aac.c revision 110426
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 110426 2003-02-05 23:24:25Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/signalvar.h>
61#include <sys/time.h>
62#include <sys/eventhandler.h>
63
64#include <machine/bus_memio.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67
68#include <dev/aac/aacreg.h>
69#include <dev/aac/aac_ioctl.h>
70#include <dev/aac/aacvar.h>
71#include <dev/aac/aac_tables.h>
72#include <dev/aac/aac_cam.h>
73
74static void	aac_startup(void *arg);
75static void	aac_add_container(struct aac_softc *sc,
76				  struct aac_mntinforesp *mir, int f);
77static void	aac_get_bus_info(struct aac_softc *sc);
78
79/* Command Processing */
80static void	aac_timeout(struct aac_softc *sc);
81static int	aac_start(struct aac_command *cm);
82static void	aac_complete(void *context, int pending);
83static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84static void	aac_bio_complete(struct aac_command *cm);
85static int	aac_wait_command(struct aac_command *cm, int timeout);
86static void	aac_command_thread(struct aac_softc *sc);
87static void	aac_host_response(struct aac_softc *sc);
88
89/* Command Buffer Management */
90static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
91				       int nseg, int error);
92static int	aac_alloc_commands(struct aac_softc *sc);
93static void	aac_free_commands(struct aac_softc *sc);
94static void	aac_map_command(struct aac_command *cm);
95static void	aac_unmap_command(struct aac_command *cm);
96
97/* Hardware Interface */
98static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
99			       int error);
100static int	aac_check_firmware(struct aac_softc *sc);
101static int	aac_init(struct aac_softc *sc);
102static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
103				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
104				 u_int32_t arg3, u_int32_t *sp);
105static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
106				struct aac_command *cm);
107static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
108				u_int32_t *fib_size, struct aac_fib **fib_addr);
109static int	aac_enqueue_response(struct aac_softc *sc, int queue,
110				     struct aac_fib *fib);
111
112/* Falcon/PPC interface */
113static int	aac_fa_get_fwstatus(struct aac_softc *sc);
114static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
115static int	aac_fa_get_istatus(struct aac_softc *sc);
116static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
117static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
118				   u_int32_t arg0, u_int32_t arg1,
119				   u_int32_t arg2, u_int32_t arg3);
120static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
121static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
122
123struct aac_interface aac_fa_interface = {
124	aac_fa_get_fwstatus,
125	aac_fa_qnotify,
126	aac_fa_get_istatus,
127	aac_fa_clear_istatus,
128	aac_fa_set_mailbox,
129	aac_fa_get_mailboxstatus,
130	aac_fa_set_interrupts
131};
132
133/* StrongARM interface */
134static int	aac_sa_get_fwstatus(struct aac_softc *sc);
135static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
136static int	aac_sa_get_istatus(struct aac_softc *sc);
137static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
138static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
139				   u_int32_t arg0, u_int32_t arg1,
140				   u_int32_t arg2, u_int32_t arg3);
141static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
142static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
143
144struct aac_interface aac_sa_interface = {
145	aac_sa_get_fwstatus,
146	aac_sa_qnotify,
147	aac_sa_get_istatus,
148	aac_sa_clear_istatus,
149	aac_sa_set_mailbox,
150	aac_sa_get_mailboxstatus,
151	aac_sa_set_interrupts
152};
153
154/* i960Rx interface */
155static int	aac_rx_get_fwstatus(struct aac_softc *sc);
156static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
157static int	aac_rx_get_istatus(struct aac_softc *sc);
158static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
159static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
160				   u_int32_t arg0, u_int32_t arg1,
161				   u_int32_t arg2, u_int32_t arg3);
162static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
163static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
164
165struct aac_interface aac_rx_interface = {
166	aac_rx_get_fwstatus,
167	aac_rx_qnotify,
168	aac_rx_get_istatus,
169	aac_rx_clear_istatus,
170	aac_rx_set_mailbox,
171	aac_rx_get_mailboxstatus,
172	aac_rx_set_interrupts
173};
174
175/* Debugging and Diagnostics */
176static void	aac_describe_controller(struct aac_softc *sc);
177static char	*aac_describe_code(struct aac_code_lookup *table,
178				   u_int32_t code);
179
180/* Management Interface */
181static d_open_t		aac_open;
182static d_close_t	aac_close;
183static d_ioctl_t	aac_ioctl;
184static d_poll_t		aac_poll;
185static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
186static void		aac_handle_aif(struct aac_softc *sc,
187					   struct aac_fib *fib);
188static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
189static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
190static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
191static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
192
193#define AAC_CDEV_MAJOR	150
194
195static struct cdevsw aac_cdevsw = {
196	aac_open,		/* open */
197	aac_close,		/* close */
198	noread,			/* read */
199	nowrite,		/* write */
200	aac_ioctl,		/* ioctl */
201	aac_poll,		/* poll */
202	nommap,			/* mmap */
203	nostrategy,		/* strategy */
204	"aac",			/* name */
205	AAC_CDEV_MAJOR,		/* major */
206	nodump,			/* dump */
207	nopsize,		/* psize */
208	0,			/* flags */
209#if __FreeBSD_version < 500005
210	-1,			/* bmaj */
211#endif
212};
213
214MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
215
216/* sysctl node */
217SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
218
219/*
220 * Device Interface
221 */
222
223/*
224 * Initialise the controller and softc
225 */
226int
227aac_attach(struct aac_softc *sc)
228{
229	int error, unit;
230
231	debug_called(1);
232
233	/*
234	 * Initialise per-controller queues.
235	 */
236	aac_initq_free(sc);
237	aac_initq_ready(sc);
238	aac_initq_busy(sc);
239	aac_initq_complete(sc);
240	aac_initq_bio(sc);
241
242#if __FreeBSD_version >= 500005
243	/*
244	 * Initialise command-completion task.
245	 */
246	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
247#endif
248
249	/* disable interrupts before we enable anything */
250	AAC_MASK_INTERRUPTS(sc);
251
252	/* mark controller as suspended until we get ourselves organised */
253	sc->aac_state |= AAC_STATE_SUSPEND;
254
255	/*
256	 * Check that the firmware on the card is supported.
257	 */
258	if ((error = aac_check_firmware(sc)) != 0)
259		return(error);
260
261	/*
262	 * Allocate command structures.  This must be done before aac_init()
263	 * in order to work around a 2120/2200 bug.
