizeof(struct aac_fib_header);
918	fib->Header.XferState =
919		AAC_FIBSTATE_HOSTOWNED   |
920		AAC_FIBSTATE_INITIALISED |
921		AAC_FIBSTATE_EMPTY	 |
922		AAC_FIBSTATE_FROMHOST	 |
923		AAC_FIBSTATE_REXPECTED   |
924		AAC_FIBSTATE_NORM	 |
925		AAC_FIBSTATE_ASYNC	 |
926		AAC_FIBSTATE_FAST_RESPONSE;
927
928	/* build the read/write request */
929	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
930
931	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
932		fib->Header.Command = ContainerCommand;
933		if (bp->bio_cmd == BIO_READ) {
934			struct aac_blockread *br;
935			br = (struct aac_blockread *)&fib->data[0];
936			br->Command = VM_CtBlockRead;
937			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938			br->BlockNumber = bp->bio_pblkno;
939			br->ByteCount = bp->bio_bcount;
940			fib->Header.Size += sizeof(struct aac_blockread);
941			cm->cm_sgtable = &br->SgMap;
942			cm->cm_flags |= AAC_CMD_DATAIN;
943		} else {
944			struct aac_blockwrite *bw;
945			bw = (struct aac_blockwrite *)&fib->data[0];
946			bw->Command = VM_CtBlockWrite;
947			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
948			bw->BlockNumber = bp->bio_pblkno;
949			bw->ByteCount = bp->bio_bcount;
950			bw->Stable = CUNSTABLE;
951			fib->Header.Size += sizeof(struct aac_blockwrite);
952			cm->cm_flags |= AAC_CMD_DATAOUT;
953			cm->cm_sgtable = &bw->SgMap;
954		}
955	} else {
956		fib->Header.Command = ContainerCommand64;
957		if (bp->bio_cmd == BIO_READ) {
958			struct aac_blockread64 *br;
959			br = (struct aac_blockread64 *)&fib->data[0];
960			br->Command = VM_CtHostRead64;
961			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
962			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
963			br->BlockNumber = bp->bio_pblkno;
964			br->Pad = 0;
965			br->Flags = 0;
966			fib->Header.Size += sizeof(struct aac_blockread64);
967			cm->cm_flags |= AAC_CMD_DATAOUT;
968			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
969		} else {
970			struct aac_blockwrite64 *bw;
971			bw = (struct aac_blockwrite64 *)&fib->data[0];
972			bw->Command = VM_CtHostWrite64;
973			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
974			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
975			bw->BlockNumber = bp->bio_pblkno;
976			bw->Pad = 0;
977			bw->Flags = 0;
978			fib->Header.Size += sizeof(struct aac_blockwrite64);
979			cm->cm_flags |= AAC_CMD_DATAIN;
980			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
981		}
982	}
983
984	*cmp = cm;
985	return(0);
986
987fail:
988	if (bp != NULL)
989		aac_enqueue_bio(sc, bp);
990	if (cm != NULL)
991		aac_release_command(cm);
992	return(ENOMEM);
993}
994
995/*
996 * Handle a bio-instigated command that has been completed.
997 */
998static void
999aac_bio_complete(struct aac_command *cm)
1000{
1001	struct aac_blockread_response *brr;
1002	struct aac_blockwrite_response *bwr;
1003	struct bio *bp;
1004	AAC_FSAStatus status;
1005
1006	/* fetch relevant status and then release the command */
1007	bp = (struct bio *)cm->cm_private;
1008	if (bp->bio_cmd == BIO_READ) {
1009		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1010		status = brr->Status;
1011	} else {
1012		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1013		status = bwr->Status;
1014	}
1015	aac_release_command(cm);
1016
1017	/* fix up the bio based on status */
1018	if (status == ST_OK) {
1019		bp->bio_resid = 0;
1020	} else {
1021		bp->bio_error = EIO;
1022		bp->bio_flags |= BIO_ERROR;
1023		/* pass an error string out to the disk layer */
1024		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1025						    status);
1026	}
1027	aac_biodone(bp);
1028}
1029
1030/*
1031 * Submit a command to the controller, return when it completes.
1032 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1033 *     be stuck here forever.  At the same time, signals are not caught
1034 *     because there is a risk that a signal could wakeup the tsleep before
1035 *     the card has a chance to complete the command.  The passed in timeout
1036 *     is ignored for the same reason.  Since there is no way to cancel a
1037 *     command in progress, we should probably create a 'dead' queue where
1038 *     commands go that have been interrupted/timed-out/etc, that keeps them
1039 *     out of the free pool.  That way, if the card is just slow, it won't
1040 *     spam the memory of a command that has been recycled.
1041 */
1042static int
1043aac_wait_command(struct aac_command *cm, int timeout)
1044{
1045	struct aac_softc *sc;
1046	int error = 0;
1047
1048	debug_called(2);
1049
1050	sc = cm->cm_sc;
1051
1052	/* Put the command on the ready queue and get things going */
1053	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1054	aac_enqueue_ready(cm);
1055	aac_startio(sc);
1056	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1057		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1058	}
1059	return(error);
1060}
1061
1062/*
1063 *Command Buffer Management
1064 */
1065
1066/*
1067 * Allocate a command.
1068 */
1069int
1070aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1071{
1072	struct aac_command *cm;
1073
1074	debug_called(3);
1075
1076	if ((cm = aac_dequeue_free(sc)) == NULL) {
1077		if (sc->total_fibs < sc->aac_max_fibs) {
1078			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1079			wakeup(sc->aifthread);
1080		}
1081		return (EBUSY);
1082	}
1083
1084	*cmp = cm;
1085	return(0);
1086}
1087
1088/*
1089 * Release a command back to the freelist.
1090 */
1091void
1092aac_release_command(struct aac_command *cm)
1093{
1094	debug_called(3);
1095
1096	/* (re)initialise the command/FIB */
1097	cm->cm_sgtable = NULL;
1098	cm->cm_flags = 0;
1099	cm->cm_complete = NULL;
1100	cm->cm_private = NULL;
1101	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1102	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1103	cm->cm_fib->Header.Flags = 0;
1104	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1105
1106	/*
1107	 * These are duplicated in aac_start to cover the case where an
1108	 * intermediate stage may have destroyed them.  They're left
1109	 * initialised here for debugging purposes only.
1110	 */
1111	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1112	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1113	cm->cm_fib->Header.SenderData = 0;
1114
1115	aac_enqueue_free(cm);
1116}
1117
1118/*
1119 * Map helper for command/FIB allocation.
1120 */
1121static void
1122aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1123{
1124	uint32_t	*fibphys;
1125
1126	fibphys = (uint32_t *)arg;
1127
1128	debug_called(3);
1129
1130	*fibphys = segs[0].ds_addr;
1131}
1132
1133/*
1134 * Allocate and initialise commands/FIBs for this adapter.
