aac.c revision 112679
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 112679 2003-03-26 17:50:11Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46
47#include <sys/bus.h>
48#include <sys/conf.h>
49#include <sys/disk.h>
50#include <sys/signalvar.h>
51#include <sys/time.h>
52#include <sys/eventhandler.h>
53
54#include <machine/bus_memio.h>
55#include <machine/bus.h>
56#include <machine/resource.h>
57
58#include <dev/aac/aacreg.h>
59#include <dev/aac/aac_ioctl.h>
60#include <dev/aac/aacvar.h>
61#include <dev/aac/aac_tables.h>
62
63static void	aac_startup(void *arg);
64static void	aac_add_container(struct aac_softc *sc,
65				  struct aac_mntinforesp *mir, int f);
66static void	aac_get_bus_info(struct aac_softc *sc);
67
68/* Command Processing */
69static void	aac_timeout(struct aac_softc *sc);
70static int	aac_start(struct aac_command *cm);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm, int timeout);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79				       int nseg, int error);
80static int	aac_alloc_commands(struct aac_softc *sc);
81static void	aac_free_commands(struct aac_softc *sc);
82static void	aac_map_command(struct aac_command *cm);
83static void	aac_unmap_command(struct aac_command *cm);
84
85/* Hardware Interface */
86static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87			       int error);
88static int	aac_check_firmware(struct aac_softc *sc);
89static int	aac_init(struct aac_softc *sc);
90static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92				 u_int32_t arg3, u_int32_t *sp);
93static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94				struct aac_command *cm);
95static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96				u_int32_t *fib_size, struct aac_fib **fib_addr);
97static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98				     struct aac_fib *fib);
99
100/* Falcon/PPC interface */
101static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103static int	aac_fa_get_istatus(struct aac_softc *sc);
104static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106				   u_int32_t arg0, u_int32_t arg1,
107				   u_int32_t arg2, u_int32_t arg3);
108static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110
111struct aac_interface aac_fa_interface = {
112	aac_fa_get_fwstatus,
113	aac_fa_qnotify,
114	aac_fa_get_istatus,
115	aac_fa_clear_istatus,
116	aac_fa_set_mailbox,
117	aac_fa_get_mailbox,
118	aac_fa_set_interrupts
119};
120
121/* StrongARM interface */
122static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124static int	aac_sa_get_istatus(struct aac_softc *sc);
125static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127				   u_int32_t arg0, u_int32_t arg1,
128				   u_int32_t arg2, u_int32_t arg3);
129static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131
132struct aac_interface aac_sa_interface = {
133	aac_sa_get_fwstatus,
134	aac_sa_qnotify,
135	aac_sa_get_istatus,
136	aac_sa_clear_istatus,
137	aac_sa_set_mailbox,
138	aac_sa_get_mailbox,
139	aac_sa_set_interrupts
140};
141
142/* i960Rx interface */
143static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145static int	aac_rx_get_istatus(struct aac_softc *sc);
146static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148				   u_int32_t arg0, u_int32_t arg1,
149				   u_int32_t arg2, u_int32_t arg3);
150static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152
153struct aac_interface aac_rx_interface = {
154	aac_rx_get_fwstatus,
155	aac_rx_qnotify,
156	aac_rx_get_istatus,
157	aac_rx_clear_istatus,
158	aac_rx_set_mailbox,
159	aac_rx_get_mailbox,
160	aac_rx_set_interrupts
161};
162
163/* Debugging and Diagnostics */
164static void	aac_describe_controller(struct aac_softc *sc);
165static char	*aac_describe_code(struct aac_code_lookup *table,
166				   u_int32_t code);
167
168/* Management Interface */
169static d_open_t		aac_open;
170static d_close_t	aac_close;
171static d_ioctl_t	aac_ioctl;
172static d_poll_t		aac_poll;
173static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174static void		aac_handle_aif(struct aac_softc *sc,
175					   struct aac_fib *fib);
176static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180
181#define AAC_CDEV_MAJOR	150
182
183static struct cdevsw aac_cdevsw = {
184	.d_open =	aac_open,
185	.d_close =	aac_close,
186	.d_ioctl =	aac_ioctl,
187	.d_poll =	aac_poll,
188	.d_name =	"aac",
189	.d_maj =	AAC_CDEV_MAJOR,
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/* Init the sync fib lock */
237	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
238
239	/*
240	 * Initialise the adapter.
241	 */
242	if ((error = aac_init(sc)) != 0)
243		return(error);
244
245	/*
246	 * Print a little information about the controller.
247	 */
248	aac_describe_controller(sc);
249
250	/*
251	 * Initialize locks
252	 */
253	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
254	TAILQ_INIT(&sc->aac_container_tqh);
255	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
256	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib, 0);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			debug(2, "error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		aac_add_container(sc, mir, 0);
336		i++;
337	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
338
339	aac_release_sync_fib(sc);
340
341	/* poke the bus to actually attach the child devices */
342	if (bus_generic_attach(sc->aac_dev))
343		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
344
345	/* mark the controller up */
346	sc->aac_state &= ~AAC_STATE_SUSPEND;
347
348	/* enable interrupts now */
349	AAC_UNMASK_INTERRUPTS(sc);
350}
351
352/*
353 * Create a device to respresent a new container
354 */
355static void
356aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
357{
358	struct aac_container *co;
359	device_t child;
360
361	/*
362	 * Check container volume type for validity.  Note that many of
363	 * the possible types may never show up.
364	 */
365	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
366		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
367		       M_NOWAIT | M_ZERO);
368		if (co == NULL)
369			panic("Out of memory?!\n");
370		debug(1, "id %x  name '%.16s'  size %u  type %d",
371		      mir->MntTable[0].ObjectId,
372		      mir->MntTable[0].FileSystemName,
373		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
374
375		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
376			device_printf(sc->aac_dev, "device_add_child failed\n");
377		else
378			device_set_ivars(child, co);
379		device_set_desc(child, aac_describe_code(aac_container_types,
380				mir->MntTable[0].VolType));
381		co->co_disk = child;
382		co->co_found = f;
383		bcopy(&mir->MntTable[0], &co->co_mntobj,
384		      sizeof(struct aac_mntobj));
385		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
386		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
387		AAC_LOCK_RELEASE(&sc->aac_container_lock);
388	}
389}
390
391/*
392 * Free all of the resources associated with (sc)
393 *
394 * Should not be called if the controller is active.
395 */
396void
397aac_free(struct aac_softc *sc)
398{
399
400	debug_called(1);
401
402	/* remove the control device */
403	if (sc->aac_dev_t != NULL)
404		destroy_dev(sc->aac_dev_t);
405
406	/* throw away any FIB buffers, discard the FIB DMA tag */
407	aac_free_commands(sc);
408	if (sc->aac_fib_dmat)
409		bus_dma_tag_destroy(sc->aac_fib_dmat);
410
411	free(sc->aac_commands, M_AACBUF);
412
413	/* destroy the common area */
414	if (sc->aac_common) {
415		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
416		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
417				sc->aac_common_dmamap);
418	}
419	if (sc->aac_common_dmat)
420		bus_dma_tag_destroy(sc->aac_common_dmat);
421
422	/* disconnect the interrupt handler */
423	if (sc->aac_intr)
424		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
425	if (sc->aac_irq != NULL)
426		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
427				     sc->aac_irq);
428
429	/* destroy data-transfer DMA tag */
430	if (sc->aac_buffer_dmat)
431		bus_dma_tag_destroy(sc->aac_buffer_dmat);
432
433	/* destroy the parent DMA tag */
434	if (sc->aac_parent_dmat)
435		bus_dma_tag_destroy(sc->aac_parent_dmat);
436
437	/* release the register window mapping */
438	if (sc->aac_regs_resource != NULL)
439		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
440				     sc->aac_regs_rid, sc->aac_regs_resource);
441}
442
443/*
444 * Disconnect from the controller completely, in preparation for unload.
445 */
446int
447aac_detach(device_t dev)
448{
449	struct aac_softc *sc;
450	struct aac_container *co;
451	struct aac_sim	*sim;
452	int error;
453
454	debug_called(1);
455
456	sc = device_get_softc(dev);
457
458	if (sc->aac_state & AAC_STATE_OPEN)
459		return(EBUSY);
460
461	/* Remove the child containers */
462	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
463		error = device_delete_child(dev, co->co_disk);
464		if (error)
465			return (error);
466		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
467		free(co, M_AACBUF);
468	}
469
470	/* Remove the CAM SIMs */
471	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
472		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
473		error = device_delete_child(dev, sim->sim_dev);
474		if (error)
475			return (error);
476		free(sim, M_AACBUF);
477	}
478
479	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
480		sc->aifflags |= AAC_AIFFLAGS_EXIT;
481		wakeup(sc->aifthread);
482		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
483	}
484
485	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
486		panic("Cannot shutdown AIF thread\n");
487
488	if ((error = aac_shutdown(dev)))
489		return(error);
490
491	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
492
493	aac_free(sc);
494
495	return(0);
496}
497
498/*
499 * Bring the controller down to a dormant state and detach all child devices.
500 *
501 * This function is called before detach or system shutdown.