264	 */
265	if ((error = aac_alloc_commands(sc)) != 0)
266		return(error);
267
268	/* Init the sync fib lock */
269	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
270
271	/*
272	 * Initialise the adapter.
273	 */
274	if ((error = aac_init(sc)) != 0)
275		return(error);
276
277	/*
278	 * Print a little information about the controller.
279	 */
280	aac_describe_controller(sc);
281
282	/*
283	 * Register to probe our containers later.
284	 */
285	TAILQ_INIT(&sc->aac_container_tqh);
286	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
287
288	/*
289	 * Lock for the AIF queue
290	 */
291	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
292
293	sc->aac_ich.ich_func = aac_startup;
294	sc->aac_ich.ich_arg = sc;
295	if (config_intrhook_establish(&sc->aac_ich) != 0) {
296		device_printf(sc->aac_dev,
297			      "can't establish configuration hook\n");
298		return(ENXIO);
299	}
300
301	/*
302	 * Make the control device.
303	 */
304	unit = device_get_unit(sc->aac_dev);
305	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
306				 0640, "aac%d", unit);
307#if __FreeBSD_version > 500005
308	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
309	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
310#endif
311	sc->aac_dev_t->si_drv1 = sc;
312
313	/* Create the AIF thread */
314#if __FreeBSD_version > 500005
315	if (kthread_create((void(*)(void *))aac_command_thread, sc,
316			   &sc->aifthread, 0, 0, "aac%daif", unit))
317#else
318	if (kthread_create((void(*)(void *))aac_command_thread, sc,
319			   &sc->aifthread, "aac%daif", unit))
320#endif
321		panic("Could not create AIF thread\n");
322
323	/* Register the shutdown method to only be called post-dump */
324	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
325				   SHUTDOWN_PRI_DEFAULT)) == NULL)
326	device_printf(sc->aac_dev, "shutdown event registration failed\n");
327
328	/* Register with CAM for the non-DASD devices */
329	if (!(sc->quirks & AAC_QUIRK_NOCAM)) {
330		TAILQ_INIT(&sc->aac_sim_tqh);
331		aac_get_bus_info(sc);
332	}
333
334	return(0);
335}
336
337/*
338 * Probe for containers, create disks.
339 */
340static void
341aac_startup(void *arg)
342{
343	struct aac_softc *sc;
344	struct aac_fib *fib;
345	struct aac_mntinfo *mi;
346	struct aac_mntinforesp *mir = NULL;
347	int i = 0;
348
349	debug_called(1);
350
351	sc = (struct aac_softc *)arg;
352
353	/* disconnect ourselves from the intrhook chain */
354	config_intrhook_disestablish(&sc->aac_ich);
355
356	aac_alloc_sync_fib(sc, &fib, 0);
357	mi = (struct aac_mntinfo *)&fib->data[0];
358
359	/* loop over possible containers */
360	do {
361		/* request information on this container */
362		bzero(mi, sizeof(struct aac_mntinfo));
363		mi->Command = VM_NameServe;
364		mi->MntType = FT_FILESYS;
365		mi->MntCount = i;
366		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
367				 sizeof(struct aac_mntinfo))) {
368			debug(2, "error probing container %d", i);
369			continue;
370		}
371
372		mir = (struct aac_mntinforesp *)&fib->data[0];
373		aac_add_container(sc, mir, 0);
374		i++;
375	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
376
377	aac_release_sync_fib(sc);
378
379	/* poke the bus to actually attach the child devices */
380	if (bus_generic_attach(sc->aac_dev))
381		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
382
383	/* mark the controller up */
384	sc->aac_state &= ~AAC_STATE_SUSPEND;
385
386	/* enable interrupts now */
387	AAC_UNMASK_INTERRUPTS(sc);
388}
389
390/*
391 * Create a device to respresent a new container
392 */
393static void
394aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
395{
396	struct aac_container *co;
397	device_t child;
398
399	/*
400	 * Check container volume type for validity.  Note that many of
401	 * the possible types may never show up.
402	 */
403	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
404		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
405		       M_NOWAIT);
406		if (co == NULL)
407			panic("Out of memory?!\n");
408		debug(1, "id %x  name '%.16s'  size %u  type %d",
409		      mir->MntTable[0].ObjectId,
410		      mir->MntTable[0].FileSystemName,
411		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
412
413		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
414			device_printf(sc->aac_dev, "device_add_child failed\n");
415		else
416			device_set_ivars(child, co);
417		device_set_desc(child, aac_describe_code(aac_container_types,
418				mir->MntTable[0].VolType));
419		co->co_disk = child;
420		co->co_found = f;
421		bcopy(&mir->MntTable[0], &co->co_mntobj,
422		      sizeof(struct aac_mntobj));
423		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
424		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
425		AAC_LOCK_RELEASE(&sc->aac_container_lock);
426	}
427}
428
429/*
430 * Free all of the resources associated with (sc)
431 *
432 * Should not be called if the controller is active.
433 */
434void
435aac_free(struct aac_softc *sc)
436{
437	debug_called(1);
438
439	/* remove the control device */
440	if (sc->aac_dev_t != NULL)
441		destroy_dev(sc->aac_dev_t);
442
443	/* throw away any FIB buffers, discard the FIB DMA tag */
444	if (sc->aac_fibs != NULL)
445		aac_free_commands(sc);
446	if (sc->aac_fib_dmat)
447		bus_dma_tag_destroy(sc->aac_fib_dmat);
448
449	/* destroy the common area */
450	if (sc->aac_common) {
451		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
452		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
453				sc->aac_common_dmamap);
454	}
455	if (sc->aac_common_dmat)
456		bus_dma_tag_destroy(sc->aac_common_dmat);
457
458	/* disconnect the interrupt handler */
459	if (sc->aac_intr)
460		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
461	if (sc->aac_irq != NULL)
462		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
463				     sc->aac_irq);
464
465	/* destroy data-transfer DMA tag */
466	if (sc->aac_buffer_dmat)
467		bus_dma_tag_destroy(sc->aac_buffer_dmat);
468
469	/* destroy the parent DMA tag */
470	if (sc->aac_parent_dmat)
471		bus_dma_tag_destroy(sc->aac_parent_dmat);
472
473	/* release the register window mapping */
474	if (sc->aac_regs_resource != NULL)
475		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
476				     sc->aac_regs_rid, sc->aac_regs_resource);
477}
478
479/*
480 * Disconnect from the controller completely, in preparation for unload.