1135 */
1136static int
1137aac_alloc_commands(struct aac_softc *sc)
1138{
1139	struct aac_command *cm;
1140	struct aac_fibmap *fm;
1141	uint32_t fibphys;
1142	int i, error;
1143
1144	debug_called(2);
1145
1146	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1147		return (ENOMEM);
1148
1149	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1150	if (fm == NULL)
1151		return (ENOMEM);
1152
1153	/* allocate the FIBs in DMAable memory and load them */
1154	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1155			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1156		device_printf(sc->aac_dev,
1157			      "Not enough contiguous memory available.\n");
1158		free(fm, M_AACBUF);
1159		return (ENOMEM);
1160	}
1161
1162	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1163			AAC_FIB_COUNT * sizeof(struct aac_fib),
1164			aac_map_command_helper, &fibphys, 0);
1165
1166	/* initialise constant fields in the command structure */
1167	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1168	for (i = 0; i < AAC_FIB_COUNT; i++) {
1169		cm = sc->aac_commands + sc->total_fibs;
1170		fm->aac_commands = cm;
1171		cm->cm_sc = sc;
1172		cm->cm_fib = fm->aac_fibs + i;
1173		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1174		cm->cm_index = sc->total_fibs;
1175
1176		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1177					       &cm->cm_datamap)) == 0)
1178			aac_release_command(cm);
1179		else
1180			break;
1181		sc->total_fibs++;
1182	}
1183
1184	if (i > 0) {
1185		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1186		debug(1, "total_fibs= %d\n", sc->total_fibs);
1187		return (0);
1188	}
1189
1190	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1191	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1192	free(fm, M_AACBUF);
1193	return (ENOMEM);
1194}
1195
1196/*
1197 * Free FIBs owned by this adapter.
1198 */
1199static void
1200aac_free_commands(struct aac_softc *sc)
1201{
1202	struct aac_fibmap *fm;
1203	struct aac_command *cm;
1204	int i;
1205
1206	debug_called(1);
1207
1208	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1209
1210		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1211		/*
1212		 * We check against total_fibs to handle partially
1213		 * allocated blocks.
1214		 */
1215		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1216			cm = fm->aac_commands + i;
1217			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1218		}
1219		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1220		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1221		free(fm, M_AACBUF);
1222	}
1223}
1224
1225/*
1226 * Command-mapping helper function - populate this command's s/g table.
1227 */
1228static void
1229aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1230{
1231	struct aac_command *cm;
1232	struct aac_fib *fib;
1233	int i;
1234
1235	debug_called(3);
1236
1237	cm = (struct aac_command *)arg;
1238	fib = cm->cm_fib;
1239
1240	/* copy into the FIB */
1241	if (cm->cm_sgtable != NULL) {
1242		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1243			struct aac_sg_table *sg;
1244			sg = cm->cm_sgtable;
1245			sg->SgCount = nseg;
1246			for (i = 0; i < nseg; i++) {
1247				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1248				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1249			}
1250			/* update the FIB size for the s/g count */
1251			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1252		} else {
1253			struct aac_sg_table64 *sg;
1254			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1255			sg->SgCount = nseg;
1256			for (i = 0; i < nseg; i++) {
1257				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1258				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1259			}
1260			/* update the FIB size for the s/g count */
1261			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1262		}
1263	}
1264}
1265
1266/*
1267 * Map a command into controller-visible space.
1268 */
1269static void
1270aac_map_command(struct aac_command *cm)
1271{
1272	struct aac_softc *sc;
1273
1274	debug_called(2);
1275
1276	sc = cm->cm_sc;
1277
1278	/* don't map more than once */
1279	if (cm->cm_flags & AAC_CMD_MAPPED)
1280		return;
1281
1282	if (cm->cm_datalen != 0) {
1283		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1284				cm->cm_data, cm->cm_datalen,
1285				aac_map_command_sg, cm, 0);
1286
1287		if (cm->cm_flags & AAC_CMD_DATAIN)
1288			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1289					BUS_DMASYNC_PREREAD);
1290		if (cm->cm_flags & AAC_CMD_DATAOUT)
1291			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1292					BUS_DMASYNC_PREWRITE);
1293	}
1294	cm->cm_flags |= AAC_CMD_MAPPED;
1295}
1296
1297/*
1298 * Unmap a command from controller-visible space.
1299 */
1300static void
1301aac_unmap_command(struct aac_command *cm)
1302{
1303	struct aac_softc *sc;
1304
1305	debug_called(2);
1306
1307	sc = cm->cm_sc;
1308
1309	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1310		return;
1311
1312	if (cm->cm_datalen != 0) {
1313		if (cm->cm_flags & AAC_CMD_DATAIN)
1314			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1315					BUS_DMASYNC_POSTREAD);
1316		if (cm->cm_flags & AAC_CMD_DATAOUT)
1317			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318					BUS_DMASYNC_POSTWRITE);
1319
1320		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1321	}
1322	cm->cm_flags &= ~AAC_CMD_MAPPED;
1323}
1324
1325/*
1326 * Hardware Interface
1327 */
1328
1329/*
1330 * Initialise the adapter.
1331 */
1332static void
1333aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1334{
1335	struct aac_softc *sc;
1336
1337	debug_called(1);
1338
1339	sc = (struct aac_softc *)arg;
1340
1341	sc->aac_common_busaddr = segs[0].ds_addr;
1342}
1343
1344static int
1345aac_check_firmware(struct aac_softc *sc)
1346{
1347	u_int32_t major, minor, options;
1348
1349	debug_called(1);
1350
1351	/*
1352	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1353	 * firmware version 1.x are not compatible with this driver.
1354	 */
1355	if (sc->flags & AAC_FLAGS_PERC2QC) {
1356		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1357				     NULL)) {
1358			device_printf(sc->aac_dev,
1359				      "Error reading firmware version\n");
1360			return (EIO);
1361		}
1362
1363		/* These numbers are stored as ASCII! */
1364		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1365		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1366		if (major == 1) {
1367			device_printf(sc->aac_dev,
1368			    "Firmware version %d.%d is not supported.\n",
1369			    major, minor);
1370			return (EINVAL);
1371		}
1372	}
1373
1374	/*
1375	 * Retrieve the capabilities/supported options word so we know what
1376	 * work-arounds to enable.
1377	 */
1378	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1379		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1380		return (EIO);
1381	}
1382	options = AAC_GET_MAILBOX(sc, 1);
1383	sc->supported_options = options;
1384
1385	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1386	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1387		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1388	if (options & AAC_SUPPORTED_NONDASD)
1389		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1390	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1391		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1392		sc->flags |= AAC_FLAGS_SG_64BIT;
1393	}
1394
1395	/* Check for broken hardware that does a lower number of commands */
1396	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1397		sc->aac_max_fibs = AAC_MAX_FIBS;
1398	else
1399		sc->aac_max_fibs = 256;
1400
1401	return (0);
1402}
1403
1404static int
1405aac_init(struct aac_softc *sc)
1406{
1407	struct aac_adapter_init	*ip;
1408	time_t then;
1409	u_int32_t code;
1410	u_int8_t *qaddr;
1411	int error;
1412
1413	debug_called(1);
1414
1415	/*
1416	 * First wait for the adapter to come ready.