502 *
503 * Note that we can assume that the bioq on the controller is empty, as we won't
504 * allow shutdown if any device is open.
505 */
506int
507aac_shutdown(device_t dev)
508{
509	struct aac_softc *sc;
510	struct aac_fib *fib;
511	struct aac_close_command *cc;
512
513	debug_called(1);
514
515	sc = device_get_softc(dev);
516
517	sc->aac_state |= AAC_STATE_SUSPEND;
518
519	/*
520	 * Send a Container shutdown followed by a HostShutdown FIB to the
521	 * controller to convince it that we don't want to talk to it anymore.
522	 * We've been closed and all I/O completed already
523	 */
524	device_printf(sc->aac_dev, "shutting down controller...");
525
526	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
527	cc = (struct aac_close_command *)&fib->data[0];
528
529	bzero(cc, sizeof(struct aac_close_command));
530	cc->Command = VM_CloseAll;
531	cc->ContainerId = 0xffffffff;
532	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
533	    sizeof(struct aac_close_command)))
534		printf("FAILED.\n");
535	else
536		printf("done\n");
537#if 0
538	else {
539		fib->data[0] = 0;
540		/*
541		 * XXX Issuing this command to the controller makes it shut down
542		 * but also keeps it from coming back up without a reset of the
543		 * PCI bus.  This is not desirable if you are just unloading the
544		 * driver module with the intent to reload it later.
545		 */
546		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
547		    fib, 1)) {
548			printf("FAILED.\n");
549		} else {
550			printf("done.\n");
551		}
552	}
553#endif
554
555	AAC_MASK_INTERRUPTS(sc);
556
557	return(0);
558}
559
560/*
561 * Bring the controller to a quiescent state, ready for system suspend.
562 */
563int
564aac_suspend(device_t dev)
565{
566	struct aac_softc *sc;
567
568	debug_called(1);
569
570	sc = device_get_softc(dev);
571
572	sc->aac_state |= AAC_STATE_SUSPEND;
573
574	AAC_MASK_INTERRUPTS(sc);
575	return(0);
576}
577
578/*
579 * Bring the controller back to a state ready for operation.
580 */
581int
582aac_resume(device_t dev)
583{
584	struct aac_softc *sc;
585
586	debug_called(1);
587
588	sc = device_get_softc(dev);
589
590	sc->aac_state &= ~AAC_STATE_SUSPEND;
591	AAC_UNMASK_INTERRUPTS(sc);
592	return(0);
593}
594
595/*
596 * Take an interrupt.
597 */
598void
599aac_intr(void *arg)
600{
601	struct aac_softc *sc;
602	u_int32_t *resp_queue;
603	u_int16_t reason;
604
605	debug_called(2);
606
607	sc = (struct aac_softc *)arg;
608
609	/*
610	 * Optimize the common case of adapter response interrupts.
611	 * We must read from the card prior to processing the responses
612	 * to ensure the clear is flushed prior to accessing the queues.
613	 * Reading the queues from local memory might save us a PCI read.
614	 */
615	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
616	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
617		reason = AAC_DB_RESPONSE_READY;
618	else
619		reason = AAC_GET_ISTATUS(sc);
620	AAC_CLEAR_ISTATUS(sc, reason);
621	(void)AAC_GET_ISTATUS(sc);
622
623	/* It's not ok to return here because of races with the previous step */
624	if (reason & AAC_DB_RESPONSE_READY)
625		/* handle completion processing */
626		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
627
628	/* controller wants to talk to the log */
629	if (reason & AAC_DB_PRINTF) {
630		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
631			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
632		} else
633			aac_print_printf(sc);
634	}
635
636	/* controller has a message for us? */
637	if (reason & AAC_DB_COMMAND_READY) {
638		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
639			sc->aifflags |= AAC_AIFFLAGS_AIF;
640		} else {
641			/*
642			 * XXX If the kthread is dead and we're at this point,
643			 * there are bigger problems than just figuring out
644			 * what to do with an AIF.
645			 */
646		}
647
648	}
649
650	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
651		/* XXX Should this be done with cv_signal? */
652		wakeup(sc->aifthread);
653}
654
655/*
656 * Command Processing
657 */
658
659/*
660 * Start as much queued I/O as possible on the controller
661 */
662void
663aac_startio(struct aac_softc *sc)
664{
665	struct aac_command *cm;
666
667	debug_called(2);
668
669	for (;;) {
670		/*
671		 * Try to get a command that's been put off for lack of
672		 * resources
673		 */
674		cm = aac_dequeue_ready(sc);
675
676		/*
677		 * Try to build a command off the bio queue (ignore error
678		 * return)
679		 */
680		if (cm == NULL)
681			aac_bio_command(sc, &cm);
682
683		/* nothing to do? */
684		if (cm == NULL)
685			break;
686
687		/* try to give the command to the controller */
688		if (aac_start(cm) == EBUSY) {
689			/* put it on the ready queue for later */
690			aac_requeue_ready(cm);
691			break;
692		}
693	}
694}
695
696/*
697 * Deliver a command to the controller; allocate controller resources at the
698 * last moment when possible.
699 */
700static int
701aac_start(struct aac_command *cm)
702{
703	struct aac_softc *sc;
704	int error;
705
706	debug_called(2);
707
708	sc = cm->cm_sc;
709
710	/* get the command mapped */
711	aac_map_command(cm);
712
713	/* fix up the address values in the FIB */
714	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
715	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
716
717	/* save a pointer to the command for speedy reverse-lookup */
718	cm->cm_fib->Header.SenderData = cm->cm_index;
719	/* put the FIB on the outbound queue */
720	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
721	return(error);
722}
723
724/*
725 * Handle notification of one or more FIBs coming from the controller.
726 */
727static void
728aac_command_thread(struct aac_softc *sc)
729{
730	struct aac_fib *fib;
731	u_int32_t fib_size;
732	int size;
733
734	debug_called(2);
735
736	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
737
738	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
739		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
740			tsleep(sc->aifthread, PRIBIO, "aifthd",
741			       AAC_PERIODIC_INTERVAL * hz);
742
743		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
744			aac_timeout(sc);
745
746		/* Check the hardware printf message buffer */
747		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
748			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
749			aac_print_printf(sc);
750		}
751
752		/* See if any FIBs need to be allocated */
753		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
754			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
755			aac_alloc_commands(sc);
756			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
757			AAC_LOCK_RELEASE(&sc->aac_io_lock);
758		}
759
760		/* While we're here, check to see if any commands are stuck */
761		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
762			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
763					    &fib_size, &fib)) {
764				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
765				break;	/* nothing to do */
766			}
767
768			AAC_PRINT_FIB(sc, fib);
769
770			switch (fib->Header.Command) {
771			case AifRequest:
772				aac_handle_aif(sc, fib);
773				break;
774			default:
775				device_printf(sc->aac_dev, "unknown command "
776					      "from controller\n");
777				break;
778			}
779
780			if ((fib->Header.XferState == 0) ||
781			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
782				break;
783
784			/* Return the AIF to the controller. */
785			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
786				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
787				*(AAC_FSAStatus*)fib->data = ST_OK;
788
789				/* XXX Compute the Size field? */
790				size = fib->Header.Size;
791				if (size > sizeof(struct aac_fib)) {
792					size = sizeof(struct aac_fib);
793					fib->Header.Size = size;
794				}
795				/*
796				 * Since we did not generate this command, it
797				 * cannot go through the normal
798				 * enqueue->startio chain.
799				 */
800				aac_enqueue_response(sc,
801						     AAC_ADAP_NORM_RESP_QUEUE,
802						     fib);
803			}
804		}
805	}
806	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
807	wakeup(sc->aac_dev);
808
809	mtx_lock(&Giant);
810	kthread_exit(0);
811}
812
813/*
814 * Process completed commands.
815 */
816static void
817aac_complete(void *context, int pending)
818{
819	struct aac_softc *sc;
820	struct aac_command *cm;
821	struct aac_fib *fib;
822	u_int32_t fib_size;
823
824	debug_called(2);
825
826	sc = (struct aac_softc *)context;
827
828	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
829
830	/* pull completed commands off the queue */
831	for (;;) {
832		/* look for completed FIBs on our queue */
833		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
834				    &fib))
835			break;	/* nothing to do */
836
837		/* get the command, unmap and queue for later processing */
838		cm = sc->aac_commands + fib->Header.SenderData;
839		if (cm == NULL) {
840			AAC_PRINT_FIB(sc, fib);
841			break;
842		}
843
844		aac_remove_busy(cm);
845		aac_unmap_command(cm);		/* XXX defer? */
846		cm->cm_flags |= AAC_CMD_COMPLETED;
847
848		/* is there a completion handler? */
849		if (cm->cm_complete != NULL) {
850			cm->cm_complete(cm);
851		} else {
852			/* assume that someone is sleeping on this command */
853			wakeup(cm);
854		}
855	}
856
857	/* see if we can start some more I/O */
858	aac_startio(sc);
859
860	AAC_LOCK_RELEASE(&sc->aac_io_lock);
861}
862
863/*
864 * Handle a bio submitted from a disk device.
