aac.c revision 111815
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 111815 2003-03-03 12:15:54Z phk $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/sysctl.h>
45#include <sys/poll.h>
46
47#include <sys/bus.h>
48#include <sys/conf.h>
49#include <sys/devicestat.h>
50#include <sys/disk.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static int	aac_start(struct aac_command *cm);
72static void	aac_complete(void *context, int pending);
73static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74static void	aac_bio_complete(struct aac_command *cm);
75static int	aac_wait_command(struct aac_command *cm, int timeout);
76static void	aac_command_thread(struct aac_softc *sc);
77
78/* Command Buffer Management */
79static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
80				       int nseg, int error);
81static int	aac_alloc_commands(struct aac_softc *sc);
82static void	aac_free_commands(struct aac_softc *sc);
83static void	aac_map_command(struct aac_command *cm);
84static void	aac_unmap_command(struct aac_command *cm);
85
86/* Hardware Interface */
87static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88			       int error);
89static int	aac_check_firmware(struct aac_softc *sc);
90static int	aac_init(struct aac_softc *sc);
91static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93				 u_int32_t arg3, u_int32_t *sp);
94static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95				struct aac_command *cm);
96static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97				u_int32_t *fib_size, struct aac_fib **fib_addr);
98static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99				     struct aac_fib *fib);
100
101/* Falcon/PPC interface */
102static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104static int	aac_fa_get_istatus(struct aac_softc *sc);
105static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107				   u_int32_t arg0, u_int32_t arg1,
108				   u_int32_t arg2, u_int32_t arg3);
109static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
110static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111
112struct aac_interface aac_fa_interface = {
113	aac_fa_get_fwstatus,
114	aac_fa_qnotify,
115	aac_fa_get_istatus,
116	aac_fa_clear_istatus,
117	aac_fa_set_mailbox,
118	aac_fa_get_mailboxstatus,
119	aac_fa_set_interrupts
120};
121
122/* StrongARM interface */
123static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125static int	aac_sa_get_istatus(struct aac_softc *sc);
126static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128				   u_int32_t arg0, u_int32_t arg1,
129				   u_int32_t arg2, u_int32_t arg3);
130static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
131static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132
133struct aac_interface aac_sa_interface = {
134	aac_sa_get_fwstatus,
135	aac_sa_qnotify,
136	aac_sa_get_istatus,
137	aac_sa_clear_istatus,
138	aac_sa_set_mailbox,
139	aac_sa_get_mailboxstatus,
140	aac_sa_set_interrupts
141};
142
143/* i960Rx interface */
144static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146static int	aac_rx_get_istatus(struct aac_softc *sc);
147static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149				   u_int32_t arg0, u_int32_t arg1,
150				   u_int32_t arg2, u_int32_t arg3);
151static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
152static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153
154struct aac_interface aac_rx_interface = {
155	aac_rx_get_fwstatus,
156	aac_rx_qnotify,
157	aac_rx_get_istatus,
158	aac_rx_clear_istatus,
159	aac_rx_set_mailbox,
160	aac_rx_get_mailboxstatus,
161	aac_rx_set_interrupts
162};
163
164/* Debugging and Diagnostics */
165static void	aac_describe_controller(struct aac_softc *sc);
166static char	*aac_describe_code(struct aac_code_lookup *table,
167				   u_int32_t code);
168
169/* Management Interface */
170static d_open_t		aac_open;
171static d_close_t	aac_close;
172static d_ioctl_t	aac_ioctl;
173static d_poll_t		aac_poll;
174static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
175static void		aac_handle_aif(struct aac_softc *sc,
176					   struct aac_fib *fib);
177static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
178static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
179static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
180static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
181
182#define AAC_CDEV_MAJOR	150
183
184static struct cdevsw aac_cdevsw = {
185	.d_open =	aac_open,
186	.d_close =	aac_close,
187	.d_ioctl =	aac_ioctl,
188	.d_poll =	aac_poll,
189	.d_name =	"aac",
190	.d_maj =	AAC_CDEV_MAJOR,
191};
192
193MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
194
195/* sysctl node */
196SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
197
198/*
199 * Device Interface
200 */
201
202/*
203 * Initialise the controller and softc
204 */
205int
206aac_attach(struct aac_softc *sc)
207{
208	int error, unit;
209
210	debug_called(1);
211
212	/*
213	 * Initialise per-controller queues.
214	 */
215	aac_initq_free(sc);
216	aac_initq_ready(sc);
217	aac_initq_busy(sc);
218	aac_initq_bio(sc);
219
220	/*
221	 * Initialise command-completion task.
222	 */
223	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
224
225	/* disable interrupts before we enable anything */
226	AAC_MASK_INTERRUPTS(sc);
227
228	/* mark controller as suspended until we get ourselves organised */
229	sc->aac_state |= AAC_STATE_SUSPEND;
230
231	/*
232	 * Check that the firmware on the card is supported.
233	 */
234	if ((error = aac_check_firmware(sc)) != 0)
235		return(error);
236
237	/* Init the sync fib lock */
238	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
239
240	/*
241	 * Initialise the adapter.
242	 */
243	if ((error = aac_init(sc)) != 0)
244		return(error);
245
246	/*
247	 * Print a little information about the controller.
248	 */
249	aac_describe_controller(sc);
250
251	/*
252	 * Initialize locks
253	 */
254	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
255	TAILQ_INIT(&sc->aac_container_tqh);
256	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
257	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
258
259	/*
260	 * Register to probe our containers later.
261	 */
262	sc->aac_ich.ich_func = aac_startup;
263	sc->aac_ich.ich_arg = sc;
264	if (config_intrhook_establish(&sc->aac_ich) != 0) {
265		device_printf(sc->aac_dev,
266			      "can't establish configuration hook\n");
267		return(ENXIO);
268	}
269
270	/*
271	 * Make the control device.
272	 */
273	unit = device_get_unit(sc->aac_dev);
274	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
275				 0640, "aac%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
277	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
278	sc->aac_dev_t->si_drv1 = sc;
279
280	/* Create the AIF thread */
281	if (kthread_create((void(*)(void *))aac_command_thread, sc,
282			   &sc->aifthread, 0, 0, "aac%daif", unit))
283		panic("Could not create AIF thread\n");
284
285	/* Register the shutdown method to only be called post-dump */
286	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
287	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
288		device_printf(sc->aac_dev,
289			      "shutdown event registration failed\n");
290
291	/* Register with CAM for the non-DASD devices */
292	if (!(sc->quirks & AAC_QUIRK_NOCAM)) {
293		TAILQ_INIT(&sc->aac_sim_tqh);
294		aac_get_bus_info(sc);
295	}
296
297	return(0);
298}
299
300/*
301 * Probe for containers, create disks.
302 */
303static void
304aac_startup(void *arg)
305{
306	struct aac_softc *sc;
307	struct aac_fib *fib;
308	struct aac_mntinfo *mi;
309	struct aac_mntinforesp *mir = NULL;
310	int i = 0;
311
312	debug_called(1);
313
314	sc = (struct aac_softc *)arg;
315
316	/* disconnect ourselves from the intrhook chain */
317	config_intrhook_disestablish(&sc->aac_ich);
318
319	aac_alloc_sync_fib(sc, &fib, 0);
320	mi = (struct aac_mntinfo *)&fib->data[0];
321
322	/* loop over possible containers */
323	do {
324		/* request information on this container */
325		bzero(mi, sizeof(struct aac_mntinfo));
326		mi->Command = VM_NameServe;
327		mi->MntType = FT_FILESYS;
328		mi->MntCount = i;
329		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
330				 sizeof(struct aac_mntinfo))) {
331			debug(2, "error probing container %d", i);
332			continue;
333		}
334
335		mir = (struct aac_mntinforesp *)&fib->data[0];
336		aac_add_container(sc, mir, 0);
337		i++;
338	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
339
340	aac_release_sync_fib(sc);
341
342	/* poke the bus to actually attach the child devices */
343	if (bus_generic_attach(sc->aac_dev))
344		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
345
346	/* mark the controller up */
347	sc->aac_state &= ~AAC_STATE_SUSPEND;
348
349	/* enable interrupts now */
350	AAC_UNMASK_INTERRUPTS(sc);
351}
352
353/*
354 * Create a device to respresent a new container
355 */
356static void
357aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
358{
359	struct aac_container *co;
360	device_t child;
361
362	/*
363	 * Check container volume type for validity.  Note that many of
364	 * the possible types may never show up.
365	 */
366	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
367		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
368		       M_NOWAIT | M_ZERO);
369		if (co == NULL)
370			panic("Out of memory?!\n");
371		debug(1, "id %x  name '%.16s'  size %u  type %d",
372		      mir->MntTable[0].ObjectId,
373		      mir->MntTable[0].FileSystemName,
374		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
375
376		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
377			device_printf(sc->aac_dev, "device_add_child failed\n");
378		else
379			device_set_ivars(child, co);
380		device_set_desc(child, aac_describe_code(aac_container_types,
381				mir->MntTable[0].VolType));
382		co->co_disk = child;
383		co->co_found = f;
384		bcopy(&mir->MntTable[0], &co->co_mntobj,
385		      sizeof(struct aac_mntobj));
386		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
387		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
388		AAC_LOCK_RELEASE(&sc->aac_container_lock);
389	}
390}
391
392/*
393 * Free all of the resources associated with (sc)
394 *
395 * Should not be called if the controller is active.