1417	 */
1418	then = time_second;
1419	do {
1420		code = AAC_GET_FWSTATUS(sc);
1421		if (code & AAC_SELF_TEST_FAILED) {
1422			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1423			return(ENXIO);
1424		}
1425		if (code & AAC_KERNEL_PANIC) {
1426			device_printf(sc->aac_dev,
1427				      "FATAL: controller kernel panic\n");
1428			return(ENXIO);
1429		}
1430		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1431			device_printf(sc->aac_dev,
1432				      "FATAL: controller not coming ready, "
1433					   "status %x\n", code);
1434			return(ENXIO);
1435		}
1436	} while (!(code & AAC_UP_AND_RUNNING));
1437
1438	error = ENOMEM;
1439	/*
1440	 * Create DMA tag for mapping buffers into controller-addressable space.
1441	 */
1442	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1443			       1, 0, 			/* algnmnt, boundary */
1444			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1445			       BUS_SPACE_MAXADDR :
1446			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1447			       BUS_SPACE_MAXADDR, 	/* highaddr */
1448			       NULL, NULL, 		/* filter, filterarg */
1449			       MAXBSIZE,		/* maxsize */
1450			       AAC_MAXSGENTRIES,	/* nsegments */
1451			       MAXBSIZE,		/* maxsegsize */
1452			       BUS_DMA_ALLOCNOW,	/* flags */
1453			       &sc->aac_buffer_dmat)) {
1454		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1455		goto out;
1456	}
1457
1458	/*
1459	 * Create DMA tag for mapping FIBs into controller-addressable space..
1460	 */
1461	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1462			       1, 0, 			/* algnmnt, boundary */
1463			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1464			       BUS_SPACE_MAXADDR_32BIT :
1465			       0x7fffffff,		/* lowaddr */
1466			       BUS_SPACE_MAXADDR, 	/* highaddr */
1467			       NULL, NULL, 		/* filter, filterarg */
1468			       AAC_FIB_COUNT *
1469			       sizeof(struct aac_fib),  /* maxsize */
1470			       1,			/* nsegments */
1471			       AAC_FIB_COUNT *
1472			       sizeof(struct aac_fib),	/* maxsegsize */
1473			       BUS_DMA_ALLOCNOW,	/* flags */
1474			       &sc->aac_fib_dmat)) {
1475		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1476		goto out;
1477	}
1478
1479	/*
1480	 * Create DMA tag for the common structure and allocate it.
1481	 */
1482	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1483			       1, 0,			/* algnmnt, boundary */
1484			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1485			       BUS_SPACE_MAXADDR_32BIT :
1486			       0x7fffffff,		/* lowaddr */
1487			       BUS_SPACE_MAXADDR, 	/* highaddr */
1488			       NULL, NULL, 		/* filter, filterarg */
1489			       8192 + sizeof(struct aac_common), /* maxsize */
1490			       1,			/* nsegments */
1491			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1492			       BUS_DMA_ALLOCNOW,	/* flags */
1493			       &sc->aac_common_dmat)) {
1494		device_printf(sc->aac_dev,
1495			      "can't allocate common structure DMA tag\n");
1496		goto out;
1497	}
1498	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1499			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1500		device_printf(sc->aac_dev, "can't allocate common structure\n");
1501		goto out;
1502	}
1503
1504	/*
1505	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1506	 * below address 8192 in physical memory.
1507	 * XXX If the padding is not needed, can it be put to use instead
1508	 * of ignored?
1509	 */
1510	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1511			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1512			aac_common_map, sc, 0);
1513
1514	if (sc->aac_common_busaddr < 8192) {
1515		(uint8_t *)sc->aac_common += 8192;
1516		sc->aac_common_busaddr += 8192;
1517	}
1518	bzero(sc->aac_common, sizeof(*sc->aac_common));
1519
1520	/* Allocate some FIBs and associated command structs */
1521	TAILQ_INIT(&sc->aac_fibmap_tqh);
1522	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1523				  M_AACBUF, M_WAITOK|M_ZERO);
1524	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1525		if (aac_alloc_commands(sc) != 0)
1526			break;
1527	}
1528	if (sc->total_fibs == 0)
1529		goto out;
1530
1531	/*
1532	 * Fill in the init structure.  This tells the adapter about the
1533	 * physical location of various important shared data structures.
1534	 */
1535	ip = &sc->aac_common->ac_init;
1536	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1537	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1538
1539	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1540					 offsetof(struct aac_common, ac_fibs);
1541	ip->AdapterFibsVirtualAddress = 0;
1542	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1543	ip->AdapterFibAlign = sizeof(struct aac_fib);
1544
1545	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1546				  offsetof(struct aac_common, ac_printf);
1547	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1548
1549	/* The adapter assumes that pages are 4K in size */
1550	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1551	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1552
1553	/*
1554	 * Initialise FIB queues.  Note that it appears that the layout of the
1555	 * indexes and the segmentation of the entries may be mandated by the
1556	 * adapter, which is only told about the base of the queue index fields.
1557	 *
1558	 * The initial values of the indices are assumed to inform the adapter
1559	 * of the sizes of the respective queues, and theoretically it could
1560	 * work out the entire layout of the queue structures from this.  We
1561	 * take the easy route and just lay this area out like everyone else
1562	 * does.
1563	 *
1564	 * The Linux driver uses a much more complex scheme whereby several
1565	 * header records are kept for each queue.  We use a couple of generic
1566	 * list manipulation functions which 'know' the size of each list by
1567	 * virtue of a table.
1568	 */
1569	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1570	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1571	sc->aac_queues = (struct aac_queue_table *)qaddr;
1572	ip->CommHeaderAddress = sc->aac_common_busaddr +
1573				((u_int32_t)sc->aac_queues -
1574				(u_int32_t)sc->aac_common);
1575
1576	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1577		AAC_HOST_NORM_CMD_ENTRIES;
1578	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1579		AAC_HOST_NORM_CMD_ENTRIES;
1580	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1581		AAC_HOST_HIGH_CMD_ENTRIES;
1582	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1583		AAC_HOST_HIGH_CMD_ENTRIES;
1584	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1585		AAC_ADAP_NORM_CMD_ENTRIES;
1586	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1587		AAC_ADAP_NORM_CMD_ENTRIES;
1588	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589		AAC_ADAP_HIGH_CMD_ENTRIES;
1590	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591		AAC_ADAP_HIGH_CMD_ENTRIES;
1592	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1593		AAC_HOST_NORM_RESP_ENTRIES;
1594	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1595		AAC_HOST_NORM_RESP_ENTRIES;
1596	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1597		AAC_HOST_HIGH_RESP_ENTRIES;
1598	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1599		AAC_HOST_HIGH_RESP_ENTRIES;
1600	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1601		AAC_ADAP_NORM_RESP_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1603		AAC_ADAP_NORM_RESP_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605		AAC_ADAP_HIGH_RESP_ENTRIES;
1606	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607		AAC_ADAP_HIGH_RESP_ENTRIES;
1608	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1609		&sc->aac_queues->qt_HostNormCmdQueue[0];
1610	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1611		&sc->aac_queues->qt_HostHighCmdQueue[0];
1612	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1613		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1614	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1615		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1616	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1617		&sc->aac_queues->qt_HostNormRespQueue[0];
1618	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1619		&sc->aac_queues->qt_HostHighRespQueue[0];
1620	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1621		&sc->aac_queues->qt_AdapNormRespQueue[0];
1622	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1623		&sc->aac_queues->qt_AdapHighRespQueue[0];
1624
1625	/*
1626	 * Do controller-type-specific initialisation
1627	 */
1628	switch (sc->aac_hwif) {
1629	case AAC_HWIF_I960RX:
1630		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1631		break;
1632	}
1633
1634	/*
1635	 * Give the init structure to the controller.
