aac.c revision 112856
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 112856 2003-03-30 21:47:16Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46
47#include <sys/bus.h>
48#include <sys/conf.h>
49#include <sys/disk.h>
50#include <sys/signalvar.h>
51#include <sys/time.h>
52#include <sys/eventhandler.h>
53
54#include <machine/bus_memio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57
58#include <dev/aac/aacreg.h>
59#include <dev/aac/aac_ioctl.h>
60#include <dev/aac/aacvar.h>
61#include <dev/aac/aac_tables.h>
62
63static void	aac_startup(void *arg);
64static void	aac_add_container(struct aac_softc *sc,
65				  struct aac_mntinforesp *mir, int f);
66static void	aac_get_bus_info(struct aac_softc *sc);
67
68/* Command Processing */
69static void	aac_timeout(struct aac_softc *sc);
70static int	aac_start(struct aac_command *cm);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm, int timeout);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79				       int nseg, int error);
80static int	aac_alloc_commands(struct aac_softc *sc);
81static void	aac_free_commands(struct aac_softc *sc);
82static void	aac_map_command(struct aac_command *cm);
83static void	aac_unmap_command(struct aac_command *cm);
84
85/* Hardware Interface */
86static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87			       int error);
88static int	aac_check_firmware(struct aac_softc *sc);
89static int	aac_init(struct aac_softc *sc);
90static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92				 u_int32_t arg3, u_int32_t *sp);
93static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94				struct aac_command *cm);
95static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96				u_int32_t *fib_size, struct aac_fib **fib_addr);
97static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98				     struct aac_fib *fib);
99
100/* Falcon/PPC interface */
101static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103static int	aac_fa_get_istatus(struct aac_softc *sc);
104static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106				   u_int32_t arg0, u_int32_t arg1,
107				   u_int32_t arg2, u_int32_t arg3);
108static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110
111struct aac_interface aac_fa_interface = {
112	aac_fa_get_fwstatus,
113	aac_fa_qnotify,
114	aac_fa_get_istatus,
115	aac_fa_clear_istatus,
116	aac_fa_set_mailbox,
117	aac_fa_get_mailbox,
118	aac_fa_set_interrupts
119};
120
121/* StrongARM interface */
122static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124static int	aac_sa_get_istatus(struct aac_softc *sc);
125static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127				   u_int32_t arg0, u_int32_t arg1,
128				   u_int32_t arg2, u_int32_t arg3);
129static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131
132struct aac_interface aac_sa_interface = {
133	aac_sa_get_fwstatus,
134	aac_sa_qnotify,
135	aac_sa_get_istatus,
136	aac_sa_clear_istatus,
137	aac_sa_set_mailbox,
138	aac_sa_get_mailbox,
139	aac_sa_set_interrupts
140};
141
142/* i960Rx interface */
143static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145static int	aac_rx_get_istatus(struct aac_softc *sc);
146static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148				   u_int32_t arg0, u_int32_t arg1,
149				   u_int32_t arg2, u_int32_t arg3);
150static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152
153struct aac_interface aac_rx_interface = {
154	aac_rx_get_fwstatus,
155	aac_rx_qnotify,
156	aac_rx_get_istatus,
157	aac_rx_clear_istatus,
158	aac_rx_set_mailbox,
159	aac_rx_get_mailbox,
160	aac_rx_set_interrupts
161};
162
163/* Debugging and Diagnostics */
164static void	aac_describe_controller(struct aac_softc *sc);
165static char	*aac_describe_code(struct aac_code_lookup *table,
166				   u_int32_t code);
167
168/* Management Interface */
169static d_open_t		aac_open;
170static d_close_t	aac_close;
171static d_ioctl_t	aac_ioctl;
172static d_poll_t		aac_poll;
173static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174static void		aac_handle_aif(struct aac_softc *sc,
175					   struct aac_fib *fib);
176static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180
181#define AAC_CDEV_MAJOR	150
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189	.d_maj =	AAC_CDEV_MAJOR,
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/* Init the sync fib lock */
237	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
238
239	/*
240	 * Initialise the adapter.
241	 */
242	if ((error = aac_init(sc)) != 0)
243		return(error);
244
245	/*
246	 * Print a little information about the controller.
247	 */
248	aac_describe_controller(sc);
249
250	/*
251	 * Initialize locks
252	 */
253	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
254	TAILQ_INIT(&sc->aac_container_tqh);
255	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
256	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib, 0);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			debug(2, "error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		aac_add_container(sc, mir, 0);
336		i++;
337	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
338
339	aac_release_sync_fib(sc);
340
341	/* poke the bus to actually attach the child devices */
342	if (bus_generic_attach(sc->aac_dev))
343		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
344
345	/* mark the controller up */
346	sc->aac_state &= ~AAC_STATE_SUSPEND;
347
348	/* enable interrupts now */
349	AAC_UNMASK_INTERRUPTS(sc);
350}
351
352/*
353 * Create a device to respresent a new container
354 */
355static void
356aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
357{
358	struct aac_container *co;
359	device_t child;
360
361	/*
362	 * Check container volume type for validity.  Note that many of
363	 * the possible types may never show up.
364	 */
365	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
366		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
367		       M_NOWAIT | M_ZERO);
368		if (co == NULL)
369			panic("Out of memory?!\n");
370		debug(1, "id %x  name '%.16s'  size %u  type %d",
371		      mir->MntTable[0].ObjectId,
372		      mir->MntTable[0].FileSystemName,
373		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
374
375		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
376			device_printf(sc->aac_dev, "device_add_child failed\n");
377		else
378			device_set_ivars(child, co);
379		device_set_desc(child, aac_describe_code(aac_container_types,
380				mir->MntTable[0].VolType));
381		co->co_disk = child;
382		co->co_found = f;
383		bcopy(&mir->MntTable[0], &co->co_mntobj,
384		      sizeof(struct aac_mntobj));
385		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
386		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
387		AAC_LOCK_RELEASE(&sc->aac_container_lock);
388	}
389}
390
391/*
392 * Free all of the resources associated with (sc)
393 *
394 * Should not be called if the controller is active.
395 */
396void
397aac_free(struct aac_softc *sc)
398{
399
400	debug_called(1);
401
402	/* remove the control device */
403	if (sc->aac_dev_t != NULL)
404		destroy_dev(sc->aac_dev_t);
405
406	/* throw away any FIB buffers, discard the FIB DMA tag */
407	aac_free_commands(sc);
408	if (sc->aac_fib_dmat)
409		bus_dma_tag_destroy(sc->aac_fib_dmat);
410
411	free(sc->aac_commands, M_AACBUF);
412
413	/* destroy the common area */
414	if (sc->aac_common) {
415		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
416		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
417				sc->aac_common_dmamap);
418	}
419	if (sc->aac_common_dmat)
420		bus_dma_tag_destroy(sc->aac_common_dmat);
421
422	/* disconnect the interrupt handler */
423	if (sc->aac_intr)
424		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
425	if (sc->aac_irq != NULL)
426		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
427				     sc->aac_irq);
428
429	/* destroy data-transfer DMA tag */
430	if (sc->aac_buffer_dmat)
431		bus_dma_tag_destroy(sc->aac_buffer_dmat);
432
433	/* destroy the parent DMA tag */
434	if (sc->aac_parent_dmat)
435		bus_dma_tag_destroy(sc->aac_parent_dmat);
436
437	/* release the register window mapping */
438	if (sc->aac_regs_resource != NULL)
439		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
440				     sc->aac_regs_rid, sc->aac_regs_resource);
441}
442
443/*
444 * Disconnect from the controller completely, in preparation for unload.
445 */
446int
447aac_detach(device_t dev)
448{
449	struct aac_softc *sc;
450	struct aac_container *co;
451	struct aac_sim	*sim;
452	int error;
453
454	debug_called(1);
455
456	sc = device_get_softc(dev);
457
458	if (sc->aac_state & AAC_STATE_OPEN)
459		return(EBUSY);
460
461	/* Remove the child containers */
462	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
463		error = device_delete_child(dev, co->co_disk);
464		if (error)
465			return (error);
466		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
467		free(co, M_AACBUF);
468	}
469
470	/* Remove the CAM SIMs */
471	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
472		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
473		error = device_delete_child(dev, sim->sim_dev);
474		if (error)
475			return (error);
476		free(sim, M_AACBUF);
477	}
478
479	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
480		sc->aifflags |= AAC_AIFFLAGS_EXIT;
481		wakeup(sc->aifthread);
482		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
483	}
484
485	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
486		panic("Cannot shutdown AIF thread\n");
487
488	if ((error = aac_shutdown(dev)))
489		return(error);
490
491	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
492
493	aac_free(sc);
494
495	return(0);
496}
497
498/*
499 * Bring the controller down to a dormant state and detach all child devices.
500 *
501 * This function is called before detach or system shutdown.
502 *
503 * Note that we can assume that the bioq on the controller is empty, as we won't
504 * allow shutdown if any device is open.
505 */
506int
507aac_shutdown(device_t dev)
508{
509	struct aac_softc *sc;
510	struct aac_fib *fib;
511	struct aac_close_command *cc;
512
513	debug_called(1);
514
515	sc = device_get_softc(dev);
516
517	sc->aac_state |= AAC_STATE_SUSPEND;
518
519	/*
520	 * Send a Container shutdown followed by a HostShutdown FIB to the
521	 * controller to convince it that we don't want to talk to it anymore.
