aac.c revision 111532
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 111532 2003-02-26 04:46:21Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/signalvar.h>
61#include <sys/time.h>
62#include <sys/eventhandler.h>
63
64#include <machine/bus_memio.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67
68#include <dev/aac/aacreg.h>
69#include <dev/aac/aac_ioctl.h>
70#include <dev/aac/aacvar.h>
71#include <dev/aac/aac_tables.h>
72
73static void	aac_startup(void *arg);
74static void	aac_add_container(struct aac_softc *sc,
75				  struct aac_mntinforesp *mir, int f);
76static void	aac_get_bus_info(struct aac_softc *sc);
77
78/* Command Processing */
79static void	aac_timeout(struct aac_softc *sc);
80static int	aac_start(struct aac_command *cm);
81static void	aac_complete(void *context, int pending);
82static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
83static void	aac_bio_complete(struct aac_command *cm);
84static int	aac_wait_command(struct aac_command *cm, int timeout);
85static void	aac_command_thread(struct aac_softc *sc);
86
87/* Command Buffer Management */
88static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
89				       int nseg, int error);
90static int	aac_alloc_commands(struct aac_softc *sc);
91static void	aac_free_commands(struct aac_softc *sc);
92static void	aac_map_command(struct aac_command *cm);
93static void	aac_unmap_command(struct aac_command *cm);
94
95/* Hardware Interface */
96static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
97			       int error);
98static int	aac_check_firmware(struct aac_softc *sc);
99static int	aac_init(struct aac_softc *sc);
100static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
101				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
102				 u_int32_t arg3, u_int32_t *sp);
103static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
104				struct aac_command *cm);
105static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
106				u_int32_t *fib_size, struct aac_fib **fib_addr);
107static int	aac_enqueue_response(struct aac_softc *sc, int queue,
108				     struct aac_fib *fib);
109
110/* Falcon/PPC interface */
111static int	aac_fa_get_fwstatus(struct aac_softc *sc);
112static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
113static int	aac_fa_get_istatus(struct aac_softc *sc);
114static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
115static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
116				   u_int32_t arg0, u_int32_t arg1,
117				   u_int32_t arg2, u_int32_t arg3);
118static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
119static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
120
121struct aac_interface aac_fa_interface = {
122	aac_fa_get_fwstatus,
123	aac_fa_qnotify,
124	aac_fa_get_istatus,
125	aac_fa_clear_istatus,
126	aac_fa_set_mailbox,
127	aac_fa_get_mailboxstatus,
128	aac_fa_set_interrupts
129};
130
131/* StrongARM interface */
132static int	aac_sa_get_fwstatus(struct aac_softc *sc);
133static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
134static int	aac_sa_get_istatus(struct aac_softc *sc);
135static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
136static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
137				   u_int32_t arg0, u_int32_t arg1,
138				   u_int32_t arg2, u_int32_t arg3);
139static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
140static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
141
142struct aac_interface aac_sa_interface = {
143	aac_sa_get_fwstatus,
144	aac_sa_qnotify,
145	aac_sa_get_istatus,
146	aac_sa_clear_istatus,
147	aac_sa_set_mailbox,
148	aac_sa_get_mailboxstatus,
149	aac_sa_set_interrupts
150};
151
152/* i960Rx interface */
153static int	aac_rx_get_fwstatus(struct aac_softc *sc);
154static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
155static int	aac_rx_get_istatus(struct aac_softc *sc);
156static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
157static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
158				   u_int32_t arg0, u_int32_t arg1,
159				   u_int32_t arg2, u_int32_t arg3);
160static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
161static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
162
163struct aac_interface aac_rx_interface = {
164	aac_rx_get_fwstatus,
165	aac_rx_qnotify,
166	aac_rx_get_istatus,
167	aac_rx_clear_istatus,
168	aac_rx_set_mailbox,
169	aac_rx_get_mailboxstatus,
170	aac_rx_set_interrupts
171};
172
173/* Debugging and Diagnostics */
174static void	aac_describe_controller(struct aac_softc *sc);
175static char	*aac_describe_code(struct aac_code_lookup *table,
176				   u_int32_t code);
177
178/* Management Interface */
179static d_open_t		aac_open;
180static d_close_t	aac_close;
181static d_ioctl_t	aac_ioctl;
182static d_poll_t		aac_poll;
183static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
184static void		aac_handle_aif(struct aac_softc *sc,
185					   struct aac_fib *fib);
186static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
187static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
188static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
189static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
190
191#define AAC_CDEV_MAJOR	150
192
193static struct cdevsw aac_cdevsw = {
194	aac_open,		/* open */
195	aac_close,		/* close */
196	noread,			/* read */
197	nowrite,		/* write */
198	aac_ioctl,		/* ioctl */
199	aac_poll,		/* poll */
200	nommap,			/* mmap */
201	nostrategy,		/* strategy */
202	"aac",			/* name */
203	AAC_CDEV_MAJOR,		/* major */
204	nodump,			/* dump */
205	nopsize,		/* psize */
206	0,			/* flags */
207#if __FreeBSD_version < 500005
208	-1,			/* bmaj */
209#endif
210};
211
212MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
213
214/* sysctl node */
215SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
216
217/*
218 * Device Interface
219 */
220
221/*
222 * Initialise the controller and softc
223 */
224int
225aac_attach(struct aac_softc *sc)
226{
227	int error, unit;
228
229	debug_called(1);
230
231	/*
232	 * Initialise per-controller queues.
233	 */
234	aac_initq_free(sc);
235	aac_initq_ready(sc);
236	aac_initq_busy(sc);
237	aac_initq_bio(sc);
238
239#if __FreeBSD_version >= 500005
240	/*
241	 * Initialise command-completion task.
242	 */
243	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
244#endif
245
246	/* disable interrupts before we enable anything */
247	AAC_MASK_INTERRUPTS(sc);
248
249	/* mark controller as suspended until we get ourselves organised */
250	sc->aac_state |= AAC_STATE_SUSPEND;
251
252	/*
253	 * Check that the firmware on the card is supported.
254	 */
255	if ((error = aac_check_firmware(sc)) != 0)
256		return(error);
257
258	/* Init the sync fib lock */
259	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
260
261	/*
262	 * Initialise the adapter.
263	 */
264	if ((error = aac_init(sc)) != 0)
265		return(error);
266
267	/*
268	 * Print a little information about the controller.
269	 */
270	aac_describe_controller(sc);
271
272	/*
273	 * Initialize locks
274	 */
275	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
276	TAILQ_INIT(&sc->aac_container_tqh);
277	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
278	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
279
280	/*
281	 * Register to probe our containers later.
282	 */
283	sc->aac_ich.ich_func = aac_startup;
284	sc->aac_ich.ich_arg = sc;
285	if (config_intrhook_establish(&sc->aac_ich) != 0) {
286		device_printf(sc->aac_dev,
287			      "can't establish configuration hook\n");
288		return(ENXIO);
289	}
290
291	/*
292	 * Make the control device.
293	 */
294	unit = device_get_unit(sc->aac_dev);
295	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
296				 0640, "aac%d", unit);
297#if __FreeBSD_version > 500005
298	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
299	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
300#endif
301	sc->aac_dev_t->si_drv1 = sc;
302
303	/* Create the AIF thread */
304#if __FreeBSD_version > 500005
305	if (kthread_create((void(*)(void *))aac_command_thread, sc,
306			   &sc->aifthread, 0, 0, "aac%daif", unit))
307#else
308	if (kthread_create((void(*)(void *))aac_command_thread, sc,
309			   &sc->aifthread, "aac%daif", unit))
310#endif
311		panic("Could not create AIF thread\n");
312
313	/* Register the shutdown method to only be called post-dump */
314	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
315	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
316		device_printf(sc->aac_dev,
317			      "shutdown event registration failed\n");
318
319	/* Register with CAM for the non-DASD devices */
320	if (!(sc->quirks & AAC_QUIRK_NOCAM)) {
321		TAILQ_INIT(&sc->aac_sim_tqh);
322		aac_get_bus_info(sc);
323	}
324
325	return(0);
326}
327
328/*
329 * Probe for containers, create disks.
330 */
331static void
332aac_startup(void *arg)
333{
334	struct aac_softc *sc;
335	struct aac_fib *fib;
336	struct aac_mntinfo *mi;
337	struct aac_mntinforesp *mir = NULL;
338	int i = 0;
339
340	debug_called(1);
341
342	sc = (struct aac_softc *)arg;
343
344	/* disconnect ourselves from the intrhook chain */
345	config_intrhook_disestablish(&sc->aac_ich);
346
347	aac_alloc_sync_fib(sc, &fib, 0);
348	mi = (struct aac_mntinfo *)&fib->data[0];
349
350	/* loop over possible containers */
351	do {
352		/* request information on this container */
353		bzero(mi, sizeof(struct aac_mntinfo));
354		mi->Command = VM_NameServe;
355		mi->MntType = FT_FILESYS;
356		mi->MntCount = i;
357		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
358				 sizeof(struct aac_mntinfo))) {
359			debug(2, "error probing container %d", i);
360			continue;
361		}
362
363		mir = (struct aac_mntinforesp *)&fib->data[0];
364		aac_add_container(sc, mir, 0);
365		i++;
366	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
367
368	aac_release_sync_fib(sc);
369
370	/* poke the bus to actually attach the child devices */
371	if (bus_generic_attach(sc->aac_dev))
372		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
373
374	/* mark the controller up */
375	sc->aac_state &= ~AAC_STATE_SUSPEND;
376
377	/* enable interrupts now */
378	AAC_UNMASK_INTERRUPTS(sc);
379}
380
381/*
382 * Create a device to respresent a new container
383 */
384static void
385aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
386{
387	struct aac_container *co;
388	device_t child;
389
390	/*
391	 * Check container volume type for validity.  Note that many of
392	 * the possible types may never show up.