396 */
397void
398aac_free(struct aac_softc *sc)
399{
400
401	debug_called(1);
402
403	/* remove the control device */
404	if (sc->aac_dev_t != NULL)
405		destroy_dev(sc->aac_dev_t);
406
407	/* throw away any FIB buffers, discard the FIB DMA tag */
408	aac_free_commands(sc);
409	if (sc->aac_fib_dmat)
410		bus_dma_tag_destroy(sc->aac_fib_dmat);
411
412	free(sc->aac_commands, M_AACBUF);
413
414	/* destroy the common area */
415	if (sc->aac_common) {
416		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
417		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
418				sc->aac_common_dmamap);
419	}
420	if (sc->aac_common_dmat)
421		bus_dma_tag_destroy(sc->aac_common_dmat);
422
423	/* disconnect the interrupt handler */
424	if (sc->aac_intr)
425		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
426	if (sc->aac_irq != NULL)
427		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
428				     sc->aac_irq);
429
430	/* destroy data-transfer DMA tag */
431	if (sc->aac_buffer_dmat)
432		bus_dma_tag_destroy(sc->aac_buffer_dmat);
433
434	/* destroy the parent DMA tag */
435	if (sc->aac_parent_dmat)
436		bus_dma_tag_destroy(sc->aac_parent_dmat);
437
438	/* release the register window mapping */
439	if (sc->aac_regs_resource != NULL)
440		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
441				     sc->aac_regs_rid, sc->aac_regs_resource);
442}
443
444/*
445 * Disconnect from the controller completely, in preparation for unload.
446 */
447int
448aac_detach(device_t dev)
449{
450	struct aac_softc *sc;
451	struct aac_container *co;
452	struct aac_sim	*sim;
453	int error;
454
455	debug_called(1);
456
457	sc = device_get_softc(dev);
458
459	if (sc->aac_state & AAC_STATE_OPEN)
460		return(EBUSY);
461
462	/* Remove the child containers */
463	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
464		error = device_delete_child(dev, co->co_disk);
465		if (error)
466			return (error);
467		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
468		free(co, M_AACBUF);
469	}
470
471	/* Remove the CAM SIMs */
472	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
473		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
474		error = device_delete_child(dev, sim->sim_dev);
475		if (error)
476			return (error);
477		free(sim, M_AACBUF);
478	}
479
480	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
481		sc->aifflags |= AAC_AIFFLAGS_EXIT;
482		wakeup(sc->aifthread);
483		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
484	}
485
486	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
487		panic("Cannot shutdown AIF thread\n");
488
489	if ((error = aac_shutdown(dev)))
490		return(error);
491
492	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
493
494	aac_free(sc);
495
496	return(0);
497}
498
499/*
500 * Bring the controller down to a dormant state and detach all child devices.
501 *
502 * This function is called before detach or system shutdown.
503 *
504 * Note that we can assume that the bioq on the controller is empty, as we won't
505 * allow shutdown if any device is open.
506 */
507int
508aac_shutdown(device_t dev)
509{
510	struct aac_softc *sc;
511	struct aac_fib *fib;
512	struct aac_close_command *cc;
513
514	debug_called(1);
515
516	sc = device_get_softc(dev);
517
518	sc->aac_state |= AAC_STATE_SUSPEND;
519
520	/*
521	 * Send a Container shutdown followed by a HostShutdown FIB to the
522	 * controller to convince it that we don't want to talk to it anymore.
523	 * We've been closed and all I/O completed already
524	 */
525	device_printf(sc->aac_dev, "shutting down controller...");
526
527	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
528	cc = (struct aac_close_command *)&fib->data[0];
529
530	bzero(cc, sizeof(struct aac_close_command));
531	cc->Command = VM_CloseAll;
532	cc->ContainerId = 0xffffffff;
533	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
534	    sizeof(struct aac_close_command)))
535		printf("FAILED.\n");
536	else
537		printf("done\n");
538#if 0
539	else {
540		fib->data[0] = 0;
541		/*
542		 * XXX Issuing this command to the controller makes it shut down
543		 * but also keeps it from coming back up without a reset of the
544		 * PCI bus.  This is not desirable if you are just unloading the
545		 * driver module with the intent to reload it later.
546		 */
547		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
548		    fib, 1)) {
549			printf("FAILED.\n");
550		} else {
551			printf("done.\n");
552		}
553	}
554#endif
555
556	AAC_MASK_INTERRUPTS(sc);
557
558	return(0);
559}
560
561/*
562 * Bring the controller to a quiescent state, ready for system suspend.
563 */
564int
565aac_suspend(device_t dev)
566{
567	struct aac_softc *sc;
568
569	debug_called(1);
570
571	sc = device_get_softc(dev);
572
573	sc->aac_state |= AAC_STATE_SUSPEND;
574
575	AAC_MASK_INTERRUPTS(sc);
576	return(0);
577}
578
579/*
580 * Bring the controller back to a state ready for operation.
581 */
582int
583aac_resume(device_t dev)
584{
585	struct aac_softc *sc;
586
587	debug_called(1);
588
589	sc = device_get_softc(dev);
590
591	sc->aac_state &= ~AAC_STATE_SUSPEND;
592	AAC_UNMASK_INTERRUPTS(sc);
593	return(0);
594}
595
596/*
597 * Take an interrupt.
598 */
599void
600aac_intr(void *arg)
601{
602	struct aac_softc *sc;
603	u_int32_t *resp_queue;
604	u_int16_t reason;
605
606	debug_called(2);
607
608	sc = (struct aac_softc *)arg;
609
610	/*
611	 * Optimize the common case of adapter response interrupts.
612	 * We must read from the card prior to processing the responses
613	 * to ensure the clear is flushed prior to accessing the queues.
614	 * Reading the queues from local memory might save us a PCI read.
615	 */
616	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
617	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
618		reason = AAC_DB_RESPONSE_READY;
619	else
620		reason = AAC_GET_ISTATUS(sc);
621	AAC_CLEAR_ISTATUS(sc, reason);
622	(void)AAC_GET_ISTATUS(sc);
623
624	/* It's not ok to return here because of races with the previous step */
625	if (reason & AAC_DB_RESPONSE_READY)
626		/* handle completion processing */
627		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
628
629	/* controller wants to talk to the log */
630	if (reason & AAC_DB_PRINTF) {
631		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
633		} else
634			aac_print_printf(sc);
635	}
636
637	/* controller has a message for us? */
638	if (reason & AAC_DB_COMMAND_READY) {
639		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
640			sc->aifflags |= AAC_AIFFLAGS_AIF;
641		} else {
642			/*
643			 * XXX If the kthread is dead and we're at this point,
644			 * there are bigger problems than just figuring out
645			 * what to do with an AIF.
646			 */
647		}
648
649	}
650
651	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
652		/* XXX Should this be done with cv_signal? */
653		wakeup(sc->aifthread);
654}
655
656/*
657 * Command Processing
658 */
659
660/*
661 * Start as much queued I/O as possible on the controller
662 */
663void
664aac_startio(struct aac_softc *sc)
665{
666	struct aac_command *cm;
667
668	debug_called(2);
669
670	for (;;) {
671		/*
672		 * Try to get a command that's been put off for lack of
673		 * resources
674		 */
675		cm = aac_dequeue_ready(sc);
676
677		/*
678		 * Try to build a command off the bio queue (ignore error
679		 * return)
680		 */
681		if (cm == NULL)
682			aac_bio_command(sc, &cm);
683
684		/* nothing to do? */
685		if (cm == NULL)
686			break;
687
688		/* try to give the command to the controller */
689		if (aac_start(cm) == EBUSY) {
690			/* put it on the ready queue for later */
691			aac_requeue_ready(cm);
692			break;
693		}
694	}
695}
696
697/*
698 * Deliver a command to the controller; allocate controller resources at the
699 * last moment when possible.
700 */
701static int
702aac_start(struct aac_command *cm)
703{
704	struct aac_softc *sc;
705	int error;
706
707	debug_called(2);
708
709	sc = cm->cm_sc;
710
711	/* get the command mapped */
712	aac_map_command(cm);
713
714	/* fix up the address values in the FIB */
715	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
716	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
717
718	/* save a pointer to the command for speedy reverse-lookup */
719	cm->cm_fib->Header.SenderData = cm->cm_index;
720	/* put the FIB on the outbound queue */
721	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
722	return(error);
723}
724
725/*
726 * Handle notification of one or more FIBs coming from the controller.