522	 * We've been closed and all I/O completed already
523	 */
524	device_printf(sc->aac_dev, "shutting down controller...");
525
526	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
527	cc = (struct aac_close_command *)&fib->data[0];
528
529	bzero(cc, sizeof(struct aac_close_command));
530	cc->Command = VM_CloseAll;
531	cc->ContainerId = 0xffffffff;
532	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
533	    sizeof(struct aac_close_command)))
534		printf("FAILED.\n");
535	else
536		printf("done\n");
537#if 0
538	else {
539		fib->data[0] = 0;
540		/*
541		 * XXX Issuing this command to the controller makes it shut down
542		 * but also keeps it from coming back up without a reset of the
543		 * PCI bus.  This is not desirable if you are just unloading the
544		 * driver module with the intent to reload it later.
545		 */
546		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
547		    fib, 1)) {
548			printf("FAILED.\n");
549		} else {
550			printf("done.\n");
551		}
552	}
553#endif
554
555	AAC_MASK_INTERRUPTS(sc);
556
557	return(0);
558}
559
560/*
561 * Bring the controller to a quiescent state, ready for system suspend.
562 */
563int
564aac_suspend(device_t dev)
565{
566	struct aac_softc *sc;
567
568	debug_called(1);
569
570	sc = device_get_softc(dev);
571
572	sc->aac_state |= AAC_STATE_SUSPEND;
573
574	AAC_MASK_INTERRUPTS(sc);
575	return(0);
576}
577
578/*
579 * Bring the controller back to a state ready for operation.
580 */
581int
582aac_resume(device_t dev)
583{
584	struct aac_softc *sc;
585
586	debug_called(1);
587
588	sc = device_get_softc(dev);
589
590	sc->aac_state &= ~AAC_STATE_SUSPEND;
591	AAC_UNMASK_INTERRUPTS(sc);
592	return(0);
593}
594
595/*
596 * Take an interrupt.
597 */
598void
599aac_intr(void *arg)
600{
601	struct aac_softc *sc;
602	u_int32_t *resp_queue;
603	u_int16_t reason;
604
605	debug_called(2);
606
607	sc = (struct aac_softc *)arg;
608
609	/*
610	 * Optimize the common case of adapter response interrupts.
611	 * We must read from the card prior to processing the responses
612	 * to ensure the clear is flushed prior to accessing the queues.
613	 * Reading the queues from local memory might save us a PCI read.
614	 */
615	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
616	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
617		reason = AAC_DB_RESPONSE_READY;
618	else
619		reason = AAC_GET_ISTATUS(sc);
620	AAC_CLEAR_ISTATUS(sc, reason);
621	(void)AAC_GET_ISTATUS(sc);
622
623	/* It's not ok to return here because of races with the previous step */
624	if (reason & AAC_DB_RESPONSE_READY)
625		/* handle completion processing */
626		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
627
628	/* controller wants to talk to the log */
629	if (reason & AAC_DB_PRINTF) {
630		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
631			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
632		} else
633			aac_print_printf(sc);
634	}
635
636	/* controller has a message for us? */
637	if (reason & AAC_DB_COMMAND_READY) {
638		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
639			sc->aifflags |= AAC_AIFFLAGS_AIF;
640		} else {
641			/*
642			 * XXX If the kthread is dead and we're at this point,
643			 * there are bigger problems than just figuring out
644			 * what to do with an AIF.
645			 */
646		}
647
648	}
649
650	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
651		/* XXX Should this be done with cv_signal? */
652		wakeup(sc->aifthread);
653}
654
655/*
656 * Command Processing
657 */
658
659/*
660 * Start as much queued I/O as possible on the controller
661 */
662void
663aac_startio(struct aac_softc *sc)
664{
665	struct aac_command *cm;
666
667	debug_called(2);
668
669	for (;;) {
670		/*
671		 * Try to get a command that's been put off for lack of
672		 * resources
673		 */
674		cm = aac_dequeue_ready(sc);
675
676		/*
677		 * Try to build a command off the bio queue (ignore error
678		 * return)
679		 */
680		if (cm == NULL)
681			aac_bio_command(sc, &cm);
682
683		/* nothing to do? */
684		if (cm == NULL)
685			break;
686
687		/* try to give the command to the controller */
688		if (aac_start(cm) == EBUSY) {
689			/* put it on the ready queue for later */
690			aac_requeue_ready(cm);
691			break;
692		}
693	}
694}
695
696/*
697 * Deliver a command to the controller; allocate controller resources at the
698 * last moment when possible.
699 */
700static int
701aac_start(struct aac_command *cm)
702{
703	struct aac_softc *sc;
704	int error;
705
706	debug_called(2);
707
708	sc = cm->cm_sc;
709
710	/* get the command mapped */
711	aac_map_command(cm);
712
713	/* fix up the address values in the FIB */
714	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
715	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
716
717	/* save a pointer to the command for speedy reverse-lookup */
718	cm->cm_fib->Header.SenderData = cm->cm_index;
719	/* put the FIB on the outbound queue */
720	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
721	return(error);
722}
723
724/*
725 * Handle notification of one or more FIBs coming from the controller.
726 */
727static void
728aac_command_thread(struct aac_softc *sc)
729{
730	struct aac_fib *fib;
731	u_int32_t fib_size;
732	int size;
733
734	debug_called(2);
735
736	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
737
738	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
739		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
740			tsleep(sc->aifthread, PRIBIO, "aifthd",
741			       AAC_PERIODIC_INTERVAL * hz);
742
743		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
744			aac_timeout(sc);
745
746		/* Check the hardware printf message buffer */
747		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
748			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
749			aac_print_printf(sc);
750		}
751
752		/* See if any FIBs need to be allocated */
753		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
754			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
755			aac_alloc_commands(sc);
756			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
757			AAC_LOCK_RELEASE(&sc->aac_io_lock);
758		}
759
760		/* While we're here, check to see if any commands are stuck */
761		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
762			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
763					    &fib_size, &fib)) {
764				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
765				break;	/* nothing to do */
766			}
767
768			AAC_PRINT_FIB(sc, fib);
769
770			switch (fib->Header.Command) {
771			case AifRequest:
772				aac_handle_aif(sc, fib);
773				break;
774			default:
775				device_printf(sc->aac_dev, "unknown command "
776					      "from controller\n");
777				break;
778			}
779
780			if ((fib->Header.XferState == 0) ||
781			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
782				break;
783
784			/* Return the AIF to the controller. */
785			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
786				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
787				*(AAC_FSAStatus*)fib->data = ST_OK;
788
789				/* XXX Compute the Size field? */
790				size = fib->Header.Size;
791				if (size > sizeof(struct aac_fib)) {
792					size = sizeof(struct aac_fib);
793					fib->Header.Size = size;
794				}
795				/*
796				 * Since we did not generate this command, it
797				 * cannot go through the normal
798				 * enqueue->startio chain.
799				 */
800				aac_enqueue_response(sc,
801						     AAC_ADAP_NORM_RESP_QUEUE,
802						     fib);
803			}
804		}
805	}
806	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
807	wakeup(sc->aac_dev);
808
809	mtx_lock(&Giant);
810	kthread_exit(0);
811}
812
813/*
814 * Process completed commands.
815 */
816static void
817aac_complete(void *context, int pending)
818{
819	struct aac_softc *sc;
820	struct aac_command *cm;
821	struct aac_fib *fib;
822	u_int32_t fib_size;
823
824	debug_called(2);
825
826	sc = (struct aac_softc *)context;
827
828	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
829
830	/* pull completed commands off the queue */
831	for (;;) {
832		/* look for completed FIBs on our queue */
833		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
834				    &fib))
835			break;	/* nothing to do */
836
837		/* get the command, unmap and queue for later processing */
838		cm = sc->aac_commands + fib->Header.SenderData;
839		if (cm == NULL) {
840			AAC_PRINT_FIB(sc, fib);
841			break;
842		}
843
844		aac_remove_busy(cm);
845		aac_unmap_command(cm);		/* XXX defer? */
846		cm->cm_flags |= AAC_CMD_COMPLETED;
847
848		/* is there a completion handler? */
849		if (cm->cm_complete != NULL) {
850			cm->cm_complete(cm);
851		} else {
852			/* assume that someone is sleeping on this command */
853			wakeup(cm);
854		}
855	}
856
857	/* see if we can start some more I/O */
858	aac_startio(sc);
859
860	AAC_LOCK_RELEASE(&sc->aac_io_lock);
861}
862
863/*
864 * Handle a bio submitted from a disk device.
865 */
866void
867aac_submit_bio(struct bio *bp)
868{
869	struct aac_disk *ad;
870	struct aac_softc *sc;
871
872	debug_called(2);
873
874	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
875	sc = ad->ad_controller;
876
877	/* queue the BIO and try to get some work done */
878	aac_enqueue_bio(sc, bp);
879	aac_startio(sc);
880}
881
882/*
883 * Get a bio and build a command to go with it.
