aac.c revision 114151
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 114151 2003-04-28 06:16:20Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46#include <sys/ioccom.h>
47
48#include <sys/bus.h>
49#include <sys/conf.h>
50#include <sys/signalvar.h>
51#include <sys/time.h>
52#include <sys/eventhandler.h>
53
54#include <machine/bus_memio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57
58#include <dev/aac/aacreg.h>
59#include <dev/aac/aac_ioctl.h>
60#include <dev/aac/aacvar.h>
61#include <dev/aac/aac_tables.h>
62
63static void	aac_startup(void *arg);
64static void	aac_add_container(struct aac_softc *sc,
65				  struct aac_mntinforesp *mir, int f);
66static void	aac_get_bus_info(struct aac_softc *sc);
67
68/* Command Processing */
69static void	aac_timeout(struct aac_softc *sc);
70static int	aac_start(struct aac_command *cm);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm, int timeout);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79				       int nseg, int error);
80static int	aac_alloc_commands(struct aac_softc *sc);
81static void	aac_free_commands(struct aac_softc *sc);
82static void	aac_map_command(struct aac_command *cm);
83static void	aac_unmap_command(struct aac_command *cm);
84
85/* Hardware Interface */
86static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87			       int error);
88static int	aac_check_firmware(struct aac_softc *sc);
89static int	aac_init(struct aac_softc *sc);
90static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92				 u_int32_t arg3, u_int32_t *sp);
93static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94				struct aac_command *cm);
95static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96				u_int32_t *fib_size, struct aac_fib **fib_addr);
97static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98				     struct aac_fib *fib);
99
100/* Falcon/PPC interface */
101static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103static int	aac_fa_get_istatus(struct aac_softc *sc);
104static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106				   u_int32_t arg0, u_int32_t arg1,
107				   u_int32_t arg2, u_int32_t arg3);
108static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110
111struct aac_interface aac_fa_interface = {
112	aac_fa_get_fwstatus,
113	aac_fa_qnotify,
114	aac_fa_get_istatus,
115	aac_fa_clear_istatus,
116	aac_fa_set_mailbox,
117	aac_fa_get_mailbox,
118	aac_fa_set_interrupts
119};
120
121/* StrongARM interface */
122static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124static int	aac_sa_get_istatus(struct aac_softc *sc);
125static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127				   u_int32_t arg0, u_int32_t arg1,
128				   u_int32_t arg2, u_int32_t arg3);
129static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131
132struct aac_interface aac_sa_interface = {
133	aac_sa_get_fwstatus,
134	aac_sa_qnotify,
135	aac_sa_get_istatus,
136	aac_sa_clear_istatus,
137	aac_sa_set_mailbox,
138	aac_sa_get_mailbox,
139	aac_sa_set_interrupts
140};
141
142/* i960Rx interface */
143static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145static int	aac_rx_get_istatus(struct aac_softc *sc);
146static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148				   u_int32_t arg0, u_int32_t arg1,
149				   u_int32_t arg2, u_int32_t arg3);
150static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152
153struct aac_interface aac_rx_interface = {
154	aac_rx_get_fwstatus,
155	aac_rx_qnotify,
156	aac_rx_get_istatus,
157	aac_rx_clear_istatus,
158	aac_rx_set_mailbox,
159	aac_rx_get_mailbox,
160	aac_rx_set_interrupts
161};
162
163/* Debugging and Diagnostics */
164static void	aac_describe_controller(struct aac_softc *sc);
165static char	*aac_describe_code(struct aac_code_lookup *table,
166				   u_int32_t code);
167
168/* Management Interface */
169static d_open_t		aac_open;
170static d_close_t	aac_close;
171static d_ioctl_t	aac_ioctl;
172static d_poll_t		aac_poll;
173static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174static void		aac_handle_aif(struct aac_softc *sc,
175					   struct aac_fib *fib);
176static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180
181#define AAC_CDEV_MAJOR	150
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189	.d_maj =	AAC_CDEV_MAJOR,
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/* Init the sync fib lock */
237	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
238
239	/*
240	 * Initialise the adapter.
241	 */
242	if ((error = aac_init(sc)) != 0)
243		return(error);
244
245	/*
246	 * Print a little information about the controller.
247	 */
248	aac_describe_controller(sc);
249
250	/*
251	 * Initialize locks
252	 */
253	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
254	TAILQ_INIT(&sc->aac_container_tqh);
255	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
256	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib, 0);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			debug(2, "error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		aac_add_container(sc, mir, 0);
336		i++;
337	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
338
339	aac_release_sync_fib(sc);
340
341	/* poke the bus to actually attach the child devices */
342	if (bus_generic_attach(sc->aac_dev))
343		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
344
345	/* mark the controller up */
346	sc->aac_state &= ~AAC_STATE_SUSPEND;
347
348	/* enable interrupts now */
349	AAC_UNMASK_INTERRUPTS(sc);
350}
351
352/*
353 * Create a device to respresent a new container
354 */
355static void
356aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
357{
358	struct aac_container *co;
359	device_t child;
360
361	/*
362	 * Check container volume type for validity.  Note that many of
363	 * the possible types may never show up.
364	 */
365	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
366		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
367		       M_NOWAIT | M_ZERO);
368		if (co == NULL)
369			panic("Out of memory?!\n");
370		debug(1, "id %x  name '%.16s'  size %u  type %d",
371		      mir->MntTable[0].ObjectId,
372		      mir->MntTable[0].FileSystemName,
373		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
374
375		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
376			device_printf(sc->aac_dev, "device_add_child failed\n");
377		else
378			device_set_ivars(child, co);
379		device_set_desc(child, aac_describe_code(aac_container_types,
380				mir->MntTable[0].VolType));
381		co->co_disk = child;
382		co->co_found = f;
383		bcopy(&mir->MntTable[0], &co->co_mntobj,
384		      sizeof(struct aac_mntobj));
385		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
386		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
387		AAC_LOCK_RELEASE(&sc->aac_container_lock);
388	}
389}
390
391/*
392 * Free all of the resources associated with (sc)
393 *
394 * Should not be called if the controller is active.
395 */
396void
397aac_free(struct aac_softc *sc)
398{
399
400	debug_called(1);
401
402	/* remove the control device */
403	if (sc->aac_dev_t != NULL)
404		destroy_dev(sc->aac_dev_t);
405
406	/* throw away any FIB buffers, discard the FIB DMA tag */
407	aac_free_commands(sc);
408	if (sc->aac_fib_dmat)
409		bus_dma_tag_destroy(sc->aac_fib_dmat);
410
411	free(sc->aac_commands, M_AACBUF);
412
413	/* destroy the common area */
414	if (sc->aac_common) {
415		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
416		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
417				sc->aac_common_dmamap);
418	}
419	if (sc->aac_common_dmat)
420		bus_dma_tag_destroy(sc->aac_common_dmat);
421
422	/* disconnect the interrupt handler */
423	if (sc->aac_intr)
424		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
425	if (sc->aac_irq != NULL)
426		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
427				     sc->aac_irq);
428
429	/* destroy data-transfer DMA tag */
430	if (sc->aac_buffer_dmat)
431		bus_dma_tag_destroy(sc->aac_buffer_dmat);
432
433	/* destroy the parent DMA tag */
434	if (sc->aac_parent_dmat)
435		bus_dma_tag_destroy(sc->aac_parent_dmat);
436
437	/* release the register window mapping */
438	if (sc->aac_regs_resource != NULL)
439		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
440				     sc->aac_regs_rid, sc->aac_regs_resource);
441}
442
443/*
444 * Disconnect from the controller completely, in preparation for unload.
445 */
446int
447aac_detach(device_t dev)
448{
449	struct aac_softc *sc;
450	struct aac_container *co;
451	struct aac_sim	*sim;
452	int error;
453
454	debug_called(1);
455
456	sc = device_get_softc(dev);
457
458	if (sc->aac_state & AAC_STATE_OPEN)
459		return(EBUSY);
460
461	/* Remove the child containers */
462	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
463		error = device_delete_child(dev, co->co_disk);
464		if (error)
465			return (error);
466		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
467		free(co, M_AACBUF);
468	}
469
470	/* Remove the CAM SIMs */
471	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
472		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
473		error = device_delete_child(dev, sim->sim_dev);
474		if (error)
475			return (error);
476		free(sim, M_AACBUF);
477	}
478
479	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
480		sc->aifflags |= AAC_AIFFLAGS_EXIT;
481		wakeup(sc->aifthread);
482		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
483	}
484
485	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
486		panic("Cannot shutdown AIF thread\n");
487
488	if ((error = aac_shutdown(dev)))
489		return(error);
490
491	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
492
493	aac_free(sc);
494
495	return(0);
496}
497
498/*
499 * Bring the controller down to a dormant state and detach all child devices.
500 *
501 * This function is called before detach or system shutdown.
502 *
503 * Note that we can assume that the bioq on the controller is empty, as we won't
504 * allow shutdown if any device is open.
505 */
506int
507aac_shutdown(device_t dev)
508{
509	struct aac_softc *sc;
510	struct aac_fib *fib;
511	struct aac_close_command *cc;
512
513	debug_called(1);
514
515	sc = device_get_softc(dev);
516
517	sc->aac_state |= AAC_STATE_SUSPEND;
518
519	/*
520	 * Send a Container shutdown followed by a HostShutdown FIB to the
521	 * controller to convince it that we don't want to talk to it anymore.