865 */
866void
867aac_submit_bio(struct bio *bp)
868{
869	struct aac_disk *ad;
870	struct aac_softc *sc;
871
872	debug_called(2);
873
874	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
875	sc = ad->ad_controller;
876
877	/* queue the BIO and try to get some work done */
878	aac_enqueue_bio(sc, bp);
879	aac_startio(sc);
880}
881
882/*
883 * Get a bio and build a command to go with it.
884 */
885static int
886aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
887{
888	struct aac_command *cm;
889	struct aac_fib *fib;
890	struct aac_blockread *br;
891	struct aac_blockwrite *bw;
892	struct aac_disk *ad;
893	struct bio *bp;
894
895	debug_called(2);
896
897	/* get the resources we will need */
898	cm = NULL;
899	if ((bp = aac_dequeue_bio(sc)) == NULL)
900		goto fail;
901	if (aac_alloc_command(sc, &cm))	/* get a command */
902		goto fail;
903
904	/* fill out the command */
905	cm->cm_data = (void *)bp->bio_data;
906	cm->cm_datalen = bp->bio_bcount;
907	cm->cm_complete = aac_bio_complete;
908	cm->cm_private = bp;
909	cm->cm_timestamp = time_second;
910	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
911
912	/* build the FIB */
913	fib = cm->cm_fib;
914	fib->Header.XferState =
915		AAC_FIBSTATE_HOSTOWNED   |
916		AAC_FIBSTATE_INITIALISED |
917		AAC_FIBSTATE_EMPTY	 |
918		AAC_FIBSTATE_FROMHOST	 |
919		AAC_FIBSTATE_REXPECTED   |
920		AAC_FIBSTATE_NORM	 |
921		AAC_FIBSTATE_ASYNC	 |
922		AAC_FIBSTATE_FAST_RESPONSE;
923	fib->Header.Command = ContainerCommand;
924	fib->Header.Size = sizeof(struct aac_fib_header);
925
926	/* build the read/write request */
927	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
928	if (bp->bio_cmd == BIO_READ) {
929		br = (struct aac_blockread *)&fib->data[0];
930		br->Command = VM_CtBlockRead;
931		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
932		br->BlockNumber = bp->bio_pblkno;
933		br->ByteCount = bp->bio_bcount;
934		fib->Header.Size += sizeof(struct aac_blockread);
935		cm->cm_sgtable = &br->SgMap;
936		cm->cm_flags |= AAC_CMD_DATAIN;
937	} else {
938		bw = (struct aac_blockwrite *)&fib->data[0];
939		bw->Command = VM_CtBlockWrite;
940		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
941		bw->BlockNumber = bp->bio_pblkno;
942		bw->ByteCount = bp->bio_bcount;
943		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
944		fib->Header.Size += sizeof(struct aac_blockwrite);
945		cm->cm_flags |= AAC_CMD_DATAOUT;
946		cm->cm_sgtable = &bw->SgMap;
947	}
948
949	*cmp = cm;
950	return(0);
951
952fail:
953	if (bp != NULL)
954		aac_enqueue_bio(sc, bp);
955	if (cm != NULL)
956		aac_release_command(cm);
957	return(ENOMEM);
958}
959
960/*
961 * Handle a bio-instigated command that has been completed.
962 */
963static void
964aac_bio_complete(struct aac_command *cm)
965{
966	struct aac_blockread_response *brr;
967	struct aac_blockwrite_response *bwr;
968	struct bio *bp;
969	AAC_FSAStatus status;
970
971	/* fetch relevant status and then release the command */
972	bp = (struct bio *)cm->cm_private;
973	if (bp->bio_cmd == BIO_READ) {
974		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
975		status = brr->Status;
976	} else {
977		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
978		status = bwr->Status;
979	}
980	aac_release_command(cm);
981
982	/* fix up the bio based on status */
983	if (status == ST_OK) {
984		bp->bio_resid = 0;
985	} else {
986		bp->bio_error = EIO;
987		bp->bio_flags |= BIO_ERROR;
988		/* pass an error string out to the disk layer */
989		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
990						    status);
991	}
992	aac_biodone(bp);
993}
994
995/*
996 * Submit a command to the controller, return when it completes.
997 * XXX This is very dangerous!  If the card has gone out to lunch, we could
998 *     be stuck here forever.  At the same time, signals are not caught
999 *     because there is a risk that a signal could wakeup the tsleep before
1000 *     the card has a chance to complete the command.  The passed in timeout
1001 *     is ignored for the same reason.  Since there is no way to cancel a
1002 *     command in progress, we should probably create a 'dead' queue where
1003 *     commands go that have been interrupted/timed-out/etc, that keeps them
1004 *     out of the free pool.  That way, if the card is just slow, it won't
1005 *     spam the memory of a command that has been recycled.
1006 */
1007static int
1008aac_wait_command(struct aac_command *cm, int timeout)
1009{
1010	struct aac_softc *sc;
1011	int error = 0;
1012
1013	debug_called(2);
1014
1015	sc = cm->cm_sc;
1016
1017	/* Put the command on the ready queue and get things going */
1018	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1019	aac_enqueue_ready(cm);
1020	aac_startio(sc);
1021	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1022		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1023	}
1024	return(error);
1025}
1026
1027/*
1028 *Command Buffer Management
1029 */
1030
1031/*
1032 * Allocate a command.
1033 */
1034int
1035aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1036{
1037	struct aac_command *cm;
1038
1039	debug_called(3);
1040
1041	if ((cm = aac_dequeue_free(sc)) == NULL) {
1042		sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1043		wakeup(sc->aifthread);
1044		return (EBUSY);
1045	}
1046
1047	*cmp = cm;
1048	return(0);
1049}
1050
1051/*
1052 * Release a command back to the freelist.
1053 */
1054void
1055aac_release_command(struct aac_command *cm)
1056{
1057	debug_called(3);
1058
1059	/* (re)initialise the command/FIB */
1060	cm->cm_sgtable = NULL;
1061	cm->cm_flags = 0;
1062	cm->cm_complete = NULL;
1063	cm->cm_private = NULL;
1064	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1065	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1066	cm->cm_fib->Header.Flags = 0;
1067	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1068
1069	/*
1070	 * These are duplicated in aac_start to cover the case where an
1071	 * intermediate stage may have destroyed them.  They're left
1072	 * initialised here for debugging purposes only.
1073	 */
1074	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1075	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1076	cm->cm_fib->Header.SenderData = 0;
1077
1078	aac_enqueue_free(cm);
1079}
1080
1081/*
1082 * Map helper for command/FIB allocation.
1083 */
1084static void
1085aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1086{
1087	uint32_t	*fibphys;
1088
1089	fibphys = (uint32_t *)arg;
1090
1091	debug_called(3);
1092
1093	*fibphys = segs[0].ds_addr;
1094}
1095
1096/*
1097 * Allocate and initialise commands/FIBs for this adapter.
1098 */
1099static int
1100aac_alloc_commands(struct aac_softc *sc)
1101{
1102	struct aac_command *cm;
1103	struct aac_fibmap *fm;
1104	uint32_t fibphys;
1105	int i, error;
1106
1107	debug_called(2);
1108
1109	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1110		return (ENOMEM);
1111
1112	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1113	if (fm == NULL)
1114		return (ENOMEM);
1115
1116	/* allocate the FIBs in DMAable memory and load them */
1117	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1118			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1119		device_printf(sc->aac_dev,
1120			      "Not enough contiguous memory available.\n");
1121		free(fm, M_AACBUF);
1122		return (ENOMEM);
1123	}
1124
1125	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1126			AAC_FIB_COUNT * sizeof(struct aac_fib),
1127			aac_map_command_helper, &fibphys, 0);
1128
1129	/* initialise constant fields in the command structure */
1130	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1131	for (i = 0; i < AAC_FIB_COUNT; i++) {
1132		cm = sc->aac_commands + sc->total_fibs;
1133		fm->aac_commands = cm;
1134		cm->cm_sc = sc;
1135		cm->cm_fib = fm->aac_fibs + i;
1136		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1137		cm->cm_index = sc->total_fibs;
1138
1139		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1140					       &cm->cm_datamap)) == 0)
1141			aac_release_command(cm);
1142		else
1143			break;
1144		sc->total_fibs++;
1145	}
1146
1147	if (i > 0) {
1148		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1149		debug(1, "total_fibs= %d\n", sc->total_fibs);
1150		return (0);
1151	}
1152
1153	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1154	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1155	free(fm, M_AACBUF);
1156	return (ENOMEM);
1157}
1158
1159/*
1160 * Free FIBs owned by this adapter.
1161 */
1162static void
1163aac_free_commands(struct aac_softc *sc)
1164{
1165	struct aac_fibmap *fm;
1166	struct aac_command *cm;
1167	int i;
1168
1169	debug_called(1);
1170
1171	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1172
1173		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1174		/*
1175		 * We check against total_fibs to handle partially
1176		 * allocated blocks.
1177		 */
1178		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1179			cm = fm->aac_commands + i;
1180			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1181		}
1182		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1183		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1184		free(fm, M_AACBUF);
1185	}
1186}
1187
1188/*
1189 * Command-mapping helper function - populate this command's s/g table.