1636	 */
1637	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1638			     sc->aac_common_busaddr +
1639			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1640			     NULL)) {
1641		device_printf(sc->aac_dev,
1642			      "error establishing init structure\n");
1643		error = EIO;
1644		goto out;
1645	}
1646
1647	error = 0;
1648out:
1649	return(error);
1650}
1651
1652/*
1653 * Send a synchronous command to the controller and wait for a result.
1654 */
1655static int
1656aac_sync_command(struct aac_softc *sc, u_int32_t command,
1657		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1658		 u_int32_t *sp)
1659{
1660	time_t then;
1661	u_int32_t status;
1662
1663	debug_called(3);
1664
1665	/* populate the mailbox */
1666	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1667
1668	/* ensure the sync command doorbell flag is cleared */
1669	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1670
1671	/* then set it to signal the adapter */
1672	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1673
1674	/* spin waiting for the command to complete */
1675	then = time_second;
1676	do {
1677		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1678			debug(1, "timed out");
1679			return(EIO);
1680		}
1681	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1682
1683	/* clear the completion flag */
1684	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685
1686	/* get the command status */
1687	status = AAC_GET_MAILBOX(sc, 0);
1688	if (sp != NULL)
1689		*sp = status;
1690	return(0);
1691}
1692
1693/*
1694 * Grab the sync fib area.
1695 */
1696int
1697aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1698{
1699
1700	/*
1701	 * If the force flag is set, the system is shutting down, or in
1702	 * trouble.  Ignore the mutex.
1703	 */
1704	if (!(flags & AAC_SYNC_LOCK_FORCE))
1705		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1706
1707	*fib = &sc->aac_common->ac_sync_fib;
1708
1709	return (1);
1710}
1711
1712/*
1713 * Release the sync fib area.
1714 */
1715void
1716aac_release_sync_fib(struct aac_softc *sc)
1717{
1718
1719	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1720}
1721
1722/*
1723 * Send a synchronous FIB to the controller and wait for a result.
1724 */
1725int
1726aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1727		 struct aac_fib *fib, u_int16_t datasize)
1728{
1729	debug_called(3);
1730
1731	if (datasize > AAC_FIB_DATASIZE)
1732		return(EINVAL);
1733
1734	/*
1735	 * Set up the sync FIB
1736	 */
1737	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1738				AAC_FIBSTATE_INITIALISED |
1739				AAC_FIBSTATE_EMPTY;
1740	fib->Header.XferState |= xferstate;
1741	fib->Header.Command = command;
1742	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1743	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1744	fib->Header.SenderSize = sizeof(struct aac_fib);
1745	fib->Header.SenderFibAddress = (u_int32_t)fib;
1746	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1747					 offsetof(struct aac_common,
1748						  ac_sync_fib);
1749
1750	/*
1751	 * Give the FIB to the controller, wait for a response.
1752	 */
1753	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1754			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1755		debug(2, "IO error");
1756		return(EIO);
1757	}
1758
1759	return (0);
1760}
1761
1762/*
1763 * Adapter-space FIB queue manipulation
1764 *
1765 * Note that the queue implementation here is a little funky; neither the PI or
1766 * CI will ever be zero.  This behaviour is a controller feature.
1767 */
1768static struct {
1769	int		size;
1770	int		notify;
1771} aac_qinfo[] = {
1772	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1773	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1774	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1775	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1776	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1777	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1778	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1779	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1780};
1781
1782/*
1783 * Atomically insert an entry into the nominated queue, returns 0 on success or
1784 * EBUSY if the queue is full.
1785 *
1786 * Note: it would be more efficient to defer notifying the controller in
1787 *	 the case where we may be inserting several entries in rapid succession,
1788 *	 but implementing this usefully may be difficult (it would involve a
1789 *	 separate queue/notify interface).
1790 */
1791static int
1792aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1793{
1794	u_int32_t pi, ci;
1795	int error;
1796	u_int32_t fib_size;
1797	u_int32_t fib_addr;
1798
1799	debug_called(3);
1800
1801	fib_size = cm->cm_fib->Header.Size;
1802	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1803
1804	/* get the producer/consumer indices */
1805	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1806	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1807
1808	/* wrap the queue? */
1809	if (pi >= aac_qinfo[queue].size)
1810		pi = 0;
1811
1812	/* check for queue full */
1813	if ((pi + 1) == ci) {
1814		error = EBUSY;
1815		goto out;
1816	}
1817
1818	/* populate queue entry */
1819	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1820	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1821
1822	/* update producer index */
1823	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1824
1825	/*
1826	 * To avoid a race with its completion interrupt, place this command on
1827	 * the busy queue prior to advertising it to the controller.
1828	 */
1829	aac_enqueue_busy(cm);
1830
1831	/* notify the adapter if we know how */
1832	if (aac_qinfo[queue].notify != 0)
1833		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1834
1835	error = 0;
1836
1837out:
1838	return(error);
1839}
1840
1841/*
1842 * Atomically remove one entry from the nominated queue, returns 0 on
1843 * success or ENOENT if the queue is empty.
1844 */
1845static int
1846aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1847		struct aac_fib **fib_addr)
1848{
1849	u_int32_t pi, ci;
1850	u_int32_t fib_index;
1851	int error;
1852	int notify;
1853
1854	debug_called(3);
1855
1856	/* get the producer/consumer indices */
1857	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1858	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1859
1860	/* check for queue empty */
1861	if (ci == pi) {
1862		error = ENOENT;
1863		goto out;
1864	}
1865
1866	notify = 0;
1867	if (ci == pi + 1)
1868		notify++;
1869
1870	/* wrap the queue? */
1871	if (ci >= aac_qinfo[queue].size)
1872		ci = 0;
1873
1874	/* fetch the entry */
1875	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1876
1877	switch (queue) {
1878	case AAC_HOST_NORM_CMD_QUEUE:
1879	case AAC_HOST_HIGH_CMD_QUEUE:
1880		/*
1881		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1882		 * on to hold an address.  For AIF's, the adapter assumes
1883		 * that it's giving us an address into the array of AIF fibs.
1884		 * Therefore, we have to convert it to an index.
1885		 */
1886		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1887			sizeof(struct aac_fib);
1888		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1889		break;
1890
1891	case AAC_HOST_NORM_RESP_QUEUE:
1892	case AAC_HOST_HIGH_RESP_QUEUE:
1893	{
1894		struct aac_command *cm;
1895
1896		/*
1897		 * As above, an index is used instead of an actual address.