393	 */
394	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
395		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
396		       M_NOWAIT | M_ZERO);
397		if (co == NULL)
398			panic("Out of memory?!\n");
399		debug(1, "id %x  name '%.16s'  size %u  type %d",
400		      mir->MntTable[0].ObjectId,
401		      mir->MntTable[0].FileSystemName,
402		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
403
404		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
405			device_printf(sc->aac_dev, "device_add_child failed\n");
406		else
407			device_set_ivars(child, co);
408		device_set_desc(child, aac_describe_code(aac_container_types,
409				mir->MntTable[0].VolType));
410		co->co_disk = child;
411		co->co_found = f;
412		bcopy(&mir->MntTable[0], &co->co_mntobj,
413		      sizeof(struct aac_mntobj));
414		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
415		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
416		AAC_LOCK_RELEASE(&sc->aac_container_lock);
417	}
418}
419
420/*
421 * Free all of the resources associated with (sc)
422 *
423 * Should not be called if the controller is active.
424 */
425void
426aac_free(struct aac_softc *sc)
427{
428
429	debug_called(1);
430
431	/* remove the control device */
432	if (sc->aac_dev_t != NULL)
433		destroy_dev(sc->aac_dev_t);
434
435	/* throw away any FIB buffers, discard the FIB DMA tag */
436	aac_free_commands(sc);
437	if (sc->aac_fib_dmat)
438		bus_dma_tag_destroy(sc->aac_fib_dmat);
439
440	free(sc->aac_commands, M_AACBUF);
441
442	/* destroy the common area */
443	if (sc->aac_common) {
444		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
445		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
446				sc->aac_common_dmamap);
447	}
448	if (sc->aac_common_dmat)
449		bus_dma_tag_destroy(sc->aac_common_dmat);
450
451	/* disconnect the interrupt handler */
452	if (sc->aac_intr)
453		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
454	if (sc->aac_irq != NULL)
455		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
456				     sc->aac_irq);
457
458	/* destroy data-transfer DMA tag */
459	if (sc->aac_buffer_dmat)
460		bus_dma_tag_destroy(sc->aac_buffer_dmat);
461
462	/* destroy the parent DMA tag */
463	if (sc->aac_parent_dmat)
464		bus_dma_tag_destroy(sc->aac_parent_dmat);
465
466	/* release the register window mapping */
467	if (sc->aac_regs_resource != NULL)
468		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
469				     sc->aac_regs_rid, sc->aac_regs_resource);
470}
471
472/*
473 * Disconnect from the controller completely, in preparation for unload.
474 */
475int
476aac_detach(device_t dev)
477{
478	struct aac_softc *sc;
479	struct aac_container *co;
480	struct aac_sim	*sim;
481	int error;
482
483	debug_called(1);
484
485	sc = device_get_softc(dev);
486
487	if (sc->aac_state & AAC_STATE_OPEN)
488		return(EBUSY);
489
490	/* Remove the child containers */
491	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
492		error = device_delete_child(dev, co->co_disk);
493		if (error)
494			return (error);
495		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
496		free(co, M_AACBUF);
497	}
498
499	/* Remove the CAM SIMs */
500	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
501		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
502		error = device_delete_child(dev, sim->sim_dev);
503		if (error)
504			return (error);
505		free(sim, M_AACBUF);
506	}
507
508	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
509		sc->aifflags |= AAC_AIFFLAGS_EXIT;
510		wakeup(sc->aifthread);
511		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
512	}
513
514	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
515		panic("Cannot shutdown AIF thread\n");
516
517	if ((error = aac_shutdown(dev)))
518		return(error);
519
520	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
521
522	aac_free(sc);
523
524	return(0);
525}
526
527/*
528 * Bring the controller down to a dormant state and detach all child devices.
529 *
530 * This function is called before detach or system shutdown.
531 *
532 * Note that we can assume that the bioq on the controller is empty, as we won't
533 * allow shutdown if any device is open.
534 */
535int
536aac_shutdown(device_t dev)
537{
538	struct aac_softc *sc;
539	struct aac_fib *fib;
540	struct aac_close_command *cc;
541	int s;
542
543	debug_called(1);
544
545	sc = device_get_softc(dev);
546
547	s = splbio();
548
549	sc->aac_state |= AAC_STATE_SUSPEND;
550
551	/*
552	 * Send a Container shutdown followed by a HostShutdown FIB to the
553	 * controller to convince it that we don't want to talk to it anymore.
554	 * We've been closed and all I/O completed already
555	 */
556	device_printf(sc->aac_dev, "shutting down controller...");
557
558	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
559	cc = (struct aac_close_command *)&fib->data[0];
560
561	bzero(cc, sizeof(struct aac_close_command));
562	cc->Command = VM_CloseAll;
563	cc->ContainerId = 0xffffffff;
564	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
565	    sizeof(struct aac_close_command)))
566		printf("FAILED.\n");
567	else
568		printf("done\n");
569#if 0
570	else {
571		fib->data[0] = 0;
572		/*
573		 * XXX Issuing this command to the controller makes it shut down
574		 * but also keeps it from coming back up without a reset of the
575		 * PCI bus.  This is not desirable if you are just unloading the
576		 * driver module with the intent to reload it later.
577		 */
578		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
579		    fib, 1)) {
580			printf("FAILED.\n");
581		} else {
582			printf("done.\n");
583		}
584	}
585#endif
586
587	AAC_MASK_INTERRUPTS(sc);
588
589	splx(s);
590	return(0);
591}
592
593/*
594 * Bring the controller to a quiescent state, ready for system suspend.
595 */
596int
597aac_suspend(device_t dev)
598{
599	struct aac_softc *sc;
600	int s;
601
602	debug_called(1);
603
604	sc = device_get_softc(dev);
605
606	s = splbio();
607
608	sc->aac_state |= AAC_STATE_SUSPEND;
609
610	AAC_MASK_INTERRUPTS(sc);
611	splx(s);
612	return(0);
613}
614
615/*
616 * Bring the controller back to a state ready for operation.
617 */
618int
619aac_resume(device_t dev)
620{
621	struct aac_softc *sc;
622
623	debug_called(1);
624
625	sc = device_get_softc(dev);
626
627	sc->aac_state &= ~AAC_STATE_SUSPEND;
628	AAC_UNMASK_INTERRUPTS(sc);
629	return(0);
630}
631
632/*
633 * Take an interrupt.
634 */
635void
636aac_intr(void *arg)
637{
638	struct aac_softc *sc;
639	u_int32_t *resp_queue;
640	u_int16_t reason;
641
642	debug_called(2);
643
644	sc = (struct aac_softc *)arg;
645
646	/*
647	 * Optimize the common case of adapter response interrupts.
648	 * We must read from the card prior to processing the responses
649	 * to ensure the clear is flushed prior to accessing the queues.
650	 * Reading the queues from local memory might save us a PCI read.
651	 */
652	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
653	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
654		reason = AAC_DB_RESPONSE_READY;
655	else
656		reason = AAC_GET_ISTATUS(sc);
657	AAC_CLEAR_ISTATUS(sc, reason);
658	(void)AAC_GET_ISTATUS(sc);
659
660	/* It's not ok to return here because of races with the previous step */
661	if (reason & AAC_DB_RESPONSE_READY)
662		/* handle completion processing */
663		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
664
665	/* controller wants to talk to the log */
666	if (reason & AAC_DB_PRINTF) {
667		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
668			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
669		} else
670			aac_print_printf(sc);
671	}
672
673	/* controller has a message for us? */
674	if (reason & AAC_DB_COMMAND_READY) {
675		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
676			sc->aifflags |= AAC_AIFFLAGS_AIF;
677		} else {
678			/*
679			 * XXX If the kthread is dead and we're at this point,
680			 * there are bigger problems than just figuring out
681			 * what to do with an AIF.
682			 */
683		}
684
685	}
686
687	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
688		/* XXX Should this be done with cv_signal? */
689		wakeup(sc->aifthread);
690}
691
692/*
693 * Command Processing
694 */
695
696/*
697 * Start as much queued I/O as possible on the controller
698 */
699void
700aac_startio(struct aac_softc *sc)
701{
702	struct aac_command *cm;
703
704	debug_called(2);
705
706	for (;;) {
707		/*
708		 * Try to get a command that's been put off for lack of
709		 * resources
710		 */
711		cm = aac_dequeue_ready(sc);
712
713		/*
714		 * Try to build a command off the bio queue (ignore error
715		 * return)
716		 */
717		if (cm == NULL)
718			aac_bio_command(sc, &cm);
719
720		/* nothing to do? */
721		if (cm == NULL)
722			break;
723
724		/* try to give the command to the controller */
725		if (aac_start(cm) == EBUSY) {
726			/* put it on the ready queue for later */
727			aac_requeue_ready(cm);
728			break;
729		}
730	}
731}
732
733/*
734 * Deliver a command to the controller; allocate controller resources at the
735 * last moment when possible.