481 */
482int
483aac_detach(device_t dev)
484{
485	struct aac_softc *sc;
486	struct aac_container *co;
487	struct aac_sim	*sim;
488	int error;
489
490	debug_called(1);
491
492	sc = device_get_softc(dev);
493
494	if (sc->aac_state & AAC_STATE_OPEN)
495		return(EBUSY);
496
497	/* Remove the child containers */
498	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
499		error = device_delete_child(dev, co->co_disk);
500		if (error)
501			return (error);
502	}
503
504	/* Remove the CAM SIMs */
505	TAILQ_FOREACH(sim, &sc->aac_sim_tqh, sim_link) {
506		error = device_delete_child(dev, sim->sim_dev);
507		if (error)
508			return (error);
509	}
510
511	bus_generic_detach(dev);
512
513	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
514		sc->aifflags |= AAC_AIFFLAGS_EXIT;
515		wakeup(sc->aifthread);
516		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
517	}
518
519	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
520		panic("Cannot shutdown AIF thread\n");
521
522	if ((error = aac_shutdown(dev)))
523		return(error);
524
525	aac_free(sc);
526
527	return(0);
528}
529
530/*
531 * Bring the controller down to a dormant state and detach all child devices.
532 *
533 * This function is called before detach or system shutdown.
534 *
535 * Note that we can assume that the bioq on the controller is empty, as we won't
536 * allow shutdown if any device is open.
537 */
538int
539aac_shutdown(device_t dev)
540{
541	struct aac_softc *sc;
542	struct aac_fib *fib;
543	struct aac_close_command *cc;
544	int s;
545
546	debug_called(1);
547
548	sc = device_get_softc(dev);
549
550	s = splbio();
551
552	sc->aac_state |= AAC_STATE_SUSPEND;
553
554	/*
555	 * Send a Container shutdown followed by a HostShutdown FIB to the
556	 * controller to convince it that we don't want to talk to it anymore.
557	 * We've been closed and all I/O completed already
558	 */
559	device_printf(sc->aac_dev, "shutting down controller...");
560
561	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
562	cc = (struct aac_close_command *)&fib->data[0];
563
564	bzero(cc, sizeof(struct aac_close_command));
565	cc->Command = VM_CloseAll;
566	cc->ContainerId = 0xffffffff;
567	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
568	    sizeof(struct aac_close_command)))
569		printf("FAILED.\n");
570	else
571		printf("done\n");
572#if 0
573	else {
574		fib->data[0] = 0;
575		/*
576		 * XXX Issuing this command to the controller makes it shut down
577		 * but also keeps it from coming back up without a reset of the
578		 * PCI bus.  This is not desirable if you are just unloading the
579		 * driver module with the intent to reload it later.
580		 */
581		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
582		    fib, 1)) {
583			printf("FAILED.\n");
584		} else {
585			printf("done.\n");
586		}
587	}
588#endif
589
590	AAC_MASK_INTERRUPTS(sc);
591
592	splx(s);
593	return(0);
594}
595
596/*
597 * Bring the controller to a quiescent state, ready for system suspend.
598 */
599int
600aac_suspend(device_t dev)
601{
602	struct aac_softc *sc;
603	int s;
604
605	debug_called(1);
606
607	sc = device_get_softc(dev);
608
609	s = splbio();
610
611	sc->aac_state |= AAC_STATE_SUSPEND;
612
613	AAC_MASK_INTERRUPTS(sc);
614	splx(s);
615	return(0);
616}
617
618/*
619 * Bring the controller back to a state ready for operation.
620 */
621int
622aac_resume(device_t dev)
623{
624	struct aac_softc *sc;
625
626	debug_called(1);
627
628	sc = device_get_softc(dev);
629
630	sc->aac_state &= ~AAC_STATE_SUSPEND;
631	AAC_UNMASK_INTERRUPTS(sc);
632	return(0);
633}
634
635/*
636 * Take an interrupt.
637 */
638void
639aac_intr(void *arg)
640{
641	struct aac_softc *sc;
642	u_int32_t *resp_queue;
643	u_int16_t reason;
644
645	debug_called(2);
646
647	sc = (struct aac_softc *)arg;
648
649	/*
650	 * Optimize the common case of adapter response interrupts.
651	 * We must read from the card prior to processing the responses
652	 * to ensure the clear is flushed prior to accessing the queues.
653	 * Reading the queues from local memory might save us a PCI read.
654	 */
655	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
656	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
657		reason = AAC_DB_RESPONSE_READY;
658	else
659		reason = AAC_GET_ISTATUS(sc);
660	AAC_CLEAR_ISTATUS(sc, reason);
661	(void)AAC_GET_ISTATUS(sc);
662
663	/* It's not ok to return here because of races with the previous step */
664	if (reason & AAC_DB_RESPONSE_READY)
665		aac_host_response(sc);
666
667	/* controller wants to talk to the log */
668	if (reason & AAC_DB_PRINTF) {
669		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
670			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
671		} else
672			aac_print_printf(sc);
673	}
674
675	/* controller has a message for us? */
676	if (reason & AAC_DB_COMMAND_READY) {
677		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
678			sc->aifflags |= AAC_AIFFLAGS_AIF;
679		} else {
680			/*
681			 * XXX If the kthread is dead and we're at this point,
682			 * there are bigger problems than just figuring out
683			 * what to do with an AIF.
684			 */
685		}
686
687	}
688
689	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
690		/* XXX Should this be done with cv_signal? */
691		wakeup(sc->aifthread);
692}
693
694/*
695 * Command Processing
696 */
697
698/*
699 * Start as much queued I/O as possible on the controller
700 */
701void
702aac_startio(struct aac_softc *sc)
703{
704	struct aac_command *cm;
705
706	debug_called(2);
707
708	for (;;) {
709		/*
710		 * Try to get a command that's been put off for lack of
711		 * resources
712		 */
713		cm = aac_dequeue_ready(sc);
714
715		/*
716		 * Try to build a command off the bio queue (ignore error
717		 * return)
718		 */
719		if (cm == NULL)
720			aac_bio_command(sc, &cm);
721
722		/* nothing to do? */
723		if (cm == NULL)
724			break;
725
726		/* try to give the command to the controller */
727		if (aac_start(cm) == EBUSY) {
728			/* put it on the ready queue for later */
729			aac_requeue_ready(cm);
730			break;
731		}
732	}
733}
734
735/*
736 * Deliver a command to the controller; allocate controller resources at the
737 * last moment when possible.