522	 * We've been closed and all I/O completed already
523	 */
524	device_printf(sc->aac_dev, "shutting down controller...");
525
526	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
527	cc = (struct aac_close_command *)&fib->data[0];
528
529	bzero(cc, sizeof(struct aac_close_command));
530	cc->Command = VM_CloseAll;
531	cc->ContainerId = 0xffffffff;
532	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
533	    sizeof(struct aac_close_command)))
534		printf("FAILED.\n");
535	else
536		printf("done\n");
537#if 0
538	else {
539		fib->data[0] = 0;
540		/*
541		 * XXX Issuing this command to the controller makes it shut down
542		 * but also keeps it from coming back up without a reset of the
543		 * PCI bus.  This is not desirable if you are just unloading the
544		 * driver module with the intent to reload it later.
545		 */
546		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
547		    fib, 1)) {
548			printf("FAILED.\n");
549		} else {
550			printf("done.\n");
551		}
552	}
553#endif
554
555	AAC_MASK_INTERRUPTS(sc);
556
557	return(0);
558}
559
560/*
561 * Bring the controller to a quiescent state, ready for system suspend.
562 */
563int
564aac_suspend(device_t dev)
565{
566	struct aac_softc *sc;
567
568	debug_called(1);
569
570	sc = device_get_softc(dev);
571
572	sc->aac_state |= AAC_STATE_SUSPEND;
573
574	AAC_MASK_INTERRUPTS(sc);
575	return(0);
576}
577
578/*
579 * Bring the controller back to a state ready for operation.
580 */
581int
582aac_resume(device_t dev)
583{
584	struct aac_softc *sc;
585
586	debug_called(1);
587
588	sc = device_get_softc(dev);
589
590	sc->aac_state &= ~AAC_STATE_SUSPEND;
591	AAC_UNMASK_INTERRUPTS(sc);
592	return(0);
593}
594
595/*
596 * Take an interrupt.
597 */
598void
599aac_intr(void *arg)
600{
601	struct aac_softc *sc;
602	u_int32_t *resp_queue;
603	u_int16_t reason;
604
605	debug_called(2);
606
607	sc = (struct aac_softc *)arg;
608
609	/*
610	 * Optimize the common case of adapter response interrupts.
611	 * We must read from the card prior to processing the responses
612	 * to ensure the clear is flushed prior to accessing the queues.
613	 * Reading the queues from local memory might save us a PCI read.
614	 */
615	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
616	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
617		reason = AAC_DB_RESPONSE_READY;
618	else
619		reason = AAC_GET_ISTATUS(sc);
620	AAC_CLEAR_ISTATUS(sc, reason);
621	(void)AAC_GET_ISTATUS(sc);
622
623	/* It's not ok to return here because of races with the previous step */
624	if (reason & AAC_DB_RESPONSE_READY)
625		/* handle completion processing */
626		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
627
628	/* controller wants to talk to the log */
629	if (reason & AAC_DB_PRINTF) {
630		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
631			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
632		} else
633			aac_print_printf(sc);
634	}
635
636	/* controller has a message for us? */
637	if (reason & AAC_DB_COMMAND_READY) {
638		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
639			sc->aifflags |= AAC_AIFFLAGS_AIF;
640		} else {
641			/*
642			 * XXX If the kthread is dead and we're at this point,
643			 * there are bigger problems than just figuring out
644			 * what to do with an AIF.
645			 */
646		}
647
648	}
649
650	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
651		/* XXX Should this be done with cv_signal? */
652		wakeup(sc->aifthread);
653}
654
655/*
656 * Command Processing
657 */
658
659/*
660 * Start as much queued I/O as possible on the controller
661 */
662void
663aac_startio(struct aac_softc *sc)
664{
665	struct aac_command *cm;
666
667	debug_called(2);
668
669	for (;;) {
670		/*
671		 * Try to get a command that's been put off for lack of
672		 * resources
673		 */
674		cm = aac_dequeue_ready(sc);
675
676		/*
677		 * Try to build a command off the bio queue (ignore error
678		 * return)
679		 */
680		if (cm == NULL)
681			aac_bio_command(sc, &cm);
682
683		/* nothing to do? */
684		if (cm == NULL)
685			break;
686
687		/* try to give the command to the controller */
688		if (aac_start(cm) == EBUSY) {
689			/* put it on the ready queue for later */
690			aac_requeue_ready(cm);
691			break;
692		}
693	}
694}
695
696/*
697 * Deliver a command to the controller; allocate controller resources at the
698 * last moment when possible.
699 */
700static int
701aac_start(struct aac_command *cm)
702{
703	struct aac_softc *sc;
704	int error;
705
706	debug_called(2);
707
708	sc = cm->cm_sc;
709
710	/* get the command mapped */
711	aac_map_command(cm);
712
713	/* Fix up the address values in the FIB.  Use the command array index
714	 * instead of a pointer since these fields are only 32 bits.  Shift
715	 * the SenderFibAddress over to make room for the fast response bit.
716	 */
717	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
718	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
719
720	/* save a pointer to the command for speedy reverse-lookup */
721	cm->cm_fib->Header.SenderData = cm->cm_index;
722	/* put the FIB on the outbound queue */
723	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
724	return(error);
725}
726
727/*
728 * Handle notification of one or more FIBs coming from the controller.
729 */
730static void
731aac_command_thread(struct aac_softc *sc)
732{
733	struct aac_fib *fib;
734	u_int32_t fib_size;
735	int size;
736
737	debug_called(2);
738
739	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
740
741	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
742		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
743			tsleep(sc->aifthread, PRIBIO, "aifthd",
744			       AAC_PERIODIC_INTERVAL * hz);
745
746		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
747			aac_timeout(sc);
748
749		/* Check the hardware printf message buffer */
750		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
751			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
752			aac_print_printf(sc);
753		}
754
755		/* See if any FIBs need to be allocated */
756		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
757			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
758			aac_alloc_commands(sc);
759			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
760			AAC_LOCK_RELEASE(&sc->aac_io_lock);
761		}
762
763		/* While we're here, check to see if any commands are stuck */
764		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
765			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
766					    &fib_size, &fib)) {
767				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
768				break;	/* nothing to do */
769			}
770
771			AAC_PRINT_FIB(sc, fib);
772
773			switch (fib->Header.Command) {
774			case AifRequest:
775				aac_handle_aif(sc, fib);
776				break;
777			default:
778				device_printf(sc->aac_dev, "unknown command "
779					      "from controller\n");
780				break;
781			}
782
783			if ((fib->Header.XferState == 0) ||
784			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
785				break;
786
787			/* Return the AIF to the controller. */
788			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
789				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
790				*(AAC_FSAStatus*)fib->data = ST_OK;
791
792				/* XXX Compute the Size field? */
793				size = fib->Header.Size;
794				if (size > sizeof(struct aac_fib)) {
795					size = sizeof(struct aac_fib);
796					fib->Header.Size = size;
797				}
798				/*
799				 * Since we did not generate this command, it
800				 * cannot go through the normal
801				 * enqueue->startio chain.
802				 */
803				aac_enqueue_response(sc,
804						     AAC_ADAP_NORM_RESP_QUEUE,
805						     fib);
806			}
807		}
808	}
809	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
810	wakeup(sc->aac_dev);
811
812	mtx_lock(&Giant);
813	kthread_exit(0);
814}
815
816/*
817 * Process completed commands.
818 */
819static void
820aac_complete(void *context, int pending)
821{
822	struct aac_softc *sc;
823	struct aac_command *cm;
824	struct aac_fib *fib;
825	u_int32_t fib_size;
826
827	debug_called(2);
828
829	sc = (struct aac_softc *)context;
830
831	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
832
833	/* pull completed commands off the queue */
834	for (;;) {
835		/* look for completed FIBs on our queue */
836		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
837				    &fib))
838			break;	/* nothing to do */
839
840		/* get the command, unmap and queue for later processing */
841		cm = sc->aac_commands + fib->Header.SenderData;
842		if (cm == NULL) {
843			AAC_PRINT_FIB(sc, fib);
844			break;
845		}
846
847		aac_remove_busy(cm);
848		aac_unmap_command(cm);		/* XXX defer? */
849		cm->cm_flags |= AAC_CMD_COMPLETED;
850
851		/* is there a completion handler? */
852		if (cm->cm_complete != NULL) {
853			cm->cm_complete(cm);
854		} else {
855			/* assume that someone is sleeping on this command */
856			wakeup(cm);
857		}
858	}
859
860	/* see if we can start some more I/O */
861	aac_startio(sc);
862
863	AAC_LOCK_RELEASE(&sc->aac_io_lock);
864}
865
866/*
867 * Handle a bio submitted from a disk device.
868 */
869void
870aac_submit_bio(struct bio *bp)
871{
872	struct aac_disk *ad;
873	struct aac_softc *sc;
874
875	debug_called(2);
876
877	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
878	sc = ad->ad_controller;
879
880	/* queue the BIO and try to get some work done */
881	aac_enqueue_bio(sc, bp);
882	aac_startio(sc);
883}
884
885/*
886 * Get a bio and build a command to go with it.