727 */
728static void
729aac_command_thread(struct aac_softc *sc)
730{
731	struct aac_fib *fib;
732	u_int32_t fib_size;
733	int size;
734
735	debug_called(2);
736
737	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738
739	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
740		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
741			tsleep(sc->aifthread, PRIBIO, "aifthd",
742			       AAC_PERIODIC_INTERVAL * hz);
743
744		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
745			aac_timeout(sc);
746
747		/* Check the hardware printf message buffer */
748		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
749			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
750			aac_print_printf(sc);
751		}
752
753		/* See if any FIBs need to be allocated */
754		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
755			mtx_lock(&Giant);
756			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
757			aac_alloc_commands(sc);
758			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
759			AAC_LOCK_RELEASE(&sc->aac_io_lock);
760			mtx_unlock(&Giant);
761		}
762
763		/* While we're here, check to see if any commands are stuck */
764		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
765			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
766					    &fib_size, &fib)) {
767				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
768				break;	/* nothing to do */
769			}
770
771			AAC_PRINT_FIB(sc, fib);
772
773			switch (fib->Header.Command) {
774			case AifRequest:
775				aac_handle_aif(sc, fib);
776				break;
777			default:
778				device_printf(sc->aac_dev, "unknown command "
779					      "from controller\n");
780				break;
781			}
782
783			if ((fib->Header.XferState == 0) ||
784			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
785				break;
786
787			/* Return the AIF to the controller. */
788			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
789				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
790				*(AAC_FSAStatus*)fib->data = ST_OK;
791
792				/* XXX Compute the Size field? */
793				size = fib->Header.Size;
794				if (size > sizeof(struct aac_fib)) {
795					size = sizeof(struct aac_fib);
796					fib->Header.Size = size;
797				}
798				/*
799				 * Since we did not generate this command, it
800				 * cannot go through the normal
801				 * enqueue->startio chain.
802				 */
803				aac_enqueue_response(sc,
804						     AAC_ADAP_NORM_RESP_QUEUE,
805						     fib);
806			}
807		}
808	}
809	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
810	wakeup(sc->aac_dev);
811
812	mtx_lock(&Giant);
813	kthread_exit(0);
814}
815
816/*
817 * Process completed commands.
818 */
819static void
820aac_complete(void *context, int pending)
821{
822	struct aac_softc *sc;
823	struct aac_command *cm;
824	struct aac_fib *fib;
825	u_int32_t fib_size;
826
827	debug_called(2);
828
829	sc = (struct aac_softc *)context;
830
831	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
832
833	/* pull completed commands off the queue */
834	for (;;) {
835		/* look for completed FIBs on our queue */
836		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
837				    &fib))
838			break;	/* nothing to do */
839
840		/* get the command, unmap and queue for later processing */
841		cm = sc->aac_commands + fib->Header.SenderData;
842		if (cm == NULL) {
843			AAC_PRINT_FIB(sc, fib);
844			break;
845		}
846
847		aac_remove_busy(cm);
848		aac_unmap_command(cm);		/* XXX defer? */
849		cm->cm_flags |= AAC_CMD_COMPLETED;
850
851		/* is there a completion handler? */
852		if (cm->cm_complete != NULL) {
853			cm->cm_complete(cm);
854		} else {
855			/* assume that someone is sleeping on this command */
856			wakeup(cm);
857		}
858	}
859
860	/* see if we can start some more I/O */
861	aac_startio(sc);
862
863	AAC_LOCK_RELEASE(&sc->aac_io_lock);
864}
865
866/*
867 * Handle a bio submitted from a disk device.
868 */
869void
870aac_submit_bio(struct bio *bp)
871{
872	struct aac_disk *ad;
873	struct aac_softc *sc;
874
875	debug_called(2);
876
877	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
878	sc = ad->ad_controller;
879
880	/* queue the BIO and try to get some work done */
881	aac_enqueue_bio(sc, bp);
882	aac_startio(sc);
883}
884
885/*
886 * Get a bio and build a command to go with it.
887 */
888static int
889aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
890{
891	struct aac_command *cm;
892	struct aac_fib *fib;
893	struct aac_blockread *br;
894	struct aac_blockwrite *bw;
895	struct aac_disk *ad;
896	struct bio *bp;
897
898	debug_called(2);
899
900	/* get the resources we will need */
901	cm = NULL;
902	if ((bp = aac_dequeue_bio(sc)) == NULL)
903		goto fail;
904	if (aac_alloc_command(sc, &cm))	/* get a command */
905		goto fail;
906
907	/* fill out the command */
908	cm->cm_data = (void *)bp->bio_data;
909	cm->cm_datalen = bp->bio_bcount;
910	cm->cm_complete = aac_bio_complete;
911	cm->cm_private = bp;
912	cm->cm_timestamp = time_second;
913	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914
915	/* build the FIB */
916	fib = cm->cm_fib;
917	fib->Header.XferState =
918		AAC_FIBSTATE_HOSTOWNED   |
919		AAC_FIBSTATE_INITIALISED |
920		AAC_FIBSTATE_EMPTY	 |
921		AAC_FIBSTATE_FROMHOST	 |
922		AAC_FIBSTATE_REXPECTED   |
923		AAC_FIBSTATE_NORM	 |
924		AAC_FIBSTATE_ASYNC	 |
925		AAC_FIBSTATE_FAST_RESPONSE;
926	fib->Header.Command = ContainerCommand;
927	fib->Header.Size = sizeof(struct aac_fib_header);
928
929	/* build the read/write request */
930	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
931	if (bp->bio_cmd == BIO_READ) {
932		br = (struct aac_blockread *)&fib->data[0];
933		br->Command = VM_CtBlockRead;
934		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
935		br->BlockNumber = bp->bio_pblkno;
936		br->ByteCount = bp->bio_bcount;
937		fib->Header.Size += sizeof(struct aac_blockread);
938		cm->cm_sgtable = &br->SgMap;
939		cm->cm_flags |= AAC_CMD_DATAIN;
940	} else {
941		bw = (struct aac_blockwrite *)&fib->data[0];
942		bw->Command = VM_CtBlockWrite;
943		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
944		bw->BlockNumber = bp->bio_pblkno;
945		bw->ByteCount = bp->bio_bcount;
946		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
947		fib->Header.Size += sizeof(struct aac_blockwrite);
948		cm->cm_flags |= AAC_CMD_DATAOUT;
949		cm->cm_sgtable = &bw->SgMap;
950	}
951
952	*cmp = cm;
953	return(0);
954
955fail:
956	if (bp != NULL)
957		aac_enqueue_bio(sc, bp);
958	if (cm != NULL)
959		aac_release_command(cm);
960	return(ENOMEM);
961}
962
963/*
964 * Handle a bio-instigated command that has been completed.
965 */
966static void
967aac_bio_complete(struct aac_command *cm)
968{
969	struct aac_blockread_response *brr;
970	struct aac_blockwrite_response *bwr;
971	struct bio *bp;
972	AAC_FSAStatus status;
973
974	/* fetch relevant status and then release the command */
975	bp = (struct bio *)cm->cm_private;
976	if (bp->bio_cmd == BIO_READ) {
977		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
978		status = brr->Status;
979	} else {
980		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
981		status = bwr->Status;
982	}
983	aac_release_command(cm);
984
985	/* fix up the bio based on status */
986	if (status == ST_OK) {
987		bp->bio_resid = 0;
988	} else {
989		bp->bio_error = EIO;
990		bp->bio_flags |= BIO_ERROR;
991		/* pass an error string out to the disk layer */
992		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
993						    status);
994	}
995	aac_biodone(bp);
996}
997
998/*
999 * Submit a command to the controller, return when it completes.
1000 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1001 *     be stuck here forever.  At the same time, signals are not caught
1002 *     because there is a risk that a signal could wakeup the tsleep before
1003 *     the card has a chance to complete the command.  The passed in timeout
1004 *     is ignored for the same reason.  Since there is no way to cancel a
1005 *     command in progress, we should probably create a 'dead' queue where
1006 *     commands go that have been interrupted/timed-out/etc, that keeps them
1007 *     out of the free pool.  That way, if the card is just slow, it won't
1008 *     spam the memory of a command that has been recycled.
1009 */
1010static int
1011aac_wait_command(struct aac_command *cm, int timeout)
1012{
1013	struct aac_softc *sc;
1014	int error = 0;
1015
1016	debug_called(2);
1017
1018	sc = cm->cm_sc;
1019
1020	/* Put the command on the ready queue and get things going */
1021	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1022	aac_enqueue_ready(cm);
1023	aac_startio(sc);
1024	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1025		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1026	}
1027	return(error);
1028}
1029
1030/*
1031 *Command Buffer Management
1032 */
1033
1034/*
1035 * Allocate a command.
1036 */
1037int
1038aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1039{
1040	struct aac_command *cm;
1041
1042	debug_called(3);
1043
1044	if ((cm = aac_dequeue_free(sc)) == NULL) {
1045		sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1046		wakeup(sc->aifthread);
1047		return (EBUSY);
1048	}
1049
1050	*cmp = cm;
1051	return(0);
1052}
1053
1054/*
1055 * Release a command back to the freelist.
1056 */
1057void
1058aac_release_command(struct aac_command *cm)
1059{
1060	debug_called(3);
1061
1062	/* (re)initialise the command/FIB */
1063	cm->cm_sgtable = NULL;
1064	cm->cm_flags = 0;
1065	cm->cm_complete = NULL;
1066	cm->cm_private = NULL;
1067	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1068	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1069	cm->cm_fib->Header.Flags = 0;
1070	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1071
1072	/*
1073	 * These are duplicated in aac_start to cover the case where an
1074	 * intermediate stage may have destroyed them.  They're left
1075	 * initialised here for debugging purposes only.