1190 */
1191static void
1192aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193{
1194	struct aac_command *cm;
1195	struct aac_fib *fib;
1196	struct aac_sg_table *sg;
1197	int i;
1198
1199	debug_called(3);
1200
1201	cm = (struct aac_command *)arg;
1202	fib = cm->cm_fib;
1203
1204	/* find the s/g table */
1205	sg = cm->cm_sgtable;
1206
1207	/* copy into the FIB */
1208	if (sg != NULL) {
1209		sg->SgCount = nseg;
1210		for (i = 0; i < nseg; i++) {
1211			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1212			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1213		}
1214		/* update the FIB size for the s/g count */
1215		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1216	}
1217
1218}
1219
1220/*
1221 * Map a command into controller-visible space.
1222 */
1223static void
1224aac_map_command(struct aac_command *cm)
1225{
1226	struct aac_softc *sc;
1227
1228	debug_called(2);
1229
1230	sc = cm->cm_sc;
1231
1232	/* don't map more than once */
1233	if (cm->cm_flags & AAC_CMD_MAPPED)
1234		return;
1235
1236	if (cm->cm_datalen != 0) {
1237		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1238				cm->cm_data, cm->cm_datalen,
1239				aac_map_command_sg, cm, 0);
1240
1241		if (cm->cm_flags & AAC_CMD_DATAIN)
1242			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1243					BUS_DMASYNC_PREREAD);
1244		if (cm->cm_flags & AAC_CMD_DATAOUT)
1245			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1246					BUS_DMASYNC_PREWRITE);
1247	}
1248	cm->cm_flags |= AAC_CMD_MAPPED;
1249}
1250
1251/*
1252 * Unmap a command from controller-visible space.
1253 */
1254static void
1255aac_unmap_command(struct aac_command *cm)
1256{
1257	struct aac_softc *sc;
1258
1259	debug_called(2);
1260
1261	sc = cm->cm_sc;
1262
1263	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1264		return;
1265
1266	if (cm->cm_datalen != 0) {
1267		if (cm->cm_flags & AAC_CMD_DATAIN)
1268			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1269					BUS_DMASYNC_POSTREAD);
1270		if (cm->cm_flags & AAC_CMD_DATAOUT)
1271			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1272					BUS_DMASYNC_POSTWRITE);
1273
1274		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1275	}
1276	cm->cm_flags &= ~AAC_CMD_MAPPED;
1277}
1278
1279/*
1280 * Hardware Interface
1281 */
1282
1283/*
1284 * Initialise the adapter.
1285 */
1286static void
1287aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1288{
1289	struct aac_softc *sc;
1290
1291	debug_called(1);
1292
1293	sc = (struct aac_softc *)arg;
1294
1295	sc->aac_common_busaddr = segs[0].ds_addr;
1296}
1297
1298static int
1299aac_check_firmware(struct aac_softc *sc)
1300{
1301	u_int32_t major, minor, options;
1302
1303	debug_called(1);
1304
1305	/*
1306	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1307	 * firmware version 1.x are not compatible with this driver.
1308	 */
1309	if (sc->flags & AAC_FLAGS_PERC2QC) {
1310		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1311				     NULL)) {
1312			device_printf(sc->aac_dev,
1313				      "Error reading firmware version\n");
1314			return (EIO);
1315		}
1316
1317		/* These numbers are stored as ASCII! */
1318		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1319		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1320		if (major == 1) {
1321			device_printf(sc->aac_dev,
1322			    "Firmware version %d.%d is not supported.\n",
1323			    major, minor);
1324			return (EINVAL);
1325		}
1326	}
1327
1328	/*
1329	 * Retrieve the capabilities/supported options word so we know what
1330	 * work-arounds to enable.
1331	 */
1332	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1333		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1334		return (EIO);
1335	}
1336	options = AAC_GET_MAILBOX(sc, 1);
1337	sc->supported_options = options;
1338
1339	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1340	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1341		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1342	if (options & AAC_SUPPORTED_NONDASD)
1343		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1344#if 0
1345	if (options & AAC_SUPPORTED_SGMAP_HOST64 && sizeof(bus_addr_t) > 4) {
1346		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1347		sc->flags |= AAC_FLAGS_SG_64BIT;
1348	}
1349#endif
1350
1351	/* Check for broken hardware that does a lower number of commands */
1352	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1353		sc->aac_max_fibs = AAC_MAX_FIBS;
1354	else
1355		sc->aac_max_fibs = 256;
1356
1357	return (0);
1358}
1359
1360static int
1361aac_init(struct aac_softc *sc)
1362{
1363	struct aac_adapter_init	*ip;
1364	time_t then;
1365	u_int32_t code;
1366	u_int8_t *qaddr;
1367	int error;
1368
1369	debug_called(1);
1370
1371	/*
1372	 * First wait for the adapter to come ready.
1373	 */
1374	then = time_second;
1375	do {
1376		code = AAC_GET_FWSTATUS(sc);
1377		if (code & AAC_SELF_TEST_FAILED) {
1378			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1379			return(ENXIO);
1380		}
1381		if (code & AAC_KERNEL_PANIC) {
1382			device_printf(sc->aac_dev,
1383				      "FATAL: controller kernel panic\n");
1384			return(ENXIO);
1385		}
1386		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1387			device_printf(sc->aac_dev,
1388				      "FATAL: controller not coming ready, "
1389					   "status %x\n", code);
1390			return(ENXIO);
1391		}
1392	} while (!(code & AAC_UP_AND_RUNNING));
1393
1394	error = ENOMEM;
1395	/*
1396	 * Create DMA tag for mapping buffers into controller-addressable space.
1397	 */
1398	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1399			       1, 0, 			/* algnmnt, boundary */
1400			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1401			       BUS_SPACE_MAXADDR :
1402			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1403			       BUS_SPACE_MAXADDR, 	/* highaddr */
1404			       NULL, NULL, 		/* filter, filterarg */
1405			       MAXBSIZE,		/* maxsize */
1406			       AAC_MAXSGENTRIES,	/* nsegments */
1407			       MAXBSIZE,		/* maxsegsize */
1408			       BUS_DMA_ALLOCNOW,	/* flags */
1409			       &sc->aac_buffer_dmat)) {
1410		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1411		goto out;
1412	}
1413
1414	/*
1415	 * Create DMA tag for mapping FIBs into controller-addressable space..
1416	 */
1417	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1418			       1, 0, 			/* algnmnt, boundary */
1419			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1420			       BUS_SPACE_MAXADDR_32BIT :
1421			       0x7fffffff,		/* lowaddr */
1422			       BUS_SPACE_MAXADDR, 	/* highaddr */
1423			       NULL, NULL, 		/* filter, filterarg */
1424			       AAC_FIB_COUNT *
1425			       sizeof(struct aac_fib),  /* maxsize */
1426			       1,			/* nsegments */
1427			       AAC_FIB_COUNT *
1428			       sizeof(struct aac_fib),	/* maxsegsize */
1429			       BUS_DMA_ALLOCNOW,	/* flags */
1430			       &sc->aac_fib_dmat)) {
1431		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1432		goto out;
1433	}
1434
1435	/*
1436	 * Create DMA tag for the common structure and allocate it.
1437	 */
1438	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1439			       1, 0,			/* algnmnt, boundary */
1440			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1441			       BUS_SPACE_MAXADDR_32BIT :
1442			       0x7fffffff,		/* lowaddr */
1443			       BUS_SPACE_MAXADDR, 	/* highaddr */
1444			       NULL, NULL, 		/* filter, filterarg */
1445			       8192 + sizeof(struct aac_common), /* maxsize */
1446			       1,			/* nsegments */
1447			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1448			       BUS_DMA_ALLOCNOW,	/* flags */
1449			       &sc->aac_common_dmat)) {
1450		device_printf(sc->aac_dev,
1451			      "can't allocate common structure DMA tag\n");
1452		goto out;
1453	}
1454	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1455			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1456		device_printf(sc->aac_dev, "can't allocate common structure\n");
1457		goto out;
1458	}
1459
1460	/*
1461	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1462	 * below address 8192 in physical memory.
1463	 * XXX If the padding is not needed, can it be put to use instead
1464	 * of ignored?
1465	 */
1466	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1467			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1468			aac_common_map, sc, 0);
1469
1470	if (sc->aac_common_busaddr < 8192) {
1471		(uint8_t *)sc->aac_common += 8192;
1472		sc->aac_common_busaddr += 8192;
1473	}
1474	bzero(sc->aac_common, sizeof(*sc->aac_common));
1475
1476	/* Allocate some FIBs and associated command structs */
1477	TAILQ_INIT(&sc->aac_fibmap_tqh);
1478	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1479				  M_AACBUF, M_WAITOK|M_ZERO);
1480	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1481		if (aac_alloc_commands(sc) != 0)
1482			break;
1483	}
1484	if (sc->total_fibs == 0)
1485		goto out;
1486
1487	/*
1488	 * Fill in the init structure.  This tells the adapter about the
1489	 * physical location of various important shared data structures.