884 */
885static int
886aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
887{
888	struct aac_command *cm;
889	struct aac_fib *fib;
890	struct aac_disk *ad;
891	struct bio *bp;
892
893	debug_called(2);
894
895	/* get the resources we will need */
896	cm = NULL;
897	if ((bp = aac_dequeue_bio(sc)) == NULL)
898		goto fail;
899	if (aac_alloc_command(sc, &cm))	/* get a command */
900		goto fail;
901
902	/* fill out the command */
903	cm->cm_data = (void *)bp->bio_data;
904	cm->cm_datalen = bp->bio_bcount;
905	cm->cm_complete = aac_bio_complete;
906	cm->cm_private = bp;
907	cm->cm_timestamp = time_second;
908	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
909
910	/* build the FIB */
911	fib = cm->cm_fib;
912	fib->Header.Size = sizeof(struct aac_fib_header);
913	fib->Header.XferState =
914		AAC_FIBSTATE_HOSTOWNED   |
915		AAC_FIBSTATE_INITIALISED |
916		AAC_FIBSTATE_EMPTY	 |
917		AAC_FIBSTATE_FROMHOST	 |
918		AAC_FIBSTATE_REXPECTED   |
919		AAC_FIBSTATE_NORM	 |
920		AAC_FIBSTATE_ASYNC	 |
921		AAC_FIBSTATE_FAST_RESPONSE;
922
923	/* build the read/write request */
924	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
925
926	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
927		fib->Header.Command = ContainerCommand;
928		if (bp->bio_cmd == BIO_READ) {
929			struct aac_blockread *br;
930			br = (struct aac_blockread *)&fib->data[0];
931			br->Command = VM_CtBlockRead;
932			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
933			br->BlockNumber = bp->bio_pblkno;
934			br->ByteCount = bp->bio_bcount;
935			fib->Header.Size += sizeof(struct aac_blockread);
936			cm->cm_sgtable = &br->SgMap;
937			cm->cm_flags |= AAC_CMD_DATAIN;
938		} else {
939			struct aac_blockwrite *bw;
940			bw = (struct aac_blockwrite *)&fib->data[0];
941			bw->Command = VM_CtBlockWrite;
942			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
943			bw->BlockNumber = bp->bio_pblkno;
944			bw->ByteCount = bp->bio_bcount;
945			bw->Stable = CUNSTABLE;
946			fib->Header.Size += sizeof(struct aac_blockwrite);
947			cm->cm_flags |= AAC_CMD_DATAOUT;
948			cm->cm_sgtable = &bw->SgMap;
949		}
950	} else {
951		fib->Header.Command = ContainerCommand64;
952		if (bp->bio_cmd == BIO_READ) {
953			struct aac_blockread64 *br;
954			br = (struct aac_blockread64 *)&fib->data[0];
955			br->Command = VM_CtHostRead64;
956			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
957			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
958			br->BlockNumber = bp->bio_pblkno;
959			br->Pad = 0;
960			br->Flags = 0;
961			fib->Header.Size += sizeof(struct aac_blockread64);
962			cm->cm_flags |= AAC_CMD_DATAOUT;
963			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
964		} else {
965			struct aac_blockwrite64 *bw;
966			bw = (struct aac_blockwrite64 *)&fib->data[0];
967			bw->Command = VM_CtHostWrite64;
968			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
969			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
970			bw->BlockNumber = bp->bio_pblkno;
971			bw->Pad = 0;
972			bw->Flags = 0;
973			fib->Header.Size += sizeof(struct aac_blockwrite64);
974			cm->cm_flags |= AAC_CMD_DATAIN;
975			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
976		}
977	}
978
979	*cmp = cm;
980	return(0);
981
982fail:
983	if (bp != NULL)
984		aac_enqueue_bio(sc, bp);
985	if (cm != NULL)
986		aac_release_command(cm);
987	return(ENOMEM);
988}
989
990/*
991 * Handle a bio-instigated command that has been completed.
992 */
993static void
994aac_bio_complete(struct aac_command *cm)
995{
996	struct aac_blockread_response *brr;
997	struct aac_blockwrite_response *bwr;
998	struct bio *bp;
999	AAC_FSAStatus status;
1000
1001	/* fetch relevant status and then release the command */
1002	bp = (struct bio *)cm->cm_private;
1003	if (bp->bio_cmd == BIO_READ) {
1004		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1005		status = brr->Status;
1006	} else {
1007		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1008		status = bwr->Status;
1009	}
1010	aac_release_command(cm);
1011
1012	/* fix up the bio based on status */
1013	if (status == ST_OK) {
1014		bp->bio_resid = 0;
1015	} else {
1016		bp->bio_error = EIO;
1017		bp->bio_flags |= BIO_ERROR;
1018		/* pass an error string out to the disk layer */
1019		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1020						    status);
1021	}
1022	aac_biodone(bp);
1023}
1024
1025/*
1026 * Submit a command to the controller, return when it completes.
1027 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1028 *     be stuck here forever.  At the same time, signals are not caught
1029 *     because there is a risk that a signal could wakeup the tsleep before
1030 *     the card has a chance to complete the command.  The passed in timeout
1031 *     is ignored for the same reason.  Since there is no way to cancel a
1032 *     command in progress, we should probably create a 'dead' queue where
1033 *     commands go that have been interrupted/timed-out/etc, that keeps them
1034 *     out of the free pool.  That way, if the card is just slow, it won't
1035 *     spam the memory of a command that has been recycled.
1036 */
1037static int
1038aac_wait_command(struct aac_command *cm, int timeout)
1039{
1040	struct aac_softc *sc;
1041	int error = 0;
1042
1043	debug_called(2);
1044
1045	sc = cm->cm_sc;
1046
1047	/* Put the command on the ready queue and get things going */
1048	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1049	aac_enqueue_ready(cm);
1050	aac_startio(sc);
1051	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1052		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1053	}
1054	return(error);
1055}
1056
1057/*
1058 *Command Buffer Management
1059 */
1060
1061/*
1062 * Allocate a command.
1063 */
1064int
1065aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1066{
1067	struct aac_command *cm;
1068
1069	debug_called(3);
1070
1071	if ((cm = aac_dequeue_free(sc)) == NULL) {
1072		if (sc->total_fibs < sc->aac_max_fibs) {
1073			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1074			wakeup(sc->aifthread);
1075		}
1076		return (EBUSY);
1077	}
1078
1079	*cmp = cm;
1080	return(0);
1081}
1082
1083/*
1084 * Release a command back to the freelist.
1085 */
1086void
1087aac_release_command(struct aac_command *cm)
1088{
1089	debug_called(3);
1090
1091	/* (re)initialise the command/FIB */
1092	cm->cm_sgtable = NULL;
1093	cm->cm_flags = 0;
1094	cm->cm_complete = NULL;
1095	cm->cm_private = NULL;
1096	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1097	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1098	cm->cm_fib->Header.Flags = 0;
1099	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1100
1101	/*
1102	 * These are duplicated in aac_start to cover the case where an
1103	 * intermediate stage may have destroyed them.  They're left
1104	 * initialised here for debugging purposes only.
1105	 */
1106	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1107	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1108	cm->cm_fib->Header.SenderData = 0;
1109
1110	aac_enqueue_free(cm);
1111}
1112
1113/*
1114 * Map helper for command/FIB allocation.
1115 */
1116static void
1117aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1118{
1119	uint32_t	*fibphys;
1120
1121	fibphys = (uint32_t *)arg;
1122
1123	debug_called(3);
1124
1125	*fibphys = segs[0].ds_addr;
1126}
1127
1128/*
1129 * Allocate and initialise commands/FIBs for this adapter.
1130 */
1131static int
1132aac_alloc_commands(struct aac_softc *sc)
1133{
1134	struct aac_command *cm;
1135	struct aac_fibmap *fm;
1136	uint32_t fibphys;
1137	int i, error;
1138
1139	debug_called(2);
1140
1141	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1142		return (ENOMEM);
1143
1144	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1145	if (fm == NULL)
1146		return (ENOMEM);
1147
1148	/* allocate the FIBs in DMAable memory and load them */
1149	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1150			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1151		device_printf(sc->aac_dev,
1152			      "Not enough contiguous memory available.\n");
1153		free(fm, M_AACBUF);
1154		return (ENOMEM);
1155	}
1156
1157	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1158			AAC_FIB_COUNT * sizeof(struct aac_fib),
1159			aac_map_command_helper, &fibphys, 0);
1160
1161	/* initialise constant fields in the command structure */
1162	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1163	for (i = 0; i < AAC_FIB_COUNT; i++) {
1164		cm = sc->aac_commands + sc->total_fibs;
1165		fm->aac_commands = cm;
1166		cm->cm_sc = sc;
1167		cm->cm_fib = fm->aac_fibs + i;
1168		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1169		cm->cm_index = sc->total_fibs;
1170
1171		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1172					       &cm->cm_datamap)) == 0)
1173			aac_release_command(cm);
1174		else
1175			break;
1176		sc->total_fibs++;
1177	}
1178
1179	if (i > 0) {
1180		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1181		debug(1, "total_fibs= %d\n", sc->total_fibs);
1182		return (0);
1183	}
1184
1185	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1186	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1187	free(fm, M_AACBUF);
1188	return (ENOMEM);
1189}
1190
1191/*
1192 * Free FIBs owned by this adapter.