736 */
737static int
738aac_start(struct aac_command *cm)
739{
740	struct aac_softc *sc;
741	int error;
742
743	debug_called(2);
744
745	sc = cm->cm_sc;
746
747	/* get the command mapped */
748	aac_map_command(cm);
749
750	/* fix up the address values in the FIB */
751	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
752	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
753
754	/* save a pointer to the command for speedy reverse-lookup */
755	cm->cm_fib->Header.SenderData = cm->cm_index;
756	/* put the FIB on the outbound queue */
757	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
758	return(error);
759}
760
761/*
762 * Handle notification of one or more FIBs coming from the controller.
763 */
764static void
765aac_command_thread(struct aac_softc *sc)
766{
767	struct aac_fib *fib;
768	u_int32_t fib_size;
769	int size;
770
771	debug_called(2);
772
773	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
774
775	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
776		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
777			tsleep(sc->aifthread, PRIBIO, "aifthd",
778			       AAC_PERIODIC_INTERVAL * hz);
779
780		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
781			aac_timeout(sc);
782
783		/* Check the hardware printf message buffer */
784		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
785			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
786			aac_print_printf(sc);
787		}
788
789		/* See if any FIBs need to be allocated */
790		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
791			mtx_lock(&Giant);
792			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
793			aac_alloc_commands(sc);
794			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
795			AAC_LOCK_RELEASE(&sc->aac_io_lock);
796			mtx_unlock(&Giant);
797		}
798
799		/* While we're here, check to see if any commands are stuck */
800		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
801			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
802					    &fib_size, &fib)) {
803				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
804				break;	/* nothing to do */
805			}
806
807			AAC_PRINT_FIB(sc, fib);
808
809			switch (fib->Header.Command) {
810			case AifRequest:
811				aac_handle_aif(sc, fib);
812				break;
813			default:
814				device_printf(sc->aac_dev, "unknown command "
815					      "from controller\n");
816				break;
817			}
818
819			if ((fib->Header.XferState == 0) ||
820			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
821				break;
822
823			/* Return the AIF to the controller. */
824			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
825				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
826				*(AAC_FSAStatus*)fib->data = ST_OK;
827
828				/* XXX Compute the Size field? */
829				size = fib->Header.Size;
830				if (size > sizeof(struct aac_fib)) {
831					size = sizeof(struct aac_fib);
832					fib->Header.Size = size;
833				}
834				/*
835				 * Since we did not generate this command, it
836				 * cannot go through the normal
837				 * enqueue->startio chain.
838				 */
839				aac_enqueue_response(sc,
840						     AAC_ADAP_NORM_RESP_QUEUE,
841						     fib);
842			}
843		}
844	}
845	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
846	wakeup(sc->aac_dev);
847
848#if __FreeBSD_version > 500005
849	mtx_lock(&Giant);
850#endif
851	kthread_exit(0);
852}
853
854/*
855 * Process completed commands.
856 */
857static void
858aac_complete(void *context, int pending)
859{
860	struct aac_softc *sc;
861	struct aac_command *cm;
862	struct aac_fib *fib;
863	u_int32_t fib_size;
864
865	debug_called(2);
866
867	sc = (struct aac_softc *)context;
868
869	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
870
871	/* pull completed commands off the queue */
872	for (;;) {
873		/* look for completed FIBs on our queue */
874		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
875				    &fib))
876			break;	/* nothing to do */
877
878		/* get the command, unmap and queue for later processing */
879		cm = sc->aac_commands + fib->Header.SenderData;
880		if (cm == NULL) {
881			AAC_PRINT_FIB(sc, fib);
882			break;
883		}
884
885		aac_remove_busy(cm);
886		aac_unmap_command(cm);		/* XXX defer? */
887		cm->cm_flags |= AAC_CMD_COMPLETED;
888
889		/* is there a completion handler? */
890		if (cm->cm_complete != NULL) {
891			cm->cm_complete(cm);
892		} else {
893			/* assume that someone is sleeping on this command */
894			wakeup(cm);
895		}
896	}
897
898	/* see if we can start some more I/O */
899	aac_startio(sc);
900
901	AAC_LOCK_RELEASE(&sc->aac_io_lock);
902}
903
904/*
905 * Handle a bio submitted from a disk device.
906 */
907void
908aac_submit_bio(struct bio *bp)
909{
910	struct aac_disk *ad;
911	struct aac_softc *sc;
912
913	debug_called(2);
914
915	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
916	sc = ad->ad_controller;
917
918	/* queue the BIO and try to get some work done */
919	aac_enqueue_bio(sc, bp);
920	aac_startio(sc);
921}
922
923/*
924 * Get a bio and build a command to go with it.
925 */
926static int
927aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
928{
929	struct aac_command *cm;
930	struct aac_fib *fib;
931	struct aac_blockread *br;
932	struct aac_blockwrite *bw;
933	struct aac_disk *ad;
934	struct bio *bp;
935
936	debug_called(2);
937
938	/* get the resources we will need */
939	cm = NULL;
940	if ((bp = aac_dequeue_bio(sc)) == NULL)
941		goto fail;
942	if (aac_alloc_command(sc, &cm))	/* get a command */
943		goto fail;
944
945	/* fill out the command */
946	cm->cm_data = (void *)bp->bio_data;
947	cm->cm_datalen = bp->bio_bcount;
948	cm->cm_complete = aac_bio_complete;
949	cm->cm_private = bp;
950	cm->cm_timestamp = time_second;
951	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
952
953	/* build the FIB */
954	fib = cm->cm_fib;
955	fib->Header.XferState =
956		AAC_FIBSTATE_HOSTOWNED   |
957		AAC_FIBSTATE_INITIALISED |
958		AAC_FIBSTATE_EMPTY	 |
959		AAC_FIBSTATE_FROMHOST	 |
960		AAC_FIBSTATE_REXPECTED   |
961		AAC_FIBSTATE_NORM	 |
962		AAC_FIBSTATE_ASYNC	 |
963		AAC_FIBSTATE_FAST_RESPONSE;
964	fib->Header.Command = ContainerCommand;
965	fib->Header.Size = sizeof(struct aac_fib_header);
966
967	/* build the read/write request */
968	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
969	if (BIO_IS_READ(bp)) {
970		br = (struct aac_blockread *)&fib->data[0];
971		br->Command = VM_CtBlockRead;
972		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
973		br->BlockNumber = bp->bio_pblkno;
974		br->ByteCount = bp->bio_bcount;
975		fib->Header.Size += sizeof(struct aac_blockread);
976		cm->cm_sgtable = &br->SgMap;
977		cm->cm_flags |= AAC_CMD_DATAIN;
978	} else {
979		bw = (struct aac_blockwrite *)&fib->data[0];
980		bw->Command = VM_CtBlockWrite;
981		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
982		bw->BlockNumber = bp->bio_pblkno;
983		bw->ByteCount = bp->bio_bcount;
984		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
985		fib->Header.Size += sizeof(struct aac_blockwrite);
986		cm->cm_flags |= AAC_CMD_DATAOUT;
987		cm->cm_sgtable = &bw->SgMap;
988	}
989
990	*cmp = cm;
991	return(0);
992
993fail:
994	if (bp != NULL)
995		aac_enqueue_bio(sc, bp);
996	if (cm != NULL)
997		aac_release_command(cm);
998	return(ENOMEM);
999}
1000
1001/*
1002 * Handle a bio-instigated command that has been completed.
1003 */
1004static void
1005aac_bio_complete(struct aac_command *cm)
1006{
1007	struct aac_blockread_response *brr;
1008	struct aac_blockwrite_response *bwr;
1009	struct bio *bp;
1010	AAC_FSAStatus status;
1011
1012	/* fetch relevant status and then release the command */
1013	bp = (struct bio *)cm->cm_private;
1014	if (BIO_IS_READ(bp)) {
1015		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1016		status = brr->Status;
1017	} else {
1018		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1019		status = bwr->Status;
1020	}
1021	aac_release_command(cm);
1022
1023	/* fix up the bio based on status */
1024	if (status == ST_OK) {
1025		bp->bio_resid = 0;
1026	} else {
1027		bp->bio_error = EIO;
1028		bp->bio_flags |= BIO_ERROR;
1029		/* pass an error string out to the disk layer */
1030		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1031						    status);
1032	}
1033	aac_biodone(bp);
1034}
1035
1036/*
1037 * Submit a command to the controller, return when it completes.
1038 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1039 *     be stuck here forever.  At the same time, signals are not caught
1040 *     because there is a risk that a signal could wakeup the tsleep before
1041 *     the card has a chance to complete the command.  The passed in timeout
1042 *     is ignored for the same reason.  Since there is no way to cancel a
1043 *     command in progress, we should probably create a 'dead' queue where
1044 *     commands go that have been interrupted/timed-out/etc, that keeps them
1045 *     out of the free pool.  That way, if the card is just slow, it won't
1046 *     spam the memory of a command that has been recycled.
1047 */
1048static int
1049aac_wait_command(struct aac_command *cm, int timeout)
1050{
1051	struct aac_softc *sc;
1052	int error = 0;
1053
1054	debug_called(2);
1055
1056	sc = cm->cm_sc;
1057
1058	/* Put the command on the ready queue and get things going */
1059	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1060	aac_enqueue_ready(cm);
1061	aac_startio(sc);
1062	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1063		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1064	}
1065	return(error);
1066}
1067
1068/*
1069 *Command Buffer Management
1070 */
1071
1072/*
1073 * Allocate a command.