887 */
888static int
889aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
890{
891	struct aac_command *cm;
892	struct aac_fib *fib;
893	struct aac_disk *ad;
894	struct bio *bp;
895
896	debug_called(2);
897
898	/* get the resources we will need */
899	cm = NULL;
900	if ((bp = aac_dequeue_bio(sc)) == NULL)
901		goto fail;
902	if (aac_alloc_command(sc, &cm))	/* get a command */
903		goto fail;
904
905	/* fill out the command */
906	cm->cm_data = (void *)bp->bio_data;
907	cm->cm_datalen = bp->bio_bcount;
908	cm->cm_complete = aac_bio_complete;
909	cm->cm_private = bp;
910	cm->cm_timestamp = time_second;
911	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
912
913	/* build the FIB */
914	fib = cm->cm_fib;
915	fib->Header.Size = sizeof(struct aac_fib_header);
916	fib->Header.XferState =
917		AAC_FIBSTATE_HOSTOWNED   |
918		AAC_FIBSTATE_INITIALISED |
919		AAC_FIBSTATE_EMPTY	 |
920		AAC_FIBSTATE_FROMHOST	 |
921		AAC_FIBSTATE_REXPECTED   |
922		AAC_FIBSTATE_NORM	 |
923		AAC_FIBSTATE_ASYNC	 |
924		AAC_FIBSTATE_FAST_RESPONSE;
925
926	/* build the read/write request */
927	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
928
929	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
930		fib->Header.Command = ContainerCommand;
931		if (bp->bio_cmd == BIO_READ) {
932			struct aac_blockread *br;
933			br = (struct aac_blockread *)&fib->data[0];
934			br->Command = VM_CtBlockRead;
935			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
936			br->BlockNumber = bp->bio_pblkno;
937			br->ByteCount = bp->bio_bcount;
938			fib->Header.Size += sizeof(struct aac_blockread);
939			cm->cm_sgtable = &br->SgMap;
940			cm->cm_flags |= AAC_CMD_DATAIN;
941		} else {
942			struct aac_blockwrite *bw;
943			bw = (struct aac_blockwrite *)&fib->data[0];
944			bw->Command = VM_CtBlockWrite;
945			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946			bw->BlockNumber = bp->bio_pblkno;
947			bw->ByteCount = bp->bio_bcount;
948			bw->Stable = CUNSTABLE;
949			fib->Header.Size += sizeof(struct aac_blockwrite);
950			cm->cm_flags |= AAC_CMD_DATAOUT;
951			cm->cm_sgtable = &bw->SgMap;
952		}
953	} else {
954		fib->Header.Command = ContainerCommand64;
955		if (bp->bio_cmd == BIO_READ) {
956			struct aac_blockread64 *br;
957			br = (struct aac_blockread64 *)&fib->data[0];
958			br->Command = VM_CtHostRead64;
959			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
960			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
961			br->BlockNumber = bp->bio_pblkno;
962			br->Pad = 0;
963			br->Flags = 0;
964			fib->Header.Size += sizeof(struct aac_blockread64);
965			cm->cm_flags |= AAC_CMD_DATAOUT;
966			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
967		} else {
968			struct aac_blockwrite64 *bw;
969			bw = (struct aac_blockwrite64 *)&fib->data[0];
970			bw->Command = VM_CtHostWrite64;
971			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
972			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
973			bw->BlockNumber = bp->bio_pblkno;
974			bw->Pad = 0;
975			bw->Flags = 0;
976			fib->Header.Size += sizeof(struct aac_blockwrite64);
977			cm->cm_flags |= AAC_CMD_DATAIN;
978			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
979		}
980	}
981
982	*cmp = cm;
983	return(0);
984
985fail:
986	if (bp != NULL)
987		aac_enqueue_bio(sc, bp);
988	if (cm != NULL)
989		aac_release_command(cm);
990	return(ENOMEM);
991}
992
993/*
994 * Handle a bio-instigated command that has been completed.
995 */
996static void
997aac_bio_complete(struct aac_command *cm)
998{
999	struct aac_blockread_response *brr;
1000	struct aac_blockwrite_response *bwr;
1001	struct bio *bp;
1002	AAC_FSAStatus status;
1003
1004	/* fetch relevant status and then release the command */
1005	bp = (struct bio *)cm->cm_private;
1006	if (bp->bio_cmd == BIO_READ) {
1007		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1008		status = brr->Status;
1009	} else {
1010		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1011		status = bwr->Status;
1012	}
1013	aac_release_command(cm);
1014
1015	/* fix up the bio based on status */
1016	if (status == ST_OK) {
1017		bp->bio_resid = 0;
1018	} else {
1019		bp->bio_error = EIO;
1020		bp->bio_flags |= BIO_ERROR;
1021		/* pass an error string out to the disk layer */
1022		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1023						    status);
1024	}
1025	aac_biodone(bp);
1026}
1027
1028/*
1029 * Submit a command to the controller, return when it completes.
1030 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1031 *     be stuck here forever.  At the same time, signals are not caught
1032 *     because there is a risk that a signal could wakeup the tsleep before
1033 *     the card has a chance to complete the command.  The passed in timeout
1034 *     is ignored for the same reason.  Since there is no way to cancel a
1035 *     command in progress, we should probably create a 'dead' queue where
1036 *     commands go that have been interrupted/timed-out/etc, that keeps them
1037 *     out of the free pool.  That way, if the card is just slow, it won't
1038 *     spam the memory of a command that has been recycled.
1039 */
1040static int
1041aac_wait_command(struct aac_command *cm, int timeout)
1042{
1043	struct aac_softc *sc;
1044	int error = 0;
1045
1046	debug_called(2);
1047
1048	sc = cm->cm_sc;
1049
1050	/* Put the command on the ready queue and get things going */
1051	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1052	aac_enqueue_ready(cm);
1053	aac_startio(sc);
1054	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1055		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1056	}
1057	return(error);
1058}
1059
1060/*
1061 *Command Buffer Management
1062 */
1063
1064/*
1065 * Allocate a command.
1066 */
1067int
1068aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1069{
1070	struct aac_command *cm;
1071
1072	debug_called(3);
1073
1074	if ((cm = aac_dequeue_free(sc)) == NULL) {
1075		if (sc->total_fibs < sc->aac_max_fibs) {
1076			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1077			wakeup(sc->aifthread);
1078		}
1079		return (EBUSY);
1080	}
1081
1082	*cmp = cm;
1083	return(0);
1084}
1085
1086/*
1087 * Release a command back to the freelist.
1088 */
1089void
1090aac_release_command(struct aac_command *cm)
1091{
1092	debug_called(3);
1093
1094	/* (re)initialise the command/FIB */
1095	cm->cm_sgtable = NULL;
1096	cm->cm_flags = 0;
1097	cm->cm_complete = NULL;
1098	cm->cm_private = NULL;
1099	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1100	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1101	cm->cm_fib->Header.Flags = 0;
1102	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1103
1104	/*
1105	 * These are duplicated in aac_start to cover the case where an
1106	 * intermediate stage may have destroyed them.  They're left
1107	 * initialised here for debugging purposes only.
1108	 */
1109	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1110	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1111	cm->cm_fib->Header.SenderData = 0;
1112
1113	aac_enqueue_free(cm);
1114}
1115
1116/*
1117 * Map helper for command/FIB allocation.
1118 */
1119static void
1120aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1121{
1122	uint32_t	*fibphys;
1123
1124	fibphys = (uint32_t *)arg;
1125
1126	debug_called(3);
1127
1128	*fibphys = segs[0].ds_addr;
1129}
1130
1131/*
1132 * Allocate and initialise commands/FIBs for this adapter.
1133 */
1134static int
1135aac_alloc_commands(struct aac_softc *sc)
1136{
1137	struct aac_command *cm;
1138	struct aac_fibmap *fm;
1139	uint32_t fibphys;
1140	int i, error;
1141
1142	debug_called(2);
1143
1144	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1145		return (ENOMEM);
1146
1147	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1148	if (fm == NULL)
1149		return (ENOMEM);
1150
1151	/* allocate the FIBs in DMAable memory and load them */
1152	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1153			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1154		device_printf(sc->aac_dev,
1155			      "Not enough contiguous memory available.\n");
1156		free(fm, M_AACBUF);
1157		return (ENOMEM);
1158	}
1159
1160	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1161			AAC_FIB_COUNT * sizeof(struct aac_fib),
1162			aac_map_command_helper, &fibphys, 0);
1163
1164	/* initialise constant fields in the command structure */
1165	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1166	for (i = 0; i < AAC_FIB_COUNT; i++) {
1167		cm = sc->aac_commands + sc->total_fibs;
1168		fm->aac_commands = cm;
1169		cm->cm_sc = sc;
1170		cm->cm_fib = fm->aac_fibs + i;
1171		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1172		cm->cm_index = sc->total_fibs;
1173
1174		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1175					       &cm->cm_datamap)) == 0)
1176			aac_release_command(cm);
1177		else
1178			break;
1179		sc->total_fibs++;
1180	}
1181
1182	if (i > 0) {
1183		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1184		debug(1, "total_fibs= %d\n", sc->total_fibs);
1185		return (0);
1186	}
1187
1188	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1189	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1190	free(fm, M_AACBUF);
1191	return (ENOMEM);
1192}
1193
1194/*
1195 * Free FIBs owned by this adapter.
1196 */
1197static void
1198aac_free_commands(struct aac_softc *sc)
1199{
1200	struct aac_fibmap *fm;
1201	struct aac_command *cm;
1202	int i;
1203
1204	debug_called(1);
1205
1206	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1207
1208		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1209		/*
1210		 * We check against total_fibs to handle partially
1211		 * allocated blocks.