1193 */
1194static void
1195aac_free_commands(struct aac_softc *sc)
1196{
1197	struct aac_fibmap *fm;
1198	struct aac_command *cm;
1199	int i;
1200
1201	debug_called(1);
1202
1203	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1204
1205		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1206		/*
1207		 * We check against total_fibs to handle partially
1208		 * allocated blocks.
1209		 */
1210		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1211			cm = fm->aac_commands + i;
1212			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1213		}
1214		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1215		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1216		free(fm, M_AACBUF);
1217	}
1218}
1219
1220/*
1221 * Command-mapping helper function - populate this command's s/g table.
1222 */
1223static void
1224aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1225{
1226	struct aac_command *cm;
1227	struct aac_fib *fib;
1228	int i;
1229
1230	debug_called(3);
1231
1232	cm = (struct aac_command *)arg;
1233	fib = cm->cm_fib;
1234
1235	/* copy into the FIB */
1236	if (cm->cm_sgtable != NULL) {
1237		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1238			struct aac_sg_table *sg;
1239			sg = cm->cm_sgtable;
1240			sg->SgCount = nseg;
1241			for (i = 0; i < nseg; i++) {
1242				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1243				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1244			}
1245			/* update the FIB size for the s/g count */
1246			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1247		} else {
1248			struct aac_sg_table64 *sg;
1249			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1250			sg->SgCount = nseg;
1251			for (i = 0; i < nseg; i++) {
1252				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1253				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1254			}
1255			/* update the FIB size for the s/g count */
1256			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1257		}
1258	}
1259}
1260
1261/*
1262 * Map a command into controller-visible space.
1263 */
1264static void
1265aac_map_command(struct aac_command *cm)
1266{
1267	struct aac_softc *sc;
1268
1269	debug_called(2);
1270
1271	sc = cm->cm_sc;
1272
1273	/* don't map more than once */
1274	if (cm->cm_flags & AAC_CMD_MAPPED)
1275		return;
1276
1277	if (cm->cm_datalen != 0) {
1278		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1279				cm->cm_data, cm->cm_datalen,
1280				aac_map_command_sg, cm, 0);
1281
1282		if (cm->cm_flags & AAC_CMD_DATAIN)
1283			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1284					BUS_DMASYNC_PREREAD);
1285		if (cm->cm_flags & AAC_CMD_DATAOUT)
1286			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1287					BUS_DMASYNC_PREWRITE);
1288	}
1289	cm->cm_flags |= AAC_CMD_MAPPED;
1290}
1291
1292/*
1293 * Unmap a command from controller-visible space.
1294 */
1295static void
1296aac_unmap_command(struct aac_command *cm)
1297{
1298	struct aac_softc *sc;
1299
1300	debug_called(2);
1301
1302	sc = cm->cm_sc;
1303
1304	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1305		return;
1306
1307	if (cm->cm_datalen != 0) {
1308		if (cm->cm_flags & AAC_CMD_DATAIN)
1309			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1310					BUS_DMASYNC_POSTREAD);
1311		if (cm->cm_flags & AAC_CMD_DATAOUT)
1312			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1313					BUS_DMASYNC_POSTWRITE);
1314
1315		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1316	}
1317	cm->cm_flags &= ~AAC_CMD_MAPPED;
1318}
1319
1320/*
1321 * Hardware Interface
1322 */
1323
1324/*
1325 * Initialise the adapter.
1326 */
1327static void
1328aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1329{
1330	struct aac_softc *sc;
1331
1332	debug_called(1);
1333
1334	sc = (struct aac_softc *)arg;
1335
1336	sc->aac_common_busaddr = segs[0].ds_addr;
1337}
1338
1339static int
1340aac_check_firmware(struct aac_softc *sc)
1341{
1342	u_int32_t major, minor, options;
1343
1344	debug_called(1);
1345
1346	/*
1347	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1348	 * firmware version 1.x are not compatible with this driver.
1349	 */
1350	if (sc->flags & AAC_FLAGS_PERC2QC) {
1351		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1352				     NULL)) {
1353			device_printf(sc->aac_dev,
1354				      "Error reading firmware version\n");
1355			return (EIO);
1356		}
1357
1358		/* These numbers are stored as ASCII! */
1359		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1360		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1361		if (major == 1) {
1362			device_printf(sc->aac_dev,
1363			    "Firmware version %d.%d is not supported.\n",
1364			    major, minor);
1365			return (EINVAL);
1366		}
1367	}
1368
1369	/*
1370	 * Retrieve the capabilities/supported options word so we know what
1371	 * work-arounds to enable.
1372	 */
1373	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1374		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1375		return (EIO);
1376	}
1377	options = AAC_GET_MAILBOX(sc, 1);
1378	sc->supported_options = options;
1379
1380	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1381	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1382		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1383	if (options & AAC_SUPPORTED_NONDASD)
1384		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1385	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1386		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1387		sc->flags |= AAC_FLAGS_SG_64BIT;
1388	}
1389
1390	/* Check for broken hardware that does a lower number of commands */
1391	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1392		sc->aac_max_fibs = AAC_MAX_FIBS;
1393	else
1394		sc->aac_max_fibs = 256;
1395
1396	return (0);
1397}
1398
1399static int
1400aac_init(struct aac_softc *sc)
1401{
1402	struct aac_adapter_init	*ip;
1403	time_t then;
1404	u_int32_t code;
1405	u_int8_t *qaddr;
1406	int error;
1407
1408	debug_called(1);
1409
1410	/*
1411	 * First wait for the adapter to come ready.
1412	 */
1413	then = time_second;
1414	do {
1415		code = AAC_GET_FWSTATUS(sc);
1416		if (code & AAC_SELF_TEST_FAILED) {
1417			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1418			return(ENXIO);
1419		}
1420		if (code & AAC_KERNEL_PANIC) {
1421			device_printf(sc->aac_dev,
1422				      "FATAL: controller kernel panic\n");
1423			return(ENXIO);
1424		}
1425		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1426			device_printf(sc->aac_dev,
1427				      "FATAL: controller not coming ready, "
1428					   "status %x\n", code);
1429			return(ENXIO);
1430		}
1431	} while (!(code & AAC_UP_AND_RUNNING));
1432
1433	error = ENOMEM;
1434	/*
1435	 * Create DMA tag for mapping buffers into controller-addressable space.
1436	 */
1437	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1438			       1, 0, 			/* algnmnt, boundary */
1439			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1440			       BUS_SPACE_MAXADDR :
1441			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1442			       BUS_SPACE_MAXADDR, 	/* highaddr */
1443			       NULL, NULL, 		/* filter, filterarg */
1444			       MAXBSIZE,		/* maxsize */
1445			       AAC_MAXSGENTRIES,	/* nsegments */
1446			       MAXBSIZE,		/* maxsegsize */
1447			       BUS_DMA_ALLOCNOW,	/* flags */
1448			       &sc->aac_buffer_dmat)) {
1449		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1450		goto out;
1451	}
1452
1453	/*
1454	 * Create DMA tag for mapping FIBs into controller-addressable space..
1455	 */
1456	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1457			       1, 0, 			/* algnmnt, boundary */
1458			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1459			       BUS_SPACE_MAXADDR_32BIT :
1460			       0x7fffffff,		/* lowaddr */
1461			       BUS_SPACE_MAXADDR, 	/* highaddr */
1462			       NULL, NULL, 		/* filter, filterarg */
1463			       AAC_FIB_COUNT *
1464			       sizeof(struct aac_fib),  /* maxsize */
1465			       1,			/* nsegments */
1466			       AAC_FIB_COUNT *
1467			       sizeof(struct aac_fib),	/* maxsegsize */
1468			       BUS_DMA_ALLOCNOW,	/* flags */
1469			       &sc->aac_fib_dmat)) {
1470		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1471		goto out;
1472	}
1473
1474	/*
1475	 * Create DMA tag for the common structure and allocate it.
1476	 */
1477	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1478			       1, 0,			/* algnmnt, boundary */
1479			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1480			       BUS_SPACE_MAXADDR_32BIT :
1481			       0x7fffffff,		/* lowaddr */
1482			       BUS_SPACE_MAXADDR, 	/* highaddr */
1483			       NULL, NULL, 		/* filter, filterarg */
1484			       8192 + sizeof(struct aac_common), /* maxsize */
1485			       1,			/* nsegments */
1486			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1487			       BUS_DMA_ALLOCNOW,	/* flags */
1488			       &sc->aac_common_dmat)) {
1489		device_printf(sc->aac_dev,
1490			      "can't allocate common structure DMA tag\n");
1491		goto out;
1492	}
1493	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1494			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1495		device_printf(sc->aac_dev, "can't allocate common structure\n");
1496		goto out;
1497	}
1498
1499	/*
1500	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1501	 * below address 8192 in physical memory.
1502	 * XXX If the padding is not needed, can it be put to use instead
1503	 * of ignored?
1504	 */
1505	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1506			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1507			aac_common_map, sc, 0);
1508
1509	if (sc->aac_common_busaddr < 8192) {
1510		(uint8_t *)sc->aac_common += 8192;
1511		sc->aac_common_busaddr += 8192;
1512	}
1513	bzero(sc->aac_common, sizeof(*sc->aac_common));
1514
1515	/* Allocate some FIBs and associated command structs */
1516	TAILQ_INIT(&sc->aac_fibmap_tqh);
1517	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1518				  M_AACBUF, M_WAITOK|M_ZERO);
1519	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1520		if (aac_alloc_commands(sc) != 0)
1521			break;
1522	}
1523	if (sc->total_fibs == 0)
1524		goto out;
1525
1526	/*
1527	 * Fill in the init structure.  This tells the adapter about the
1528	 * physical location of various important shared data structures.