1076	 */
1077	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1078	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1079	cm->cm_fib->Header.SenderData = 0;
1080
1081	aac_enqueue_free(cm);
1082}
1083
1084/*
1085 * Map helper for command/FIB allocation.
1086 */
1087static void
1088aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1089{
1090	uint32_t	*fibphys;
1091
1092	fibphys = (uint32_t *)arg;
1093
1094	debug_called(3);
1095
1096	*fibphys = segs[0].ds_addr;
1097}
1098
1099/*
1100 * Allocate and initialise commands/FIBs for this adapter.
1101 */
1102static int
1103aac_alloc_commands(struct aac_softc *sc)
1104{
1105	struct aac_command *cm;
1106	struct aac_fibmap *fm;
1107	uint32_t fibphys;
1108	int i, error;
1109
1110	debug_called(1);
1111
1112	if (sc->total_fibs + AAC_FIB_COUNT > AAC_MAX_FIBS)
1113		return (ENOMEM);
1114
1115	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1116
1117	/* allocate the FIBs in DMAable memory and load them */
1118	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1119			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1120		device_printf(sc->aac_dev,
1121			      "Not enough contiguous memory available.\n");
1122		free(fm, M_AACBUF);
1123		return (ENOMEM);
1124	}
1125
1126	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1127			AAC_FIB_COUNT * sizeof(struct aac_fib),
1128			aac_map_command_helper, &fibphys, 0);
1129
1130	/* initialise constant fields in the command structure */
1131	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1132	for (i = 0; i < AAC_FIB_COUNT; i++) {
1133		cm = sc->aac_commands + sc->total_fibs;
1134		fm->aac_commands = cm;
1135		cm->cm_sc = sc;
1136		cm->cm_fib = fm->aac_fibs + i;
1137		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1138		cm->cm_index = sc->total_fibs;
1139
1140		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1141					       &cm->cm_datamap)) == 0)
1142			aac_release_command(cm);
1143		else
1144			break;
1145		sc->total_fibs++;
1146	}
1147
1148	if (i > 0) {
1149		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1150		return (0);
1151	}
1152
1153	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1154	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1155	free(fm, M_AACBUF);
1156	return (ENOMEM);
1157}
1158
1159/*
1160 * Free FIBs owned by this adapter.
1161 */
1162static void
1163aac_free_commands(struct aac_softc *sc)
1164{
1165	struct aac_fibmap *fm;
1166	struct aac_command *cm;
1167	int i;
1168
1169	debug_called(1);
1170
1171	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1172
1173		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1174		/*
1175		 * We check against total_fibs to handle partially
1176		 * allocated blocks.
1177		 */
1178		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1179			cm = fm->aac_commands + i;
1180			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1181		}
1182		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1183		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1184		free(fm, M_AACBUF);
1185	}
1186}
1187
1188/*
1189 * Command-mapping helper function - populate this command's s/g table.
1190 */
1191static void
1192aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1193{
1194	struct aac_command *cm;
1195	struct aac_fib *fib;
1196	struct aac_sg_table *sg;
1197	int i;
1198
1199	debug_called(3);
1200
1201	cm = (struct aac_command *)arg;
1202	fib = cm->cm_fib;
1203
1204	/* find the s/g table */
1205	sg = cm->cm_sgtable;
1206
1207	/* copy into the FIB */
1208	if (sg != NULL) {
1209		sg->SgCount = nseg;
1210		for (i = 0; i < nseg; i++) {
1211			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1212			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1213		}
1214		/* update the FIB size for the s/g count */
1215		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1216	}
1217
1218}
1219
1220/*
1221 * Map a command into controller-visible space.
1222 */
1223static void
1224aac_map_command(struct aac_command *cm)
1225{
1226	struct aac_softc *sc;
1227
1228	debug_called(2);
1229
1230	sc = cm->cm_sc;
1231
1232	/* don't map more than once */
1233	if (cm->cm_flags & AAC_CMD_MAPPED)
1234		return;
1235
1236	if (cm->cm_datalen != 0) {
1237		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1238				cm->cm_data, cm->cm_datalen,
1239				aac_map_command_sg, cm, 0);
1240
1241		if (cm->cm_flags & AAC_CMD_DATAIN)
1242			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1243					BUS_DMASYNC_PREREAD);
1244		if (cm->cm_flags & AAC_CMD_DATAOUT)
1245			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1246					BUS_DMASYNC_PREWRITE);
1247	}
1248	cm->cm_flags |= AAC_CMD_MAPPED;
1249}
1250
1251/*
1252 * Unmap a command from controller-visible space.
1253 */
1254static void
1255aac_unmap_command(struct aac_command *cm)
1256{
1257	struct aac_softc *sc;
1258
1259	debug_called(2);
1260
1261	sc = cm->cm_sc;
1262
1263	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1264		return;
1265
1266	if (cm->cm_datalen != 0) {
1267		if (cm->cm_flags & AAC_CMD_DATAIN)
1268			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1269					BUS_DMASYNC_POSTREAD);
1270		if (cm->cm_flags & AAC_CMD_DATAOUT)
1271			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1272					BUS_DMASYNC_POSTWRITE);
1273
1274		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1275	}
1276	cm->cm_flags &= ~AAC_CMD_MAPPED;
1277}
1278
1279/*
1280 * Hardware Interface
1281 */
1282
1283/*
1284 * Initialise the adapter.
1285 */
1286static void
1287aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1288{
1289	struct aac_softc *sc;
1290
1291	debug_called(1);
1292
1293	sc = (struct aac_softc *)arg;
1294
1295	sc->aac_common_busaddr = segs[0].ds_addr;
1296}
1297
1298/*
1299 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1300 * firmware version 1.x are not compatible with this driver.
1301 */
1302static int
1303aac_check_firmware(struct aac_softc *sc)
1304{
1305	u_int32_t major, minor;
1306
1307	debug_called(1);
1308
1309	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1310		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1311				     NULL)) {
1312			device_printf(sc->aac_dev,
1313				      "Error reading firmware version\n");
1314			return (EIO);
1315		}
1316
1317		/* These numbers are stored as ASCII! */
1318		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1319		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1320		if (major == 1) {
1321			device_printf(sc->aac_dev,
1322			    "Firmware version %d.%d is not supported.\n",
1323			    major, minor);
1324			return (EINVAL);
1325		}
1326	}
1327
1328	return (0);
1329}
1330
1331static int
1332aac_init(struct aac_softc *sc)
1333{
1334	struct aac_adapter_init	*ip;
1335	time_t then;
1336	u_int32_t code;
1337	u_int8_t *qaddr;
1338
1339	debug_called(1);
1340
1341	/*
1342	 * First wait for the adapter to come ready.
1343	 */
1344	then = time_second;
1345	do {
1346		code = AAC_GET_FWSTATUS(sc);
1347		if (code & AAC_SELF_TEST_FAILED) {
1348			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1349			return(ENXIO);
1350		}
1351		if (code & AAC_KERNEL_PANIC) {
1352			device_printf(sc->aac_dev,
1353				      "FATAL: controller kernel panic\n");
1354			return(ENXIO);
1355		}
1356		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1357			device_printf(sc->aac_dev,
1358				      "FATAL: controller not coming ready, "
1359					   "status %x\n", code);
1360			return(ENXIO);
1361		}
1362	} while (!(code & AAC_UP_AND_RUNNING));
1363
1364	/*
1365	 * Create DMA tag for the common structure and allocate it.
1366	 */
1367	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1368			       1, 0,			/* algnmnt, boundary */
1369			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1370			       BUS_SPACE_MAXADDR, 	/* highaddr */
1371			       NULL, NULL, 		/* filter, filterarg */
1372			       8192 + sizeof(struct aac_common), /* maxsize */
1373			       1,			/* nsegments */
1374			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1375			       0,			/* flags */
1376			       &sc->aac_common_dmat)) {
1377		device_printf(sc->aac_dev,
1378			      "can't allocate common structure DMA tag\n");
1379		return(ENOMEM);
1380	}
1381	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1382			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1383		device_printf(sc->aac_dev, "can't allocate common structure\n");
1384		return(ENOMEM);
1385	}
1386
1387	/*
1388	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1389	 * below address 8192 in physical memory.
1390	 * XXX If the padding is not needed, can it be put to use instead
1391	 * of ignored?
1392	 */
1393	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1394			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1395			aac_common_map, sc, 0);
1396
1397	if (sc->aac_common_busaddr < 8192) {
1398		(uint8_t *)sc->aac_common += 8192;
1399		sc->aac_common_busaddr += 8192;
1400	}
1401	bzero(sc->aac_common, sizeof(*sc->aac_common));
1402
1403	/* Allocate some FIBs and associated command structs */
1404	TAILQ_INIT(&sc->aac_fibmap_tqh);
1405	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1406				  M_AACBUF, M_WAITOK|M_ZERO);
1407	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1408		if (aac_alloc_commands(sc) != 0)
1409			break;
1410	}
1411	if (sc->total_fibs == 0)
1412		return (ENOMEM);
1413
1414	/*
1415	 * Fill in the init structure.  This tells the adapter about the
1416	 * physical location of various important shared data structures.