1898		 * Gotta shift the index to account for the fast response
1899		 * bit.  No other correction is needed since this value was
1900		 * originally provided by the driver via the SenderFibAddress
1901		 * field.
1902		 */
1903		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1904		cm = sc->aac_commands + (fib_index >> 1);
1905		*fib_addr = cm->cm_fib;
1906
1907		/*
1908		 * Is this a fast response? If it is, update the fib fields in
1909		 * local memory since the whole fib isn't DMA'd back up.
1910		 */
1911		if (fib_index & 0x01) {
1912			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1913			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1914		}
1915		break;
1916	}
1917	default:
1918		panic("Invalid queue in aac_dequeue_fib()");
1919		break;
1920	}
1921
1922	/* update consumer index */
1923	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1924
1925	/* if we have made the queue un-full, notify the adapter */
1926	if (notify && (aac_qinfo[queue].notify != 0))
1927		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1928	error = 0;
1929
1930out:
1931	return(error);
1932}
1933
1934/*
1935 * Put our response to an Adapter Initialed Fib on the response queue
1936 */
1937static int
1938aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1939{
1940	u_int32_t pi, ci;
1941	int error;
1942	u_int32_t fib_size;
1943	u_int32_t fib_addr;
1944
1945	debug_called(1);
1946
1947	/* Tell the adapter where the FIB is */
1948	fib_size = fib->Header.Size;
1949	fib_addr = fib->Header.SenderFibAddress;
1950	fib->Header.ReceiverFibAddress = fib_addr;
1951
1952	/* get the producer/consumer indices */
1953	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1954	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1955
1956	/* wrap the queue? */
1957	if (pi >= aac_qinfo[queue].size)
1958		pi = 0;
1959
1960	/* check for queue full */
1961	if ((pi + 1) == ci) {
1962		error = EBUSY;
1963		goto out;
1964	}
1965
1966	/* populate queue entry */
1967	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1968	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1969
1970	/* update producer index */
1971	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1972
1973	/* notify the adapter if we know how */
1974	if (aac_qinfo[queue].notify != 0)
1975		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1976
1977	error = 0;
1978
1979out:
1980	return(error);
1981}
1982
1983/*
1984 * Check for commands that have been outstanding for a suspiciously long time,
1985 * and complain about them.
1986 */
1987static void
1988aac_timeout(struct aac_softc *sc)
1989{
1990	struct aac_command *cm;
1991	time_t deadline;
1992
1993	/*
1994	 * Traverse the busy command list, bitch about late commands once
1995	 * only.
1996	 */
1997	deadline = time_second - AAC_CMD_TIMEOUT;
1998	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1999		if ((cm->cm_timestamp  < deadline)
2000			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2001			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2002			device_printf(sc->aac_dev,
2003				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2004				      cm, (int)(time_second-cm->cm_timestamp));
2005			AAC_PRINT_FIB(sc, cm->cm_fib);
2006		}
2007	}
2008
2009	return;
2010}
2011
2012/*
2013 * Interface Function Vectors
2014 */
2015
2016/*
2017 * Read the current firmware status word.
2018 */
2019static int
2020aac_sa_get_fwstatus(struct aac_softc *sc)
2021{
2022	debug_called(3);
2023
2024	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2025}
2026
2027static int
2028aac_rx_get_fwstatus(struct aac_softc *sc)
2029{
2030	debug_called(3);
2031
2032	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2033}
2034
2035static int
2036aac_fa_get_fwstatus(struct aac_softc *sc)
2037{
2038	int val;
2039
2040	debug_called(3);
2041
2042	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2043	return (val);
2044}
2045
2046/*
2047 * Notify the controller of a change in a given queue
2048 */
2049
2050static void
2051aac_sa_qnotify(struct aac_softc *sc, int qbit)
2052{
2053	debug_called(3);
2054
2055	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2056}
2057
2058static void
2059aac_rx_qnotify(struct aac_softc *sc, int qbit)
2060{
2061	debug_called(3);
2062
2063	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2064}
2065
2066static void
2067aac_fa_qnotify(struct aac_softc *sc, int qbit)
2068{
2069	debug_called(3);
2070
2071	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2072	AAC_FA_HACK(sc);
2073}
2074
2075/*
2076 * Get the interrupt reason bits
2077 */
2078static int
2079aac_sa_get_istatus(struct aac_softc *sc)
2080{
2081	debug_called(3);
2082
2083	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2084}
2085
2086static int
2087aac_rx_get_istatus(struct aac_softc *sc)
2088{
2089	debug_called(3);
2090
2091	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2092}
2093
2094static int
2095aac_fa_get_istatus(struct aac_softc *sc)
2096{
2097	int val;
2098
2099	debug_called(3);
2100
2101	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2102	return (val);
2103}
2104
2105/*
2106 * Clear some interrupt reason bits
2107 */
2108static void
2109aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2110{
2111	debug_called(3);
2112
2113	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2114}
2115
2116static void
2117aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2118{
2119	debug_called(3);
2120
2121	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2122}
2123
2124static void
2125aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2126{
2127	debug_called(3);
2128
2129	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2130	AAC_FA_HACK(sc);
2131}
2132
2133/*
2134 * Populate the mailbox and set the command word
2135 */
2136static void
2137aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2138		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2139{
2140	debug_called(4);
2141
2142	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2143	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2144	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2145	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2146	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2147}
2148
2149static void
2150aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2151		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2152{
2153	debug_called(4);
2154
2155	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2156	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2157	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2158	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2159	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2160}
2161
2162static void
2163aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2164		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2165{
2166	debug_called(4);
2167
2168	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2169	AAC_FA_HACK(sc);
2170	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2171	AAC_FA_HACK(sc);
2172	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2173	AAC_FA_HACK(sc);
2174	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2175	AAC_FA_HACK(sc);
2176	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2177	AAC_FA_HACK(sc);
2178}
2179
2180/*
2181 * Fetch the immediate command status word
2182 */
2183static int
2184aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2185{
2186	debug_called(4);
2187
2188	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2189}
2190
2191static int
2192aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2193{
2194	debug_called(4);
2195
2196	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2197}
2198
2199static int
2200aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2201{
2202	int val;
2203
2204	debug_called(4);
2205
2206	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2207	return (val);
2208}
2209
2210/*
2211 * Set/clear interrupt masks
2212 */
2213static void
2214aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2215{
2216	debug(2, "%sable interrupts", enable ? "en" : "dis");
2217
2218	if (enable) {
2219		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2220	} else {
2221		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2222	}
2223}
2224
2225static void
2226aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2227{
2228	debug(2, "%sable interrupts", enable ? "en" : "dis");
2229
2230	if (enable) {
2231		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2232	} else {
2233		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2234	}
2235}
2236
2237static void
2238aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2239{
2240	debug(2, "%sable interrupts", enable ? "en" : "dis");
2241
2242	if (enable) {
2243		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2244		AAC_FA_HACK(sc);
2245	} else {
2246		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2247		AAC_FA_HACK(sc);
2248	}
2249}
2250
2251/*
2252 * Debugging and Diagnostics
2253 */
2254
2255/*
2256 * Print some information about the controller.