1490	 */
1491	ip = &sc->aac_common->ac_init;
1492	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1493	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1494
1495	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1496					 offsetof(struct aac_common, ac_fibs);
1497	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1498	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1499	ip->AdapterFibAlign = sizeof(struct aac_fib);
1500
1501	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1502				  offsetof(struct aac_common, ac_printf);
1503	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1504
1505	/* The adapter assumes that pages are 4K in size */
1506	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1507	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1508
1509	/*
1510	 * Initialise FIB queues.  Note that it appears that the layout of the
1511	 * indexes and the segmentation of the entries may be mandated by the
1512	 * adapter, which is only told about the base of the queue index fields.
1513	 *
1514	 * The initial values of the indices are assumed to inform the adapter
1515	 * of the sizes of the respective queues, and theoretically it could
1516	 * work out the entire layout of the queue structures from this.  We
1517	 * take the easy route and just lay this area out like everyone else
1518	 * does.
1519	 *
1520	 * The Linux driver uses a much more complex scheme whereby several
1521	 * header records are kept for each queue.  We use a couple of generic
1522	 * list manipulation functions which 'know' the size of each list by
1523	 * virtue of a table.
1524	 */
1525	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1526	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1527	sc->aac_queues = (struct aac_queue_table *)qaddr;
1528	ip->CommHeaderAddress = sc->aac_common_busaddr +
1529				((u_int32_t)sc->aac_queues -
1530				(u_int32_t)sc->aac_common);
1531
1532	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1533		AAC_HOST_NORM_CMD_ENTRIES;
1534	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1535		AAC_HOST_NORM_CMD_ENTRIES;
1536	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1537		AAC_HOST_HIGH_CMD_ENTRIES;
1538	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1539		AAC_HOST_HIGH_CMD_ENTRIES;
1540	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1541		AAC_ADAP_NORM_CMD_ENTRIES;
1542	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1543		AAC_ADAP_NORM_CMD_ENTRIES;
1544	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1545		AAC_ADAP_HIGH_CMD_ENTRIES;
1546	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1547		AAC_ADAP_HIGH_CMD_ENTRIES;
1548	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1549		AAC_HOST_NORM_RESP_ENTRIES;
1550	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1551		AAC_HOST_NORM_RESP_ENTRIES;
1552	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1553		AAC_HOST_HIGH_RESP_ENTRIES;
1554	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1555		AAC_HOST_HIGH_RESP_ENTRIES;
1556	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1557		AAC_ADAP_NORM_RESP_ENTRIES;
1558	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1559		AAC_ADAP_NORM_RESP_ENTRIES;
1560	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1561		AAC_ADAP_HIGH_RESP_ENTRIES;
1562	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1563		AAC_ADAP_HIGH_RESP_ENTRIES;
1564	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1565		&sc->aac_queues->qt_HostNormCmdQueue[0];
1566	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1567		&sc->aac_queues->qt_HostHighCmdQueue[0];
1568	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1569		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1570	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1571		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1572	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1573		&sc->aac_queues->qt_HostNormRespQueue[0];
1574	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1575		&sc->aac_queues->qt_HostHighRespQueue[0];
1576	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1577		&sc->aac_queues->qt_AdapNormRespQueue[0];
1578	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1579		&sc->aac_queues->qt_AdapHighRespQueue[0];
1580
1581	/*
1582	 * Do controller-type-specific initialisation
1583	 */
1584	switch (sc->aac_hwif) {
1585	case AAC_HWIF_I960RX:
1586		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1587		break;
1588	}
1589
1590	/*
1591	 * Give the init structure to the controller.
1592	 */
1593	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1594			     sc->aac_common_busaddr +
1595			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1596			     NULL)) {
1597		device_printf(sc->aac_dev,
1598			      "error establishing init structure\n");
1599		error = EIO;
1600		goto out;
1601	}
1602
1603	error = 0;
1604out:
1605	return(error);
1606}
1607
1608/*
1609 * Send a synchronous command to the controller and wait for a result.
1610 */
1611static int
1612aac_sync_command(struct aac_softc *sc, u_int32_t command,
1613		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1614		 u_int32_t *sp)
1615{
1616	time_t then;
1617	u_int32_t status;
1618
1619	debug_called(3);
1620
1621	/* populate the mailbox */
1622	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1623
1624	/* ensure the sync command doorbell flag is cleared */
1625	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1626
1627	/* then set it to signal the adapter */
1628	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1629
1630	/* spin waiting for the command to complete */
1631	then = time_second;
1632	do {
1633		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1634			debug(1, "timed out");
1635			return(EIO);
1636		}
1637	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1638
1639	/* clear the completion flag */
1640	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1641
1642	/* get the command status */
1643	status = AAC_GET_MAILBOX(sc, 0);
1644	if (sp != NULL)
1645		*sp = status;
1646	return(0);
1647}
1648
1649/*
1650 * Grab the sync fib area.
1651 */
1652int
1653aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1654{
1655
1656	/*
1657	 * If the force flag is set, the system is shutting down, or in
1658	 * trouble.  Ignore the mutex.
1659	 */
1660	if (!(flags & AAC_SYNC_LOCK_FORCE))
1661		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1662
1663	*fib = &sc->aac_common->ac_sync_fib;
1664
1665	return (1);
1666}
1667
1668/*
1669 * Release the sync fib area.
1670 */
1671void
1672aac_release_sync_fib(struct aac_softc *sc)
1673{
1674
1675	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1676}
1677
1678/*
1679 * Send a synchronous FIB to the controller and wait for a result.
1680 */
1681int
1682aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1683		 struct aac_fib *fib, u_int16_t datasize)
1684{
1685	debug_called(3);
1686
1687	if (datasize > AAC_FIB_DATASIZE)
1688		return(EINVAL);
1689
1690	/*
1691	 * Set up the sync FIB
1692	 */
1693	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1694				AAC_FIBSTATE_INITIALISED |
1695				AAC_FIBSTATE_EMPTY;
1696	fib->Header.XferState |= xferstate;
1697	fib->Header.Command = command;
1698	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1699	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1700	fib->Header.SenderSize = sizeof(struct aac_fib);
1701	fib->Header.SenderFibAddress = (u_int32_t)fib;
1702	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1703					 offsetof(struct aac_common,
1704						  ac_sync_fib);
1705
1706	/*
1707	 * Give the FIB to the controller, wait for a response.
1708	 */
1709	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1710			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1711		debug(2, "IO error");
1712		return(EIO);
1713	}
1714
1715	return (0);
1716}
1717
1718/*
1719 * Adapter-space FIB queue manipulation
1720 *
1721 * Note that the queue implementation here is a little funky; neither the PI or
1722 * CI will ever be zero.  This behaviour is a controller feature.
1723 */
1724static struct {
1725	int		size;
1726	int		notify;
1727} aac_qinfo[] = {
1728	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1729	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1730	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1731	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1732	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1733	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1734	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1735	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1736};
1737
1738/*
1739 * Atomically insert an entry into the nominated queue, returns 0 on success or
1740 * EBUSY if the queue is full.
1741 *
1742 * Note: it would be more efficient to defer notifying the controller in
1743 *	 the case where we may be inserting several entries in rapid succession,
1744 *	 but implementing this usefully may be difficult (it would involve a
1745 *	 separate queue/notify interface).
1746 */
1747static int
1748aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1749{
1750	u_int32_t pi, ci;
1751	int error;
1752	u_int32_t fib_size;
1753	u_int32_t fib_addr;
1754
1755	debug_called(3);
1756
1757	fib_size = cm->cm_fib->Header.Size;
1758	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1759
1760	/* get the producer/consumer indices */
1761	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1762	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1763
1764	/* wrap the queue? */
1765	if (pi >= aac_qinfo[queue].size)
1766		pi = 0;
1767
1768	/* check for queue full */
1769	if ((pi + 1) == ci) {
1770		error = EBUSY;
1771		goto out;
1772	}
1773
1774	/* populate queue entry */
1775	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1776	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1777
1778	/* update producer index */
1779	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1780
1781	/*
1782	 * To avoid a race with its completion interrupt, place this command on
1783	 * the busy queue prior to advertising it to the controller.
1784	 */
1785	aac_enqueue_busy(cm);
1786
1787	/* notify the adapter if we know how */
1788	if (aac_qinfo[queue].notify != 0)
1789		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1790
1791	error = 0;
1792
1793out:
1794	return(error);
1795}
1796
1797/*
1798 * Atomically remove one entry from the nominated queue, returns 0 on
1799 * success or ENOENT if the queue is empty.
1800 */
1801static int
1802aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1803		struct aac_fib **fib_addr)
1804{
1805	u_int32_t pi, ci;
1806	int error;
1807	int notify;
1808
1809	debug_called(3);
1810
1811	/* get the producer/consumer indices */
1812	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1813	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1814
1815	/* check for queue empty */
1816	if (ci == pi) {
1817		error = ENOENT;
1818		goto out;
1819	}
1820
1821	notify = 0;
1822	if (ci == pi + 1)
1823		notify++;
1824
1825	/* wrap the queue? */
1826	if (ci >= aac_qinfo[queue].size)
1827		ci = 0;
1828
1829	/* fetch the entry */
1830	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1831	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1832				       ci)->aq_fib_addr;
1833
1834	/*
1835	 * Is this a fast response? If it is, update the fib fields in
1836	 * local memory so the whole fib doesn't have to be DMA'd back up.