1074 */
1075int
1076aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1077{
1078	struct aac_command *cm;
1079
1080	debug_called(3);
1081
1082	if ((cm = aac_dequeue_free(sc)) == NULL) {
1083		sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1084		wakeup(sc->aifthread);
1085		return (EBUSY);
1086	}
1087
1088	*cmp = cm;
1089	return(0);
1090}
1091
1092/*
1093 * Release a command back to the freelist.
1094 */
1095void
1096aac_release_command(struct aac_command *cm)
1097{
1098	debug_called(3);
1099
1100	/* (re)initialise the command/FIB */
1101	cm->cm_sgtable = NULL;
1102	cm->cm_flags = 0;
1103	cm->cm_complete = NULL;
1104	cm->cm_private = NULL;
1105	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1106	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1107	cm->cm_fib->Header.Flags = 0;
1108	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1109
1110	/*
1111	 * These are duplicated in aac_start to cover the case where an
1112	 * intermediate stage may have destroyed them.  They're left
1113	 * initialised here for debugging purposes only.
1114	 */
1115	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1116	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1117	cm->cm_fib->Header.SenderData = 0;
1118
1119	aac_enqueue_free(cm);
1120}
1121
1122/*
1123 * Map helper for command/FIB allocation.
1124 */
1125static void
1126aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1127{
1128	uint32_t	*fibphys;
1129
1130	fibphys = (uint32_t *)arg;
1131
1132	debug_called(3);
1133
1134	*fibphys = segs[0].ds_addr;
1135}
1136
1137/*
1138 * Allocate and initialise commands/FIBs for this adapter.
1139 */
1140static int
1141aac_alloc_commands(struct aac_softc *sc)
1142{
1143	struct aac_command *cm;
1144	struct aac_fibmap *fm;
1145	uint32_t fibphys;
1146	int i, error;
1147
1148	debug_called(1);
1149
1150	if (sc->total_fibs + AAC_FIB_COUNT > AAC_MAX_FIBS)
1151		return (ENOMEM);
1152
1153	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1154
1155	/* allocate the FIBs in DMAable memory and load them */
1156	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1157			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1158		device_printf(sc->aac_dev,
1159			      "Not enough contiguous memory available.\n");
1160		free(fm, M_AACBUF);
1161		return (ENOMEM);
1162	}
1163
1164	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1165			AAC_FIB_COUNT * sizeof(struct aac_fib),
1166			aac_map_command_helper, &fibphys, 0);
1167
1168	/* initialise constant fields in the command structure */
1169	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1170	for (i = 0; i < AAC_FIB_COUNT; i++) {
1171		cm = sc->aac_commands + sc->total_fibs;
1172		fm->aac_commands = cm;
1173		cm->cm_sc = sc;
1174		cm->cm_fib = fm->aac_fibs + i;
1175		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1176		cm->cm_index = sc->total_fibs;
1177
1178		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1179					       &cm->cm_datamap)) == 0)
1180			aac_release_command(cm);
1181		else
1182			break;
1183		sc->total_fibs++;
1184	}
1185
1186	if (i > 0) {
1187		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1188		return (0);
1189	}
1190
1191	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1192	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1193	free(fm, M_AACBUF);
1194	return (ENOMEM);
1195}
1196
1197/*
1198 * Free FIBs owned by this adapter.
1199 */
1200static void
1201aac_free_commands(struct aac_softc *sc)
1202{
1203	struct aac_fibmap *fm;
1204	struct aac_command *cm;
1205	int i;
1206
1207	debug_called(1);
1208
1209	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1210
1211		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1212		/*
1213		 * We check against total_fibs to handle partially
1214		 * allocated blocks.
1215		 */
1216		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1217			cm = fm->aac_commands + i;
1218			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1219		}
1220		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1221		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1222		free(fm, M_AACBUF);
1223	}
1224}
1225
1226/*
1227 * Command-mapping helper function - populate this command's s/g table.
1228 */
1229static void
1230aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1231{
1232	struct aac_command *cm;
1233	struct aac_fib *fib;
1234	struct aac_sg_table *sg;
1235	int i;
1236
1237	debug_called(3);
1238
1239	cm = (struct aac_command *)arg;
1240	fib = cm->cm_fib;
1241
1242	/* find the s/g table */
1243	sg = cm->cm_sgtable;
1244
1245	/* copy into the FIB */
1246	if (sg != NULL) {
1247		sg->SgCount = nseg;
1248		for (i = 0; i < nseg; i++) {
1249			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1250			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1251		}
1252		/* update the FIB size for the s/g count */
1253		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1254	}
1255
1256}
1257
1258/*
1259 * Map a command into controller-visible space.
1260 */
1261static void
1262aac_map_command(struct aac_command *cm)
1263{
1264	struct aac_softc *sc;
1265
1266	debug_called(2);
1267
1268	sc = cm->cm_sc;
1269
1270	/* don't map more than once */
1271	if (cm->cm_flags & AAC_CMD_MAPPED)
1272		return;
1273
1274	if (cm->cm_datalen != 0) {
1275		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1276				cm->cm_data, cm->cm_datalen,
1277				aac_map_command_sg, cm, 0);
1278
1279		if (cm->cm_flags & AAC_CMD_DATAIN)
1280			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1281					BUS_DMASYNC_PREREAD);
1282		if (cm->cm_flags & AAC_CMD_DATAOUT)
1283			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1284					BUS_DMASYNC_PREWRITE);
1285	}
1286	cm->cm_flags |= AAC_CMD_MAPPED;
1287}
1288
1289/*
1290 * Unmap a command from controller-visible space.
1291 */
1292static void
1293aac_unmap_command(struct aac_command *cm)
1294{
1295	struct aac_softc *sc;
1296
1297	debug_called(2);
1298
1299	sc = cm->cm_sc;
1300
1301	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1302		return;
1303
1304	if (cm->cm_datalen != 0) {
1305		if (cm->cm_flags & AAC_CMD_DATAIN)
1306			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1307					BUS_DMASYNC_POSTREAD);
1308		if (cm->cm_flags & AAC_CMD_DATAOUT)
1309			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1310					BUS_DMASYNC_POSTWRITE);
1311
1312		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1313	}
1314	cm->cm_flags &= ~AAC_CMD_MAPPED;
1315}
1316
1317/*
1318 * Hardware Interface
1319 */
1320
1321/*
1322 * Initialise the adapter.
1323 */
1324static void
1325aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1326{
1327	struct aac_softc *sc;
1328
1329	debug_called(1);
1330
1331	sc = (struct aac_softc *)arg;
1332
1333	sc->aac_common_busaddr = segs[0].ds_addr;
1334}
1335
1336/*
1337 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1338 * firmware version 1.x are not compatible with this driver.
1339 */
1340static int
1341aac_check_firmware(struct aac_softc *sc)
1342{
1343	u_int32_t major, minor;
1344
1345	debug_called(1);
1346
1347	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1348		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1349				     NULL)) {
1350			device_printf(sc->aac_dev,
1351				      "Error reading firmware version\n");
1352			return (EIO);
1353		}
1354
1355		/* These numbers are stored as ASCII! */
1356		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1357		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1358		if (major == 1) {
1359			device_printf(sc->aac_dev,
1360			    "Firmware version %d.%d is not supported.\n",
1361			    major, minor);
1362			return (EINVAL);
1363		}
1364	}
1365
1366	return (0);
1367}
1368
1369static int
1370aac_init(struct aac_softc *sc)
1371{
1372	struct aac_adapter_init	*ip;
1373	time_t then;
1374	u_int32_t code;
1375	u_int8_t *qaddr;
1376
1377	debug_called(1);
1378
1379	/*
1380	 * First wait for the adapter to come ready.
1381	 */
1382	then = time_second;
1383	do {
1384		code = AAC_GET_FWSTATUS(sc);
1385		if (code & AAC_SELF_TEST_FAILED) {
1386			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1387			return(ENXIO);
1388		}
1389		if (code & AAC_KERNEL_PANIC) {
1390			device_printf(sc->aac_dev,
1391				      "FATAL: controller kernel panic\n");
1392			return(ENXIO);
1393		}
1394		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1395			device_printf(sc->aac_dev,
1396				      "FATAL: controller not coming ready, "
1397					   "status %x\n", code);
1398			return(ENXIO);
1399		}
1400	} while (!(code & AAC_UP_AND_RUNNING));
1401
1402	/*
1403	 * Create DMA tag for the common structure and allocate it.
1404	 */
1405	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1406			       1, 0,			/* algnmnt, boundary */
1407			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1408			       BUS_SPACE_MAXADDR, 	/* highaddr */
1409			       NULL, NULL, 		/* filter, filterarg */
1410			       8192 + sizeof(struct aac_common), /* maxsize */
1411			       1,			/* nsegments */
1412			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1413			       0,			/* flags */
1414			       &sc->aac_common_dmat)) {
1415		device_printf(sc->aac_dev,
1416			      "can't allocate common structure DMA tag\n");
1417		return(ENOMEM);
1418	}
1419	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1420			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1421		device_printf(sc->aac_dev, "can't allocate common structure\n");
1422		return(ENOMEM);
1423	}
1424
1425	/*
1426	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1427	 * below address 8192 in physical memory.
1428	 * XXX If the padding is not needed, can it be put to use instead
1429	 * of ignored?