1212		 */
1213		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1214			cm = fm->aac_commands + i;
1215			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1216		}
1217		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1218		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1219		free(fm, M_AACBUF);
1220	}
1221}
1222
1223/*
1224 * Command-mapping helper function - populate this command's s/g table.
1225 */
1226static void
1227aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1228{
1229	struct aac_command *cm;
1230	struct aac_fib *fib;
1231	int i;
1232
1233	debug_called(3);
1234
1235	cm = (struct aac_command *)arg;
1236	fib = cm->cm_fib;
1237
1238	/* copy into the FIB */
1239	if (cm->cm_sgtable != NULL) {
1240		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1241			struct aac_sg_table *sg;
1242			sg = cm->cm_sgtable;
1243			sg->SgCount = nseg;
1244			for (i = 0; i < nseg; i++) {
1245				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1246				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1247			}
1248			/* update the FIB size for the s/g count */
1249			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1250		} else {
1251			struct aac_sg_table64 *sg;
1252			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1253			sg->SgCount = nseg;
1254			for (i = 0; i < nseg; i++) {
1255				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1256				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1257			}
1258			/* update the FIB size for the s/g count */
1259			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1260		}
1261	}
1262}
1263
1264/*
1265 * Map a command into controller-visible space.
1266 */
1267static void
1268aac_map_command(struct aac_command *cm)
1269{
1270	struct aac_softc *sc;
1271
1272	debug_called(2);
1273
1274	sc = cm->cm_sc;
1275
1276	/* don't map more than once */
1277	if (cm->cm_flags & AAC_CMD_MAPPED)
1278		return;
1279
1280	if (cm->cm_datalen != 0) {
1281		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1282				cm->cm_data, cm->cm_datalen,
1283				aac_map_command_sg, cm, 0);
1284
1285		if (cm->cm_flags & AAC_CMD_DATAIN)
1286			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1287					BUS_DMASYNC_PREREAD);
1288		if (cm->cm_flags & AAC_CMD_DATAOUT)
1289			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1290					BUS_DMASYNC_PREWRITE);
1291	}
1292	cm->cm_flags |= AAC_CMD_MAPPED;
1293}
1294
1295/*
1296 * Unmap a command from controller-visible space.
1297 */
1298static void
1299aac_unmap_command(struct aac_command *cm)
1300{
1301	struct aac_softc *sc;
1302
1303	debug_called(2);
1304
1305	sc = cm->cm_sc;
1306
1307	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1308		return;
1309
1310	if (cm->cm_datalen != 0) {
1311		if (cm->cm_flags & AAC_CMD_DATAIN)
1312			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1313					BUS_DMASYNC_POSTREAD);
1314		if (cm->cm_flags & AAC_CMD_DATAOUT)
1315			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1316					BUS_DMASYNC_POSTWRITE);
1317
1318		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1319	}
1320	cm->cm_flags &= ~AAC_CMD_MAPPED;
1321}
1322
1323/*
1324 * Hardware Interface
1325 */
1326
1327/*
1328 * Initialise the adapter.
1329 */
1330static void
1331aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1332{
1333	struct aac_softc *sc;
1334
1335	debug_called(1);
1336
1337	sc = (struct aac_softc *)arg;
1338
1339	sc->aac_common_busaddr = segs[0].ds_addr;
1340}
1341
1342static int
1343aac_check_firmware(struct aac_softc *sc)
1344{
1345	u_int32_t major, minor, options;
1346
1347	debug_called(1);
1348
1349	/*
1350	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1351	 * firmware version 1.x are not compatible with this driver.
1352	 */
1353	if (sc->flags & AAC_FLAGS_PERC2QC) {
1354		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1355				     NULL)) {
1356			device_printf(sc->aac_dev,
1357				      "Error reading firmware version\n");
1358			return (EIO);
1359		}
1360
1361		/* These numbers are stored as ASCII! */
1362		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1363		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1364		if (major == 1) {
1365			device_printf(sc->aac_dev,
1366			    "Firmware version %d.%d is not supported.\n",
1367			    major, minor);
1368			return (EINVAL);
1369		}
1370	}
1371
1372	/*
1373	 * Retrieve the capabilities/supported options word so we know what
1374	 * work-arounds to enable.
1375	 */
1376	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1377		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1378		return (EIO);
1379	}
1380	options = AAC_GET_MAILBOX(sc, 1);
1381	sc->supported_options = options;
1382
1383	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1384	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1385		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1386	if (options & AAC_SUPPORTED_NONDASD)
1387		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1388	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1389		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1390		sc->flags |= AAC_FLAGS_SG_64BIT;
1391	}
1392
1393	/* Check for broken hardware that does a lower number of commands */
1394	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1395		sc->aac_max_fibs = AAC_MAX_FIBS;
1396	else
1397		sc->aac_max_fibs = 256;
1398
1399	return (0);
1400}
1401
1402static int
1403aac_init(struct aac_softc *sc)
1404{
1405	struct aac_adapter_init	*ip;
1406	time_t then;
1407	u_int32_t code;
1408	u_int8_t *qaddr;
1409	int error;
1410
1411	debug_called(1);
1412
1413	/*
1414	 * First wait for the adapter to come ready.
1415	 */
1416	then = time_second;
1417	do {
1418		code = AAC_GET_FWSTATUS(sc);
1419		if (code & AAC_SELF_TEST_FAILED) {
1420			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1421			return(ENXIO);
1422		}
1423		if (code & AAC_KERNEL_PANIC) {
1424			device_printf(sc->aac_dev,
1425				      "FATAL: controller kernel panic\n");
1426			return(ENXIO);
1427		}
1428		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1429			device_printf(sc->aac_dev,
1430				      "FATAL: controller not coming ready, "
1431					   "status %x\n", code);
1432			return(ENXIO);
1433		}
1434	} while (!(code & AAC_UP_AND_RUNNING));
1435
1436	error = ENOMEM;
1437	/*
1438	 * Create DMA tag for mapping buffers into controller-addressable space.
1439	 */
1440	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1441			       1, 0, 			/* algnmnt, boundary */
1442			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1443			       BUS_SPACE_MAXADDR :
1444			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1445			       BUS_SPACE_MAXADDR, 	/* highaddr */
1446			       NULL, NULL, 		/* filter, filterarg */
1447			       MAXBSIZE,		/* maxsize */
1448			       AAC_MAXSGENTRIES,	/* nsegments */
1449			       MAXBSIZE,		/* maxsegsize */
1450			       BUS_DMA_ALLOCNOW,	/* flags */
1451			       &sc->aac_buffer_dmat)) {
1452		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1453		goto out;
1454	}
1455
1456	/*
1457	 * Create DMA tag for mapping FIBs into controller-addressable space..
1458	 */
1459	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1460			       1, 0, 			/* algnmnt, boundary */
1461			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1462			       BUS_SPACE_MAXADDR_32BIT :
1463			       0x7fffffff,		/* lowaddr */
1464			       BUS_SPACE_MAXADDR, 	/* highaddr */
1465			       NULL, NULL, 		/* filter, filterarg */
1466			       AAC_FIB_COUNT *
1467			       sizeof(struct aac_fib),  /* maxsize */
1468			       1,			/* nsegments */
1469			       AAC_FIB_COUNT *
1470			       sizeof(struct aac_fib),	/* maxsegsize */
1471			       BUS_DMA_ALLOCNOW,	/* flags */
1472			       &sc->aac_fib_dmat)) {
1473		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1474		goto out;
1475	}
1476
1477	/*
1478	 * Create DMA tag for the common structure and allocate it.
1479	 */
1480	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1481			       1, 0,			/* algnmnt, boundary */
1482			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1483			       BUS_SPACE_MAXADDR_32BIT :
1484			       0x7fffffff,		/* lowaddr */
1485			       BUS_SPACE_MAXADDR, 	/* highaddr */
1486			       NULL, NULL, 		/* filter, filterarg */
1487			       8192 + sizeof(struct aac_common), /* maxsize */
1488			       1,			/* nsegments */
1489			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1490			       BUS_DMA_ALLOCNOW,	/* flags */
1491			       &sc->aac_common_dmat)) {
1492		device_printf(sc->aac_dev,
1493			      "can't allocate common structure DMA tag\n");
1494		goto out;
1495	}
1496	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1497			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1498		device_printf(sc->aac_dev, "can't allocate common structure\n");
1499		goto out;
1500	}
1501
1502	/*
1503	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1504	 * below address 8192 in physical memory.
1505	 * XXX If the padding is not needed, can it be put to use instead
1506	 * of ignored?
1507	 */
1508	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1509			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1510			aac_common_map, sc, 0);
1511
1512	if (sc->aac_common_busaddr < 8192) {
1513		(uint8_t *)sc->aac_common += 8192;
1514		sc->aac_common_busaddr += 8192;
1515	}
1516	bzero(sc->aac_common, sizeof(*sc->aac_common));
1517
1518	/* Allocate some FIBs and associated command structs */
1519	TAILQ_INIT(&sc->aac_fibmap_tqh);
1520	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1521				  M_AACBUF, M_WAITOK|M_ZERO);
1522	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1523		if (aac_alloc_commands(sc) != 0)
1524			break;
1525	}
1526	if (sc->total_fibs == 0)
1527		goto out;
1528
1529	/*
1530	 * Fill in the init structure.  This tells the adapter about the
1531	 * physical location of various important shared data structures.