738 */
739static int
740aac_start(struct aac_command *cm)
741{
742	struct aac_softc *sc;
743	int error;
744
745	debug_called(2);
746
747	sc = cm->cm_sc;
748
749	/* get the command mapped */
750	aac_map_command(cm);
751
752	/* fix up the address values in the FIB */
753	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
754	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
755
756	/* save a pointer to the command for speedy reverse-lookup */
757	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
758							 * address issue */
759	/* put the FIB on the outbound queue */
760	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
761	return(error);
762}
763
764/*
765 * Handle notification of one or more FIBs coming from the controller.
766 */
767static void
768aac_command_thread(struct aac_softc *sc)
769{
770	struct aac_fib *fib;
771	u_int32_t fib_size;
772	int size;
773
774	debug_called(2);
775
776	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
777
778	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
779		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
780			tsleep(sc->aifthread, PRIBIO, "aifthd",
781			       AAC_PERIODIC_INTERVAL * hz);
782
783		/* While we're here, check to see if any commands are stuck */
784		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
785			aac_timeout(sc);
786
787		/* Check the hardware printf message buffer */
788		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
789			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
790			aac_print_printf(sc);
791		}
792
793		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
794
795			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
796					    &fib_size, &fib)) {
797				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
798				break;	/* nothing to do */
799			}
800
801			AAC_PRINT_FIB(sc, fib);
802
803			switch (fib->Header.Command) {
804			case AifRequest:
805				aac_handle_aif(sc, fib);
806				break;
807			default:
808				device_printf(sc->aac_dev, "unknown command "
809					      "from controller\n");
810				break;
811			}
812
813			if ((fib->Header.XferState == 0) ||
814			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
815				break;
816
817			/* Return the AIF to the controller. */
818			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
819				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
820				*(AAC_FSAStatus*)fib->data = ST_OK;
821
822				/* XXX Compute the Size field? */
823				size = fib->Header.Size;
824				if (size > sizeof(struct aac_fib)) {
825					size = sizeof(struct aac_fib);
826					fib->Header.Size = size;
827				}
828				/*
829				 * Since we did not generate this command, it
830				 * cannot go through the normal
831				 * enqueue->startio chain.
832				 */
833				aac_enqueue_response(sc,
834						     AAC_ADAP_NORM_RESP_QUEUE,
835						     fib);
836			}
837		}
838	}
839	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
840	wakeup(sc->aac_dev);
841
842#if __FreeBSD_version > 500005
843	mtx_lock(&Giant);
844#endif
845	kthread_exit(0);
846}
847
848/*
849 * Handle notification of one or more FIBs completed by the controller
850 */
851static void
852aac_host_response(struct aac_softc *sc)
853{
854	struct aac_command *cm;
855	struct aac_fib *fib;
856	u_int32_t fib_size;
857
858	debug_called(2);
859
860	for (;;) {
861		/* look for completed FIBs on our queue */
862		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
863				    &fib))
864			break;	/* nothing to do */
865
866		/* get the command, unmap and queue for later processing */
867		cm = (struct aac_command *)fib->Header.SenderData;
868		if (cm == NULL) {
869			AAC_PRINT_FIB(sc, fib);
870		} else {
871			aac_remove_busy(cm);
872			aac_unmap_command(cm);		/* XXX defer? */
873			aac_enqueue_complete(cm);
874		}
875	}
876
877	/* handle completion processing */
878#if __FreeBSD_version >= 500005
879	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
880#else
881	aac_complete(sc, 0);
882#endif
883}
884
885/*
886 * Process completed commands.
887 */
888static void
889aac_complete(void *context, int pending)
890{
891	struct aac_softc *sc;
892	struct aac_command *cm;
893
894	debug_called(2);
895
896	sc = (struct aac_softc *)context;
897
898	/* pull completed commands off the queue */
899	for (;;) {
900		cm = aac_dequeue_complete(sc);
901		if (cm == NULL)
902			break;
903		cm->cm_flags |= AAC_CMD_COMPLETED;
904
905		/* is there a completion handler? */
906		if (cm->cm_complete != NULL) {
907			cm->cm_complete(cm);
908		} else {
909			/* assume that someone is sleeping on this command */
910			wakeup(cm);
911		}
912	}
913
914	/* see if we can start some more I/O */
915	aac_startio(sc);
916}
917
918/*
919 * Handle a bio submitted from a disk device.
920 */
921void
922aac_submit_bio(struct bio *bp)
923{
924	struct aac_disk *ad;
925	struct aac_softc *sc;
926
927	debug_called(2);
928
929	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
930	sc = ad->ad_controller;
931
932	/* queue the BIO and try to get some work done */
933	aac_enqueue_bio(sc, bp);
934	aac_startio(sc);
935}
936
937/*
938 * Get a bio and build a command to go with it.
939 */
940static int
941aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
942{
943	struct aac_command *cm;
944	struct aac_fib *fib;
945	struct aac_blockread *br;
946	struct aac_blockwrite *bw;
947	struct aac_disk *ad;
948	struct bio *bp;
949
950	debug_called(2);
951
952	/* get the resources we will need */
953	cm = NULL;
954	if ((bp = aac_dequeue_bio(sc)) == NULL)
955		goto fail;
956	if (aac_alloc_command(sc, &cm))	/* get a command */
957		goto fail;
958
959	/* fill out the command */
960	cm->cm_data = (void *)bp->bio_data;
961	cm->cm_datalen = bp->bio_bcount;
962	cm->cm_complete = aac_bio_complete;
963	cm->cm_private = bp;
964	cm->cm_timestamp = time_second;
965	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
966
967	/* build the FIB */
968	fib = cm->cm_fib;
969	fib->Header.XferState =
970		AAC_FIBSTATE_HOSTOWNED   |
971		AAC_FIBSTATE_INITIALISED |
972		AAC_FIBSTATE_EMPTY	 |
973		AAC_FIBSTATE_FROMHOST	 |
974		AAC_FIBSTATE_REXPECTED   |
975		AAC_FIBSTATE_NORM	 |
976		AAC_FIBSTATE_ASYNC	 |
977		AAC_FIBSTATE_FAST_RESPONSE;
978	fib->Header.Command = ContainerCommand;
979	fib->Header.Size = sizeof(struct aac_fib_header);
980
981	/* build the read/write request */
982	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
983	if (BIO_IS_READ(bp)) {
984		br = (struct aac_blockread *)&fib->data[0];
985		br->Command = VM_CtBlockRead;
986		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
987		br->BlockNumber = bp->bio_pblkno;
988		br->ByteCount = bp->bio_bcount;
989		fib->Header.Size += sizeof(struct aac_blockread);
990		cm->cm_sgtable = &br->SgMap;
991		cm->cm_flags |= AAC_CMD_DATAIN;
992	} else {
993		bw = (struct aac_blockwrite *)&fib->data[0];
994		bw->Command = VM_CtBlockWrite;
995		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
996		bw->BlockNumber = bp->bio_pblkno;
997		bw->ByteCount = bp->bio_bcount;
998		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
999		fib->Header.Size += sizeof(struct aac_blockwrite);
1000		cm->cm_flags |= AAC_CMD_DATAOUT;
1001		cm->cm_sgtable = &bw->SgMap;
1002	}
1003
1004	*cmp = cm;
1005	return(0);
1006
1007fail:
1008	if (bp != NULL)
1009		aac_enqueue_bio(sc, bp);
1010	if (cm != NULL)
1011		aac_release_command(cm);
1012	return(ENOMEM);
1013}
1014
1015/*
1016 * Handle a bio-instigated command that has been completed.