1529	 */
1530	ip = &sc->aac_common->ac_init;
1531	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1532	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1533
1534	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1535					 offsetof(struct aac_common, ac_fibs);
1536	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1537	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1538	ip->AdapterFibAlign = sizeof(struct aac_fib);
1539
1540	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1541				  offsetof(struct aac_common, ac_printf);
1542	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1543
1544	/* The adapter assumes that pages are 4K in size */
1545	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1546	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1547
1548	/*
1549	 * Initialise FIB queues.  Note that it appears that the layout of the
1550	 * indexes and the segmentation of the entries may be mandated by the
1551	 * adapter, which is only told about the base of the queue index fields.
1552	 *
1553	 * The initial values of the indices are assumed to inform the adapter
1554	 * of the sizes of the respective queues, and theoretically it could
1555	 * work out the entire layout of the queue structures from this.  We
1556	 * take the easy route and just lay this area out like everyone else
1557	 * does.
1558	 *
1559	 * The Linux driver uses a much more complex scheme whereby several
1560	 * header records are kept for each queue.  We use a couple of generic
1561	 * list manipulation functions which 'know' the size of each list by
1562	 * virtue of a table.
1563	 */
1564	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1565	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1566	sc->aac_queues = (struct aac_queue_table *)qaddr;
1567	ip->CommHeaderAddress = sc->aac_common_busaddr +
1568				((u_int32_t)sc->aac_queues -
1569				(u_int32_t)sc->aac_common);
1570
1571	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1572		AAC_HOST_NORM_CMD_ENTRIES;
1573	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1574		AAC_HOST_NORM_CMD_ENTRIES;
1575	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576		AAC_HOST_HIGH_CMD_ENTRIES;
1577	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578		AAC_HOST_HIGH_CMD_ENTRIES;
1579	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580		AAC_ADAP_NORM_CMD_ENTRIES;
1581	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582		AAC_ADAP_NORM_CMD_ENTRIES;
1583	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584		AAC_ADAP_HIGH_CMD_ENTRIES;
1585	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586		AAC_ADAP_HIGH_CMD_ENTRIES;
1587	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1588		AAC_HOST_NORM_RESP_ENTRIES;
1589	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1590		AAC_HOST_NORM_RESP_ENTRIES;
1591	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592		AAC_HOST_HIGH_RESP_ENTRIES;
1593	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594		AAC_HOST_HIGH_RESP_ENTRIES;
1595	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596		AAC_ADAP_NORM_RESP_ENTRIES;
1597	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598		AAC_ADAP_NORM_RESP_ENTRIES;
1599	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600		AAC_ADAP_HIGH_RESP_ENTRIES;
1601	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602		AAC_ADAP_HIGH_RESP_ENTRIES;
1603	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1604		&sc->aac_queues->qt_HostNormCmdQueue[0];
1605	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1606		&sc->aac_queues->qt_HostHighCmdQueue[0];
1607	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1608		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1609	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1610		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1611	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1612		&sc->aac_queues->qt_HostNormRespQueue[0];
1613	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1614		&sc->aac_queues->qt_HostHighRespQueue[0];
1615	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1616		&sc->aac_queues->qt_AdapNormRespQueue[0];
1617	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1618		&sc->aac_queues->qt_AdapHighRespQueue[0];
1619
1620	/*
1621	 * Do controller-type-specific initialisation
1622	 */
1623	switch (sc->aac_hwif) {
1624	case AAC_HWIF_I960RX:
1625		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1626		break;
1627	}
1628
1629	/*
1630	 * Give the init structure to the controller.
1631	 */
1632	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1633			     sc->aac_common_busaddr +
1634			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1635			     NULL)) {
1636		device_printf(sc->aac_dev,
1637			      "error establishing init structure\n");
1638		error = EIO;
1639		goto out;
1640	}
1641
1642	error = 0;
1643out:
1644	return(error);
1645}
1646
1647/*
1648 * Send a synchronous command to the controller and wait for a result.
1649 */
1650static int
1651aac_sync_command(struct aac_softc *sc, u_int32_t command,
1652		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1653		 u_int32_t *sp)
1654{
1655	time_t then;
1656	u_int32_t status;
1657
1658	debug_called(3);
1659
1660	/* populate the mailbox */
1661	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1662
1663	/* ensure the sync command doorbell flag is cleared */
1664	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1665
1666	/* then set it to signal the adapter */
1667	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1668
1669	/* spin waiting for the command to complete */
1670	then = time_second;
1671	do {
1672		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1673			debug(1, "timed out");
1674			return(EIO);
1675		}
1676	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1677
1678	/* clear the completion flag */
1679	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1680
1681	/* get the command status */
1682	status = AAC_GET_MAILBOX(sc, 0);
1683	if (sp != NULL)
1684		*sp = status;
1685	return(0);
1686}
1687
1688/*
1689 * Grab the sync fib area.
1690 */
1691int
1692aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1693{
1694
1695	/*
1696	 * If the force flag is set, the system is shutting down, or in
1697	 * trouble.  Ignore the mutex.
1698	 */
1699	if (!(flags & AAC_SYNC_LOCK_FORCE))
1700		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1701
1702	*fib = &sc->aac_common->ac_sync_fib;
1703
1704	return (1);
1705}
1706
1707/*
1708 * Release the sync fib area.
1709 */
1710void
1711aac_release_sync_fib(struct aac_softc *sc)
1712{
1713
1714	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1715}
1716
1717/*
1718 * Send a synchronous FIB to the controller and wait for a result.
1719 */
1720int
1721aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1722		 struct aac_fib *fib, u_int16_t datasize)
1723{
1724	debug_called(3);
1725
1726	if (datasize > AAC_FIB_DATASIZE)
1727		return(EINVAL);
1728
1729	/*
1730	 * Set up the sync FIB
1731	 */
1732	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1733				AAC_FIBSTATE_INITIALISED |
1734				AAC_FIBSTATE_EMPTY;
1735	fib->Header.XferState |= xferstate;
1736	fib->Header.Command = command;
1737	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1738	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1739	fib->Header.SenderSize = sizeof(struct aac_fib);
1740	fib->Header.SenderFibAddress = (u_int32_t)fib;
1741	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1742					 offsetof(struct aac_common,
1743						  ac_sync_fib);
1744
1745	/*
1746	 * Give the FIB to the controller, wait for a response.
1747	 */
1748	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1749			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1750		debug(2, "IO error");
1751		return(EIO);
1752	}
1753
1754	return (0);
1755}
1756
1757/*
1758 * Adapter-space FIB queue manipulation
1759 *
1760 * Note that the queue implementation here is a little funky; neither the PI or
1761 * CI will ever be zero.  This behaviour is a controller feature.
1762 */
1763static struct {
1764	int		size;
1765	int		notify;
1766} aac_qinfo[] = {
1767	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1768	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1769	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1770	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1771	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1772	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1773	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1774	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1775};
1776
1777/*
1778 * Atomically insert an entry into the nominated queue, returns 0 on success or
1779 * EBUSY if the queue is full.
1780 *
1781 * Note: it would be more efficient to defer notifying the controller in
1782 *	 the case where we may be inserting several entries in rapid succession,
1783 *	 but implementing this usefully may be difficult (it would involve a
1784 *	 separate queue/notify interface).
1785 */
1786static int
1787aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1788{
1789	u_int32_t pi, ci;
1790	int error;
1791	u_int32_t fib_size;
1792	u_int32_t fib_addr;
1793
1794	debug_called(3);
1795
1796	fib_size = cm->cm_fib->Header.Size;
1797	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1798
1799	/* get the producer/consumer indices */
1800	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1801	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1802
1803	/* wrap the queue? */
1804	if (pi >= aac_qinfo[queue].size)
1805		pi = 0;
1806
1807	/* check for queue full */
1808	if ((pi + 1) == ci) {
1809		error = EBUSY;
1810		goto out;
1811	}
1812
1813	/* populate queue entry */
1814	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1815	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1816
1817	/* update producer index */
1818	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1819
1820	/*
1821	 * To avoid a race with its completion interrupt, place this command on
1822	 * the busy queue prior to advertising it to the controller.
1823	 */
1824	aac_enqueue_busy(cm);
1825
1826	/* notify the adapter if we know how */
1827	if (aac_qinfo[queue].notify != 0)
1828		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1829
1830	error = 0;
1831
1832out:
1833	return(error);
1834}
1835
1836/*
1837 * Atomically remove one entry from the nominated queue, returns 0 on
1838 * success or ENOENT if the queue is empty.
1839 */
1840static int
1841aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1842		struct aac_fib **fib_addr)
1843{
1844	u_int32_t pi, ci;
1845	int error;
1846	int notify;
1847
1848	debug_called(3);
1849
1850	/* get the producer/consumer indices */
1851	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1852	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1853
1854	/* check for queue empty */
1855	if (ci == pi) {
1856		error = ENOENT;
1857		goto out;
1858	}
1859
1860	notify = 0;
1861	if (ci == pi + 1)
1862		notify++;
1863
1864	/* wrap the queue? */
1865	if (ci >= aac_qinfo[queue].size)
1866		ci = 0;
1867
1868	/* fetch the entry */
1869	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1870	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1871				       ci)->aq_fib_addr;
1872
1873	/*
1874	 * Is this a fast response? If it is, update the fib fields in
1875	 * local memory so the whole fib doesn't have to be DMA'd back up.