2257 */
2258static void
2259aac_describe_controller(struct aac_softc *sc)
2260{
2261	struct aac_fib *fib;
2262	struct aac_adapter_info	*info;
2263
2264	debug_called(2);
2265
2266	aac_alloc_sync_fib(sc, &fib, 0);
2267
2268	fib->data[0] = 0;
2269	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2270		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2271		aac_release_sync_fib(sc);
2272		return;
2273	}
2274	info = (struct aac_adapter_info *)&fib->data[0];
2275
2276	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2277		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2278		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2279		      aac_describe_code(aac_battery_platform,
2280					info->batteryPlatform));
2281
2282	/* save the kernel revision structure for later use */
2283	sc->aac_revision = info->KernelRevision;
2284	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2285		      info->KernelRevision.external.comp.major,
2286		      info->KernelRevision.external.comp.minor,
2287		      info->KernelRevision.external.comp.dash,
2288		      info->KernelRevision.buildNumber,
2289		      (u_int32_t)(info->SerialNumber & 0xffffff));
2290
2291	aac_release_sync_fib(sc);
2292
2293	if (1 || bootverbose) {
2294		device_printf(sc->aac_dev, "Supported Options=%b\n",
2295			      sc->supported_options,
2296			      "\20"
2297			      "\1SNAPSHOT"
2298			      "\2CLUSTERS"
2299			      "\3WCACHE"
2300			      "\4DATA64"
2301			      "\5HOSTTIME"
2302			      "\6RAID50"
2303			      "\7WINDOW4GB"
2304			      "\10SCSIUPGD"
2305			      "\11SOFTERR"
2306			      "\12NORECOND"
2307			      "\13SGMAP64"
2308			      "\14ALARM"
2309			      "\15NONDASD");
2310	}
2311}
2312
2313/*
2314 * Look up a text description of a numeric error code and return a pointer to
2315 * same.
2316 */
2317static char *
2318aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2319{
2320	int i;
2321
2322	for (i = 0; table[i].string != NULL; i++)
2323		if (table[i].code == code)
2324			return(table[i].string);
2325	return(table[i + 1].string);
2326}
2327
2328/*
2329 * Management Interface
2330 */
2331
2332static int
2333aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2334{
2335	struct aac_softc *sc;
2336
2337	debug_called(2);
2338
2339	sc = dev->si_drv1;
2340
2341	/* Check to make sure the device isn't already open */
2342	if (sc->aac_state & AAC_STATE_OPEN) {
2343		return EBUSY;
2344	}
2345	sc->aac_state |= AAC_STATE_OPEN;
2346
2347	return 0;
2348}
2349
2350static int
2351aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2352{
2353	struct aac_softc *sc;
2354
2355	debug_called(2);
2356
2357	sc = dev->si_drv1;
2358
2359	/* Mark this unit as no longer open  */
2360	sc->aac_state &= ~AAC_STATE_OPEN;
2361
2362	return 0;
2363}
2364
2365static int
2366aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2367{
2368	union aac_statrequest *as;
2369	struct aac_softc *sc;
2370	int error = 0;
2371	int i;
2372
2373	debug_called(2);
2374
2375	as = (union aac_statrequest *)arg;
2376	sc = dev->si_drv1;
2377
2378	switch (cmd) {
2379	case AACIO_STATS:
2380		switch (as->as_item) {
2381		case AACQ_FREE:
2382		case AACQ_BIO:
2383		case AACQ_READY:
2384		case AACQ_BUSY:
2385		case AACQ_COMPLETE:
2386			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2387			      sizeof(struct aac_qstat));
2388			break;
2389		default:
2390			error = ENOENT;
2391			break;
2392		}
2393	break;
2394
2395	case FSACTL_SENDFIB:
2396		arg = *(caddr_t*)arg;
2397	case FSACTL_LNX_SENDFIB:
2398		debug(1, "FSACTL_SENDFIB");
2399		error = aac_ioctl_sendfib(sc, arg);
2400		break;
2401	case FSACTL_AIF_THREAD:
2402	case FSACTL_LNX_AIF_THREAD:
2403		debug(1, "FSACTL_AIF_THREAD");
2404		error = EINVAL;
2405		break;
2406	case FSACTL_OPEN_GET_ADAPTER_FIB:
2407		arg = *(caddr_t*)arg;
2408	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2409		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2410		/*
2411		 * Pass the caller out an AdapterFibContext.
2412		 *
2413		 * Note that because we only support one opener, we
2414		 * basically ignore this.  Set the caller's context to a magic
2415		 * number just in case.
2416		 *
2417		 * The Linux code hands the driver a pointer into kernel space,
2418		 * and then trusts it when the caller hands it back.  Aiee!
2419		 * Here, we give it the proc pointer of the per-adapter aif
2420		 * thread. It's only used as a sanity check in other calls.
2421		 */
2422		i = (int)sc->aifthread;
2423		error = copyout(&i, arg, sizeof(i));
2424		break;
2425	case FSACTL_GET_NEXT_ADAPTER_FIB:
2426		arg = *(caddr_t*)arg;
2427	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2428		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2429		error = aac_getnext_aif(sc, arg);
2430		break;
2431	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2432	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2433		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2434		/* don't do anything here */
2435		break;
2436	case FSACTL_MINIPORT_REV_CHECK:
2437		arg = *(caddr_t*)arg;
2438	case FSACTL_LNX_MINIPORT_REV_CHECK:
2439		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2440		error = aac_rev_check(sc, arg);
2441		break;
2442	case FSACTL_QUERY_DISK:
2443		arg = *(caddr_t*)arg;
2444	case FSACTL_LNX_QUERY_DISK:
2445		debug(1, "FSACTL_QUERY_DISK");
2446		error = aac_query_disk(sc, arg);
2447			break;
2448	case FSACTL_DELETE_DISK:
2449	case FSACTL_LNX_DELETE_DISK:
2450		/*
2451		 * We don't trust the underland to tell us when to delete a
2452		 * container, rather we rely on an AIF coming from the
2453		 * controller
2454		 */
2455		error = 0;
2456		break;
2457	default:
2458		debug(1, "unsupported cmd 0x%lx\n", cmd);
2459		error = EINVAL;
2460		break;
2461	}
2462	return(error);
2463}
2464
2465static int
2466aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2467{
2468	struct aac_softc *sc;
2469	int revents;
2470
2471	sc = dev->si_drv1;
2472	revents = 0;
2473
2474	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2475	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2476		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2477			revents |= poll_events & (POLLIN | POLLRDNORM);
2478	}
2479	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2480
2481	if (revents == 0) {
2482		if (poll_events & (POLLIN | POLLRDNORM))
2483			selrecord(td, &sc->rcv_select);
2484	}
2485
2486	return (revents);
2487}
2488
2489/*
2490 * Send a FIB supplied from userspace
2491 */
2492static int
2493aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2494{
2495	struct aac_command *cm;
2496	int size, error;
2497
2498	debug_called(2);
2499
2500	cm = NULL;
2501
2502	/*
2503	 * Get a command
2504	 */
2505	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2506	if (aac_alloc_command(sc, &cm)) {
2507		error = EBUSY;
2508		goto out;
2509	}
2510
2511	/*
2512	 * Fetch the FIB header, then re-copy to get data as well.