1017 */
1018static void
1019aac_bio_complete(struct aac_command *cm)
1020{
1021	struct aac_blockread_response *brr;
1022	struct aac_blockwrite_response *bwr;
1023	struct bio *bp;
1024	AAC_FSAStatus status;
1025
1026	/* fetch relevant status and then release the command */
1027	bp = (struct bio *)cm->cm_private;
1028	if (BIO_IS_READ(bp)) {
1029		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1030		status = brr->Status;
1031	} else {
1032		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1033		status = bwr->Status;
1034	}
1035	aac_release_command(cm);
1036
1037	/* fix up the bio based on status */
1038	if (status == ST_OK) {
1039		bp->bio_resid = 0;
1040	} else {
1041		bp->bio_error = EIO;
1042		bp->bio_flags |= BIO_ERROR;
1043		/* pass an error string out to the disk layer */
1044		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1045						    status);
1046	}
1047	aac_biodone(bp);
1048}
1049
1050/*
1051 * Submit a command to the controller, return when it completes.
1052 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1053 *     be stuck here forever.  At the same time, signals are not caught
1054 *     because there is a risk that a signal could wakeup the tsleep before
1055 *     the card has a chance to complete the command.  The passed in timeout
1056 *     is ignored for the same reason.  Since there is no way to cancel a
1057 *     command in progress, we should probably create a 'dead' queue where
1058 *     commands go that have been interrupted/timed-out/etc, that keeps them
1059 *     out of the free pool.  That way, if the card is just slow, it won't
1060 *     spam the memory of a command that has been recycled.
1061 */
1062static int
1063aac_wait_command(struct aac_command *cm, int timeout)
1064{
1065	int s, error = 0;
1066
1067	debug_called(2);
1068
1069	/* Put the command on the ready queue and get things going */
1070	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1071	aac_enqueue_ready(cm);
1072	aac_startio(cm->cm_sc);
1073	s = splbio();
1074	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1075		error = tsleep(cm, PRIBIO, "aacwait", 0);
1076	}
1077	splx(s);
1078	return(error);
1079}
1080
1081/*
1082 *Command Buffer Management
1083 */
1084
1085/*
1086 * Allocate a command.
1087 */
1088int
1089aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1090{
1091	struct aac_command *cm;
1092
1093	debug_called(3);
1094
1095	if ((cm = aac_dequeue_free(sc)) == NULL)
1096		return(ENOMEM);
1097
1098	*cmp = cm;
1099	return(0);
1100}
1101
1102/*
1103 * Release a command back to the freelist.
1104 */
1105void
1106aac_release_command(struct aac_command *cm)
1107{
1108	debug_called(3);
1109
1110	/* (re)initialise the command/FIB */
1111	cm->cm_sgtable = NULL;
1112	cm->cm_flags = 0;
1113	cm->cm_complete = NULL;
1114	cm->cm_private = NULL;
1115	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1116	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1117	cm->cm_fib->Header.Flags = 0;
1118	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1119
1120	/*
1121	 * These are duplicated in aac_start to cover the case where an
1122	 * intermediate stage may have destroyed them.  They're left
1123	 * initialised here for debugging purposes only.
1124	 */
1125	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1126	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1127	cm->cm_fib->Header.SenderData = 0;
1128
1129	aac_enqueue_free(cm);
1130}
1131
1132/*
1133 * Map helper for command/FIB allocation.
1134 */
1135static void
1136aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1137{
1138	struct aac_softc *sc;
1139
1140	sc = (struct aac_softc *)arg;
1141
1142	debug_called(3);
1143
1144	sc->aac_fibphys = segs[0].ds_addr;
1145}
1146
1147/*
1148 * Allocate and initialise commands/FIBs for this adapter.
1149 */
1150static int
1151aac_alloc_commands(struct aac_softc *sc)
1152{
1153	struct aac_command *cm;
1154	int i;
1155
1156	debug_called(1);
1157
1158	/* allocate the FIBs in DMAable memory and load them */
1159	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1160			     BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1161		device_printf(sc->aac_dev,
1162			      "Not enough contiguous memory available.\n");
1163		return (ENOMEM);
1164	}
1165
1166	/*
1167	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1168	 * below address 8192 in physical memory.
1169	 * XXX If the padding is not needed, can it be put to use instead
1170	 * of ignored?
1171	 */
1172	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1173			8192 + AAC_FIB_COUNT * sizeof(struct aac_fib),
1174			aac_map_command_helper, sc, 0);
1175
1176	if (sc->aac_fibphys < 8192) {
1177		sc->aac_fibs += (8192 / sizeof(struct aac_fib));
1178		sc->aac_fibphys += 8192;
1179	}
1180
1181	/* initialise constant fields in the command structure */
1182	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1183	for (i = 0; i < AAC_FIB_COUNT; i++) {
1184		cm = &sc->aac_command[i];
1185		cm->cm_sc = sc;
1186		cm->cm_fib = sc->aac_fibs + i;
1187		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1188
1189		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1190			aac_release_command(cm);
1191	}
1192	return (0);
1193}
1194
1195/*
1196 * Free FIBs owned by this adapter.