1876	 */
1877	if (*(uintptr_t *)fib_addr & 0x01) {
1878		*(uintptr_t *)fib_addr &= ~0x01;
1879		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1880		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1881	}
1882	/* update consumer index */
1883	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1884
1885	/* if we have made the queue un-full, notify the adapter */
1886	if (notify && (aac_qinfo[queue].notify != 0))
1887		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1888	error = 0;
1889
1890out:
1891	return(error);
1892}
1893
1894/*
1895 * Put our response to an Adapter Initialed Fib on the response queue
1896 */
1897static int
1898aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1899{
1900	u_int32_t pi, ci;
1901	int error;
1902	u_int32_t fib_size;
1903	u_int32_t fib_addr;
1904
1905	debug_called(1);
1906
1907	/* Tell the adapter where the FIB is */
1908	fib_size = fib->Header.Size;
1909	fib_addr = fib->Header.SenderFibAddress;
1910	fib->Header.ReceiverFibAddress = fib_addr;
1911
1912	/* get the producer/consumer indices */
1913	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1914	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1915
1916	/* wrap the queue? */
1917	if (pi >= aac_qinfo[queue].size)
1918		pi = 0;
1919
1920	/* check for queue full */
1921	if ((pi + 1) == ci) {
1922		error = EBUSY;
1923		goto out;
1924	}
1925
1926	/* populate queue entry */
1927	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1928	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1929
1930	/* update producer index */
1931	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1932
1933	/* notify the adapter if we know how */
1934	if (aac_qinfo[queue].notify != 0)
1935		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1936
1937	error = 0;
1938
1939out:
1940	return(error);
1941}
1942
1943/*
1944 * Check for commands that have been outstanding for a suspiciously long time,
1945 * and complain about them.
1946 */
1947static void
1948aac_timeout(struct aac_softc *sc)
1949{
1950	struct aac_command *cm;
1951	time_t deadline;
1952
1953	/*
1954	 * Traverse the busy command list, bitch about late commands once
1955	 * only.
1956	 */
1957	deadline = time_second - AAC_CMD_TIMEOUT;
1958	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1959		if ((cm->cm_timestamp  < deadline)
1960			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1961			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1962			device_printf(sc->aac_dev,
1963				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1964				      cm, (int)(time_second-cm->cm_timestamp));
1965			AAC_PRINT_FIB(sc, cm->cm_fib);
1966		}
1967	}
1968
1969	return;
1970}
1971
1972/*
1973 * Interface Function Vectors
1974 */
1975
1976/*
1977 * Read the current firmware status word.
1978 */
1979static int
1980aac_sa_get_fwstatus(struct aac_softc *sc)
1981{
1982	debug_called(3);
1983
1984	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1985}
1986
1987static int
1988aac_rx_get_fwstatus(struct aac_softc *sc)
1989{
1990	debug_called(3);
1991
1992	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1993}
1994
1995static int
1996aac_fa_get_fwstatus(struct aac_softc *sc)
1997{
1998	int val;
1999
2000	debug_called(3);
2001
2002	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2003	return (val);
2004}
2005
2006/*
2007 * Notify the controller of a change in a given queue
2008 */
2009
2010static void
2011aac_sa_qnotify(struct aac_softc *sc, int qbit)
2012{
2013	debug_called(3);
2014
2015	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2016}
2017
2018static void
2019aac_rx_qnotify(struct aac_softc *sc, int qbit)
2020{
2021	debug_called(3);
2022
2023	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2024}
2025
2026static void
2027aac_fa_qnotify(struct aac_softc *sc, int qbit)
2028{
2029	debug_called(3);
2030
2031	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2032	AAC_FA_HACK(sc);
2033}
2034
2035/*
2036 * Get the interrupt reason bits
2037 */
2038static int
2039aac_sa_get_istatus(struct aac_softc *sc)
2040{
2041	debug_called(3);
2042
2043	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2044}
2045
2046static int
2047aac_rx_get_istatus(struct aac_softc *sc)
2048{
2049	debug_called(3);
2050
2051	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2052}
2053
2054static int
2055aac_fa_get_istatus(struct aac_softc *sc)
2056{
2057	int val;
2058
2059	debug_called(3);
2060
2061	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2062	return (val);
2063}
2064
2065/*
2066 * Clear some interrupt reason bits
2067 */
2068static void
2069aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2070{
2071	debug_called(3);
2072
2073	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2074}
2075
2076static void
2077aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2078{
2079	debug_called(3);
2080
2081	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2082}
2083
2084static void
2085aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2086{
2087	debug_called(3);
2088
2089	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2090	AAC_FA_HACK(sc);
2091}
2092
2093/*
2094 * Populate the mailbox and set the command word
2095 */
2096static void
2097aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2098		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2099{
2100	debug_called(4);
2101
2102	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2103	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2104	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2105	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2106	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2107}
2108
2109static void
2110aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2111		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2112{
2113	debug_called(4);
2114
2115	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2116	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2117	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2118	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2119	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2120}
2121
2122static void
2123aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2124		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2125{
2126	debug_called(4);
2127
2128	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2129	AAC_FA_HACK(sc);
2130	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2131	AAC_FA_HACK(sc);
2132	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2133	AAC_FA_HACK(sc);
2134	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2135	AAC_FA_HACK(sc);
2136	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2137	AAC_FA_HACK(sc);
2138}
2139
2140/*
2141 * Fetch the immediate command status word
2142 */
2143static int
2144aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2145{
2146	debug_called(4);
2147
2148	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2149}
2150
2151static int
2152aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2153{
2154	debug_called(4);
2155
2156	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2157}
2158
2159static int
2160aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2161{
2162	int val;
2163
2164	debug_called(4);
2165
2166	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2167	return (val);
2168}
2169
2170/*
2171 * Set/clear interrupt masks
2172 */
2173static void
2174aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2175{
2176	debug(2, "%sable interrupts", enable ? "en" : "dis");
2177
2178	if (enable) {
2179		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2180	} else {
2181		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2182	}
2183}
2184
2185static void
2186aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2187{
2188	debug(2, "%sable interrupts", enable ? "en" : "dis");
2189
2190	if (enable) {
2191		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2192	} else {
2193		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2194	}
2195}
2196
2197static void
2198aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2199{
2200	debug(2, "%sable interrupts", enable ? "en" : "dis");
2201
2202	if (enable) {
2203		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2204		AAC_FA_HACK(sc);
2205	} else {
2206		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2207		AAC_FA_HACK(sc);
2208	}
2209}
2210
2211/*
2212 * Debugging and Diagnostics
2213 */
2214
2215/*
2216 * Print some information about the controller.
2217 */
2218static void
2219aac_describe_controller(struct aac_softc *sc)
2220{
2221	struct aac_fib *fib;
2222	struct aac_adapter_info	*info;
2223
2224	debug_called(2);
2225
2226	aac_alloc_sync_fib(sc, &fib, 0);
2227
2228	fib->data[0] = 0;
2229	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2230		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2231		aac_release_sync_fib(sc);
2232		return;
2233	}
2234	info = (struct aac_adapter_info *)&fib->data[0];
2235
2236	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2237		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2238		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2239		      aac_describe_code(aac_battery_platform,
2240					info->batteryPlatform));
2241
2242	/* save the kernel revision structure for later use */
2243	sc->aac_revision = info->KernelRevision;
2244	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2245		      info->KernelRevision.external.comp.major,
2246		      info->KernelRevision.external.comp.minor,
2247		      info->KernelRevision.external.comp.dash,
2248		      info->KernelRevision.buildNumber,
2249		      (u_int32_t)(info->SerialNumber & 0xffffff));
2250
2251	aac_release_sync_fib(sc);
2252
2253	if (1 || bootverbose) {
2254		device_printf(sc->aac_dev, "Supported Options=%b\n",
2255			      sc->supported_options,
2256			      "\20"
2257			      "\1SNAPSHOT"
2258			      "\2CLUSTERS"
2259			      "\3WCACHE"
2260			      "\4DATA64"
2261			      "\5HOSTTIME"
2262			      "\6RAID50"
2263			      "\7WINDOW4GB"
2264			      "\10SCSIUPGD"
2265			      "\11SOFTERR"
2266			      "\12NORECOND"
2267			      "\13SGMAP64"
2268			      "\14ALARM"
2269			      "\15NONDASD");
2270	}
2271}
2272
2273/*
2274 * Look up a text description of a numeric error code and return a pointer to
2275 * same.