1837	 */
1838	if (*(uintptr_t *)fib_addr & 0x01) {
1839		*(uintptr_t *)fib_addr &= ~0x01;
1840		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1841		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1842	}
1843	/* update consumer index */
1844	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1845
1846	/* if we have made the queue un-full, notify the adapter */
1847	if (notify && (aac_qinfo[queue].notify != 0))
1848		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1849	error = 0;
1850
1851out:
1852	return(error);
1853}
1854
1855/*
1856 * Put our response to an Adapter Initialed Fib on the response queue
1857 */
1858static int
1859aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1860{
1861	u_int32_t pi, ci;
1862	int error;
1863	u_int32_t fib_size;
1864	u_int32_t fib_addr;
1865
1866	debug_called(1);
1867
1868	/* Tell the adapter where the FIB is */
1869	fib_size = fib->Header.Size;
1870	fib_addr = fib->Header.SenderFibAddress;
1871	fib->Header.ReceiverFibAddress = fib_addr;
1872
1873	/* get the producer/consumer indices */
1874	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1875	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1876
1877	/* wrap the queue? */
1878	if (pi >= aac_qinfo[queue].size)
1879		pi = 0;
1880
1881	/* check for queue full */
1882	if ((pi + 1) == ci) {
1883		error = EBUSY;
1884		goto out;
1885	}
1886
1887	/* populate queue entry */
1888	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1889	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1890
1891	/* update producer index */
1892	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1893
1894	/* notify the adapter if we know how */
1895	if (aac_qinfo[queue].notify != 0)
1896		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1897
1898	error = 0;
1899
1900out:
1901	return(error);
1902}
1903
1904/*
1905 * Check for commands that have been outstanding for a suspiciously long time,
1906 * and complain about them.
1907 */
1908static void
1909aac_timeout(struct aac_softc *sc)
1910{
1911	struct aac_command *cm;
1912	time_t deadline;
1913
1914	/*
1915	 * Traverse the busy command list, bitch about late commands once
1916	 * only.
1917	 */
1918	deadline = time_second - AAC_CMD_TIMEOUT;
1919	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1920		if ((cm->cm_timestamp  < deadline)
1921			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1922			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1923			device_printf(sc->aac_dev,
1924				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1925				      cm, (int)(time_second-cm->cm_timestamp));
1926			AAC_PRINT_FIB(sc, cm->cm_fib);
1927		}
1928	}
1929
1930	return;
1931}
1932
1933/*
1934 * Interface Function Vectors
1935 */
1936
1937/*
1938 * Read the current firmware status word.
1939 */
1940static int
1941aac_sa_get_fwstatus(struct aac_softc *sc)
1942{
1943	debug_called(3);
1944
1945	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1946}
1947
1948static int
1949aac_rx_get_fwstatus(struct aac_softc *sc)
1950{
1951	debug_called(3);
1952
1953	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1954}
1955
1956static int
1957aac_fa_get_fwstatus(struct aac_softc *sc)
1958{
1959	int val;
1960
1961	debug_called(3);
1962
1963	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1964	return (val);
1965}
1966
1967/*
1968 * Notify the controller of a change in a given queue
1969 */
1970
1971static void
1972aac_sa_qnotify(struct aac_softc *sc, int qbit)
1973{
1974	debug_called(3);
1975
1976	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1977}
1978
1979static void
1980aac_rx_qnotify(struct aac_softc *sc, int qbit)
1981{
1982	debug_called(3);
1983
1984	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1985}
1986
1987static void
1988aac_fa_qnotify(struct aac_softc *sc, int qbit)
1989{
1990	debug_called(3);
1991
1992	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1993	AAC_FA_HACK(sc);
1994}
1995
1996/*
1997 * Get the interrupt reason bits
1998 */
1999static int
2000aac_sa_get_istatus(struct aac_softc *sc)
2001{
2002	debug_called(3);
2003
2004	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2005}
2006
2007static int
2008aac_rx_get_istatus(struct aac_softc *sc)
2009{
2010	debug_called(3);
2011
2012	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2013}
2014
2015static int
2016aac_fa_get_istatus(struct aac_softc *sc)
2017{
2018	int val;
2019
2020	debug_called(3);
2021
2022	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2023	return (val);
2024}
2025
2026/*
2027 * Clear some interrupt reason bits
2028 */
2029static void
2030aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2031{
2032	debug_called(3);
2033
2034	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2035}
2036
2037static void
2038aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2039{
2040	debug_called(3);
2041
2042	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2043}
2044
2045static void
2046aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2047{
2048	debug_called(3);
2049
2050	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2051	AAC_FA_HACK(sc);
2052}
2053
2054/*
2055 * Populate the mailbox and set the command word
2056 */
2057static void
2058aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2059		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2060{
2061	debug_called(4);
2062
2063	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2064	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2065	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2066	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2067	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2068}
2069
2070static void
2071aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2072		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2073{
2074	debug_called(4);
2075
2076	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2077	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2078	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2079	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2080	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2081}
2082
2083static void
2084aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2085		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2086{
2087	debug_called(4);
2088
2089	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2090	AAC_FA_HACK(sc);
2091	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2092	AAC_FA_HACK(sc);
2093	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2094	AAC_FA_HACK(sc);
2095	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2096	AAC_FA_HACK(sc);
2097	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2098	AAC_FA_HACK(sc);
2099}
2100
2101/*
2102 * Fetch the immediate command status word
2103 */
2104static int
2105aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2106{
2107	debug_called(4);
2108
2109	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2110}
2111
2112static int
2113aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2114{
2115	debug_called(4);
2116
2117	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2118}
2119
2120static int
2121aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2122{
2123	int val;
2124
2125	debug_called(4);
2126
2127	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2128	return (val);
2129}
2130
2131/*
2132 * Set/clear interrupt masks
2133 */
2134static void
2135aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2136{
2137	debug(2, "%sable interrupts", enable ? "en" : "dis");
2138
2139	if (enable) {
2140		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2141	} else {
2142		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2143	}
2144}
2145
2146static void
2147aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2148{
2149	debug(2, "%sable interrupts", enable ? "en" : "dis");
2150
2151	if (enable) {
2152		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2153	} else {
2154		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2155	}
2156}
2157
2158static void
2159aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2160{
2161	debug(2, "%sable interrupts", enable ? "en" : "dis");
2162
2163	if (enable) {
2164		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2165		AAC_FA_HACK(sc);
2166	} else {
2167		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2168		AAC_FA_HACK(sc);
2169	}
2170}
2171
2172/*
2173 * Debugging and Diagnostics
2174 */
2175
2176/*
2177 * Print some information about the controller.
2178 */
2179static void
2180aac_describe_controller(struct aac_softc *sc)
2181{
2182	struct aac_fib *fib;
2183	struct aac_adapter_info	*info;
2184
2185	debug_called(2);
2186
2187	aac_alloc_sync_fib(sc, &fib, 0);
2188
2189	fib->data[0] = 0;
2190	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2191		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2192		aac_release_sync_fib(sc);
2193		return;
2194	}
2195	info = (struct aac_adapter_info *)&fib->data[0];
2196
2197	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2198		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2199		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2200		      aac_describe_code(aac_battery_platform,
2201					info->batteryPlatform));
2202
2203	/* save the kernel revision structure for later use */
2204	sc->aac_revision = info->KernelRevision;
2205	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2206		      info->KernelRevision.external.comp.major,
2207		      info->KernelRevision.external.comp.minor,
2208		      info->KernelRevision.external.comp.dash,
2209		      info->KernelRevision.buildNumber,
2210		      (u_int32_t)(info->SerialNumber & 0xffffff));
2211
2212	aac_release_sync_fib(sc);
2213
2214	if (1 || bootverbose) {
2215		device_printf(sc->aac_dev, "Supported Options=%b\n",
2216			      sc->supported_options,
2217			      "\20"
2218			      "\1SNAPSHOT"
2219			      "\2CLUSTERS"
2220			      "\3WCACHE"
2221			      "\4DATA64"
2222			      "\5HOSTTIME"
2223			      "\6RAID50"
2224			      "\7WINDOW4GB"
2225			      "\10SCSIUPGD"
2226			      "\11SOFTERR"
2227			      "\12NORECOND"
2228			      "\13SGMAP64"
2229			      "\14ALARM"
2230			      "\15NONDASD");
2231	}
2232}
2233
2234/*
2235 * Look up a text description of a numeric error code and return a pointer to
2236 * same.