2513	 */
2514	if ((error = copyin(ufib, cm->cm_fib,
2515			    sizeof(struct aac_fib_header))) != 0)
2516		goto out;
2517	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2518	if (size > sizeof(struct aac_fib)) {
2519		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2520			      size, sizeof(struct aac_fib));
2521		size = sizeof(struct aac_fib);
2522	}
2523	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2524		goto out;
2525	cm->cm_fib->Header.Size = size;
2526	cm->cm_timestamp = time_second;
2527
2528	/*
2529	 * Pass the FIB to the controller, wait for it to complete.
2530	 */
2531	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2532		device_printf(sc->aac_dev,
2533			      "aac_wait_command return %d\n", error);
2534		goto out;
2535	}
2536
2537	/*
2538	 * Copy the FIB and data back out to the caller.
2539	 */
2540	size = cm->cm_fib->Header.Size;
2541	if (size > sizeof(struct aac_fib)) {
2542		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2543			      size, sizeof(struct aac_fib));
2544		size = sizeof(struct aac_fib);
2545	}
2546	error = copyout(cm->cm_fib, ufib, size);
2547
2548out:
2549	if (cm != NULL) {
2550		aac_release_command(cm);
2551	}
2552
2553	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2554	return(error);
2555}
2556
2557/*
2558 * Handle an AIF sent to us by the controller; queue it for later reference.
2559 * If the queue fills up, then drop the older entries.
2560 */
2561static void
2562aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2563{
2564	struct aac_aif_command *aif;
2565	struct aac_container *co, *co_next;
2566	struct aac_mntinfo *mi;
2567	struct aac_mntinforesp *mir = NULL;
2568	u_int16_t rsize;
2569	int next, found;
2570	int count = 0, added = 0, i = 0;
2571
2572	debug_called(2);
2573
2574	aif = (struct aac_aif_command*)&fib->data[0];
2575	aac_print_aif(sc, aif);
2576
2577	/* Is it an event that we should care about? */
2578	switch (aif->command) {
2579	case AifCmdEventNotify:
2580		switch (aif->data.EN.type) {
2581		case AifEnAddContainer:
2582		case AifEnDeleteContainer:
2583			/*
2584			 * A container was added or deleted, but the message
2585			 * doesn't tell us anything else!  Re-enumerate the
2586			 * containers and sort things out.
2587			 */
2588			aac_alloc_sync_fib(sc, &fib, 0);
2589			mi = (struct aac_mntinfo *)&fib->data[0];
2590			do {
2591				/*
2592				 * Ask the controller for its containers one at
2593				 * a time.
2594				 * XXX What if the controller's list changes
2595				 * midway through this enumaration?
2596				 * XXX This should be done async.
2597				 */
2598				bzero(mi, sizeof(struct aac_mntinfo));
2599				mi->Command = VM_NameServe;
2600				mi->MntType = FT_FILESYS;
2601				mi->MntCount = i;
2602				rsize = sizeof(mir);
2603				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2604						 sizeof(struct aac_mntinfo))) {
2605					printf("Error probing container %d\n",
2606					      i);
2607					continue;
2608				}
2609				mir = (struct aac_mntinforesp *)&fib->data[0];
2610				/* XXX Need to check if count changed */
2611				count = mir->MntRespCount;
2612				/*
2613				 * Check the container against our list.
2614				 * co->co_found was already set to 0 in a
2615				 * previous run.
2616				 */
2617				if ((mir->Status == ST_OK) &&
2618				    (mir->MntTable[0].VolType != CT_NONE)) {
2619					found = 0;
2620					TAILQ_FOREACH(co,
2621						      &sc->aac_container_tqh,
2622						      co_link) {
2623						if (co->co_mntobj.ObjectId ==
2624						    mir->MntTable[0].ObjectId) {
2625							co->co_found = 1;
2626							found = 1;
2627							break;
2628						}
2629					}
2630					/*
2631					 * If the container matched, continue
2632					 * in the list.
2633					 */
2634					if (found) {
2635						i++;
2636						continue;
2637					}
2638
2639					/*
2640					 * This is a new container.  Do all the
2641					 * appropriate things to set it up.
2642					 */
2643					aac_add_container(sc, mir, 1);
2644					added = 1;
2645				}
2646				i++;
2647			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2648			aac_release_sync_fib(sc);
2649
2650			/*
2651			 * Go through our list of containers and see which ones
2652			 * were not marked 'found'.  Since the controller didn't
2653			 * list them they must have been deleted.  Do the
2654			 * appropriate steps to destroy the device.  Also reset
2655			 * the co->co_found field.
2656			 */
2657			co = TAILQ_FIRST(&sc->aac_container_tqh);
2658			while (co != NULL) {
2659				if (co->co_found == 0) {
2660					device_delete_child(sc->aac_dev,
2661							    co->co_disk);
2662					co_next = TAILQ_NEXT(co, co_link);
2663					AAC_LOCK_ACQUIRE(&sc->
2664							aac_container_lock);
2665					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2666						     co_link);
2667					AAC_LOCK_RELEASE(&sc->
2668							 aac_container_lock);
2669					FREE(co, M_AACBUF);
2670					co = co_next;
2671				} else {
2672					co->co_found = 0;
2673					co = TAILQ_NEXT(co, co_link);
2674				}
2675			}
2676
2677			/* Attach the newly created containers */
2678			if (added)
2679				bus_generic_attach(sc->aac_dev);
2680
2681			break;
2682
2683		default:
2684			break;
2685		}
2686
2687	default:
2688		break;
2689	}
2690
2691	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2692	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2693	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2694	if (next != sc->aac_aifq_tail) {
2695		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2696		sc->aac_aifq_head = next;
2697
2698		/* On the off chance that someone is sleeping for an aif... */
2699		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2700			wakeup(sc->aac_aifq);
2701		/* Wakeup any poll()ers */
2702		selwakeup(&sc->rcv_select);
2703	}
2704	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2705
2706	return;
2707}
2708
2709/*
2710 * Return the Revision of the driver to userspace and check to see if the
2711 * userspace app is possibly compatible.  This is extremely bogus since
2712 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2713 * returning what the card reported.
2714 */
2715static int
2716aac_rev_check(struct aac_softc *sc, caddr_t udata)
2717{
2718	struct aac_rev_check rev_check;
2719	struct aac_rev_check_resp rev_check_resp;
2720	int error = 0;
2721
2722	debug_called(2);
2723
2724	/*
2725	 * Copyin the revision struct from userspace
2726	 */
2727	if ((error = copyin(udata, (caddr_t)&rev_check,
2728			sizeof(struct aac_rev_check))) != 0) {
2729		return error;
2730	}
2731
2732	debug(2, "Userland revision= %d\n",
2733	      rev_check.callingRevision.buildNumber);
2734
2735	/*
2736	 * Doctor up the response struct.