1417	 */
1418	ip = &sc->aac_common->ac_init;
1419	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1420	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1421
1422	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1423					 offsetof(struct aac_common, ac_fibs);
1424	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1425	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1426	ip->AdapterFibAlign = sizeof(struct aac_fib);
1427
1428	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1429				  offsetof(struct aac_common, ac_printf);
1430	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1431
1432	/* The adapter assumes that pages are 4K in size */
1433	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1434	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1435
1436	/*
1437	 * Initialise FIB queues.  Note that it appears that the layout of the
1438	 * indexes and the segmentation of the entries may be mandated by the
1439	 * adapter, which is only told about the base of the queue index fields.
1440	 *
1441	 * The initial values of the indices are assumed to inform the adapter
1442	 * of the sizes of the respective queues, and theoretically it could
1443	 * work out the entire layout of the queue structures from this.  We
1444	 * take the easy route and just lay this area out like everyone else
1445	 * does.
1446	 *
1447	 * The Linux driver uses a much more complex scheme whereby several
1448	 * header records are kept for each queue.  We use a couple of generic
1449	 * list manipulation functions which 'know' the size of each list by
1450	 * virtue of a table.
1451	 */
1452	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1453	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1454	sc->aac_queues = (struct aac_queue_table *)qaddr;
1455	ip->CommHeaderAddress = sc->aac_common_busaddr +
1456				((u_int32_t)sc->aac_queues -
1457				(u_int32_t)sc->aac_common);
1458
1459	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1460		AAC_HOST_NORM_CMD_ENTRIES;
1461	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1462		AAC_HOST_NORM_CMD_ENTRIES;
1463	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1464		AAC_HOST_HIGH_CMD_ENTRIES;
1465	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1466		AAC_HOST_HIGH_CMD_ENTRIES;
1467	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1468		AAC_ADAP_NORM_CMD_ENTRIES;
1469	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1470		AAC_ADAP_NORM_CMD_ENTRIES;
1471	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1472		AAC_ADAP_HIGH_CMD_ENTRIES;
1473	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1474		AAC_ADAP_HIGH_CMD_ENTRIES;
1475	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1476		AAC_HOST_NORM_RESP_ENTRIES;
1477	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1478		AAC_HOST_NORM_RESP_ENTRIES;
1479	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1480		AAC_HOST_HIGH_RESP_ENTRIES;
1481	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1482		AAC_HOST_HIGH_RESP_ENTRIES;
1483	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1484		AAC_ADAP_NORM_RESP_ENTRIES;
1485	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1486		AAC_ADAP_NORM_RESP_ENTRIES;
1487	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1488		AAC_ADAP_HIGH_RESP_ENTRIES;
1489	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1490		AAC_ADAP_HIGH_RESP_ENTRIES;
1491	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1492		&sc->aac_queues->qt_HostNormCmdQueue[0];
1493	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1494		&sc->aac_queues->qt_HostHighCmdQueue[0];
1495	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1496		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1497	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1498		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1499	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1500		&sc->aac_queues->qt_HostNormRespQueue[0];
1501	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1502		&sc->aac_queues->qt_HostHighRespQueue[0];
1503	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1504		&sc->aac_queues->qt_AdapNormRespQueue[0];
1505	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1506		&sc->aac_queues->qt_AdapHighRespQueue[0];
1507
1508	/*
1509	 * Do controller-type-specific initialisation
1510	 */
1511	switch (sc->aac_hwif) {
1512	case AAC_HWIF_I960RX:
1513		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1514		break;
1515	}
1516
1517	/*
1518	 * Give the init structure to the controller.
1519	 */
1520	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1521			     sc->aac_common_busaddr +
1522			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1523			     NULL)) {
1524		device_printf(sc->aac_dev,
1525			      "error establishing init structure\n");
1526		return(EIO);
1527	}
1528
1529	return(0);
1530}
1531
1532/*
1533 * Send a synchronous command to the controller and wait for a result.
1534 */
1535static int
1536aac_sync_command(struct aac_softc *sc, u_int32_t command,
1537		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1538		 u_int32_t *sp)
1539{
1540	time_t then;
1541	u_int32_t status;
1542
1543	debug_called(3);
1544
1545	/* populate the mailbox */
1546	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1547
1548	/* ensure the sync command doorbell flag is cleared */
1549	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1550
1551	/* then set it to signal the adapter */
1552	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1553
1554	/* spin waiting for the command to complete */
1555	then = time_second;
1556	do {
1557		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1558			debug(2, "timed out");
1559			return(EIO);
1560		}
1561	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1562
1563	/* clear the completion flag */
1564	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1565
1566	/* get the command status */
1567	status = AAC_GET_MAILBOXSTATUS(sc);
1568	if (sp != NULL)
1569		*sp = status;
1570	return(0);
1571}
1572
1573/*
1574 * Grab the sync fib area.
1575 */
1576int
1577aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1578{
1579
1580	/*
1581	 * If the force flag is set, the system is shutting down, or in
1582	 * trouble.  Ignore the mutex.
1583	 */
1584	if (!(flags & AAC_SYNC_LOCK_FORCE))
1585		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1586
1587	*fib = &sc->aac_common->ac_sync_fib;
1588
1589	return (1);
1590}
1591
1592/*
1593 * Release the sync fib area.
1594 */
1595void
1596aac_release_sync_fib(struct aac_softc *sc)
1597{
1598
1599	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1600}
1601
1602/*
1603 * Send a synchronous FIB to the controller and wait for a result.
1604 */
1605int
1606aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1607		 struct aac_fib *fib, u_int16_t datasize)
1608{
1609	debug_called(3);
1610
1611	if (datasize > AAC_FIB_DATASIZE)
1612		return(EINVAL);
1613
1614	/*
1615	 * Set up the sync FIB
1616	 */
1617	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1618				AAC_FIBSTATE_INITIALISED |
1619				AAC_FIBSTATE_EMPTY;
1620	fib->Header.XferState |= xferstate;
1621	fib->Header.Command = command;
1622	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1623	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1624	fib->Header.SenderSize = sizeof(struct aac_fib);
1625	fib->Header.SenderFibAddress = (u_int32_t)fib;
1626	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1627					 offsetof(struct aac_common,
1628						  ac_sync_fib);
1629
1630	/*
1631	 * Give the FIB to the controller, wait for a response.
1632	 */
1633	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1634			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1635		debug(2, "IO error");
1636		return(EIO);
1637	}
1638
1639	return (0);
1640}
1641
1642/*
1643 * Adapter-space FIB queue manipulation
1644 *
1645 * Note that the queue implementation here is a little funky; neither the PI or
1646 * CI will ever be zero.  This behaviour is a controller feature.
1647 */
1648static struct {
1649	int		size;
1650	int		notify;
1651} aac_qinfo[] = {
1652	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1653	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1654	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1655	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1656	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1657	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1658	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1659	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1660};
1661
1662/*
1663 * Atomically insert an entry into the nominated queue, returns 0 on success or
1664 * EBUSY if the queue is full.
1665 *
1666 * Note: it would be more efficient to defer notifying the controller in
1667 *	 the case where we may be inserting several entries in rapid succession,
1668 *	 but implementing this usefully may be difficult (it would involve a
1669 *	 separate queue/notify interface).
1670 */
1671static int
1672aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1673{
1674	u_int32_t pi, ci;
1675	int error;
1676	u_int32_t fib_size;
1677	u_int32_t fib_addr;
1678
1679	debug_called(3);
1680
1681	fib_size = cm->cm_fib->Header.Size;
1682	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1683
1684	/* get the producer/consumer indices */
1685	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1686	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1687
1688	/* wrap the queue? */
1689	if (pi >= aac_qinfo[queue].size)
1690		pi = 0;
1691
1692	/* check for queue full */
1693	if ((pi + 1) == ci) {
1694		error = EBUSY;
1695		goto out;
1696	}
1697
1698	/* populate queue entry */
1699	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1700	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1701
1702	/* update producer index */
1703	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1704
1705	/*
1706	 * To avoid a race with its completion interrupt, place this command on
1707	 * the busy queue prior to advertising it to the controller.
1708	 */
1709	aac_enqueue_busy(cm);
1710
1711	/* notify the adapter if we know how */
1712	if (aac_qinfo[queue].notify != 0)
1713		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1714
1715	error = 0;
1716
1717out:
1718	return(error);
1719}
1720
1721/*
1722 * Atomically remove one entry from the nominated queue, returns 0 on
1723 * success or ENOENT if the queue is empty.
1724 */
1725static int
1726aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1727		struct aac_fib **fib_addr)
1728{
1729	u_int32_t pi, ci;
1730	int error;
1731	int notify;
1732
1733	debug_called(3);
1734
1735	/* get the producer/consumer indices */
1736	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1737	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1738
1739	/* check for queue empty */
1740	if (ci == pi) {
1741		error = ENOENT;
1742		goto out;
1743	}
1744
1745	notify = 0;
1746	if (ci == pi + 1)
1747		notify++;
1748
1749	/* wrap the queue? */
1750	if (ci >= aac_qinfo[queue].size)
1751		ci = 0;
1752
1753	/* fetch the entry */
1754	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1755	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1756				       ci)->aq_fib_addr;
1757
1758	/*
1759	 * Is this a fast response? If it is, update the fib fields in
1760	 * local memory so the whole fib doesn't have to be DMA'd back up.