1532	 */
1533	ip = &sc->aac_common->ac_init;
1534	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1535	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1536
1537	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1538					 offsetof(struct aac_common, ac_fibs);
1539	ip->AdapterFibsVirtualAddress = 0;
1540	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1541	ip->AdapterFibAlign = sizeof(struct aac_fib);
1542
1543	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1544				  offsetof(struct aac_common, ac_printf);
1545	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1546
1547	/* The adapter assumes that pages are 4K in size */
1548	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1549	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1550
1551	/*
1552	 * Initialise FIB queues.  Note that it appears that the layout of the
1553	 * indexes and the segmentation of the entries may be mandated by the
1554	 * adapter, which is only told about the base of the queue index fields.
1555	 *
1556	 * The initial values of the indices are assumed to inform the adapter
1557	 * of the sizes of the respective queues, and theoretically it could
1558	 * work out the entire layout of the queue structures from this.  We
1559	 * take the easy route and just lay this area out like everyone else
1560	 * does.
1561	 *
1562	 * The Linux driver uses a much more complex scheme whereby several
1563	 * header records are kept for each queue.  We use a couple of generic
1564	 * list manipulation functions which 'know' the size of each list by
1565	 * virtue of a table.
1566	 */
1567	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1568	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1569	sc->aac_queues = (struct aac_queue_table *)qaddr;
1570	ip->CommHeaderAddress = sc->aac_common_busaddr +
1571				((u_int32_t)sc->aac_queues -
1572				(u_int32_t)sc->aac_common);
1573
1574	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1575		AAC_HOST_NORM_CMD_ENTRIES;
1576	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1577		AAC_HOST_NORM_CMD_ENTRIES;
1578	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1579		AAC_HOST_HIGH_CMD_ENTRIES;
1580	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1581		AAC_HOST_HIGH_CMD_ENTRIES;
1582	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1583		AAC_ADAP_NORM_CMD_ENTRIES;
1584	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1585		AAC_ADAP_NORM_CMD_ENTRIES;
1586	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1587		AAC_ADAP_HIGH_CMD_ENTRIES;
1588	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1589		AAC_ADAP_HIGH_CMD_ENTRIES;
1590	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1591		AAC_HOST_NORM_RESP_ENTRIES;
1592	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1593		AAC_HOST_NORM_RESP_ENTRIES;
1594	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1595		AAC_HOST_HIGH_RESP_ENTRIES;
1596	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1597		AAC_HOST_HIGH_RESP_ENTRIES;
1598	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1599		AAC_ADAP_NORM_RESP_ENTRIES;
1600	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1601		AAC_ADAP_NORM_RESP_ENTRIES;
1602	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1603		AAC_ADAP_HIGH_RESP_ENTRIES;
1604	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1605		AAC_ADAP_HIGH_RESP_ENTRIES;
1606	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1607		&sc->aac_queues->qt_HostNormCmdQueue[0];
1608	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1609		&sc->aac_queues->qt_HostHighCmdQueue[0];
1610	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1611		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1612	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1613		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1614	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1615		&sc->aac_queues->qt_HostNormRespQueue[0];
1616	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1617		&sc->aac_queues->qt_HostHighRespQueue[0];
1618	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1619		&sc->aac_queues->qt_AdapNormRespQueue[0];
1620	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1621		&sc->aac_queues->qt_AdapHighRespQueue[0];
1622
1623	/*
1624	 * Do controller-type-specific initialisation
1625	 */
1626	switch (sc->aac_hwif) {
1627	case AAC_HWIF_I960RX:
1628		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1629		break;
1630	}
1631
1632	/*
1633	 * Give the init structure to the controller.
1634	 */
1635	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1636			     sc->aac_common_busaddr +
1637			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1638			     NULL)) {
1639		device_printf(sc->aac_dev,
1640			      "error establishing init structure\n");
1641		error = EIO;
1642		goto out;
1643	}
1644
1645	error = 0;
1646out:
1647	return(error);
1648}
1649
1650/*
1651 * Send a synchronous command to the controller and wait for a result.
1652 */
1653static int
1654aac_sync_command(struct aac_softc *sc, u_int32_t command,
1655		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1656		 u_int32_t *sp)
1657{
1658	time_t then;
1659	u_int32_t status;
1660
1661	debug_called(3);
1662
1663	/* populate the mailbox */
1664	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1665
1666	/* ensure the sync command doorbell flag is cleared */
1667	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1668
1669	/* then set it to signal the adapter */
1670	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1671
1672	/* spin waiting for the command to complete */
1673	then = time_second;
1674	do {
1675		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1676			debug(1, "timed out");
1677			return(EIO);
1678		}
1679	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1680
1681	/* clear the completion flag */
1682	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1683
1684	/* get the command status */
1685	status = AAC_GET_MAILBOX(sc, 0);
1686	if (sp != NULL)
1687		*sp = status;
1688	return(0);
1689}
1690
1691/*
1692 * Grab the sync fib area.
1693 */
1694int
1695aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1696{
1697
1698	/*
1699	 * If the force flag is set, the system is shutting down, or in
1700	 * trouble.  Ignore the mutex.
1701	 */
1702	if (!(flags & AAC_SYNC_LOCK_FORCE))
1703		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1704
1705	*fib = &sc->aac_common->ac_sync_fib;
1706
1707	return (1);
1708}
1709
1710/*
1711 * Release the sync fib area.
1712 */
1713void
1714aac_release_sync_fib(struct aac_softc *sc)
1715{
1716
1717	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1718}
1719
1720/*
1721 * Send a synchronous FIB to the controller and wait for a result.
1722 */
1723int
1724aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1725		 struct aac_fib *fib, u_int16_t datasize)
1726{
1727	debug_called(3);
1728
1729	if (datasize > AAC_FIB_DATASIZE)
1730		return(EINVAL);
1731
1732	/*
1733	 * Set up the sync FIB
1734	 */
1735	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1736				AAC_FIBSTATE_INITIALISED |
1737				AAC_FIBSTATE_EMPTY;
1738	fib->Header.XferState |= xferstate;
1739	fib->Header.Command = command;
1740	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1741	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1742	fib->Header.SenderSize = sizeof(struct aac_fib);
1743	fib->Header.SenderFibAddress = (u_int32_t)fib;
1744	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1745					 offsetof(struct aac_common,
1746						  ac_sync_fib);
1747
1748	/*
1749	 * Give the FIB to the controller, wait for a response.
1750	 */
1751	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1752			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1753		debug(2, "IO error");
1754		return(EIO);
1755	}
1756
1757	return (0);
1758}
1759
1760/*
1761 * Adapter-space FIB queue manipulation
1762 *
1763 * Note that the queue implementation here is a little funky; neither the PI or
1764 * CI will ever be zero.  This behaviour is a controller feature.
1765 */
1766static struct {
1767	int		size;
1768	int		notify;
1769} aac_qinfo[] = {
1770	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1771	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1772	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1773	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1774	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1775	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1776	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1777	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1778};
1779
1780/*
1781 * Atomically insert an entry into the nominated queue, returns 0 on success or
1782 * EBUSY if the queue is full.
1783 *
1784 * Note: it would be more efficient to defer notifying the controller in
1785 *	 the case where we may be inserting several entries in rapid succession,
1786 *	 but implementing this usefully may be difficult (it would involve a
1787 *	 separate queue/notify interface).
1788 */
1789static int
1790aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1791{
1792	u_int32_t pi, ci;
1793	int error;
1794	u_int32_t fib_size;
1795	u_int32_t fib_addr;
1796
1797	debug_called(3);
1798
1799	fib_size = cm->cm_fib->Header.Size;
1800	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1801
1802	/* get the producer/consumer indices */
1803	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1804	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1805
1806	/* wrap the queue? */
1807	if (pi >= aac_qinfo[queue].size)
1808		pi = 0;
1809
1810	/* check for queue full */
1811	if ((pi + 1) == ci) {
1812		error = EBUSY;
1813		goto out;
1814	}
1815
1816	/* populate queue entry */
1817	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1818	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1819
1820	/* update producer index */
1821	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1822
1823	/*
1824	 * To avoid a race with its completion interrupt, place this command on
1825	 * the busy queue prior to advertising it to the controller.
1826	 */
1827	aac_enqueue_busy(cm);
1828
1829	/* notify the adapter if we know how */
1830	if (aac_qinfo[queue].notify != 0)
1831		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1832
1833	error = 0;
1834
1835out:
1836	return(error);
1837}
1838
1839/*
1840 * Atomically remove one entry from the nominated queue, returns 0 on
1841 * success or ENOENT if the queue is empty.
1842 */
1843static int
1844aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1845		struct aac_fib **fib_addr)
1846{
1847	u_int32_t pi, ci;
1848	u_int32_t fib_index;
1849	int error;
1850	int notify;
1851
1852	debug_called(3);
1853
1854	/* get the producer/consumer indices */
1855	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1856	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1857
1858	/* check for queue empty */
1859	if (ci == pi) {
1860		error = ENOENT;
1861		goto out;
1862	}
1863
1864	notify = 0;
1865	if (ci == pi + 1)
1866		notify++;
1867
1868	/* wrap the queue? */
1869	if (ci >= aac_qinfo[queue].size)
1870		ci = 0;
1871
1872	/* fetch the entry */
1873	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1874
1875	switch (queue) {
1876	case AAC_HOST_NORM_CMD_QUEUE:
1877	case AAC_HOST_HIGH_CMD_QUEUE:
1878		/*
1879		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1880		 * on to hold an address.  For AIF's, the adapter assumes
1881		 * that it's giving us an address into the array of AIF fibs.
1882		 * Therefore, we have to convert it to an index.