2737	 */
2738	rev_check_resp.possiblyCompatible = 1;
2739	rev_check_resp.adapterSWRevision.external.ul =
2740	    sc->aac_revision.external.ul;
2741	rev_check_resp.adapterSWRevision.buildNumber =
2742	    sc->aac_revision.buildNumber;
2743
2744	return(copyout((caddr_t)&rev_check_resp, udata,
2745			sizeof(struct aac_rev_check_resp)));
2746}
2747
2748/*
2749 * Pass the caller the next AIF in their queue
2750 */
2751static int
2752aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2753{
2754	struct get_adapter_fib_ioctl agf;
2755	int error;
2756
2757	debug_called(2);
2758
2759	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2760
2761		/*
2762		 * Check the magic number that we gave the caller.
2763		 */
2764		if (agf.AdapterFibContext != (int)sc->aifthread) {
2765			error = EFAULT;
2766		} else {
2767			error = aac_return_aif(sc, agf.AifFib);
2768			if ((error == EAGAIN) && (agf.Wait)) {
2769				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2770				while (error == EAGAIN) {
2771					error = tsleep(sc->aac_aifq, PRIBIO |
2772						       PCATCH, "aacaif", 0);
2773					if (error == 0)
2774						error = aac_return_aif(sc,
2775						    agf.AifFib);
2776				}
2777				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2778			}
2779		}
2780	}
2781	return(error);
2782}
2783
2784/*
2785 * Hand the next AIF off the top of the queue out to userspace.
2786 */
2787static int
2788aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2789{
2790	int error;
2791
2792	debug_called(2);
2793
2794	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2795	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2796		error = EAGAIN;
2797	} else {
2798		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2799				sizeof(struct aac_aif_command));
2800		if (error)
2801			device_printf(sc->aac_dev,
2802			    "aac_return_aif: copyout returned %d\n", error);
2803		if (!error)
2804			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2805					    AAC_AIFQ_LENGTH;
2806	}
2807	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2808	return(error);
2809}
2810
2811/*
2812 * Give the userland some information about the container.  The AAC arch
2813 * expects the driver to be a SCSI passthrough type driver, so it expects
2814 * the containers to have b:t:l numbers.  Fake it.
2815 */
2816static int
2817aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2818{
2819	struct aac_query_disk query_disk;
2820	struct aac_container *co;
2821	struct aac_disk	*disk;
2822	int error, id;
2823
2824	debug_called(2);
2825
2826	disk = NULL;
2827
2828	error = copyin(uptr, (caddr_t)&query_disk,
2829		       sizeof(struct aac_query_disk));
2830	if (error)
2831		return (error);
2832
2833	id = query_disk.ContainerNumber;
2834	if (id == -1)
2835		return (EINVAL);
2836
2837	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2838	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2839		if (co->co_mntobj.ObjectId == id)
2840			break;
2841		}
2842
2843	if (co == NULL) {
2844			query_disk.Valid = 0;
2845			query_disk.Locked = 0;
2846			query_disk.Deleted = 1;		/* XXX is this right? */
2847	} else {
2848		disk = device_get_softc(co->co_disk);
2849		query_disk.Valid = 1;
2850		query_disk.Locked =
2851		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2852		query_disk.Deleted = 0;
2853		query_disk.Bus = device_get_unit(sc->aac_dev);
2854		query_disk.Target = disk->unit;
2855		query_disk.Lun = 0;
2856		query_disk.UnMapped = 0;
2857		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2858		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2859	}
2860	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2861
2862	error = copyout((caddr_t)&query_disk, uptr,
2863			sizeof(struct aac_query_disk));
2864
2865	return (error);
2866}
2867
2868static void
2869aac_get_bus_info(struct aac_softc *sc)
2870{
2871	struct aac_fib *fib;
2872	struct aac_ctcfg *c_cmd;
2873	struct aac_ctcfg_resp *c_resp;
2874	struct aac_vmioctl *vmi;
2875	struct aac_vmi_businf_resp *vmi_resp;
2876	struct aac_getbusinf businfo;
2877	struct aac_sim *caminf;
2878	device_t child;
2879	int i, found, error;
2880
2881	aac_alloc_sync_fib(sc, &fib, 0);
2882	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2883	bzero(c_cmd, sizeof(struct aac_ctcfg));
2884
2885	c_cmd->Command = VM_ContainerConfig;
2886	c_cmd->cmd = CT_GET_SCSI_METHOD;
2887	c_cmd->param = 0;
2888
2889	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2890	    sizeof(struct aac_ctcfg));
2891	if (error) {
2892		device_printf(sc->aac_dev, "Error %d sending "
2893		    "VM_ContainerConfig command\n", error);
2894		aac_release_sync_fib(sc);
2895		return;
2896	}
2897
2898	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2899	if (c_resp->Status != ST_OK) {
2900		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2901		    c_resp->Status);
2902		aac_release_sync_fib(sc);
2903		return;
2904	}
2905
2906	sc->scsi_method_id = c_resp->param;
2907
2908	vmi = (struct aac_vmioctl *)&fib->data[0];
2909	bzero(vmi, sizeof(struct aac_vmioctl));
2910
2911	vmi->Command = VM_Ioctl;
2912	vmi->ObjType = FT_DRIVE;
2913	vmi->MethId = sc->scsi_method_id;
2914	vmi->ObjId = 0;
2915	vmi->IoctlCmd = GetBusInfo;
2916
2917	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2918	    sizeof(struct aac_vmioctl));
2919	if (error) {
2920		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2921		    error);
2922		aac_release_sync_fib(sc);
2923		return;
2924	}
2925
2926	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2927	if (vmi_resp->Status != ST_OK) {
2928		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2929		    vmi_resp->Status);
2930		aac_release_sync_fib(sc);
2931		return;
2932	}
2933
2934	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2935	aac_release_sync_fib(sc);
2936
2937	found = 0;
2938	for (i = 0; i < businfo.BusCount; i++) {
2939		if (businfo.BusValid[i] != AAC_BUS_VALID)
2940			continue;
2941
2942		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2943		    M_AACBUF, M_NOWAIT | M_ZERO);
2944		if (caminf == NULL)
2945			continue;
2946
2947		child = device_add_child(sc->aac_dev, "aacp", -1);
2948		if (child == NULL) {
2949			device_printf(sc->aac_dev, "device_add_child failed\n");
2950			continue;
2951		}
2952
2953		caminf->TargetsPerBus = businfo.TargetsPerBus;
2954		caminf->BusNumber = i;
2955		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2956		caminf->aac_sc = sc;
2957		caminf->sim_dev = child;
2958
2959		device_set_ivars(child, caminf);
2960		device_set_desc(child, "SCSI Passthrough Bus");
2961		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2962
2963		found = 1;
2964	}
2965
2966	if (found)
2967		bus_generic_attach(sc->aac_dev);
2968
2969	return;
2970}
2971