1761	 */
1762	if (*(uintptr_t *)fib_addr & 0x01) {
1763		*(uintptr_t *)fib_addr &= ~0x01;
1764		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1765		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1766	}
1767	/* update consumer index */
1768	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1769
1770	/* if we have made the queue un-full, notify the adapter */
1771	if (notify && (aac_qinfo[queue].notify != 0))
1772		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1773	error = 0;
1774
1775out:
1776	return(error);
1777}
1778
1779/*
1780 * Put our response to an Adapter Initialed Fib on the response queue
1781 */
1782static int
1783aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1784{
1785	u_int32_t pi, ci;
1786	int error;
1787	u_int32_t fib_size;
1788	u_int32_t fib_addr;
1789
1790	debug_called(1);
1791
1792	/* Tell the adapter where the FIB is */
1793	fib_size = fib->Header.Size;
1794	fib_addr = fib->Header.SenderFibAddress;
1795	fib->Header.ReceiverFibAddress = fib_addr;
1796
1797	/* get the producer/consumer indices */
1798	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1799	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1800
1801	/* wrap the queue? */
1802	if (pi >= aac_qinfo[queue].size)
1803		pi = 0;
1804
1805	/* check for queue full */
1806	if ((pi + 1) == ci) {
1807		error = EBUSY;
1808		goto out;
1809	}
1810
1811	/* populate queue entry */
1812	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1813	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1814
1815	/* update producer index */
1816	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1817
1818	/* notify the adapter if we know how */
1819	if (aac_qinfo[queue].notify != 0)
1820		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1821
1822	error = 0;
1823
1824out:
1825	return(error);
1826}
1827
1828/*
1829 * Check for commands that have been outstanding for a suspiciously long time,
1830 * and complain about them.
1831 */
1832static void
1833aac_timeout(struct aac_softc *sc)
1834{
1835	struct aac_command *cm;
1836	time_t deadline;
1837
1838	/*
1839	 * Traverse the busy command list, bitch about late commands once
1840	 * only.
1841	 */
1842	deadline = time_second - AAC_CMD_TIMEOUT;
1843	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1844		if ((cm->cm_timestamp  < deadline)
1845			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1846			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1847			device_printf(sc->aac_dev,
1848				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1849				      cm, (int)(time_second-cm->cm_timestamp));
1850			AAC_PRINT_FIB(sc, cm->cm_fib);
1851		}
1852	}
1853
1854	return;
1855}
1856
1857/*
1858 * Interface Function Vectors
1859 */
1860
1861/*
1862 * Read the current firmware status word.
1863 */
1864static int
1865aac_sa_get_fwstatus(struct aac_softc *sc)
1866{
1867	debug_called(3);
1868
1869	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1870}
1871
1872static int
1873aac_rx_get_fwstatus(struct aac_softc *sc)
1874{
1875	debug_called(3);
1876
1877	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1878}
1879
1880static int
1881aac_fa_get_fwstatus(struct aac_softc *sc)
1882{
1883	int val;
1884
1885	debug_called(3);
1886
1887	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1888	return (val);
1889}
1890
1891/*
1892 * Notify the controller of a change in a given queue
1893 */
1894
1895static void
1896aac_sa_qnotify(struct aac_softc *sc, int qbit)
1897{
1898	debug_called(3);
1899
1900	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1901}
1902
1903static void
1904aac_rx_qnotify(struct aac_softc *sc, int qbit)
1905{
1906	debug_called(3);
1907
1908	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1909}
1910
1911static void
1912aac_fa_qnotify(struct aac_softc *sc, int qbit)
1913{
1914	debug_called(3);
1915
1916	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1917	AAC_FA_HACK(sc);
1918}
1919
1920/*
1921 * Get the interrupt reason bits
1922 */
1923static int
1924aac_sa_get_istatus(struct aac_softc *sc)
1925{
1926	debug_called(3);
1927
1928	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1929}
1930
1931static int
1932aac_rx_get_istatus(struct aac_softc *sc)
1933{
1934	debug_called(3);
1935
1936	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1937}
1938
1939static int
1940aac_fa_get_istatus(struct aac_softc *sc)
1941{
1942	int val;
1943
1944	debug_called(3);
1945
1946	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1947	return (val);
1948}
1949
1950/*
1951 * Clear some interrupt reason bits
1952 */
1953static void
1954aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1955{
1956	debug_called(3);
1957
1958	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1959}
1960
1961static void
1962aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1963{
1964	debug_called(3);
1965
1966	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1967}
1968
1969static void
1970aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1971{
1972	debug_called(3);
1973
1974	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1975	AAC_FA_HACK(sc);
1976}
1977
1978/*
1979 * Populate the mailbox and set the command word
1980 */
1981static void
1982aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1983		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1984{
1985	debug_called(4);
1986
1987	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1988	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1989	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1990	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1991	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1992}
1993
1994static void
1995aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1996		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1997{
1998	debug_called(4);
1999
2000	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2001	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2002	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2003	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2004	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2005}
2006
2007static void
2008aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2009		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2010{
2011	debug_called(4);
2012
2013	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2014	AAC_FA_HACK(sc);
2015	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2016	AAC_FA_HACK(sc);
2017	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2018	AAC_FA_HACK(sc);
2019	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2020	AAC_FA_HACK(sc);
2021	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2022	AAC_FA_HACK(sc);
2023}
2024
2025/*
2026 * Fetch the immediate command status word
2027 */
2028static int
2029aac_sa_get_mailboxstatus(struct aac_softc *sc)
2030{
2031	debug_called(4);
2032
2033	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2034}
2035
2036static int
2037aac_rx_get_mailboxstatus(struct aac_softc *sc)
2038{
2039	debug_called(4);
2040
2041	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2042}
2043
2044static int
2045aac_fa_get_mailboxstatus(struct aac_softc *sc)
2046{
2047	int val;
2048
2049	debug_called(4);
2050
2051	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2052	return (val);
2053}
2054
2055/*
2056 * Set/clear interrupt masks
2057 */
2058static void
2059aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2060{
2061	debug(2, "%sable interrupts", enable ? "en" : "dis");
2062
2063	if (enable) {
2064		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2065	} else {
2066		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2067	}
2068}
2069
2070static void
2071aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2072{
2073	debug(2, "%sable interrupts", enable ? "en" : "dis");
2074
2075	if (enable) {
2076		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2077	} else {
2078		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2079	}
2080}
2081
2082static void
2083aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2084{
2085	debug(2, "%sable interrupts", enable ? "en" : "dis");
2086
2087	if (enable) {
2088		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2089		AAC_FA_HACK(sc);
2090	} else {
2091		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2092		AAC_FA_HACK(sc);
2093	}
2094}
2095
2096/*
2097 * Debugging and Diagnostics
2098 */
2099
2100/*
2101 * Print some information about the controller.
2102 */
2103static void
2104aac_describe_controller(struct aac_softc *sc)
2105{
2106	struct aac_fib *fib;
2107	struct aac_adapter_info	*info;
2108
2109	debug_called(2);
2110
2111	aac_alloc_sync_fib(sc, &fib, 0);
2112
2113	fib->data[0] = 0;
2114	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2115		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2116		aac_release_sync_fib(sc);
2117		return;
2118	}
2119	info = (struct aac_adapter_info *)&fib->data[0];
2120
2121	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2122		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2123		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2124		      aac_describe_code(aac_battery_platform,
2125					info->batteryPlatform));
2126
2127	/* save the kernel revision structure for later use */
2128	sc->aac_revision = info->KernelRevision;
2129	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2130		      info->KernelRevision.external.comp.major,
2131		      info->KernelRevision.external.comp.minor,
2132		      info->KernelRevision.external.comp.dash,
2133		      info->KernelRevision.buildNumber,
2134		      (u_int32_t)(info->SerialNumber & 0xffffff));
2135
2136	aac_release_sync_fib(sc);
2137}
2138
2139/*
2140 * Look up a text description of a numeric error code and return a pointer to
2141 * same.