1883		 */
1884		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1885			sizeof(struct aac_fib);
1886		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1887		break;
1888
1889	case AAC_HOST_NORM_RESP_QUEUE:
1890	case AAC_HOST_HIGH_RESP_QUEUE:
1891	{
1892		struct aac_command *cm;
1893
1894		/*
1895		 * As above, an index is used instead of an actual address.
1896		 * Gotta shift the index to account for the fast response
1897		 * bit.  No other correction is needed since this value was
1898		 * originally provided by the driver via the SenderFibAddress
1899		 * field.
1900		 */
1901		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1902		cm = sc->aac_commands + (fib_index >> 1);
1903		*fib_addr = cm->cm_fib;
1904
1905		/*
1906		 * Is this a fast response? If it is, update the fib fields in
1907		 * local memory since the whole fib isn't DMA'd back up.
1908		 */
1909		if (fib_index & 0x01) {
1910			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1911			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1912		}
1913		break;
1914	}
1915	default:
1916		panic("Invalid queue in aac_dequeue_fib()");
1917		break;
1918	}
1919
1920	/* update consumer index */
1921	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1922
1923	/* if we have made the queue un-full, notify the adapter */
1924	if (notify && (aac_qinfo[queue].notify != 0))
1925		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1926	error = 0;
1927
1928out:
1929	return(error);
1930}
1931
1932/*
1933 * Put our response to an Adapter Initialed Fib on the response queue
1934 */
1935static int
1936aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1937{
1938	u_int32_t pi, ci;
1939	int error;
1940	u_int32_t fib_size;
1941	u_int32_t fib_addr;
1942
1943	debug_called(1);
1944
1945	/* Tell the adapter where the FIB is */
1946	fib_size = fib->Header.Size;
1947	fib_addr = fib->Header.SenderFibAddress;
1948	fib->Header.ReceiverFibAddress = fib_addr;
1949
1950	/* get the producer/consumer indices */
1951	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1952	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1953
1954	/* wrap the queue? */
1955	if (pi >= aac_qinfo[queue].size)
1956		pi = 0;
1957
1958	/* check for queue full */
1959	if ((pi + 1) == ci) {
1960		error = EBUSY;
1961		goto out;
1962	}
1963
1964	/* populate queue entry */
1965	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1966	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1967
1968	/* update producer index */
1969	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1970
1971	/* notify the adapter if we know how */
1972	if (aac_qinfo[queue].notify != 0)
1973		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1974
1975	error = 0;
1976
1977out:
1978	return(error);
1979}
1980
1981/*
1982 * Check for commands that have been outstanding for a suspiciously long time,
1983 * and complain about them.
1984 */
1985static void
1986aac_timeout(struct aac_softc *sc)
1987{
1988	struct aac_command *cm;
1989	time_t deadline;
1990
1991	/*
1992	 * Traverse the busy command list, bitch about late commands once
1993	 * only.
1994	 */
1995	deadline = time_second - AAC_CMD_TIMEOUT;
1996	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1997		if ((cm->cm_timestamp  < deadline)
1998			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1999			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2000			device_printf(sc->aac_dev,
2001				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2002				      cm, (int)(time_second-cm->cm_timestamp));
2003			AAC_PRINT_FIB(sc, cm->cm_fib);
2004		}
2005	}
2006
2007	return;
2008}
2009
2010/*
2011 * Interface Function Vectors
2012 */
2013
2014/*
2015 * Read the current firmware status word.
2016 */
2017static int
2018aac_sa_get_fwstatus(struct aac_softc *sc)
2019{
2020	debug_called(3);
2021
2022	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2023}
2024
2025static int
2026aac_rx_get_fwstatus(struct aac_softc *sc)
2027{
2028	debug_called(3);
2029
2030	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2031}
2032
2033static int
2034aac_fa_get_fwstatus(struct aac_softc *sc)
2035{
2036	int val;
2037
2038	debug_called(3);
2039
2040	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2041	return (val);
2042}
2043
2044/*
2045 * Notify the controller of a change in a given queue
2046 */
2047
2048static void
2049aac_sa_qnotify(struct aac_softc *sc, int qbit)
2050{
2051	debug_called(3);
2052
2053	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2054}
2055
2056static void
2057aac_rx_qnotify(struct aac_softc *sc, int qbit)
2058{
2059	debug_called(3);
2060
2061	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2062}
2063
2064static void
2065aac_fa_qnotify(struct aac_softc *sc, int qbit)
2066{
2067	debug_called(3);
2068
2069	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2070	AAC_FA_HACK(sc);
2071}
2072
2073/*
2074 * Get the interrupt reason bits
2075 */
2076static int
2077aac_sa_get_istatus(struct aac_softc *sc)
2078{
2079	debug_called(3);
2080
2081	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2082}
2083
2084static int
2085aac_rx_get_istatus(struct aac_softc *sc)
2086{
2087	debug_called(3);
2088
2089	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2090}
2091
2092static int
2093aac_fa_get_istatus(struct aac_softc *sc)
2094{
2095	int val;
2096
2097	debug_called(3);
2098
2099	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2100	return (val);
2101}
2102
2103/*
2104 * Clear some interrupt reason bits
2105 */
2106static void
2107aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2108{
2109	debug_called(3);
2110
2111	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2112}
2113
2114static void
2115aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2116{
2117	debug_called(3);
2118
2119	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2120}
2121
2122static void
2123aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2124{
2125	debug_called(3);
2126
2127	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2128	AAC_FA_HACK(sc);
2129}
2130
2131/*
2132 * Populate the mailbox and set the command word
2133 */
2134static void
2135aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2136		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2137{
2138	debug_called(4);
2139
2140	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2141	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2142	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2143	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2144	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2145}
2146
2147static void
2148aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2149		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2150{
2151	debug_called(4);
2152
2153	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2154	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2155	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2156	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2157	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2158}
2159
2160static void
2161aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2162		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2163{
2164	debug_called(4);
2165
2166	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2167	AAC_FA_HACK(sc);
2168	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2169	AAC_FA_HACK(sc);
2170	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2171	AAC_FA_HACK(sc);
2172	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2173	AAC_FA_HACK(sc);
2174	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2175	AAC_FA_HACK(sc);
2176}
2177
2178/*
2179 * Fetch the immediate command status word
2180 */
2181static int
2182aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2183{
2184	debug_called(4);
2185
2186	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2187}
2188
2189static int
2190aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2191{
2192	debug_called(4);
2193
2194	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2195}
2196
2197static int
2198aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2199{
2200	int val;
2201
2202	debug_called(4);
2203
2204	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2205	return (val);
2206}
2207
2208/*
2209 * Set/clear interrupt masks
2210 */
2211static void
2212aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2213{
2214	debug(2, "%sable interrupts", enable ? "en" : "dis");
2215
2216	if (enable) {
2217		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2218	} else {
2219		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2220	}
2221}
2222
2223static void
2224aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2225{
2226	debug(2, "%sable interrupts", enable ? "en" : "dis");
2227
2228	if (enable) {
2229		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2230	} else {
2231		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2232	}
2233}
2234
2235static void
2236aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2237{
2238	debug(2, "%sable interrupts", enable ? "en" : "dis");
2239
2240	if (enable) {
2241		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2242		AAC_FA_HACK(sc);
2243	} else {
2244		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2245		AAC_FA_HACK(sc);
2246	}
2247}
2248
2249/*
2250 * Debugging and Diagnostics
2251 */
2252
2253/*
2254 * Print some information about the controller.
2255 */
2256static void
2257aac_describe_controller(struct aac_softc *sc)
2258{
2259	struct aac_fib *fib;
2260	struct aac_adapter_info	*info;
2261
2262	debug_called(2);
2263
2264	aac_alloc_sync_fib(sc, &fib, 0);
2265
2266	fib->data[0] = 0;
2267	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2268		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2269		aac_release_sync_fib(sc);
2270		return;
2271	}
2272	info = (struct aac_adapter_info *)&fib->data[0];
2273
2274	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2275		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2276		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2277		      aac_describe_code(aac_battery_platform,
2278					info->batteryPlatform));
2279
2280	/* save the kernel revision structure for later use */
2281	sc->aac_revision = info->KernelRevision;
2282	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2283		      info->KernelRevision.external.comp.major,
2284		      info->KernelRevision.external.comp.minor,
2285		      info->KernelRevision.external.comp.dash,
2286		      info->KernelRevision.buildNumber,
2287		      (u_int32_t)(info->SerialNumber & 0xffffff));
2288
2289	aac_release_sync_fib(sc);
2290
2291	if (1 || bootverbose) {
2292		device_printf(sc->aac_dev, "Supported Options=%b\n",
2293			      sc->supported_options,
2294			      "\20"
2295			      "\1SNAPSHOT"
2296			      "\2CLUSTERS"
2297			      "\3WCACHE"
2298			      "\4DATA64"
2299			      "\5HOSTTIME"
2300			      "\6RAID50"
2301			      "\7WINDOW4GB"
2302			      "\10SCSIUPGD"
2303			      "\11SOFTERR"
2304			      "\12NORECOND"
2305			      "\13SGMAP64"
2306			      "\14ALARM"
2307			      "\15NONDASD");
2308	}
2309}
2310
2311/*
2312 * Look up a text description of a numeric error code and return a pointer to
2313 * same.