1430	 */
1431	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1432			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1433			aac_common_map, sc, 0);
1434
1435	if (sc->aac_common_busaddr < 8192) {
1436		(uint8_t *)sc->aac_common += 8192;
1437		sc->aac_common_busaddr += 8192;
1438	}
1439	bzero(sc->aac_common, sizeof(*sc->aac_common));
1440
1441	/* Allocate some FIBs and associated command structs */
1442	TAILQ_INIT(&sc->aac_fibmap_tqh);
1443	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1444				  M_AACBUF, M_WAITOK|M_ZERO);
1445	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1446		if (aac_alloc_commands(sc) != 0)
1447			break;
1448	}
1449	if (sc->total_fibs == 0)
1450		return (ENOMEM);
1451
1452	/*
1453	 * Fill in the init structure.  This tells the adapter about the
1454	 * physical location of various important shared data structures.
1455	 */
1456	ip = &sc->aac_common->ac_init;
1457	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1458	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1459
1460	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1461					 offsetof(struct aac_common, ac_fibs);
1462	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1463	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1464	ip->AdapterFibAlign = sizeof(struct aac_fib);
1465
1466	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1467				  offsetof(struct aac_common, ac_printf);
1468	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1469
1470	/* The adapter assumes that pages are 4K in size */
1471	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1472	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1473
1474	/*
1475	 * Initialise FIB queues.  Note that it appears that the layout of the
1476	 * indexes and the segmentation of the entries may be mandated by the
1477	 * adapter, which is only told about the base of the queue index fields.
1478	 *
1479	 * The initial values of the indices are assumed to inform the adapter
1480	 * of the sizes of the respective queues, and theoretically it could
1481	 * work out the entire layout of the queue structures from this.  We
1482	 * take the easy route and just lay this area out like everyone else
1483	 * does.
1484	 *
1485	 * The Linux driver uses a much more complex scheme whereby several
1486	 * header records are kept for each queue.  We use a couple of generic
1487	 * list manipulation functions which 'know' the size of each list by
1488	 * virtue of a table.
1489	 */
1490	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1491	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1492	sc->aac_queues = (struct aac_queue_table *)qaddr;
1493	ip->CommHeaderAddress = sc->aac_common_busaddr +
1494				((u_int32_t)sc->aac_queues -
1495				(u_int32_t)sc->aac_common);
1496
1497	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1498		AAC_HOST_NORM_CMD_ENTRIES;
1499	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1500		AAC_HOST_NORM_CMD_ENTRIES;
1501	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1502		AAC_HOST_HIGH_CMD_ENTRIES;
1503	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1504		AAC_HOST_HIGH_CMD_ENTRIES;
1505	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1506		AAC_ADAP_NORM_CMD_ENTRIES;
1507	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1508		AAC_ADAP_NORM_CMD_ENTRIES;
1509	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1510		AAC_ADAP_HIGH_CMD_ENTRIES;
1511	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1512		AAC_ADAP_HIGH_CMD_ENTRIES;
1513	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1514		AAC_HOST_NORM_RESP_ENTRIES;
1515	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1516		AAC_HOST_NORM_RESP_ENTRIES;
1517	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1518		AAC_HOST_HIGH_RESP_ENTRIES;
1519	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1520		AAC_HOST_HIGH_RESP_ENTRIES;
1521	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1522		AAC_ADAP_NORM_RESP_ENTRIES;
1523	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1524		AAC_ADAP_NORM_RESP_ENTRIES;
1525	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1526		AAC_ADAP_HIGH_RESP_ENTRIES;
1527	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1528		AAC_ADAP_HIGH_RESP_ENTRIES;
1529	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1530		&sc->aac_queues->qt_HostNormCmdQueue[0];
1531	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1532		&sc->aac_queues->qt_HostHighCmdQueue[0];
1533	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1534		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1535	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1536		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1537	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1538		&sc->aac_queues->qt_HostNormRespQueue[0];
1539	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1540		&sc->aac_queues->qt_HostHighRespQueue[0];
1541	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1542		&sc->aac_queues->qt_AdapNormRespQueue[0];
1543	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1544		&sc->aac_queues->qt_AdapHighRespQueue[0];
1545
1546	/*
1547	 * Do controller-type-specific initialisation
1548	 */
1549	switch (sc->aac_hwif) {
1550	case AAC_HWIF_I960RX:
1551		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1552		break;
1553	}
1554
1555	/*
1556	 * Give the init structure to the controller.
1557	 */
1558	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1559			     sc->aac_common_busaddr +
1560			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1561			     NULL)) {
1562		device_printf(sc->aac_dev,
1563			      "error establishing init structure\n");
1564		return(EIO);
1565	}
1566
1567	return(0);
1568}
1569
1570/*
1571 * Send a synchronous command to the controller and wait for a result.
1572 */
1573static int
1574aac_sync_command(struct aac_softc *sc, u_int32_t command,
1575		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1576		 u_int32_t *sp)
1577{
1578	time_t then;
1579	u_int32_t status;
1580
1581	debug_called(3);
1582
1583	/* populate the mailbox */
1584	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1585
1586	/* ensure the sync command doorbell flag is cleared */
1587	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1588
1589	/* then set it to signal the adapter */
1590	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1591
1592	/* spin waiting for the command to complete */
1593	then = time_second;
1594	do {
1595		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1596			debug(2, "timed out");
1597			return(EIO);
1598		}
1599	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1600
1601	/* clear the completion flag */
1602	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1603
1604	/* get the command status */
1605	status = AAC_GET_MAILBOXSTATUS(sc);
1606	if (sp != NULL)
1607		*sp = status;
1608	return(0);
1609}
1610
1611/*
1612 * Grab the sync fib area.
1613 */
1614int
1615aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1616{
1617
1618	/*
1619	 * If the force flag is set, the system is shutting down, or in
1620	 * trouble.  Ignore the mutex.
1621	 */
1622	if (!(flags & AAC_SYNC_LOCK_FORCE))
1623		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1624
1625	*fib = &sc->aac_common->ac_sync_fib;
1626
1627	return (1);
1628}
1629
1630/*
1631 * Release the sync fib area.
1632 */
1633void
1634aac_release_sync_fib(struct aac_softc *sc)
1635{
1636
1637	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1638}
1639
1640/*
1641 * Send a synchronous FIB to the controller and wait for a result.
1642 */
1643int
1644aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1645		 struct aac_fib *fib, u_int16_t datasize)
1646{
1647	debug_called(3);
1648
1649	if (datasize > AAC_FIB_DATASIZE)
1650		return(EINVAL);
1651
1652	/*
1653	 * Set up the sync FIB
1654	 */
1655	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1656				AAC_FIBSTATE_INITIALISED |
1657				AAC_FIBSTATE_EMPTY;
1658	fib->Header.XferState |= xferstate;
1659	fib->Header.Command = command;
1660	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1661	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1662	fib->Header.SenderSize = sizeof(struct aac_fib);
1663	fib->Header.SenderFibAddress = (u_int32_t)fib;
1664	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1665					 offsetof(struct aac_common,
1666						  ac_sync_fib);
1667
1668	/*
1669	 * Give the FIB to the controller, wait for a response.
1670	 */
1671	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1672			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1673		debug(2, "IO error");
1674		return(EIO);
1675	}
1676
1677	return (0);
1678}
1679
1680/*
1681 * Adapter-space FIB queue manipulation
1682 *
1683 * Note that the queue implementation here is a little funky; neither the PI or
1684 * CI will ever be zero.  This behaviour is a controller feature.
1685 */
1686static struct {
1687	int		size;
1688	int		notify;
1689} aac_qinfo[] = {
1690	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1691	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1692	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1693	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1694	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1695	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1696	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1697	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1698};
1699
1700/*
1701 * Atomically insert an entry into the nominated queue, returns 0 on success or
1702 * EBUSY if the queue is full.
1703 *
1704 * Note: it would be more efficient to defer notifying the controller in
1705 *	 the case where we may be inserting several entries in rapid succession,
1706 *	 but implementing this usefully may be difficult (it would involve a
1707 *	 separate queue/notify interface).
1708 */
1709static int
1710aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1711{
1712	u_int32_t pi, ci;
1713	int s, error;
1714	u_int32_t fib_size;
1715	u_int32_t fib_addr;
1716
1717	debug_called(3);
1718
1719	fib_size = cm->cm_fib->Header.Size;
1720	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1721
1722	s = splbio();
1723
1724	/* get the producer/consumer indices */
1725	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1726	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1727
1728	/* wrap the queue? */
1729	if (pi >= aac_qinfo[queue].size)
1730		pi = 0;
1731
1732	/* check for queue full */
1733	if ((pi + 1) == ci) {
1734		error = EBUSY;
1735		goto out;
1736	}
1737
1738	/* populate queue entry */
1739	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1740	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1741
1742	/* update producer index */
1743	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1744
1745	/*
1746	 * To avoid a race with its completion interrupt, place this command on
1747	 * the busy queue prior to advertising it to the controller.
1748	 */
1749	aac_enqueue_busy(cm);
1750
1751	/* notify the adapter if we know how */
1752	if (aac_qinfo[queue].notify != 0)
1753		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1754
1755	error = 0;
1756
1757out:
1758	splx(s);
1759	return(error);
1760}
1761
1762/*
1763 * Atomically remove one entry from the nominated queue, returns 0 on
1764 * success or ENOENT if the queue is empty.