2142 */
2143static char *
2144aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2145{
2146	int i;
2147
2148	for (i = 0; table[i].string != NULL; i++)
2149		if (table[i].code == code)
2150			return(table[i].string);
2151	return(table[i + 1].string);
2152}
2153
2154/*
2155 * Management Interface
2156 */
2157
2158static int
2159aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2160{
2161	struct aac_softc *sc;
2162
2163	debug_called(2);
2164
2165	sc = dev->si_drv1;
2166
2167	/* Check to make sure the device isn't already open */
2168	if (sc->aac_state & AAC_STATE_OPEN) {
2169		return EBUSY;
2170	}
2171	sc->aac_state |= AAC_STATE_OPEN;
2172
2173	return 0;
2174}
2175
2176static int
2177aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2178{
2179	struct aac_softc *sc;
2180
2181	debug_called(2);
2182
2183	sc = dev->si_drv1;
2184
2185	/* Mark this unit as no longer open  */
2186	sc->aac_state &= ~AAC_STATE_OPEN;
2187
2188	return 0;
2189}
2190
2191static int
2192aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2193{
2194	union aac_statrequest *as;
2195	struct aac_softc *sc;
2196	int error = 0;
2197	int i;
2198
2199	debug_called(2);
2200
2201	as = (union aac_statrequest *)arg;
2202	sc = dev->si_drv1;
2203
2204	switch (cmd) {
2205	case AACIO_STATS:
2206		switch (as->as_item) {
2207		case AACQ_FREE:
2208		case AACQ_BIO:
2209		case AACQ_READY:
2210		case AACQ_BUSY:
2211		case AACQ_COMPLETE:
2212			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2213			      sizeof(struct aac_qstat));
2214			break;
2215		default:
2216			error = ENOENT;
2217			break;
2218		}
2219	break;
2220
2221	case FSACTL_SENDFIB:
2222		arg = *(caddr_t*)arg;
2223	case FSACTL_LNX_SENDFIB:
2224		debug(1, "FSACTL_SENDFIB");
2225		error = aac_ioctl_sendfib(sc, arg);
2226		break;
2227	case FSACTL_AIF_THREAD:
2228	case FSACTL_LNX_AIF_THREAD:
2229		debug(1, "FSACTL_AIF_THREAD");
2230		error = EINVAL;
2231		break;
2232	case FSACTL_OPEN_GET_ADAPTER_FIB:
2233		arg = *(caddr_t*)arg;
2234	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2235		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2236		/*
2237		 * Pass the caller out an AdapterFibContext.
2238		 *
2239		 * Note that because we only support one opener, we
2240		 * basically ignore this.  Set the caller's context to a magic
2241		 * number just in case.
2242		 *
2243		 * The Linux code hands the driver a pointer into kernel space,
2244		 * and then trusts it when the caller hands it back.  Aiee!
2245		 * Here, we give it the proc pointer of the per-adapter aif
2246		 * thread. It's only used as a sanity check in other calls.
2247		 */
2248		i = (int)sc->aifthread;
2249		error = copyout(&i, arg, sizeof(i));
2250		break;
2251	case FSACTL_GET_NEXT_ADAPTER_FIB:
2252		arg = *(caddr_t*)arg;
2253	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2254		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2255		error = aac_getnext_aif(sc, arg);
2256		break;
2257	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2258	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2259		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2260		/* don't do anything here */
2261		break;
2262	case FSACTL_MINIPORT_REV_CHECK:
2263		arg = *(caddr_t*)arg;
2264	case FSACTL_LNX_MINIPORT_REV_CHECK:
2265		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2266		error = aac_rev_check(sc, arg);
2267		break;
2268	case FSACTL_QUERY_DISK:
2269		arg = *(caddr_t*)arg;
2270	case FSACTL_LNX_QUERY_DISK:
2271		debug(1, "FSACTL_QUERY_DISK");
2272		error = aac_query_disk(sc, arg);
2273			break;
2274	case FSACTL_DELETE_DISK:
2275	case FSACTL_LNX_DELETE_DISK:
2276		/*
2277		 * We don't trust the underland to tell us when to delete a
2278		 * container, rather we rely on an AIF coming from the
2279		 * controller
2280		 */
2281		error = 0;
2282		break;
2283	default:
2284		debug(1, "unsupported cmd 0x%lx\n", cmd);
2285		error = EINVAL;
2286		break;
2287	}
2288	return(error);
2289}
2290
2291static int
2292aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2293{
2294	struct aac_softc *sc;
2295	int revents;
2296
2297	sc = dev->si_drv1;
2298	revents = 0;
2299
2300	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2301	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2302		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2303			revents |= poll_events & (POLLIN | POLLRDNORM);
2304	}
2305	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2306
2307	if (revents == 0) {
2308		if (poll_events & (POLLIN | POLLRDNORM))
2309			selrecord(td, &sc->rcv_select);
2310	}
2311
2312	return (revents);
2313}
2314
2315/*
2316 * Send a FIB supplied from userspace
2317 */
2318static int
2319aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2320{
2321	struct aac_command *cm;
2322	int size, error;
2323
2324	debug_called(2);
2325
2326	cm = NULL;
2327
2328	/*
2329	 * Get a command
2330	 */
2331	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2332	if (aac_alloc_command(sc, &cm)) {
2333		error = EBUSY;
2334		goto out;
2335	}
2336
2337	/*
2338	 * Fetch the FIB header, then re-copy to get data as well.
2339	 */
2340	if ((error = copyin(ufib, cm->cm_fib,
2341			    sizeof(struct aac_fib_header))) != 0)
2342		goto out;
2343	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2344	if (size > sizeof(struct aac_fib)) {
2345		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2346			      size, sizeof(struct aac_fib));
2347		size = sizeof(struct aac_fib);
2348	}
2349	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2350		goto out;
2351	cm->cm_fib->Header.Size = size;
2352	cm->cm_timestamp = time_second;
2353
2354	/*
2355	 * Pass the FIB to the controller, wait for it to complete.
2356	 */
2357	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2358		device_printf(sc->aac_dev,
2359			      "aac_wait_command return %d\n", error);
2360		goto out;
2361	}
2362
2363	/*
2364	 * Copy the FIB and data back out to the caller.
2365	 */
2366	size = cm->cm_fib->Header.Size;
2367	if (size > sizeof(struct aac_fib)) {
2368		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2369			      size, sizeof(struct aac_fib));
2370		size = sizeof(struct aac_fib);
2371	}
2372	error = copyout(cm->cm_fib, ufib, size);
2373
2374out:
2375	if (cm != NULL) {
2376		aac_release_command(cm);
2377	}
2378
2379	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2380	return(error);
2381}
2382
2383/*
2384 * Handle an AIF sent to us by the controller; queue it for later reference.
2385 * If the queue fills up, then drop the older entries.
2386 */
2387static void
2388aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2389{
2390	struct aac_aif_command *aif;
2391	struct aac_container *co, *co_next;
2392	struct aac_mntinfo *mi;
2393	struct aac_mntinforesp *mir = NULL;
2394	u_int16_t rsize;
2395	int next, found;
2396	int added = 0, i = 0;
2397
2398	debug_called(2);
2399
2400	aif = (struct aac_aif_command*)&fib->data[0];
2401	aac_print_aif(sc, aif);
2402
2403	/* Is it an event that we should care about? */
2404	switch (aif->command) {
2405	case AifCmdEventNotify:
2406		switch (aif->data.EN.type) {
2407		case AifEnAddContainer:
2408		case AifEnDeleteContainer:
2409			/*
2410			 * A container was added or deleted, but the message
2411			 * doesn't tell us anything else!  Re-enumerate the
2412			 * containers and sort things out.
2413			 */
2414			aac_alloc_sync_fib(sc, &fib, 0);
2415			mi = (struct aac_mntinfo *)&fib->data[0];
2416			do {
2417				/*
2418				 * Ask the controller for its containers one at
2419				 * a time.
2420				 * XXX What if the controller's list changes
2421				 * midway through this enumaration?
2422				 * XXX This should be done async.
2423				 */
2424				bzero(mi, sizeof(struct aac_mntinfo));
2425				mi->Command = VM_NameServe;
2426				mi->MntType = FT_FILESYS;
2427				mi->MntCount = i;
2428				rsize = sizeof(mir);
2429				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2430						 sizeof(struct aac_mntinfo))) {
2431					debug(2, "Error probing container %d\n",
2432					      i);
2433					continue;
2434				}
2435				mir = (struct aac_mntinforesp *)&fib->data[0];
2436				/*
2437				 * Check the container against our list.
2438				 * co->co_found was already set to 0 in a
2439				 * previous run.
2440				 */
2441				if ((mir->Status == ST_OK) &&
2442				    (mir->MntTable[0].VolType != CT_NONE)) {
2443					found = 0;
2444					TAILQ_FOREACH(co,
2445						      &sc->aac_container_tqh,
2446						      co_link) {
2447						if (co->co_mntobj.ObjectId ==
2448						    mir->MntTable[0].ObjectId) {
2449							co->co_found = 1;
2450							found = 1;
2451							break;
2452						}
2453					}
2454					/*
2455					 * If the container matched, continue
2456					 * in the list.
2457					 */
2458					if (found) {
2459						i++;
2460						continue;
2461					}
2462
2463					/*
2464					 * This is a new container.  Do all the
2465					 * appropriate things to set it up.
2466					 */
2467					aac_add_container(sc, mir, 1);
2468					added = 1;
2469				}
2470				i++;
2471			} while ((i < mir->MntRespCount) &&
2472				 (i < AAC_MAX_CONTAINERS));
2473			aac_release_sync_fib(sc);
2474
2475			/*
2476			 * Go through our list of containers and see which ones
2477			 * were not marked 'found'.  Since the controller didn't
2478			 * list them they must have been deleted.  Do the
2479			 * appropriate steps to destroy the device.  Also reset
2480			 * the co->co_found field.