1197 */
1198static void
1199aac_free_commands(struct aac_softc *sc)
1200{
1201	int i;
1202
1203	debug_called(1);
1204
1205	for (i = 0; i < AAC_FIB_COUNT; i++)
1206		bus_dmamap_destroy(sc->aac_buffer_dmat,
1207				   sc->aac_command[i].cm_datamap);
1208
1209	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1210	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1211}
1212
1213/*
1214 * Command-mapping helper function - populate this command's s/g table.
1215 */
1216static void
1217aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1218{
1219	struct aac_command *cm;
1220	struct aac_fib *fib;
1221	struct aac_sg_table *sg;
1222	int i;
1223
1224	debug_called(3);
1225
1226	cm = (struct aac_command *)arg;
1227	fib = cm->cm_fib;
1228
1229	/* find the s/g table */
1230	sg = cm->cm_sgtable;
1231
1232	/* copy into the FIB */
1233	if (sg != NULL) {
1234		sg->SgCount = nseg;
1235		for (i = 0; i < nseg; i++) {
1236			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1237			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1238		}
1239		/* update the FIB size for the s/g count */
1240		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1241	}
1242
1243}
1244
1245/*
1246 * Map a command into controller-visible space.
1247 */
1248static void
1249aac_map_command(struct aac_command *cm)
1250{
1251	struct aac_softc *sc;
1252
1253	debug_called(2);
1254
1255	sc = cm->cm_sc;
1256
1257	/* don't map more than once */
1258	if (cm->cm_flags & AAC_CMD_MAPPED)
1259		return;
1260
1261	if (cm->cm_datalen != 0) {
1262		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1263				cm->cm_data, cm->cm_datalen,
1264				aac_map_command_sg, cm, 0);
1265
1266		if (cm->cm_flags & AAC_CMD_DATAIN)
1267			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1268					BUS_DMASYNC_PREREAD);
1269		if (cm->cm_flags & AAC_CMD_DATAOUT)
1270			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1271					BUS_DMASYNC_PREWRITE);
1272	}
1273	cm->cm_flags |= AAC_CMD_MAPPED;
1274}
1275
1276/*
1277 * Unmap a command from controller-visible space.
1278 */
1279static void
1280aac_unmap_command(struct aac_command *cm)
1281{
1282	struct aac_softc *sc;
1283
1284	debug_called(2);
1285
1286	sc = cm->cm_sc;
1287
1288	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1289		return;
1290
1291	if (cm->cm_datalen != 0) {
1292		if (cm->cm_flags & AAC_CMD_DATAIN)
1293			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1294					BUS_DMASYNC_POSTREAD);
1295		if (cm->cm_flags & AAC_CMD_DATAOUT)
1296			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1297					BUS_DMASYNC_POSTWRITE);
1298
1299		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1300	}
1301	cm->cm_flags &= ~AAC_CMD_MAPPED;
1302}
1303
1304/*
1305 * Hardware Interface
1306 */
1307
1308/*
1309 * Initialise the adapter.
1310 */
1311static void
1312aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1313{
1314	struct aac_softc *sc;
1315
1316	debug_called(1);
1317
1318	sc = (struct aac_softc *)arg;
1319
1320	sc->aac_common_busaddr = segs[0].ds_addr;
1321}
1322
1323/*
1324 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1325 * firmware version 1.x are not compatible with this driver.
1326 */
1327static int
1328aac_check_firmware(struct aac_softc *sc)
1329{
1330	u_int32_t major, minor;
1331
1332	debug_called(1);
1333
1334	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1335		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1336				     NULL)) {
1337			device_printf(sc->aac_dev,
1338				      "Error reading firmware version\n");
1339			return (EIO);
1340		}
1341
1342		/* These numbers are stored as ASCII! */
1343		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1344		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1345		if (major == 1) {
1346			device_printf(sc->aac_dev,
1347			    "Firmware version %d.%d is not supported.\n",
1348			    major, minor);
1349			return (EINVAL);
1350		}
1351	}
1352
1353	return (0);
1354}
1355
1356static int
1357aac_init(struct aac_softc *sc)
1358{
1359	struct aac_adapter_init	*ip;
1360	time_t then;
1361	u_int32_t code;
1362	u_int8_t *qaddr;
1363
1364	debug_called(1);
1365
1366	/*
1367	 * First wait for the adapter to come ready.
1368	 */
1369	then = time_second;
1370	do {
1371		code = AAC_GET_FWSTATUS(sc);
1372		if (code & AAC_SELF_TEST_FAILED) {
1373			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1374			return(ENXIO);
1375		}
1376		if (code & AAC_KERNEL_PANIC) {
1377			device_printf(sc->aac_dev,
1378				      "FATAL: controller kernel panic\n");
1379			return(ENXIO);
1380		}
1381		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1382			device_printf(sc->aac_dev,
1383				      "FATAL: controller not coming ready, "
1384					   "status %x\n", code);
1385			return(ENXIO);
1386		}
1387	} while (!(code & AAC_UP_AND_RUNNING));
1388
1389	/*
1390	 * Create DMA tag for the common structure and allocate it.
1391	 */
1392	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1393			       1, 0,			/* algnmnt, boundary */
1394			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1395			       BUS_SPACE_MAXADDR, 	/* highaddr */
1396			       NULL, NULL, 		/* filter, filterarg */
1397			       sizeof(struct aac_common), /* maxsize */
1398			       1,			/* nsegments */
1399			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1400			       0,			/* flags */
1401			       &sc->aac_common_dmat)) {
1402		device_printf(sc->aac_dev,
1403			      "can't allocate common structure DMA tag\n");
1404		return(ENOMEM);
1405	}
1406	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1407			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1408		device_printf(sc->aac_dev, "can't allocate common structure\n");
1409		return(ENOMEM);
1410	}
1411	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1412			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1413			sc, 0);
1414	bzero(sc->aac_common, sizeof(*sc->aac_common));
1415
1416	/*
1417	 * Fill in the init structure.  This tells the adapter about the
1418	 * physical location of various important shared data structures.
1419	 */
1420	ip = &sc->aac_common->ac_init;
1421	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1422	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1423
1424	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1425					 offsetof(struct aac_common, ac_fibs);
1426	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1427	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1428	ip->AdapterFibAlign = sizeof(struct aac_fib);
1429
1430	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1431				  offsetof(struct aac_common, ac_printf);
1432	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1433
1434	/* The adapter assumes that pages are 4K in size */
1435	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1436	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1437
1438	/*
1439	 * Initialise FIB queues.  Note that it appears that the layout of the
1440	 * indexes and the segmentation of the entries may be mandated by the
1441	 * adapter, which is only told about the base of the queue index fields.