1765 */
1766static int
1767aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1768		struct aac_fib **fib_addr)
1769{
1770	u_int32_t pi, ci;
1771	int s, error;
1772	int notify;
1773
1774	debug_called(3);
1775
1776	s = splbio();
1777
1778	/* get the producer/consumer indices */
1779	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1780	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1781
1782	/* check for queue empty */
1783	if (ci == pi) {
1784		error = ENOENT;
1785		goto out;
1786	}
1787
1788	notify = 0;
1789	if (ci == pi + 1)
1790		notify++;
1791
1792	/* wrap the queue? */
1793	if (ci >= aac_qinfo[queue].size)
1794		ci = 0;
1795
1796	/* fetch the entry */
1797	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1798	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1799				       ci)->aq_fib_addr;
1800
1801	/*
1802	 * Is this a fast response? If it is, update the fib fields in
1803	 * local memory so the whole fib doesn't have to be DMA'd back up.
1804	 */
1805	if (*(uintptr_t *)fib_addr & 0x01) {
1806		*(uintptr_t *)fib_addr &= ~0x01;
1807		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1808		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1809	}
1810	/* update consumer index */
1811	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1812
1813	/* if we have made the queue un-full, notify the adapter */
1814	if (notify && (aac_qinfo[queue].notify != 0))
1815		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1816	error = 0;
1817
1818out:
1819	splx(s);
1820	return(error);
1821}
1822
1823/*
1824 * Put our response to an Adapter Initialed Fib on the response queue
1825 */
1826static int
1827aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1828{
1829	u_int32_t pi, ci;
1830	int s, error;
1831	u_int32_t fib_size;
1832	u_int32_t fib_addr;
1833
1834	debug_called(1);
1835
1836	/* Tell the adapter where the FIB is */
1837	fib_size = fib->Header.Size;
1838	fib_addr = fib->Header.SenderFibAddress;
1839	fib->Header.ReceiverFibAddress = fib_addr;
1840
1841	s = splbio();
1842
1843	/* get the producer/consumer indices */
1844	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1845	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1846
1847	/* wrap the queue? */
1848	if (pi >= aac_qinfo[queue].size)
1849		pi = 0;
1850
1851	/* check for queue full */
1852	if ((pi + 1) == ci) {
1853		error = EBUSY;
1854		goto out;
1855	}
1856
1857	/* populate queue entry */
1858	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1859	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1860
1861	/* update producer index */
1862	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1863
1864	/* notify the adapter if we know how */
1865	if (aac_qinfo[queue].notify != 0)
1866		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1867
1868	error = 0;
1869
1870out:
1871	splx(s);
1872	return(error);
1873}
1874
1875/*
1876 * Check for commands that have been outstanding for a suspiciously long time,
1877 * and complain about them.
1878 */
1879static void
1880aac_timeout(struct aac_softc *sc)
1881{
1882	int s;
1883	struct aac_command *cm;
1884	time_t deadline;
1885
1886	/*
1887	 * Traverse the busy command list, bitch about late commands once
1888	 * only.
1889	 */
1890	deadline = time_second - AAC_CMD_TIMEOUT;
1891	s = splbio();
1892	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1893		if ((cm->cm_timestamp  < deadline)
1894			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1895			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1896			device_printf(sc->aac_dev,
1897				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1898				      cm, (int)(time_second-cm->cm_timestamp));
1899			AAC_PRINT_FIB(sc, cm->cm_fib);
1900		}
1901	}
1902	splx(s);
1903
1904	return;
1905}
1906
1907/*
1908 * Interface Function Vectors
1909 */
1910
1911/*
1912 * Read the current firmware status word.
1913 */
1914static int
1915aac_sa_get_fwstatus(struct aac_softc *sc)
1916{
1917	debug_called(3);
1918
1919	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1920}
1921
1922static int
1923aac_rx_get_fwstatus(struct aac_softc *sc)
1924{
1925	debug_called(3);
1926
1927	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1928}
1929
1930static int
1931aac_fa_get_fwstatus(struct aac_softc *sc)
1932{
1933	int val;
1934
1935	debug_called(3);
1936
1937	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1938	return (val);
1939}
1940
1941/*
1942 * Notify the controller of a change in a given queue
1943 */
1944
1945static void
1946aac_sa_qnotify(struct aac_softc *sc, int qbit)
1947{
1948	debug_called(3);
1949
1950	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1951}
1952
1953static void
1954aac_rx_qnotify(struct aac_softc *sc, int qbit)
1955{
1956	debug_called(3);
1957
1958	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1959}
1960
1961static void
1962aac_fa_qnotify(struct aac_softc *sc, int qbit)
1963{
1964	debug_called(3);
1965
1966	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1967	AAC_FA_HACK(sc);
1968}
1969
1970/*
1971 * Get the interrupt reason bits
1972 */
1973static int
1974aac_sa_get_istatus(struct aac_softc *sc)
1975{
1976	debug_called(3);
1977
1978	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1979}
1980
1981static int
1982aac_rx_get_istatus(struct aac_softc *sc)
1983{
1984	debug_called(3);
1985
1986	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1987}
1988
1989static int
1990aac_fa_get_istatus(struct aac_softc *sc)
1991{
1992	int val;
1993
1994	debug_called(3);
1995
1996	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1997	return (val);
1998}
1999
2000/*
2001 * Clear some interrupt reason bits
2002 */
2003static void
2004aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2005{
2006	debug_called(3);
2007
2008	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2009}
2010
2011static void
2012aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2013{
2014	debug_called(3);
2015
2016	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2017}
2018
2019static void
2020aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2021{
2022	debug_called(3);
2023
2024	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2025	AAC_FA_HACK(sc);
2026}
2027
2028/*
2029 * Populate the mailbox and set the command word
2030 */
2031static void
2032aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2033		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2034{
2035	debug_called(4);
2036
2037	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2038	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2039	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2040	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2041	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2042}
2043
2044static void
2045aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2046		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2047{
2048	debug_called(4);
2049
2050	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2051	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2052	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2053	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2054	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2055}
2056
2057static void
2058aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2059		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2060{
2061	debug_called(4);
2062
2063	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2064	AAC_FA_HACK(sc);
2065	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2066	AAC_FA_HACK(sc);
2067	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2068	AAC_FA_HACK(sc);
2069	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2070	AAC_FA_HACK(sc);
2071	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2072	AAC_FA_HACK(sc);
2073}
2074
2075/*
2076 * Fetch the immediate command status word
2077 */
2078static int
2079aac_sa_get_mailboxstatus(struct aac_softc *sc)
2080{
2081	debug_called(4);
2082
2083	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2084}
2085
2086static int
2087aac_rx_get_mailboxstatus(struct aac_softc *sc)
2088{
2089	debug_called(4);
2090
2091	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2092}
2093
2094static int
2095aac_fa_get_mailboxstatus(struct aac_softc *sc)
2096{
2097	int val;
2098
2099	debug_called(4);
2100
2101	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2102	return (val);
2103}
2104
2105/*
2106 * Set/clear interrupt masks
2107 */
2108static void
2109aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2110{
2111	debug(2, "%sable interrupts", enable ? "en" : "dis");
2112
2113	if (enable) {
2114		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2115	} else {
2116		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2117	}
2118}
2119
2120static void
2121aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2122{
2123	debug(2, "%sable interrupts", enable ? "en" : "dis");
2124
2125	if (enable) {
2126		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2127	} else {
2128		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2129	}
2130}
2131
2132static void
2133aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2134{
2135	debug(2, "%sable interrupts", enable ? "en" : "dis");
2136
2137	if (enable) {
2138		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2139		AAC_FA_HACK(sc);
2140	} else {
2141		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2142		AAC_FA_HACK(sc);
2143	}
2144}
2145
2146/*
2147 * Debugging and Diagnostics
2148 */
2149
2150/*
2151 * Print some information about the controller.
2152 */
2153static void
2154aac_describe_controller(struct aac_softc *sc)
2155{
2156	struct aac_fib *fib;
2157	struct aac_adapter_info	*info;
2158
2159	debug_called(2);
2160
2161	aac_alloc_sync_fib(sc, &fib, 0);
2162
2163	fib->data[0] = 0;
2164	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2165		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2166		aac_release_sync_fib(sc);
2167		return;
2168	}
2169	info = (struct aac_adapter_info *)&fib->data[0];
2170
2171	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2172		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2173		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2174		      aac_describe_code(aac_battery_platform,
2175					info->batteryPlatform));
2176
2177	/* save the kernel revision structure for later use */
2178	sc->aac_revision = info->KernelRevision;
2179	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2180		      info->KernelRevision.external.comp.major,
2181		      info->KernelRevision.external.comp.minor,
2182		      info->KernelRevision.external.comp.dash,
2183		      info->KernelRevision.buildNumber,
2184		      (u_int32_t)(info->SerialNumber & 0xffffff));
2185
2186	aac_release_sync_fib(sc);
2187}
2188
2189/*
2190 * Look up a text description of a numeric error code and return a pointer to
2191 * same.