2481			 */
2482			co = TAILQ_FIRST(&sc->aac_container_tqh);
2483			while (co != NULL) {
2484				if (co->co_found == 0) {
2485					device_delete_child(sc->aac_dev,
2486							    co->co_disk);
2487					co_next = TAILQ_NEXT(co, co_link);
2488					AAC_LOCK_ACQUIRE(&sc->
2489							aac_container_lock);
2490					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2491						     co_link);
2492					AAC_LOCK_RELEASE(&sc->
2493							 aac_container_lock);
2494					FREE(co, M_AACBUF);
2495					co = co_next;
2496				} else {
2497					co->co_found = 0;
2498					co = TAILQ_NEXT(co, co_link);
2499				}
2500			}
2501
2502			/* Attach the newly created containers */
2503			if (added)
2504				bus_generic_attach(sc->aac_dev);
2505
2506			break;
2507
2508		default:
2509			break;
2510		}
2511
2512	default:
2513		break;
2514	}
2515
2516	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2517	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2518	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2519	if (next != sc->aac_aifq_tail) {
2520		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2521		sc->aac_aifq_head = next;
2522
2523		/* On the off chance that someone is sleeping for an aif... */
2524		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2525			wakeup(sc->aac_aifq);
2526		/* Wakeup any poll()ers */
2527		selwakeup(&sc->rcv_select);
2528	}
2529	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2530
2531	return;
2532}
2533
2534/*
2535 * Return the Revision of the driver to userspace and check to see if the
2536 * userspace app is possibly compatible.  This is extremely bogus since
2537 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2538 * returning what the card reported.
2539 */
2540static int
2541aac_rev_check(struct aac_softc *sc, caddr_t udata)
2542{
2543	struct aac_rev_check rev_check;
2544	struct aac_rev_check_resp rev_check_resp;
2545	int error = 0;
2546
2547	debug_called(2);
2548
2549	/*
2550	 * Copyin the revision struct from userspace
2551	 */
2552	if ((error = copyin(udata, (caddr_t)&rev_check,
2553			sizeof(struct aac_rev_check))) != 0) {
2554		return error;
2555	}
2556
2557	debug(2, "Userland revision= %d\n",
2558	      rev_check.callingRevision.buildNumber);
2559
2560	/*
2561	 * Doctor up the response struct.
2562	 */
2563	rev_check_resp.possiblyCompatible = 1;
2564	rev_check_resp.adapterSWRevision.external.ul =
2565	    sc->aac_revision.external.ul;
2566	rev_check_resp.adapterSWRevision.buildNumber =
2567	    sc->aac_revision.buildNumber;
2568
2569	return(copyout((caddr_t)&rev_check_resp, udata,
2570			sizeof(struct aac_rev_check_resp)));
2571}
2572
2573/*
2574 * Pass the caller the next AIF in their queue
2575 */
2576static int
2577aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2578{
2579	struct get_adapter_fib_ioctl agf;
2580	int error;
2581
2582	debug_called(2);
2583
2584	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2585
2586		/*
2587		 * Check the magic number that we gave the caller.
2588		 */
2589		if (agf.AdapterFibContext != (int)sc->aifthread) {
2590			error = EFAULT;
2591		} else {
2592			error = aac_return_aif(sc, agf.AifFib);
2593			if ((error == EAGAIN) && (agf.Wait)) {
2594				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2595				while (error == EAGAIN) {
2596					error = tsleep(sc->aac_aifq, PRIBIO |
2597						       PCATCH, "aacaif", 0);
2598					if (error == 0)
2599						error = aac_return_aif(sc,
2600						    agf.AifFib);
2601				}
2602				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2603			}
2604		}
2605	}
2606	return(error);
2607}
2608
2609/*
2610 * Hand the next AIF off the top of the queue out to userspace.
2611 */
2612static int
2613aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2614{
2615	int error;
2616
2617	debug_called(2);
2618
2619	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2620	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2621		error = EAGAIN;
2622	} else {
2623		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2624				sizeof(struct aac_aif_command));
2625		if (error)
2626			device_printf(sc->aac_dev,
2627			    "aac_return_aif: copyout returned %d\n", error);
2628		if (!error)
2629			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2630					    AAC_AIFQ_LENGTH;
2631	}
2632	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2633	return(error);
2634}
2635
2636/*
2637 * Give the userland some information about the container.  The AAC arch
2638 * expects the driver to be a SCSI passthrough type driver, so it expects
2639 * the containers to have b:t:l numbers.  Fake it.
2640 */
2641static int
2642aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2643{
2644	struct aac_query_disk query_disk;
2645	struct aac_container *co;
2646	struct aac_disk	*disk;
2647	int error, id;
2648
2649	debug_called(2);
2650
2651	disk = NULL;
2652
2653	error = copyin(uptr, (caddr_t)&query_disk,
2654		       sizeof(struct aac_query_disk));
2655	if (error)
2656		return (error);
2657
2658	id = query_disk.ContainerNumber;
2659	if (id == -1)
2660		return (EINVAL);
2661
2662	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2663	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2664		if (co->co_mntobj.ObjectId == id)
2665			break;
2666		}
2667
2668	if (co == NULL) {
2669			query_disk.Valid = 0;
2670			query_disk.Locked = 0;
2671			query_disk.Deleted = 1;		/* XXX is this right? */
2672	} else {
2673		disk = device_get_softc(co->co_disk);
2674		query_disk.Valid = 1;
2675		query_disk.Locked =
2676		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2677		query_disk.Deleted = 0;
2678		query_disk.Bus = device_get_unit(sc->aac_dev);
2679		query_disk.Target = disk->unit;
2680		query_disk.Lun = 0;
2681		query_disk.UnMapped = 0;
2682		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2683		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2684	}
2685	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2686
2687	error = copyout((caddr_t)&query_disk, uptr,
2688			sizeof(struct aac_query_disk));
2689
2690	return (error);
2691}
2692
2693static void
2694aac_get_bus_info(struct aac_softc *sc)
2695{
2696	struct aac_fib *fib;
2697	struct aac_ctcfg *c_cmd;
2698	struct aac_ctcfg_resp *c_resp;
2699	struct aac_vmioctl *vmi;
2700	struct aac_vmi_businf_resp *vmi_resp;
2701	struct aac_getbusinf businfo;
2702	struct aac_sim *caminf;
2703	device_t child;
2704	int i, found, error;
2705
2706	aac_alloc_sync_fib(sc, &fib, 0);
2707	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2708	bzero(c_cmd, sizeof(struct aac_ctcfg));
2709
2710	c_cmd->Command = VM_ContainerConfig;
2711	c_cmd->cmd = CT_GET_SCSI_METHOD;
2712	c_cmd->param = 0;
2713
2714	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2715	    sizeof(struct aac_ctcfg));
2716	if (error) {
2717		device_printf(sc->aac_dev, "Error %d sending "
2718		    "VM_ContainerConfig command\n", error);
2719		aac_release_sync_fib(sc);
2720		return;
2721	}
2722
2723	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2724	if (c_resp->Status != ST_OK) {
2725		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2726		    c_resp->Status);
2727		aac_release_sync_fib(sc);
2728		return;
2729	}
2730
2731	sc->scsi_method_id = c_resp->param;
2732
2733	vmi = (struct aac_vmioctl *)&fib->data[0];
2734	bzero(vmi, sizeof(struct aac_vmioctl));
2735
2736	vmi->Command = VM_Ioctl;
2737	vmi->ObjType = FT_DRIVE;
2738	vmi->MethId = sc->scsi_method_id;
2739	vmi->ObjId = 0;
2740	vmi->IoctlCmd = GetBusInfo;
2741
2742	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2743	    sizeof(struct aac_vmioctl));
2744	if (error) {
2745		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2746		    error);
2747		aac_release_sync_fib(sc);
2748		return;
2749	}
2750
2751	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2752	if (vmi_resp->Status != ST_OK) {
2753		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2754		    vmi_resp->Status);
2755		aac_release_sync_fib(sc);
2756		return;
2757	}
2758
2759	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2760	aac_release_sync_fib(sc);
2761
2762	found = 0;
2763	for (i = 0; i < businfo.BusCount; i++) {
2764		if (businfo.BusValid[i] != AAC_BUS_VALID)
2765			continue;
2766
2767		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2768		    M_AACBUF, M_NOWAIT | M_ZERO);
2769		if (caminf == NULL)
2770			continue;
2771
2772		child = device_add_child(sc->aac_dev, "aacp", -1);
2773		if (child == NULL) {
2774			device_printf(sc->aac_dev, "device_add_child failed\n");
2775			continue;
2776		}
2777
2778		caminf->TargetsPerBus = businfo.TargetsPerBus;
2779		caminf->BusNumber = i;
2780		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2781		caminf->aac_sc = sc;
2782		caminf->sim_dev = child;
2783
2784		device_set_ivars(child, caminf);
2785		device_set_desc(child, "SCSI Passthrough Bus");
2786		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2787
2788		found = 1;
2789	}
2790
2791	if (found)
2792		bus_generic_attach(sc->aac_dev);
2793
2794	return;
2795}
2796