1442	 *
1443	 * The initial values of the indices are assumed to inform the adapter
1444	 * of the sizes of the respective queues, and theoretically it could
1445	 * work out the entire layout of the queue structures from this.  We
1446	 * take the easy route and just lay this area out like everyone else
1447	 * does.
1448	 *
1449	 * The Linux driver uses a much more complex scheme whereby several
1450	 * header records are kept for each queue.  We use a couple of generic
1451	 * list manipulation functions which 'know' the size of each list by
1452	 * virtue of a table.
1453	 */
1454	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1455	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1456	sc->aac_queues = (struct aac_queue_table *)qaddr;
1457	ip->CommHeaderAddress = sc->aac_common_busaddr +
1458				((u_int32_t)sc->aac_queues -
1459				(u_int32_t)sc->aac_common);
1460
1461	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1462		AAC_HOST_NORM_CMD_ENTRIES;
1463	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1464		AAC_HOST_NORM_CMD_ENTRIES;
1465	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1466		AAC_HOST_HIGH_CMD_ENTRIES;
1467	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1468		AAC_HOST_HIGH_CMD_ENTRIES;
1469	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1470		AAC_ADAP_NORM_CMD_ENTRIES;
1471	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1472		AAC_ADAP_NORM_CMD_ENTRIES;
1473	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1474		AAC_ADAP_HIGH_CMD_ENTRIES;
1475	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1476		AAC_ADAP_HIGH_CMD_ENTRIES;
1477	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1478		AAC_HOST_NORM_RESP_ENTRIES;
1479	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1480		AAC_HOST_NORM_RESP_ENTRIES;
1481	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1482		AAC_HOST_HIGH_RESP_ENTRIES;
1483	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1484		AAC_HOST_HIGH_RESP_ENTRIES;
1485	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1486		AAC_ADAP_NORM_RESP_ENTRIES;
1487	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1488		AAC_ADAP_NORM_RESP_ENTRIES;
1489	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1490		AAC_ADAP_HIGH_RESP_ENTRIES;
1491	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1492		AAC_ADAP_HIGH_RESP_ENTRIES;
1493	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1494		&sc->aac_queues->qt_HostNormCmdQueue[0];
1495	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1496		&sc->aac_queues->qt_HostHighCmdQueue[0];
1497	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1498		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1499	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1500		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1501	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1502		&sc->aac_queues->qt_HostNormRespQueue[0];
1503	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1504		&sc->aac_queues->qt_HostHighRespQueue[0];
1505	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1506		&sc->aac_queues->qt_AdapNormRespQueue[0];
1507	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1508		&sc->aac_queues->qt_AdapHighRespQueue[0];
1509
1510	/*
1511	 * Do controller-type-specific initialisation
1512	 */
1513	switch (sc->aac_hwif) {
1514	case AAC_HWIF_I960RX:
1515		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1516		break;
1517	}
1518
1519	/*
1520	 * Give the init structure to the controller.
1521	 */
1522	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1523			     sc->aac_common_busaddr +
1524			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1525			     NULL)) {
1526		device_printf(sc->aac_dev,
1527			      "error establishing init structure\n");
1528		return(EIO);
1529	}
1530
1531	return(0);
1532}
1533
1534/*
1535 * Send a synchronous command to the controller and wait for a result.
1536 */
1537static int
1538aac_sync_command(struct aac_softc *sc, u_int32_t command,
1539		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1540		 u_int32_t *sp)
1541{
1542	time_t then;
1543	u_int32_t status;
1544
1545	debug_called(3);
1546
1547	/* populate the mailbox */
1548	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1549
1550	/* ensure the sync command doorbell flag is cleared */
1551	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1552
1553	/* then set it to signal the adapter */
1554	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1555
1556	/* spin waiting for the command to complete */
1557	then = time_second;
1558	do {
1559		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1560			debug(2, "timed out");
1561			return(EIO);
1562		}
1563	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1564
1565	/* clear the completion flag */
1566	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1567
1568	/* get the command status */
1569	status = AAC_GET_MAILBOXSTATUS(sc);
1570	if (sp != NULL)
1571		*sp = status;
1572	return(0);
1573}
1574
1575/*
1576 * Grab the sync fib area.
1577 */
1578int
1579aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1580{
1581
1582	/*
1583	 * If the force flag is set, the system is shutting down, or in
1584	 * trouble.  Ignore the mutex.
1585	 */
1586	if (!(flags & AAC_SYNC_LOCK_FORCE))
1587		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1588
1589	*fib = &sc->aac_common->ac_sync_fib;
1590
1591	return (1);
1592}
1593
1594/*
1595 * Release the sync fib area.
1596 */
1597void
1598aac_release_sync_fib(struct aac_softc *sc)
1599{
1600
1601	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1602}
1603
1604/*
1605 * Send a synchronous FIB to the controller and wait for a result.
1606 */
1607int
1608aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1609		 struct aac_fib *fib, u_int16_t datasize)
1610{
1611	debug_called(3);
1612
1613	if (datasize > AAC_FIB_DATASIZE)
1614		return(EINVAL);
1615
1616	/*
1617	 * Set up the sync FIB
1618	 */
1619	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1620				AAC_FIBSTATE_INITIALISED |
1621				AAC_FIBSTATE_EMPTY;
1622	fib->Header.XferState |= xferstate;
1623	fib->Header.Command = command;
1624	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1625	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1626	fib->Header.SenderSize = sizeof(struct aac_fib);
1627	fib->Header.SenderFibAddress = (u_int32_t)fib;
1628	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1629					 offsetof(struct aac_common,
1630						  ac_sync_fib);
1631
1632	/*
1633	 * Give the FIB to the controller, wait for a response.
1634	 */
1635	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1636			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1637		debug(2, "IO error");
1638		return(EIO);
1639	}
1640
1641	return (0);
1642}
1643
1644/*
1645 * Adapter-space FIB queue manipulation
1646 *
1647 * Note that the queue implementation here is a little funky; neither the PI or
1648 * CI will ever be zero.  This behaviour is a controller feature.
1649 */
1650static struct {
1651	int		size;
1652	int		notify;
1653} aac_qinfo[] = {
1654	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1655	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1656	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1657	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1658	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1659	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1660	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1661	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1662};
1663
1664/*
1665 * Atomically insert an entry into the nominated queue, returns 0 on success or
1666 * EBUSY if the queue is full.