2192 */
2193static char *
2194aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2195{
2196	int i;
2197
2198	for (i = 0; table[i].string != NULL; i++)
2199		if (table[i].code == code)
2200			return(table[i].string);
2201	return(table[i + 1].string);
2202}
2203
2204/*
2205 * Management Interface
2206 */
2207
2208static int
2209aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2210{
2211	struct aac_softc *sc;
2212
2213	debug_called(2);
2214
2215	sc = dev->si_drv1;
2216
2217	/* Check to make sure the device isn't already open */
2218	if (sc->aac_state & AAC_STATE_OPEN) {
2219		return EBUSY;
2220	}
2221	sc->aac_state |= AAC_STATE_OPEN;
2222
2223	return 0;
2224}
2225
2226static int
2227aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2228{
2229	struct aac_softc *sc;
2230
2231	debug_called(2);
2232
2233	sc = dev->si_drv1;
2234
2235	/* Mark this unit as no longer open  */
2236	sc->aac_state &= ~AAC_STATE_OPEN;
2237
2238	return 0;
2239}
2240
2241static int
2242aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2243{
2244	union aac_statrequest *as;
2245	struct aac_softc *sc;
2246	int error = 0;
2247	int i;
2248
2249	debug_called(2);
2250
2251	as = (union aac_statrequest *)arg;
2252	sc = dev->si_drv1;
2253
2254	switch (cmd) {
2255	case AACIO_STATS:
2256		switch (as->as_item) {
2257		case AACQ_FREE:
2258		case AACQ_BIO:
2259		case AACQ_READY:
2260		case AACQ_BUSY:
2261		case AACQ_COMPLETE:
2262			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2263			      sizeof(struct aac_qstat));
2264			break;
2265		default:
2266			error = ENOENT;
2267			break;
2268		}
2269	break;
2270
2271	case FSACTL_SENDFIB:
2272		arg = *(caddr_t*)arg;
2273	case FSACTL_LNX_SENDFIB:
2274		debug(1, "FSACTL_SENDFIB");
2275		error = aac_ioctl_sendfib(sc, arg);
2276		break;
2277	case FSACTL_AIF_THREAD:
2278	case FSACTL_LNX_AIF_THREAD:
2279		debug(1, "FSACTL_AIF_THREAD");
2280		error = EINVAL;
2281		break;
2282	case FSACTL_OPEN_GET_ADAPTER_FIB:
2283		arg = *(caddr_t*)arg;
2284	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2285		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2286		/*
2287		 * Pass the caller out an AdapterFibContext.
2288		 *
2289		 * Note that because we only support one opener, we
2290		 * basically ignore this.  Set the caller's context to a magic
2291		 * number just in case.
2292		 *
2293		 * The Linux code hands the driver a pointer into kernel space,
2294		 * and then trusts it when the caller hands it back.  Aiee!
2295		 * Here, we give it the proc pointer of the per-adapter aif
2296		 * thread. It's only used as a sanity check in other calls.
2297		 */
2298		i = (int)sc->aifthread;
2299		error = copyout(&i, arg, sizeof(i));
2300		break;
2301	case FSACTL_GET_NEXT_ADAPTER_FIB:
2302		arg = *(caddr_t*)arg;
2303	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2304		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2305		error = aac_getnext_aif(sc, arg);
2306		break;
2307	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2308	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2309		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2310		/* don't do anything here */
2311		break;
2312	case FSACTL_MINIPORT_REV_CHECK:
2313		arg = *(caddr_t*)arg;
2314	case FSACTL_LNX_MINIPORT_REV_CHECK:
2315		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2316		error = aac_rev_check(sc, arg);
2317		break;
2318	case FSACTL_QUERY_DISK:
2319		arg = *(caddr_t*)arg;
2320	case FSACTL_LNX_QUERY_DISK:
2321		debug(1, "FSACTL_QUERY_DISK");
2322		error = aac_query_disk(sc, arg);
2323			break;
2324	case FSACTL_DELETE_DISK:
2325	case FSACTL_LNX_DELETE_DISK:
2326		/*
2327		 * We don't trust the underland to tell us when to delete a
2328		 * container, rather we rely on an AIF coming from the
2329		 * controller
2330		 */
2331		error = 0;
2332		break;
2333	default:
2334		debug(1, "unsupported cmd 0x%lx\n", cmd);
2335		error = EINVAL;
2336		break;
2337	}
2338	return(error);
2339}
2340
2341static int
2342aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2343{
2344	struct aac_softc *sc;
2345	int revents;
2346
2347	sc = dev->si_drv1;
2348	revents = 0;
2349
2350	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2351	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2352		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2353			revents |= poll_events & (POLLIN | POLLRDNORM);
2354	}
2355	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2356
2357	if (revents == 0) {
2358		if (poll_events & (POLLIN | POLLRDNORM))
2359			selrecord(td, &sc->rcv_select);
2360	}
2361
2362	return (revents);
2363}
2364
2365/*
2366 * Send a FIB supplied from userspace
2367 */
2368static int
2369aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2370{
2371	struct aac_command *cm;
2372	int size, error;
2373
2374	debug_called(2);
2375
2376	cm = NULL;
2377
2378	/*
2379	 * Get a command
2380	 */
2381	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2382	if (aac_alloc_command(sc, &cm)) {
2383		error = EBUSY;
2384		goto out;
2385	}
2386
2387	/*
2388	 * Fetch the FIB header, then re-copy to get data as well.
2389	 */
2390	if ((error = copyin(ufib, cm->cm_fib,
2391			    sizeof(struct aac_fib_header))) != 0)
2392		goto out;
2393	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2394	if (size > sizeof(struct aac_fib)) {
2395		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2396			      size, sizeof(struct aac_fib));
2397		size = sizeof(struct aac_fib);
2398	}
2399	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2400		goto out;
2401	cm->cm_fib->Header.Size = size;
2402	cm->cm_timestamp = time_second;
2403
2404	/*
2405	 * Pass the FIB to the controller, wait for it to complete.
2406	 */
2407	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2408		device_printf(sc->aac_dev,
2409			      "aac_wait_command return %d\n", error);
2410		goto out;
2411	}
2412
2413	/*
2414	 * Copy the FIB and data back out to the caller.
2415	 */
2416	size = cm->cm_fib->Header.Size;
2417	if (size > sizeof(struct aac_fib)) {
2418		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2419			      size, sizeof(struct aac_fib));
2420		size = sizeof(struct aac_fib);
2421	}
2422	error = copyout(cm->cm_fib, ufib, size);
2423
2424out:
2425	if (cm != NULL) {
2426		aac_release_command(cm);
2427	}
2428
2429	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2430	return(error);
2431}
2432
2433/*
2434 * Handle an AIF sent to us by the controller; queue it for later reference.
2435 * If the queue fills up, then drop the older entries.
2436 */
2437static void
2438aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2439{
2440	struct aac_aif_command *aif;
2441	struct aac_container *co, *co_next;
2442	struct aac_mntinfo *mi;
2443	struct aac_mntinforesp *mir = NULL;
2444	u_int16_t rsize;
2445	int next, found;
2446	int added = 0, i = 0;
2447
2448	debug_called(2);
2449
2450	aif = (struct aac_aif_command*)&fib->data[0];
2451	aac_print_aif(sc, aif);
2452
2453	/* Is it an event that we should care about? */
2454	switch (aif->command) {
2455	case AifCmdEventNotify:
2456		switch (aif->data.EN.type) {
2457		case AifEnAddContainer:
2458		case AifEnDeleteContainer:
2459			/*
2460			 * A container was added or deleted, but the message
2461			 * doesn't tell us anything else!  Re-enumerate the
2462			 * containers and sort things out.
2463			 */
2464			aac_alloc_sync_fib(sc, &fib, 0);
2465			mi = (struct aac_mntinfo *)&fib->data[0];
2466			do {
2467				/*
2468				 * Ask the controller for its containers one at
2469				 * a time.
2470				 * XXX What if the controller's list changes
2471				 * midway through this enumaration?
2472				 * XXX This should be done async.
2473				 */
2474				bzero(mi, sizeof(struct aac_mntinfo));
2475				mi->Command = VM_NameServe;
2476				mi->MntType = FT_FILESYS;
2477				mi->MntCount = i;
2478				rsize = sizeof(mir);
2479				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2480						 sizeof(struct aac_mntinfo))) {
2481					debug(2, "Error probing container %d\n",
2482					      i);
2483					continue;
2484				}
2485				mir = (struct aac_mntinforesp *)&fib->data[0];
2486				/*
2487				 * Check the container against our list.
2488				 * co->co_found was already set to 0 in a
2489				 * previous run.
2490				 */
2491				if ((mir->Status == ST_OK) &&
2492				    (mir->MntTable[0].VolType != CT_NONE)) {
2493					found = 0;
2494					TAILQ_FOREACH(co,
2495						      &sc->aac_container_tqh,
2496						      co_link) {
2497						if (co->co_mntobj.ObjectId ==
2498						    mir->MntTable[0].ObjectId) {
2499							co->co_found = 1;
2500							found = 1;
2501							break;
2502						}
2503					}
2504					/*
2505					 * If the container matched, continue
2506					 * in the list.
2507					 */
2508					if (found) {
2509						i++;
2510						continue;
2511					}
2512
2513					/*
2514					 * This is a new container.  Do all the
2515					 * appropriate things to set it up.
2516					 */
2517					aac_add_container(sc, mir, 1);
2518					added = 1;
2519				}
2520				i++;
2521			} while ((i < mir->MntRespCount) &&
2522				 (i < AAC_MAX_CONTAINERS));
2523			aac_release_sync_fib(sc);
2524
2525			/*
2526			 * Go through our list of containers and see which ones
2527			 * were not marked 'found'.  Since the controller didn't
2528			 * list them they must have been deleted.  Do the
2529			 * appropriate steps to destroy the device.  Also reset
2530			 * the co->co_found field.