2237 */
2238static char *
2239aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2240{
2241	int i;
2242
2243	for (i = 0; table[i].string != NULL; i++)
2244		if (table[i].code == code)
2245			return(table[i].string);
2246	return(table[i + 1].string);
2247}
2248
2249/*
2250 * Management Interface
2251 */
2252
2253static int
2254aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2255{
2256	struct aac_softc *sc;
2257
2258	debug_called(2);
2259
2260	sc = dev->si_drv1;
2261
2262	/* Check to make sure the device isn't already open */
2263	if (sc->aac_state & AAC_STATE_OPEN) {
2264		return EBUSY;
2265	}
2266	sc->aac_state |= AAC_STATE_OPEN;
2267
2268	return 0;
2269}
2270
2271static int
2272aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2273{
2274	struct aac_softc *sc;
2275
2276	debug_called(2);
2277
2278	sc = dev->si_drv1;
2279
2280	/* Mark this unit as no longer open  */
2281	sc->aac_state &= ~AAC_STATE_OPEN;
2282
2283	return 0;
2284}
2285
2286static int
2287aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2288{
2289	union aac_statrequest *as;
2290	struct aac_softc *sc;
2291	int error = 0;
2292	int i;
2293
2294	debug_called(2);
2295
2296	as = (union aac_statrequest *)arg;
2297	sc = dev->si_drv1;
2298
2299	switch (cmd) {
2300	case AACIO_STATS:
2301		switch (as->as_item) {
2302		case AACQ_FREE:
2303		case AACQ_BIO:
2304		case AACQ_READY:
2305		case AACQ_BUSY:
2306		case AACQ_COMPLETE:
2307			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2308			      sizeof(struct aac_qstat));
2309			break;
2310		default:
2311			error = ENOENT;
2312			break;
2313		}
2314	break;
2315
2316	case FSACTL_SENDFIB:
2317		arg = *(caddr_t*)arg;
2318	case FSACTL_LNX_SENDFIB:
2319		debug(1, "FSACTL_SENDFIB");
2320		error = aac_ioctl_sendfib(sc, arg);
2321		break;
2322	case FSACTL_AIF_THREAD:
2323	case FSACTL_LNX_AIF_THREAD:
2324		debug(1, "FSACTL_AIF_THREAD");
2325		error = EINVAL;
2326		break;
2327	case FSACTL_OPEN_GET_ADAPTER_FIB:
2328		arg = *(caddr_t*)arg;
2329	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2330		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2331		/*
2332		 * Pass the caller out an AdapterFibContext.
2333		 *
2334		 * Note that because we only support one opener, we
2335		 * basically ignore this.  Set the caller's context to a magic
2336		 * number just in case.
2337		 *
2338		 * The Linux code hands the driver a pointer into kernel space,
2339		 * and then trusts it when the caller hands it back.  Aiee!
2340		 * Here, we give it the proc pointer of the per-adapter aif
2341		 * thread. It's only used as a sanity check in other calls.
2342		 */
2343		i = (int)sc->aifthread;
2344		error = copyout(&i, arg, sizeof(i));
2345		break;
2346	case FSACTL_GET_NEXT_ADAPTER_FIB:
2347		arg = *(caddr_t*)arg;
2348	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2349		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2350		error = aac_getnext_aif(sc, arg);
2351		break;
2352	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2353	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2354		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2355		/* don't do anything here */
2356		break;
2357	case FSACTL_MINIPORT_REV_CHECK:
2358		arg = *(caddr_t*)arg;
2359	case FSACTL_LNX_MINIPORT_REV_CHECK:
2360		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2361		error = aac_rev_check(sc, arg);
2362		break;
2363	case FSACTL_QUERY_DISK:
2364		arg = *(caddr_t*)arg;
2365	case FSACTL_LNX_QUERY_DISK:
2366		debug(1, "FSACTL_QUERY_DISK");
2367		error = aac_query_disk(sc, arg);
2368			break;
2369	case FSACTL_DELETE_DISK:
2370	case FSACTL_LNX_DELETE_DISK:
2371		/*
2372		 * We don't trust the underland to tell us when to delete a
2373		 * container, rather we rely on an AIF coming from the
2374		 * controller
2375		 */
2376		error = 0;
2377		break;
2378	default:
2379		debug(1, "unsupported cmd 0x%lx\n", cmd);
2380		error = EINVAL;
2381		break;
2382	}
2383	return(error);
2384}
2385
2386static int
2387aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2388{
2389	struct aac_softc *sc;
2390	int revents;
2391
2392	sc = dev->si_drv1;
2393	revents = 0;
2394
2395	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2396	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2397		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2398			revents |= poll_events & (POLLIN | POLLRDNORM);
2399	}
2400	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2401
2402	if (revents == 0) {
2403		if (poll_events & (POLLIN | POLLRDNORM))
2404			selrecord(td, &sc->rcv_select);
2405	}
2406
2407	return (revents);
2408}
2409
2410/*
2411 * Send a FIB supplied from userspace
2412 */
2413static int
2414aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2415{
2416	struct aac_command *cm;
2417	int size, error;
2418
2419	debug_called(2);
2420
2421	cm = NULL;
2422
2423	/*
2424	 * Get a command
2425	 */
2426	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2427	if (aac_alloc_command(sc, &cm)) {
2428		error = EBUSY;
2429		goto out;
2430	}
2431
2432	/*
2433	 * Fetch the FIB header, then re-copy to get data as well.
2434	 */
2435	if ((error = copyin(ufib, cm->cm_fib,
2436			    sizeof(struct aac_fib_header))) != 0)
2437		goto out;
2438	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2439	if (size > sizeof(struct aac_fib)) {
2440		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2441			      size, sizeof(struct aac_fib));
2442		size = sizeof(struct aac_fib);
2443	}
2444	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2445		goto out;
2446	cm->cm_fib->Header.Size = size;
2447	cm->cm_timestamp = time_second;
2448
2449	/*
2450	 * Pass the FIB to the controller, wait for it to complete.
2451	 */
2452	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2453		device_printf(sc->aac_dev,
2454			      "aac_wait_command return %d\n", error);
2455		goto out;
2456	}
2457
2458	/*
2459	 * Copy the FIB and data back out to the caller.
2460	 */
2461	size = cm->cm_fib->Header.Size;
2462	if (size > sizeof(struct aac_fib)) {
2463		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2464			      size, sizeof(struct aac_fib));
2465		size = sizeof(struct aac_fib);
2466	}
2467	error = copyout(cm->cm_fib, ufib, size);
2468
2469out:
2470	if (cm != NULL) {
2471		aac_release_command(cm);
2472	}
2473
2474	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2475	return(error);
2476}
2477
2478/*
2479 * Handle an AIF sent to us by the controller; queue it for later reference.
2480 * If the queue fills up, then drop the older entries.
2481 */
2482static void
2483aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2484{
2485	struct aac_aif_command *aif;
2486	struct aac_container *co, *co_next;
2487	struct aac_mntinfo *mi;
2488	struct aac_mntinforesp *mir = NULL;
2489	u_int16_t rsize;
2490	int next, found;
2491	int added = 0, i = 0;
2492
2493	debug_called(2);
2494
2495	aif = (struct aac_aif_command*)&fib->data[0];
2496	aac_print_aif(sc, aif);
2497
2498	/* Is it an event that we should care about? */
2499	switch (aif->command) {
2500	case AifCmdEventNotify:
2501		switch (aif->data.EN.type) {
2502		case AifEnAddContainer:
2503		case AifEnDeleteContainer:
2504			/*
2505			 * A container was added or deleted, but the message
2506			 * doesn't tell us anything else!  Re-enumerate the
2507			 * containers and sort things out.
2508			 */
2509			aac_alloc_sync_fib(sc, &fib, 0);
2510			mi = (struct aac_mntinfo *)&fib->data[0];
2511			do {
2512				/*
2513				 * Ask the controller for its containers one at
2514				 * a time.
2515				 * XXX What if the controller's list changes
2516				 * midway through this enumaration?
2517				 * XXX This should be done async.
2518				 */
2519				bzero(mi, sizeof(struct aac_mntinfo));
2520				mi->Command = VM_NameServe;
2521				mi->MntType = FT_FILESYS;
2522				mi->MntCount = i;
2523				rsize = sizeof(mir);
2524				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2525						 sizeof(struct aac_mntinfo))) {
2526					debug(2, "Error probing container %d\n",
2527					      i);
2528					continue;
2529				}
2530				mir = (struct aac_mntinforesp *)&fib->data[0];
2531				/*
2532				 * Check the container against our list.
2533				 * co->co_found was already set to 0 in a
2534				 * previous run.
2535				 */
2536				if ((mir->Status == ST_OK) &&
2537				    (mir->MntTable[0].VolType != CT_NONE)) {
2538					found = 0;
2539					TAILQ_FOREACH(co,
2540						      &sc->aac_container_tqh,
2541						      co_link) {
2542						if (co->co_mntobj.ObjectId ==
2543						    mir->MntTable[0].ObjectId) {
2544							co->co_found = 1;
2545							found = 1;
2546							break;
2547						}
2548					}
2549					/*
2550					 * If the container matched, continue
2551					 * in the list.
2552					 */
2553					if (found) {
2554						i++;
2555						continue;
2556					}
2557
2558					/*
2559					 * This is a new container.  Do all the
2560					 * appropriate things to set it up.
2561					 */
2562					aac_add_container(sc, mir, 1);
2563					added = 1;
2564				}
2565				i++;
2566			} while ((i < mir->MntRespCount) &&
2567				 (i < AAC_MAX_CONTAINERS));
2568			aac_release_sync_fib(sc);
2569
2570			/*
2571			 * Go through our list of containers and see which ones
2572			 * were not marked 'found'.  Since the controller didn't
2573			 * list them they must have been deleted.  Do the
2574			 * appropriate steps to destroy the device.  Also reset
2575			 * the co->co_found field.