2276 */
2277static char *
2278aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2279{
2280	int i;
2281
2282	for (i = 0; table[i].string != NULL; i++)
2283		if (table[i].code == code)
2284			return(table[i].string);
2285	return(table[i + 1].string);
2286}
2287
2288/*
2289 * Management Interface
2290 */
2291
2292static int
2293aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2294{
2295	struct aac_softc *sc;
2296
2297	debug_called(2);
2298
2299	sc = dev->si_drv1;
2300
2301	/* Check to make sure the device isn't already open */
2302	if (sc->aac_state & AAC_STATE_OPEN) {
2303		return EBUSY;
2304	}
2305	sc->aac_state |= AAC_STATE_OPEN;
2306
2307	return 0;
2308}
2309
2310static int
2311aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2312{
2313	struct aac_softc *sc;
2314
2315	debug_called(2);
2316
2317	sc = dev->si_drv1;
2318
2319	/* Mark this unit as no longer open  */
2320	sc->aac_state &= ~AAC_STATE_OPEN;
2321
2322	return 0;
2323}
2324
2325static int
2326aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2327{
2328	union aac_statrequest *as;
2329	struct aac_softc *sc;
2330	int error = 0;
2331	int i;
2332
2333	debug_called(2);
2334
2335	as = (union aac_statrequest *)arg;
2336	sc = dev->si_drv1;
2337
2338	switch (cmd) {
2339	case AACIO_STATS:
2340		switch (as->as_item) {
2341		case AACQ_FREE:
2342		case AACQ_BIO:
2343		case AACQ_READY:
2344		case AACQ_BUSY:
2345		case AACQ_COMPLETE:
2346			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2347			      sizeof(struct aac_qstat));
2348			break;
2349		default:
2350			error = ENOENT;
2351			break;
2352		}
2353	break;
2354
2355	case FSACTL_SENDFIB:
2356		arg = *(caddr_t*)arg;
2357	case FSACTL_LNX_SENDFIB:
2358		debug(1, "FSACTL_SENDFIB");
2359		error = aac_ioctl_sendfib(sc, arg);
2360		break;
2361	case FSACTL_AIF_THREAD:
2362	case FSACTL_LNX_AIF_THREAD:
2363		debug(1, "FSACTL_AIF_THREAD");
2364		error = EINVAL;
2365		break;
2366	case FSACTL_OPEN_GET_ADAPTER_FIB:
2367		arg = *(caddr_t*)arg;
2368	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2369		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2370		/*
2371		 * Pass the caller out an AdapterFibContext.
2372		 *
2373		 * Note that because we only support one opener, we
2374		 * basically ignore this.  Set the caller's context to a magic
2375		 * number just in case.
2376		 *
2377		 * The Linux code hands the driver a pointer into kernel space,
2378		 * and then trusts it when the caller hands it back.  Aiee!
2379		 * Here, we give it the proc pointer of the per-adapter aif
2380		 * thread. It's only used as a sanity check in other calls.
2381		 */
2382		i = (int)sc->aifthread;
2383		error = copyout(&i, arg, sizeof(i));
2384		break;
2385	case FSACTL_GET_NEXT_ADAPTER_FIB:
2386		arg = *(caddr_t*)arg;
2387	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2388		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2389		error = aac_getnext_aif(sc, arg);
2390		break;
2391	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2392	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2393		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2394		/* don't do anything here */
2395		break;
2396	case FSACTL_MINIPORT_REV_CHECK:
2397		arg = *(caddr_t*)arg;
2398	case FSACTL_LNX_MINIPORT_REV_CHECK:
2399		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2400		error = aac_rev_check(sc, arg);
2401		break;
2402	case FSACTL_QUERY_DISK:
2403		arg = *(caddr_t*)arg;
2404	case FSACTL_LNX_QUERY_DISK:
2405		debug(1, "FSACTL_QUERY_DISK");
2406		error = aac_query_disk(sc, arg);
2407			break;
2408	case FSACTL_DELETE_DISK:
2409	case FSACTL_LNX_DELETE_DISK:
2410		/*
2411		 * We don't trust the underland to tell us when to delete a
2412		 * container, rather we rely on an AIF coming from the
2413		 * controller
2414		 */
2415		error = 0;
2416		break;
2417	default:
2418		debug(1, "unsupported cmd 0x%lx\n", cmd);
2419		error = EINVAL;
2420		break;
2421	}
2422	return(error);
2423}
2424
2425static int
2426aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2427{
2428	struct aac_softc *sc;
2429	int revents;
2430
2431	sc = dev->si_drv1;
2432	revents = 0;
2433
2434	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2435	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2436		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2437			revents |= poll_events & (POLLIN | POLLRDNORM);
2438	}
2439	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2440
2441	if (revents == 0) {
2442		if (poll_events & (POLLIN | POLLRDNORM))
2443			selrecord(td, &sc->rcv_select);
2444	}
2445
2446	return (revents);
2447}
2448
2449/*
2450 * Send a FIB supplied from userspace
2451 */
2452static int
2453aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2454{
2455	struct aac_command *cm;
2456	int size, error;
2457
2458	debug_called(2);
2459
2460	cm = NULL;
2461
2462	/*
2463	 * Get a command
2464	 */
2465	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2466	if (aac_alloc_command(sc, &cm)) {
2467		error = EBUSY;
2468		goto out;
2469	}
2470
2471	/*
2472	 * Fetch the FIB header, then re-copy to get data as well.
2473	 */
2474	if ((error = copyin(ufib, cm->cm_fib,
2475			    sizeof(struct aac_fib_header))) != 0)
2476		goto out;
2477	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2478	if (size > sizeof(struct aac_fib)) {
2479		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2480			      size, sizeof(struct aac_fib));
2481		size = sizeof(struct aac_fib);
2482	}
2483	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2484		goto out;
2485	cm->cm_fib->Header.Size = size;
2486	cm->cm_timestamp = time_second;
2487
2488	/*
2489	 * Pass the FIB to the controller, wait for it to complete.
2490	 */
2491	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2492		device_printf(sc->aac_dev,
2493			      "aac_wait_command return %d\n", error);
2494		goto out;
2495	}
2496
2497	/*
2498	 * Copy the FIB and data back out to the caller.
2499	 */
2500	size = cm->cm_fib->Header.Size;
2501	if (size > sizeof(struct aac_fib)) {
2502		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2503			      size, sizeof(struct aac_fib));
2504		size = sizeof(struct aac_fib);
2505	}
2506	error = copyout(cm->cm_fib, ufib, size);
2507
2508out:
2509	if (cm != NULL) {
2510		aac_release_command(cm);
2511	}
2512
2513	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2514	return(error);
2515}
2516
2517/*
2518 * Handle an AIF sent to us by the controller; queue it for later reference.
2519 * If the queue fills up, then drop the older entries.
2520 */
2521static void
2522aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2523{
2524	struct aac_aif_command *aif;
2525	struct aac_container *co, *co_next;
2526	struct aac_mntinfo *mi;
2527	struct aac_mntinforesp *mir = NULL;
2528	u_int16_t rsize;
2529	int next, found;
2530	int added = 0, i = 0;
2531
2532	debug_called(2);
2533
2534	aif = (struct aac_aif_command*)&fib->data[0];
2535	aac_print_aif(sc, aif);
2536
2537	/* Is it an event that we should care about? */
2538	switch (aif->command) {
2539	case AifCmdEventNotify:
2540		switch (aif->data.EN.type) {
2541		case AifEnAddContainer:
2542		case AifEnDeleteContainer:
2543			/*
2544			 * A container was added or deleted, but the message
2545			 * doesn't tell us anything else!  Re-enumerate the
2546			 * containers and sort things out.
2547			 */
2548			aac_alloc_sync_fib(sc, &fib, 0);
2549			mi = (struct aac_mntinfo *)&fib->data[0];
2550			do {
2551				/*
2552				 * Ask the controller for its containers one at
2553				 * a time.
2554				 * XXX What if the controller's list changes
2555				 * midway through this enumaration?
2556				 * XXX This should be done async.
2557				 */
2558				bzero(mi, sizeof(struct aac_mntinfo));
2559				mi->Command = VM_NameServe;
2560				mi->MntType = FT_FILESYS;
2561				mi->MntCount = i;
2562				rsize = sizeof(mir);
2563				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2564						 sizeof(struct aac_mntinfo))) {
2565					debug(2, "Error probing container %d\n",
2566					      i);
2567					continue;
2568				}
2569				mir = (struct aac_mntinforesp *)&fib->data[0];
2570				/*
2571				 * Check the container against our list.
2572				 * co->co_found was already set to 0 in a
2573				 * previous run.
2574				 */
2575				if ((mir->Status == ST_OK) &&
2576				    (mir->MntTable[0].VolType != CT_NONE)) {
2577					found = 0;
2578					TAILQ_FOREACH(co,
2579						      &sc->aac_container_tqh,
2580						      co_link) {
2581						if (co->co_mntobj.ObjectId ==
2582						    mir->MntTable[0].ObjectId) {
2583							co->co_found = 1;
2584							found = 1;
2585							break;
2586						}
2587					}
2588					/*
2589					 * If the container matched, continue
2590					 * in the list.
2591					 */
2592					if (found) {
2593						i++;
2594						continue;
2595					}
2596
2597					/*
2598					 * This is a new container.  Do all the
2599					 * appropriate things to set it up.
2600					 */
2601					aac_add_container(sc, mir, 1);
2602					added = 1;
2603				}
2604				i++;
2605			} while ((i < mir->MntRespCount) &&
2606				 (i < AAC_MAX_CONTAINERS));
2607			aac_release_sync_fib(sc);
2608
2609			/*
2610			 * Go through our list of containers and see which ones
2611			 * were not marked 'found'.  Since the controller didn't
2612			 * list them they must have been deleted.  Do the
2613			 * appropriate steps to destroy the device.  Also reset
2614			 * the co->co_found field.