2531			 */
2532			co = TAILQ_FIRST(&sc->aac_container_tqh);
2533			while (co != NULL) {
2534				if (co->co_found == 0) {
2535					device_delete_child(sc->aac_dev,
2536							    co->co_disk);
2537					co_next = TAILQ_NEXT(co, co_link);
2538					AAC_LOCK_ACQUIRE(&sc->
2539							aac_container_lock);
2540					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2541						     co_link);
2542					AAC_LOCK_RELEASE(&sc->
2543							 aac_container_lock);
2544					FREE(co, M_AACBUF);
2545					co = co_next;
2546				} else {
2547					co->co_found = 0;
2548					co = TAILQ_NEXT(co, co_link);
2549				}
2550			}
2551
2552			/* Attach the newly created containers */
2553			if (added)
2554				bus_generic_attach(sc->aac_dev);
2555
2556			break;
2557
2558		default:
2559			break;
2560		}
2561
2562	default:
2563		break;
2564	}
2565
2566	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2567	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2568	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2569	if (next != sc->aac_aifq_tail) {
2570		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2571		sc->aac_aifq_head = next;
2572
2573		/* On the off chance that someone is sleeping for an aif... */
2574		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2575			wakeup(sc->aac_aifq);
2576		/* Wakeup any poll()ers */
2577		selwakeup(&sc->rcv_select);
2578	}
2579	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2580
2581	return;
2582}
2583
2584/*
2585 * Return the Revision of the driver to userspace and check to see if the
2586 * userspace app is possibly compatible.  This is extremely bogus since
2587 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2588 * returning what the card reported.
2589 */
2590static int
2591aac_rev_check(struct aac_softc *sc, caddr_t udata)
2592{
2593	struct aac_rev_check rev_check;
2594	struct aac_rev_check_resp rev_check_resp;
2595	int error = 0;
2596
2597	debug_called(2);
2598
2599	/*
2600	 * Copyin the revision struct from userspace
2601	 */
2602	if ((error = copyin(udata, (caddr_t)&rev_check,
2603			sizeof(struct aac_rev_check))) != 0) {
2604		return error;
2605	}
2606
2607	debug(2, "Userland revision= %d\n",
2608	      rev_check.callingRevision.buildNumber);
2609
2610	/*
2611	 * Doctor up the response struct.
2612	 */
2613	rev_check_resp.possiblyCompatible = 1;
2614	rev_check_resp.adapterSWRevision.external.ul =
2615	    sc->aac_revision.external.ul;
2616	rev_check_resp.adapterSWRevision.buildNumber =
2617	    sc->aac_revision.buildNumber;
2618
2619	return(copyout((caddr_t)&rev_check_resp, udata,
2620			sizeof(struct aac_rev_check_resp)));
2621}
2622
2623/*
2624 * Pass the caller the next AIF in their queue
2625 */
2626static int
2627aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2628{
2629	struct get_adapter_fib_ioctl agf;
2630	int error, s;
2631
2632	debug_called(2);
2633
2634	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2635
2636		/*
2637		 * Check the magic number that we gave the caller.
2638		 */
2639		if (agf.AdapterFibContext != (int)sc->aifthread) {
2640			error = EFAULT;
2641		} else {
2642
2643			s = splbio();
2644			error = aac_return_aif(sc, agf.AifFib);
2645
2646			if ((error == EAGAIN) && (agf.Wait)) {
2647				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2648				while (error == EAGAIN) {
2649					error = tsleep(sc->aac_aifq, PRIBIO |
2650						       PCATCH, "aacaif", 0);
2651					if (error == 0)
2652						error = aac_return_aif(sc,
2653						    agf.AifFib);
2654				}
2655				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2656			}
2657		splx(s);
2658		}
2659	}
2660	return(error);
2661}
2662
2663/*
2664 * Hand the next AIF off the top of the queue out to userspace.
2665 */
2666static int
2667aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2668{
2669	int error;
2670
2671	debug_called(2);
2672
2673	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2674	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2675		error = EAGAIN;
2676	} else {
2677		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2678				sizeof(struct aac_aif_command));
2679		if (error)
2680			device_printf(sc->aac_dev,
2681			    "aac_return_aif: copyout returned %d\n", error);
2682		if (!error)
2683			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2684					    AAC_AIFQ_LENGTH;
2685	}
2686	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2687	return(error);
2688}
2689
2690/*
2691 * Give the userland some information about the container.  The AAC arch
2692 * expects the driver to be a SCSI passthrough type driver, so it expects
2693 * the containers to have b:t:l numbers.  Fake it.
2694 */
2695static int
2696aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2697{
2698	struct aac_query_disk query_disk;
2699	struct aac_container *co;
2700	struct aac_disk	*disk;
2701	int error, id;
2702
2703	debug_called(2);
2704
2705	disk = NULL;
2706
2707	error = copyin(uptr, (caddr_t)&query_disk,
2708		       sizeof(struct aac_query_disk));
2709	if (error)
2710		return (error);
2711
2712	id = query_disk.ContainerNumber;
2713	if (id == -1)
2714		return (EINVAL);
2715
2716	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2717	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2718		if (co->co_mntobj.ObjectId == id)
2719			break;
2720		}
2721
2722	if (co == NULL) {
2723			query_disk.Valid = 0;
2724			query_disk.Locked = 0;
2725			query_disk.Deleted = 1;		/* XXX is this right? */
2726	} else {
2727		disk = device_get_softc(co->co_disk);
2728		query_disk.Valid = 1;
2729		query_disk.Locked =
2730		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2731		query_disk.Deleted = 0;
2732		query_disk.Bus = device_get_unit(sc->aac_dev);
2733		query_disk.Target = disk->unit;
2734		query_disk.Lun = 0;
2735		query_disk.UnMapped = 0;
2736		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2737		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2738	}
2739	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2740
2741	error = copyout((caddr_t)&query_disk, uptr,
2742			sizeof(struct aac_query_disk));
2743
2744	return (error);
2745}
2746
2747static void
2748aac_get_bus_info(struct aac_softc *sc)
2749{
2750	struct aac_fib *fib;
2751	struct aac_ctcfg *c_cmd;
2752	struct aac_ctcfg_resp *c_resp;
2753	struct aac_vmioctl *vmi;
2754	struct aac_vmi_businf_resp *vmi_resp;
2755	struct aac_getbusinf businfo;
2756	struct aac_sim *caminf;
2757	device_t child;
2758	int i, found, error;
2759
2760	aac_alloc_sync_fib(sc, &fib, 0);
2761	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2762	bzero(c_cmd, sizeof(struct aac_ctcfg));
2763
2764	c_cmd->Command = VM_ContainerConfig;
2765	c_cmd->cmd = CT_GET_SCSI_METHOD;
2766	c_cmd->param = 0;
2767
2768	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2769	    sizeof(struct aac_ctcfg));
2770	if (error) {
2771		device_printf(sc->aac_dev, "Error %d sending "
2772		    "VM_ContainerConfig command\n", error);
2773		aac_release_sync_fib(sc);
2774		return;
2775	}
2776
2777	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2778	if (c_resp->Status != ST_OK) {
2779		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2780		    c_resp->Status);
2781		aac_release_sync_fib(sc);
2782		return;
2783	}
2784
2785	sc->scsi_method_id = c_resp->param;
2786
2787	vmi = (struct aac_vmioctl *)&fib->data[0];
2788	bzero(vmi, sizeof(struct aac_vmioctl));
2789
2790	vmi->Command = VM_Ioctl;
2791	vmi->ObjType = FT_DRIVE;
2792	vmi->MethId = sc->scsi_method_id;
2793	vmi->ObjId = 0;
2794	vmi->IoctlCmd = GetBusInfo;
2795
2796	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2797	    sizeof(struct aac_vmioctl));
2798	if (error) {
2799		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2800		    error);
2801		aac_release_sync_fib(sc);
2802		return;
2803	}
2804
2805	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2806	if (vmi_resp->Status != ST_OK) {
2807		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2808		    vmi_resp->Status);
2809		aac_release_sync_fib(sc);
2810		return;
2811	}
2812
2813	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2814	aac_release_sync_fib(sc);
2815
2816	found = 0;
2817	for (i = 0; i < businfo.BusCount; i++) {
2818		if (businfo.BusValid[i] != AAC_BUS_VALID)
2819			continue;
2820
2821		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2822		    M_AACBUF, M_NOWAIT | M_ZERO);
2823		if (caminf == NULL)
2824			continue;
2825
2826		child = device_add_child(sc->aac_dev, "aacp", -1);
2827		if (child == NULL) {
2828			device_printf(sc->aac_dev, "device_add_child failed\n");
2829			continue;
2830		}
2831
2832		caminf->TargetsPerBus = businfo.TargetsPerBus;
2833		caminf->BusNumber = i;
2834		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2835		caminf->aac_sc = sc;
2836		caminf->sim_dev = child;
2837
2838		device_set_ivars(child, caminf);
2839		device_set_desc(child, "SCSI Passthrough Bus");
2840		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2841
2842		found = 1;
2843	}
2844
2845	if (found)
2846		bus_generic_attach(sc->aac_dev);
2847
2848	return;
2849}
2850