2314 */
2315static char *
2316aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2317{
2318	int i;
2319
2320	for (i = 0; table[i].string != NULL; i++)
2321		if (table[i].code == code)
2322			return(table[i].string);
2323	return(table[i + 1].string);
2324}
2325
2326/*
2327 * Management Interface
2328 */
2329
2330static int
2331aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2332{
2333	struct aac_softc *sc;
2334
2335	debug_called(2);
2336
2337	sc = dev->si_drv1;
2338
2339	/* Check to make sure the device isn't already open */
2340	if (sc->aac_state & AAC_STATE_OPEN) {
2341		return EBUSY;
2342	}
2343	sc->aac_state |= AAC_STATE_OPEN;
2344
2345	return 0;
2346}
2347
2348static int
2349aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2350{
2351	struct aac_softc *sc;
2352
2353	debug_called(2);
2354
2355	sc = dev->si_drv1;
2356
2357	/* Mark this unit as no longer open  */
2358	sc->aac_state &= ~AAC_STATE_OPEN;
2359
2360	return 0;
2361}
2362
2363static int
2364aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2365{
2366	union aac_statrequest *as;
2367	struct aac_softc *sc;
2368	int error = 0;
2369	int i;
2370
2371	debug_called(2);
2372
2373	as = (union aac_statrequest *)arg;
2374	sc = dev->si_drv1;
2375
2376	switch (cmd) {
2377	case AACIO_STATS:
2378		switch (as->as_item) {
2379		case AACQ_FREE:
2380		case AACQ_BIO:
2381		case AACQ_READY:
2382		case AACQ_BUSY:
2383		case AACQ_COMPLETE:
2384			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2385			      sizeof(struct aac_qstat));
2386			break;
2387		default:
2388			error = ENOENT;
2389			break;
2390		}
2391	break;
2392
2393	case FSACTL_SENDFIB:
2394		arg = *(caddr_t*)arg;
2395	case FSACTL_LNX_SENDFIB:
2396		debug(1, "FSACTL_SENDFIB");
2397		error = aac_ioctl_sendfib(sc, arg);
2398		break;
2399	case FSACTL_AIF_THREAD:
2400	case FSACTL_LNX_AIF_THREAD:
2401		debug(1, "FSACTL_AIF_THREAD");
2402		error = EINVAL;
2403		break;
2404	case FSACTL_OPEN_GET_ADAPTER_FIB:
2405		arg = *(caddr_t*)arg;
2406	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2407		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2408		/*
2409		 * Pass the caller out an AdapterFibContext.
2410		 *
2411		 * Note that because we only support one opener, we
2412		 * basically ignore this.  Set the caller's context to a magic
2413		 * number just in case.
2414		 *
2415		 * The Linux code hands the driver a pointer into kernel space,
2416		 * and then trusts it when the caller hands it back.  Aiee!
2417		 * Here, we give it the proc pointer of the per-adapter aif
2418		 * thread. It's only used as a sanity check in other calls.
2419		 */
2420		i = (int)sc->aifthread;
2421		error = copyout(&i, arg, sizeof(i));
2422		break;
2423	case FSACTL_GET_NEXT_ADAPTER_FIB:
2424		arg = *(caddr_t*)arg;
2425	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2426		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2427		error = aac_getnext_aif(sc, arg);
2428		break;
2429	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2430	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2431		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2432		/* don't do anything here */
2433		break;
2434	case FSACTL_MINIPORT_REV_CHECK:
2435		arg = *(caddr_t*)arg;
2436	case FSACTL_LNX_MINIPORT_REV_CHECK:
2437		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2438		error = aac_rev_check(sc, arg);
2439		break;
2440	case FSACTL_QUERY_DISK:
2441		arg = *(caddr_t*)arg;
2442	case FSACTL_LNX_QUERY_DISK:
2443		debug(1, "FSACTL_QUERY_DISK");
2444		error = aac_query_disk(sc, arg);
2445			break;
2446	case FSACTL_DELETE_DISK:
2447	case FSACTL_LNX_DELETE_DISK:
2448		/*
2449		 * We don't trust the underland to tell us when to delete a
2450		 * container, rather we rely on an AIF coming from the
2451		 * controller
2452		 */
2453		error = 0;
2454		break;
2455	default:
2456		debug(1, "unsupported cmd 0x%lx\n", cmd);
2457		error = EINVAL;
2458		break;
2459	}
2460	return(error);
2461}
2462
2463static int
2464aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2465{
2466	struct aac_softc *sc;
2467	int revents;
2468
2469	sc = dev->si_drv1;
2470	revents = 0;
2471
2472	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2473	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2474		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2475			revents |= poll_events & (POLLIN | POLLRDNORM);
2476	}
2477	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2478
2479	if (revents == 0) {
2480		if (poll_events & (POLLIN | POLLRDNORM))
2481			selrecord(td, &sc->rcv_select);
2482	}
2483
2484	return (revents);
2485}
2486
2487/*
2488 * Send a FIB supplied from userspace
2489 */
2490static int
2491aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2492{
2493	struct aac_command *cm;
2494	int size, error;
2495
2496	debug_called(2);
2497
2498	cm = NULL;
2499
2500	/*
2501	 * Get a command
2502	 */
2503	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2504	if (aac_alloc_command(sc, &cm)) {
2505		error = EBUSY;
2506		goto out;
2507	}
2508
2509	/*
2510	 * Fetch the FIB header, then re-copy to get data as well.
2511	 */
2512	if ((error = copyin(ufib, cm->cm_fib,
2513			    sizeof(struct aac_fib_header))) != 0)
2514		goto out;
2515	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2516	if (size > sizeof(struct aac_fib)) {
2517		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2518			      size, sizeof(struct aac_fib));
2519		size = sizeof(struct aac_fib);
2520	}
2521	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2522		goto out;
2523	cm->cm_fib->Header.Size = size;
2524	cm->cm_timestamp = time_second;
2525
2526	/*
2527	 * Pass the FIB to the controller, wait for it to complete.
2528	 */
2529	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2530		device_printf(sc->aac_dev,
2531			      "aac_wait_command return %d\n", error);
2532		goto out;
2533	}
2534
2535	/*
2536	 * Copy the FIB and data back out to the caller.
2537	 */
2538	size = cm->cm_fib->Header.Size;
2539	if (size > sizeof(struct aac_fib)) {
2540		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2541			      size, sizeof(struct aac_fib));
2542		size = sizeof(struct aac_fib);
2543	}
2544	error = copyout(cm->cm_fib, ufib, size);
2545
2546out:
2547	if (cm != NULL) {
2548		aac_release_command(cm);
2549	}
2550
2551	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2552	return(error);
2553}
2554
2555/*
2556 * Handle an AIF sent to us by the controller; queue it for later reference.
2557 * If the queue fills up, then drop the older entries.
2558 */
2559static void
2560aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2561{
2562	struct aac_aif_command *aif;
2563	struct aac_container *co, *co_next;
2564	struct aac_mntinfo *mi;
2565	struct aac_mntinforesp *mir = NULL;
2566	u_int16_t rsize;
2567	int next, found;
2568	int added = 0, i = 0;
2569
2570	debug_called(2);
2571
2572	aif = (struct aac_aif_command*)&fib->data[0];
2573	aac_print_aif(sc, aif);
2574
2575	/* Is it an event that we should care about? */
2576	switch (aif->command) {
2577	case AifCmdEventNotify:
2578		switch (aif->data.EN.type) {
2579		case AifEnAddContainer:
2580		case AifEnDeleteContainer:
2581			/*
2582			 * A container was added or deleted, but the message
2583			 * doesn't tell us anything else!  Re-enumerate the
2584			 * containers and sort things out.
2585			 */
2586			aac_alloc_sync_fib(sc, &fib, 0);
2587			mi = (struct aac_mntinfo *)&fib->data[0];
2588			do {
2589				/*
2590				 * Ask the controller for its containers one at
2591				 * a time.
2592				 * XXX What if the controller's list changes
2593				 * midway through this enumaration?
2594				 * XXX This should be done async.
2595				 */
2596				bzero(mi, sizeof(struct aac_mntinfo));
2597				mi->Command = VM_NameServe;
2598				mi->MntType = FT_FILESYS;
2599				mi->MntCount = i;
2600				rsize = sizeof(mir);
2601				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2602						 sizeof(struct aac_mntinfo))) {
2603					debug(2, "Error probing container %d\n",
2604					      i);
2605					continue;
2606				}
2607				mir = (struct aac_mntinforesp *)&fib->data[0];
2608				/*
2609				 * Check the container against our list.
2610				 * co->co_found was already set to 0 in a
2611				 * previous run.
2612				 */
2613				if ((mir->Status == ST_OK) &&
2614				    (mir->MntTable[0].VolType != CT_NONE)) {
2615					found = 0;
2616					TAILQ_FOREACH(co,
2617						      &sc->aac_container_tqh,
2618						      co_link) {
2619						if (co->co_mntobj.ObjectId ==
2620						    mir->MntTable[0].ObjectId) {
2621							co->co_found = 1;
2622							found = 1;
2623							break;
2624						}
2625					}
2626					/*
2627					 * If the container matched, continue
2628					 * in the list.
2629					 */
2630					if (found) {
2631						i++;
2632						continue;
2633					}
2634
2635					/*
2636					 * This is a new container.  Do all the
2637					 * appropriate things to set it up.