2615			 */
2616			co = TAILQ_FIRST(&sc->aac_container_tqh);
2617			while (co != NULL) {
2618				if (co->co_found == 0) {
2619					device_delete_child(sc->aac_dev,
2620							    co->co_disk);
2621					co_next = TAILQ_NEXT(co, co_link);
2622					AAC_LOCK_ACQUIRE(&sc->
2623							aac_container_lock);
2624					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2625						     co_link);
2626					AAC_LOCK_RELEASE(&sc->
2627							 aac_container_lock);
2628					FREE(co, M_AACBUF);
2629					co = co_next;
2630				} else {
2631					co->co_found = 0;
2632					co = TAILQ_NEXT(co, co_link);
2633				}
2634			}
2635
2636			/* Attach the newly created containers */
2637			if (added)
2638				bus_generic_attach(sc->aac_dev);
2639
2640			break;
2641
2642		default:
2643			break;
2644		}
2645
2646	default:
2647		break;
2648	}
2649
2650	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2651	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2652	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2653	if (next != sc->aac_aifq_tail) {
2654		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2655		sc->aac_aifq_head = next;
2656
2657		/* On the off chance that someone is sleeping for an aif... */
2658		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2659			wakeup(sc->aac_aifq);
2660		/* Wakeup any poll()ers */
2661		selwakeup(&sc->rcv_select);
2662	}
2663	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2664
2665	return;
2666}
2667
2668/*
2669 * Return the Revision of the driver to userspace and check to see if the
2670 * userspace app is possibly compatible.  This is extremely bogus since
2671 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2672 * returning what the card reported.
2673 */
2674static int
2675aac_rev_check(struct aac_softc *sc, caddr_t udata)
2676{
2677	struct aac_rev_check rev_check;
2678	struct aac_rev_check_resp rev_check_resp;
2679	int error = 0;
2680
2681	debug_called(2);
2682
2683	/*
2684	 * Copyin the revision struct from userspace
2685	 */
2686	if ((error = copyin(udata, (caddr_t)&rev_check,
2687			sizeof(struct aac_rev_check))) != 0) {
2688		return error;
2689	}
2690
2691	debug(2, "Userland revision= %d\n",
2692	      rev_check.callingRevision.buildNumber);
2693
2694	/*
2695	 * Doctor up the response struct.
2696	 */
2697	rev_check_resp.possiblyCompatible = 1;
2698	rev_check_resp.adapterSWRevision.external.ul =
2699	    sc->aac_revision.external.ul;
2700	rev_check_resp.adapterSWRevision.buildNumber =
2701	    sc->aac_revision.buildNumber;
2702
2703	return(copyout((caddr_t)&rev_check_resp, udata,
2704			sizeof(struct aac_rev_check_resp)));
2705}
2706
2707/*
2708 * Pass the caller the next AIF in their queue
2709 */
2710static int
2711aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2712{
2713	struct get_adapter_fib_ioctl agf;
2714	int error;
2715
2716	debug_called(2);
2717
2718	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2719
2720		/*
2721		 * Check the magic number that we gave the caller.
2722		 */
2723		if (agf.AdapterFibContext != (int)sc->aifthread) {
2724			error = EFAULT;
2725		} else {
2726			error = aac_return_aif(sc, agf.AifFib);
2727			if ((error == EAGAIN) && (agf.Wait)) {
2728				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2729				while (error == EAGAIN) {
2730					error = tsleep(sc->aac_aifq, PRIBIO |
2731						       PCATCH, "aacaif", 0);
2732					if (error == 0)
2733						error = aac_return_aif(sc,
2734						    agf.AifFib);
2735				}
2736				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2737			}
2738		}
2739	}
2740	return(error);
2741}
2742
2743/*
2744 * Hand the next AIF off the top of the queue out to userspace.
2745 */
2746static int
2747aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2748{
2749	int error;
2750
2751	debug_called(2);
2752
2753	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2754	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2755		error = EAGAIN;
2756	} else {
2757		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2758				sizeof(struct aac_aif_command));
2759		if (error)
2760			device_printf(sc->aac_dev,
2761			    "aac_return_aif: copyout returned %d\n", error);
2762		if (!error)
2763			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2764					    AAC_AIFQ_LENGTH;
2765	}
2766	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2767	return(error);
2768}
2769
2770/*
2771 * Give the userland some information about the container.  The AAC arch
2772 * expects the driver to be a SCSI passthrough type driver, so it expects
2773 * the containers to have b:t:l numbers.  Fake it.
2774 */
2775static int
2776aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2777{
2778	struct aac_query_disk query_disk;
2779	struct aac_container *co;
2780	struct aac_disk	*disk;
2781	int error, id;
2782
2783	debug_called(2);
2784
2785	disk = NULL;
2786
2787	error = copyin(uptr, (caddr_t)&query_disk,
2788		       sizeof(struct aac_query_disk));
2789	if (error)
2790		return (error);
2791
2792	id = query_disk.ContainerNumber;
2793	if (id == -1)
2794		return (EINVAL);
2795
2796	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2797	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2798		if (co->co_mntobj.ObjectId == id)
2799			break;
2800		}
2801
2802	if (co == NULL) {
2803			query_disk.Valid = 0;
2804			query_disk.Locked = 0;
2805			query_disk.Deleted = 1;		/* XXX is this right? */
2806	} else {
2807		disk = device_get_softc(co->co_disk);
2808		query_disk.Valid = 1;
2809		query_disk.Locked =
2810		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2811		query_disk.Deleted = 0;
2812		query_disk.Bus = device_get_unit(sc->aac_dev);
2813		query_disk.Target = disk->unit;
2814		query_disk.Lun = 0;
2815		query_disk.UnMapped = 0;
2816		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2817		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2818	}
2819	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2820
2821	error = copyout((caddr_t)&query_disk, uptr,
2822			sizeof(struct aac_query_disk));
2823
2824	return (error);
2825}
2826
2827static void
2828aac_get_bus_info(struct aac_softc *sc)
2829{
2830	struct aac_fib *fib;
2831	struct aac_ctcfg *c_cmd;
2832	struct aac_ctcfg_resp *c_resp;
2833	struct aac_vmioctl *vmi;
2834	struct aac_vmi_businf_resp *vmi_resp;
2835	struct aac_getbusinf businfo;
2836	struct aac_sim *caminf;
2837	device_t child;
2838	int i, found, error;
2839
2840	aac_alloc_sync_fib(sc, &fib, 0);
2841	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2842	bzero(c_cmd, sizeof(struct aac_ctcfg));
2843
2844	c_cmd->Command = VM_ContainerConfig;
2845	c_cmd->cmd = CT_GET_SCSI_METHOD;
2846	c_cmd->param = 0;
2847
2848	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2849	    sizeof(struct aac_ctcfg));
2850	if (error) {
2851		device_printf(sc->aac_dev, "Error %d sending "
2852		    "VM_ContainerConfig command\n", error);
2853		aac_release_sync_fib(sc);
2854		return;
2855	}
2856
2857	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2858	if (c_resp->Status != ST_OK) {
2859		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2860		    c_resp->Status);
2861		aac_release_sync_fib(sc);
2862		return;
2863	}
2864
2865	sc->scsi_method_id = c_resp->param;
2866
2867	vmi = (struct aac_vmioctl *)&fib->data[0];
2868	bzero(vmi, sizeof(struct aac_vmioctl));
2869
2870	vmi->Command = VM_Ioctl;
2871	vmi->ObjType = FT_DRIVE;
2872	vmi->MethId = sc->scsi_method_id;
2873	vmi->ObjId = 0;
2874	vmi->IoctlCmd = GetBusInfo;
2875
2876	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2877	    sizeof(struct aac_vmioctl));
2878	if (error) {
2879		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2880		    error);
2881		aac_release_sync_fib(sc);
2882		return;
2883	}
2884
2885	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2886	if (vmi_resp->Status != ST_OK) {
2887		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2888		    vmi_resp->Status);
2889		aac_release_sync_fib(sc);
2890		return;
2891	}
2892
2893	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2894	aac_release_sync_fib(sc);
2895
2896	found = 0;
2897	for (i = 0; i < businfo.BusCount; i++) {
2898		if (businfo.BusValid[i] != AAC_BUS_VALID)
2899			continue;
2900
2901		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2902		    M_AACBUF, M_NOWAIT | M_ZERO);
2903		if (caminf == NULL)
2904			continue;
2905
2906		child = device_add_child(sc->aac_dev, "aacp", -1);
2907		if (child == NULL) {
2908			device_printf(sc->aac_dev, "device_add_child failed\n");
2909			continue;
2910		}
2911
2912		caminf->TargetsPerBus = businfo.TargetsPerBus;
2913		caminf->BusNumber = i;
2914		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2915		caminf->aac_sc = sc;
2916		caminf->sim_dev = child;
2917
2918		device_set_ivars(child, caminf);
2919		device_set_desc(child, "SCSI Passthrough Bus");
2920		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2921
2922		found = 1;
2923	}
2924
2925	if (found)
2926		bus_generic_attach(sc->aac_dev);
2927
2928	return;
2929}
2930