2576			 */
2577			co = TAILQ_FIRST(&sc->aac_container_tqh);
2578			while (co != NULL) {
2579				if (co->co_found == 0) {
2580					device_delete_child(sc->aac_dev,
2581							    co->co_disk);
2582					co_next = TAILQ_NEXT(co, co_link);
2583					AAC_LOCK_ACQUIRE(&sc->
2584							aac_container_lock);
2585					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2586						     co_link);
2587					AAC_LOCK_RELEASE(&sc->
2588							 aac_container_lock);
2589					FREE(co, M_AACBUF);
2590					co = co_next;
2591				} else {
2592					co->co_found = 0;
2593					co = TAILQ_NEXT(co, co_link);
2594				}
2595			}
2596
2597			/* Attach the newly created containers */
2598			if (added)
2599				bus_generic_attach(sc->aac_dev);
2600
2601			break;
2602
2603		default:
2604			break;
2605		}
2606
2607	default:
2608		break;
2609	}
2610
2611	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2612	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2613	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2614	if (next != sc->aac_aifq_tail) {
2615		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2616		sc->aac_aifq_head = next;
2617
2618		/* On the off chance that someone is sleeping for an aif... */
2619		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2620			wakeup(sc->aac_aifq);
2621		/* Wakeup any poll()ers */
2622		selwakeup(&sc->rcv_select);
2623	}
2624	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2625
2626	return;
2627}
2628
2629/*
2630 * Return the Revision of the driver to userspace and check to see if the
2631 * userspace app is possibly compatible.  This is extremely bogus since
2632 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2633 * returning what the card reported.
2634 */
2635static int
2636aac_rev_check(struct aac_softc *sc, caddr_t udata)
2637{
2638	struct aac_rev_check rev_check;
2639	struct aac_rev_check_resp rev_check_resp;
2640	int error = 0;
2641
2642	debug_called(2);
2643
2644	/*
2645	 * Copyin the revision struct from userspace
2646	 */
2647	if ((error = copyin(udata, (caddr_t)&rev_check,
2648			sizeof(struct aac_rev_check))) != 0) {
2649		return error;
2650	}
2651
2652	debug(2, "Userland revision= %d\n",
2653	      rev_check.callingRevision.buildNumber);
2654
2655	/*
2656	 * Doctor up the response struct.
2657	 */
2658	rev_check_resp.possiblyCompatible = 1;
2659	rev_check_resp.adapterSWRevision.external.ul =
2660	    sc->aac_revision.external.ul;
2661	rev_check_resp.adapterSWRevision.buildNumber =
2662	    sc->aac_revision.buildNumber;
2663
2664	return(copyout((caddr_t)&rev_check_resp, udata,
2665			sizeof(struct aac_rev_check_resp)));
2666}
2667
2668/*
2669 * Pass the caller the next AIF in their queue
2670 */
2671static int
2672aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2673{
2674	struct get_adapter_fib_ioctl agf;
2675	int error;
2676
2677	debug_called(2);
2678
2679	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2680
2681		/*
2682		 * Check the magic number that we gave the caller.
2683		 */
2684		if (agf.AdapterFibContext != (int)sc->aifthread) {
2685			error = EFAULT;
2686		} else {
2687			error = aac_return_aif(sc, agf.AifFib);
2688			if ((error == EAGAIN) && (agf.Wait)) {
2689				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2690				while (error == EAGAIN) {
2691					error = tsleep(sc->aac_aifq, PRIBIO |
2692						       PCATCH, "aacaif", 0);
2693					if (error == 0)
2694						error = aac_return_aif(sc,
2695						    agf.AifFib);
2696				}
2697				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2698			}
2699		}
2700	}
2701	return(error);
2702}
2703
2704/*
2705 * Hand the next AIF off the top of the queue out to userspace.
2706 */
2707static int
2708aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2709{
2710	int error;
2711
2712	debug_called(2);
2713
2714	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2715	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2716		error = EAGAIN;
2717	} else {
2718		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2719				sizeof(struct aac_aif_command));
2720		if (error)
2721			device_printf(sc->aac_dev,
2722			    "aac_return_aif: copyout returned %d\n", error);
2723		if (!error)
2724			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2725					    AAC_AIFQ_LENGTH;
2726	}
2727	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2728	return(error);
2729}
2730
2731/*
2732 * Give the userland some information about the container.  The AAC arch
2733 * expects the driver to be a SCSI passthrough type driver, so it expects
2734 * the containers to have b:t:l numbers.  Fake it.
2735 */
2736static int
2737aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2738{
2739	struct aac_query_disk query_disk;
2740	struct aac_container *co;
2741	struct aac_disk	*disk;
2742	int error, id;
2743
2744	debug_called(2);
2745
2746	disk = NULL;
2747
2748	error = copyin(uptr, (caddr_t)&query_disk,
2749		       sizeof(struct aac_query_disk));
2750	if (error)
2751		return (error);
2752
2753	id = query_disk.ContainerNumber;
2754	if (id == -1)
2755		return (EINVAL);
2756
2757	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2758	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2759		if (co->co_mntobj.ObjectId == id)
2760			break;
2761		}
2762
2763	if (co == NULL) {
2764			query_disk.Valid = 0;
2765			query_disk.Locked = 0;
2766			query_disk.Deleted = 1;		/* XXX is this right? */
2767	} else {
2768		disk = device_get_softc(co->co_disk);
2769		query_disk.Valid = 1;
2770		query_disk.Locked =
2771		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2772		query_disk.Deleted = 0;
2773		query_disk.Bus = device_get_unit(sc->aac_dev);
2774		query_disk.Target = disk->unit;
2775		query_disk.Lun = 0;
2776		query_disk.UnMapped = 0;
2777		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2778		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2779	}
2780	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2781
2782	error = copyout((caddr_t)&query_disk, uptr,
2783			sizeof(struct aac_query_disk));
2784
2785	return (error);
2786}
2787
2788static void
2789aac_get_bus_info(struct aac_softc *sc)
2790{
2791	struct aac_fib *fib;
2792	struct aac_ctcfg *c_cmd;
2793	struct aac_ctcfg_resp *c_resp;
2794	struct aac_vmioctl *vmi;
2795	struct aac_vmi_businf_resp *vmi_resp;
2796	struct aac_getbusinf businfo;
2797	struct aac_sim *caminf;
2798	device_t child;
2799	int i, found, error;
2800
2801	aac_alloc_sync_fib(sc, &fib, 0);
2802	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2803	bzero(c_cmd, sizeof(struct aac_ctcfg));
2804
2805	c_cmd->Command = VM_ContainerConfig;
2806	c_cmd->cmd = CT_GET_SCSI_METHOD;
2807	c_cmd->param = 0;
2808
2809	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2810	    sizeof(struct aac_ctcfg));
2811	if (error) {
2812		device_printf(sc->aac_dev, "Error %d sending "
2813		    "VM_ContainerConfig command\n", error);
2814		aac_release_sync_fib(sc);
2815		return;
2816	}
2817
2818	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2819	if (c_resp->Status != ST_OK) {
2820		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2821		    c_resp->Status);
2822		aac_release_sync_fib(sc);
2823		return;
2824	}
2825
2826	sc->scsi_method_id = c_resp->param;
2827
2828	vmi = (struct aac_vmioctl *)&fib->data[0];
2829	bzero(vmi, sizeof(struct aac_vmioctl));
2830
2831	vmi->Command = VM_Ioctl;
2832	vmi->ObjType = FT_DRIVE;
2833	vmi->MethId = sc->scsi_method_id;
2834	vmi->ObjId = 0;
2835	vmi->IoctlCmd = GetBusInfo;
2836
2837	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2838	    sizeof(struct aac_vmioctl));
2839	if (error) {
2840		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2841		    error);
2842		aac_release_sync_fib(sc);
2843		return;
2844	}
2845
2846	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2847	if (vmi_resp->Status != ST_OK) {
2848		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2849		    vmi_resp->Status);
2850		aac_release_sync_fib(sc);
2851		return;
2852	}
2853
2854	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2855	aac_release_sync_fib(sc);
2856
2857	found = 0;
2858	for (i = 0; i < businfo.BusCount; i++) {
2859		if (businfo.BusValid[i] != AAC_BUS_VALID)
2860			continue;
2861
2862		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2863		    M_AACBUF, M_NOWAIT | M_ZERO);
2864		if (caminf == NULL)
2865			continue;
2866
2867		child = device_add_child(sc->aac_dev, "aacp", -1);
2868		if (child == NULL) {
2869			device_printf(sc->aac_dev, "device_add_child failed\n");
2870			continue;
2871		}
2872
2873		caminf->TargetsPerBus = businfo.TargetsPerBus;
2874		caminf->BusNumber = i;
2875		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2876		caminf->aac_sc = sc;
2877		caminf->sim_dev = child;
2878
2879		device_set_ivars(child, caminf);
2880		device_set_desc(child, "SCSI Passthrough Bus");
2881		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2882
2883		found = 1;
2884	}
2885
2886	if (found)
2887		bus_generic_attach(sc->aac_dev);
2888
2889	return;
2890}
2891