2638					 */
2639					aac_add_container(sc, mir, 1);
2640					added = 1;
2641				}
2642				i++;
2643			} while ((i < mir->MntRespCount) &&
2644				 (i < AAC_MAX_CONTAINERS));
2645			aac_release_sync_fib(sc);
2646
2647			/*
2648			 * Go through our list of containers and see which ones
2649			 * were not marked 'found'.  Since the controller didn't
2650			 * list them they must have been deleted.  Do the
2651			 * appropriate steps to destroy the device.  Also reset
2652			 * the co->co_found field.
2653			 */
2654			co = TAILQ_FIRST(&sc->aac_container_tqh);
2655			while (co != NULL) {
2656				if (co->co_found == 0) {
2657					device_delete_child(sc->aac_dev,
2658							    co->co_disk);
2659					co_next = TAILQ_NEXT(co, co_link);
2660					AAC_LOCK_ACQUIRE(&sc->
2661							aac_container_lock);
2662					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2663						     co_link);
2664					AAC_LOCK_RELEASE(&sc->
2665							 aac_container_lock);
2666					FREE(co, M_AACBUF);
2667					co = co_next;
2668				} else {
2669					co->co_found = 0;
2670					co = TAILQ_NEXT(co, co_link);
2671				}
2672			}
2673
2674			/* Attach the newly created containers */
2675			if (added)
2676				bus_generic_attach(sc->aac_dev);
2677
2678			break;
2679
2680		default:
2681			break;
2682		}
2683
2684	default:
2685		break;
2686	}
2687
2688	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2689	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2690	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2691	if (next != sc->aac_aifq_tail) {
2692		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2693		sc->aac_aifq_head = next;
2694
2695		/* On the off chance that someone is sleeping for an aif... */
2696		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2697			wakeup(sc->aac_aifq);
2698		/* Wakeup any poll()ers */
2699		selwakeup(&sc->rcv_select);
2700	}
2701	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2702
2703	return;
2704}
2705
2706/*
2707 * Return the Revision of the driver to userspace and check to see if the
2708 * userspace app is possibly compatible.  This is extremely bogus since
2709 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2710 * returning what the card reported.
2711 */
2712static int
2713aac_rev_check(struct aac_softc *sc, caddr_t udata)
2714{
2715	struct aac_rev_check rev_check;
2716	struct aac_rev_check_resp rev_check_resp;
2717	int error = 0;
2718
2719	debug_called(2);
2720
2721	/*
2722	 * Copyin the revision struct from userspace
2723	 */
2724	if ((error = copyin(udata, (caddr_t)&rev_check,
2725			sizeof(struct aac_rev_check))) != 0) {
2726		return error;
2727	}
2728
2729	debug(2, "Userland revision= %d\n",
2730	      rev_check.callingRevision.buildNumber);
2731
2732	/*
2733	 * Doctor up the response struct.
2734	 */
2735	rev_check_resp.possiblyCompatible = 1;
2736	rev_check_resp.adapterSWRevision.external.ul =
2737	    sc->aac_revision.external.ul;
2738	rev_check_resp.adapterSWRevision.buildNumber =
2739	    sc->aac_revision.buildNumber;
2740
2741	return(copyout((caddr_t)&rev_check_resp, udata,
2742			sizeof(struct aac_rev_check_resp)));
2743}
2744
2745/*
2746 * Pass the caller the next AIF in their queue
2747 */
2748static int
2749aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2750{
2751	struct get_adapter_fib_ioctl agf;
2752	int error;
2753
2754	debug_called(2);
2755
2756	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2757
2758		/*
2759		 * Check the magic number that we gave the caller.
2760		 */
2761		if (agf.AdapterFibContext != (int)sc->aifthread) {
2762			error = EFAULT;
2763		} else {
2764			error = aac_return_aif(sc, agf.AifFib);
2765			if ((error == EAGAIN) && (agf.Wait)) {
2766				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2767				while (error == EAGAIN) {
2768					error = tsleep(sc->aac_aifq, PRIBIO |
2769						       PCATCH, "aacaif", 0);
2770					if (error == 0)
2771						error = aac_return_aif(sc,
2772						    agf.AifFib);
2773				}
2774				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2775			}
2776		}
2777	}
2778	return(error);
2779}
2780
2781/*
2782 * Hand the next AIF off the top of the queue out to userspace.
2783 */
2784static int
2785aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2786{
2787	int error;
2788
2789	debug_called(2);
2790
2791	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2792	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2793		error = EAGAIN;
2794	} else {
2795		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2796				sizeof(struct aac_aif_command));
2797		if (error)
2798			device_printf(sc->aac_dev,
2799			    "aac_return_aif: copyout returned %d\n", error);
2800		if (!error)
2801			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2802					    AAC_AIFQ_LENGTH;
2803	}
2804	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2805	return(error);
2806}
2807
2808/*
2809 * Give the userland some information about the container.  The AAC arch
2810 * expects the driver to be a SCSI passthrough type driver, so it expects
2811 * the containers to have b:t:l numbers.  Fake it.
2812 */
2813static int
2814aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2815{
2816	struct aac_query_disk query_disk;
2817	struct aac_container *co;
2818	struct aac_disk	*disk;
2819	int error, id;
2820
2821	debug_called(2);
2822
2823	disk = NULL;
2824
2825	error = copyin(uptr, (caddr_t)&query_disk,
2826		       sizeof(struct aac_query_disk));
2827	if (error)
2828		return (error);
2829
2830	id = query_disk.ContainerNumber;
2831	if (id == -1)
2832		return (EINVAL);
2833
2834	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2835	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2836		if (co->co_mntobj.ObjectId == id)
2837			break;
2838		}
2839
2840	if (co == NULL) {
2841			query_disk.Valid = 0;
2842			query_disk.Locked = 0;
2843			query_disk.Deleted = 1;		/* XXX is this right? */
2844	} else {
2845		disk = device_get_softc(co->co_disk);
2846		query_disk.Valid = 1;
2847		query_disk.Locked =
2848		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2849		query_disk.Deleted = 0;
2850		query_disk.Bus = device_get_unit(sc->aac_dev);
2851		query_disk.Target = disk->unit;
2852		query_disk.Lun = 0;
2853		query_disk.UnMapped = 0;
2854		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2855		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2856	}
2857	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2858
2859	error = copyout((caddr_t)&query_disk, uptr,
2860			sizeof(struct aac_query_disk));
2861
2862	return (error);
2863}
2864
2865static void
2866aac_get_bus_info(struct aac_softc *sc)
2867{
2868	struct aac_fib *fib;
2869	struct aac_ctcfg *c_cmd;
2870	struct aac_ctcfg_resp *c_resp;
2871	struct aac_vmioctl *vmi;
2872	struct aac_vmi_businf_resp *vmi_resp;
2873	struct aac_getbusinf businfo;
2874	struct aac_sim *caminf;
2875	device_t child;
2876	int i, found, error;
2877
2878	aac_alloc_sync_fib(sc, &fib, 0);
2879	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2880	bzero(c_cmd, sizeof(struct aac_ctcfg));
2881
2882	c_cmd->Command = VM_ContainerConfig;
2883	c_cmd->cmd = CT_GET_SCSI_METHOD;
2884	c_cmd->param = 0;
2885
2886	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2887	    sizeof(struct aac_ctcfg));
2888	if (error) {
2889		device_printf(sc->aac_dev, "Error %d sending "
2890		    "VM_ContainerConfig command\n", error);
2891		aac_release_sync_fib(sc);
2892		return;
2893	}
2894
2895	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2896	if (c_resp->Status != ST_OK) {
2897		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2898		    c_resp->Status);
2899		aac_release_sync_fib(sc);
2900		return;
2901	}
2902
2903	sc->scsi_method_id = c_resp->param;
2904
2905	vmi = (struct aac_vmioctl *)&fib->data[0];
2906	bzero(vmi, sizeof(struct aac_vmioctl));
2907
2908	vmi->Command = VM_Ioctl;
2909	vmi->ObjType = FT_DRIVE;
2910	vmi->MethId = sc->scsi_method_id;
2911	vmi->ObjId = 0;
2912	vmi->IoctlCmd = GetBusInfo;
2913
2914	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2915	    sizeof(struct aac_vmioctl));
2916	if (error) {
2917		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2918		    error);
2919		aac_release_sync_fib(sc);
2920		return;
2921	}
2922
2923	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2924	if (vmi_resp->Status != ST_OK) {
2925		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2926		    vmi_resp->Status);
2927		aac_release_sync_fib(sc);
2928		return;
2929	}
2930
2931	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2932	aac_release_sync_fib(sc);
2933
2934	found = 0;
2935	for (i = 0; i < businfo.BusCount; i++) {
2936		if (businfo.BusValid[i] != AAC_BUS_VALID)
2937			continue;
2938
2939		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2940		    M_AACBUF, M_NOWAIT | M_ZERO);
2941		if (caminf == NULL)
2942			continue;
2943
2944		child = device_add_child(sc->aac_dev, "aacp", -1);
2945		if (child == NULL) {
2946			device_printf(sc->aac_dev, "device_add_child failed\n");
2947			continue;
2948		}
2949
2950		caminf->TargetsPerBus = businfo.TargetsPerBus;
2951		caminf->BusNumber = i;
2952		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2953		caminf->aac_sc = sc;
2954		caminf->sim_dev = child;
2955
2956		device_set_ivars(child, caminf);
2957		device_set_desc(child, "SCSI Passthrough Bus");
2958		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2959
2960		found = 1;
2961	}
2962
2963	if (found)
2964		bus_generic_attach(sc->aac_dev);
2965
2966	return;
2967}
2968