1667 *
1668 * Note: it would be more efficient to defer notifying the controller in
1669 *	 the case where we may be inserting several entries in rapid succession,
1670 *	 but implementing this usefully may be difficult (it would involve a
1671 *	 separate queue/notify interface).
1672 */
1673static int
1674aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1675{
1676	u_int32_t pi, ci;
1677	int s, error;
1678	u_int32_t fib_size;
1679	u_int32_t fib_addr;
1680
1681	debug_called(3);
1682
1683	fib_size = cm->cm_fib->Header.Size;
1684	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1685
1686	s = splbio();
1687
1688	/* get the producer/consumer indices */
1689	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1690	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1691
1692	/* wrap the queue? */
1693	if (pi >= aac_qinfo[queue].size)
1694		pi = 0;
1695
1696	/* check for queue full */
1697	if ((pi + 1) == ci) {
1698		error = EBUSY;
1699		goto out;
1700	}
1701
1702	/* populate queue entry */
1703	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1704	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1705
1706	/* update producer index */
1707	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1708
1709	/*
1710	 * To avoid a race with its completion interrupt, place this command on
1711	 * the busy queue prior to advertising it to the controller.
1712	 */
1713	aac_enqueue_busy(cm);
1714
1715	/* notify the adapter if we know how */
1716	if (aac_qinfo[queue].notify != 0)
1717		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1718
1719	error = 0;
1720
1721out:
1722	splx(s);
1723	return(error);
1724}
1725
1726/*
1727 * Atomically remove one entry from the nominated queue, returns 0 on
1728 * success or ENOENT if the queue is empty.
1729 */
1730static int
1731aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1732		struct aac_fib **fib_addr)
1733{
1734	u_int32_t pi, ci;
1735	int s, error;
1736	int notify;
1737
1738	debug_called(3);
1739
1740	s = splbio();
1741
1742	/* get the producer/consumer indices */
1743	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1744	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1745
1746	/* check for queue empty */
1747	if (ci == pi) {
1748		error = ENOENT;
1749		goto out;
1750	}
1751
1752	notify = 0;
1753	if (ci == pi + 1)
1754		notify++;
1755
1756	/* wrap the queue? */
1757	if (ci >= aac_qinfo[queue].size)
1758		ci = 0;
1759
1760	/* fetch the entry */
1761	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1762	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1763				       ci)->aq_fib_addr;
1764
1765	/*
1766	 * Is this a fast response? If it is, update the fib fields in
1767	 * local memory so the whole fib doesn't have to be DMA'd back up.
1768	 */
1769	if (*(uintptr_t *)fib_addr & 0x01) {
1770		*(uintptr_t *)fib_addr &= ~0x01;
1771		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1772		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1773	}
1774	/* update consumer index */
1775	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1776
1777	/* if we have made the queue un-full, notify the adapter */
1778	if (notify && (aac_qinfo[queue].notify != 0))
1779		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1780	error = 0;
1781
1782out:
1783	splx(s);
1784	return(error);
1785}
1786
1787/*
1788 * Put our response to an Adapter Initialed Fib on the response queue
1789 */
1790static int
1791aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1792{
1793	u_int32_t pi, ci;
1794	int s, error;
1795	u_int32_t fib_size;
1796	u_int32_t fib_addr;
1797
1798	debug_called(1);
1799
1800	/* Tell the adapter where the FIB is */
1801	fib_size = fib->Header.Size;
1802	fib_addr = fib->Header.SenderFibAddress;
1803	fib->Header.ReceiverFibAddress = fib_addr;
1804
1805	s = splbio();
1806
1807	/* get the producer/consumer indices */
1808	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1809	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1810
1811	/* wrap the queue? */
1812	if (pi >= aac_qinfo[queue].size)
1813		pi = 0;
1814
1815	/* check for queue full */
1816	if ((pi + 1) == ci) {
1817		error = EBUSY;
1818		goto out;
1819	}
1820
1821	/* populate queue entry */
1822	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1823	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1824
1825	/* update producer index */
1826	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1827
1828	/* notify the adapter if we know how */
1829	if (aac_qinfo[queue].notify != 0)
1830		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1831
1832	error = 0;
1833
1834out:
1835	splx(s);
1836	return(error);
1837}
1838
1839/*
1840 * Check for commands that have been outstanding for a suspiciously long time,
1841 * and complain about them.
1842 */
1843static void
1844aac_timeout(struct aac_softc *sc)
1845{
1846	int s;
1847	struct aac_command *cm;
1848	time_t deadline;
1849
1850	/*
1851	 * Traverse the busy command list, bitch about late commands once
1852	 * only.
1853	 */
1854	deadline = time_second - AAC_CMD_TIMEOUT;
1855	s = splbio();
1856	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1857		if ((cm->cm_timestamp  < deadline)
1858			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1859			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1860			device_printf(sc->aac_dev,
1861				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1862				      cm, (int)(time_second-cm->cm_timestamp));
1863			AAC_PRINT_FIB(sc, cm->cm_fib);
1864		}
1865	}
1866	splx(s);
1867
1868	return;
1869}
1870
1871/*
1872 * Interface Function Vectors
1873 */
1874
1875/*
1876 * Read the current firmware status word.
1877 */
1878static int
1879aac_sa_get_fwstatus(struct aac_softc *sc)
1880{
1881	debug_called(3);
1882
1883	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1884}
1885
1886static int
1887aac_rx_get_fwstatus(struct aac_softc *sc)
1888{
1889	debug_called(3);
1890
1891	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1892}
1893
1894static int
1895aac_fa_get_fwstatus(struct aac_softc *sc)
1896{
1897	int val;
1898
1899	debug_called(3);
1900
1901	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1902	return (val);
1903}
1904
1905/*
1906 * Notify the controller of a change in a given queue
1907 */
1908
1909static void
1910aac_sa_qnotify(struct aac_softc *sc, int qbit)
1911{
1912	debug_called(3);
1913
1914	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1915}
1916
1917static void
1918aac_rx_qnotify(struct aac_softc *sc, int qbit)
1919{
1920	debug_called(3);
1921
1922	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1923}
1924
1925static void
1926aac_fa_qnotify(struct aac_softc *sc, int qbit)
1927{
1928	debug_called(3);
1929
1930	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1931	AAC_FA_HACK(sc);
1932}
1933
1934/*
1935 * Get the interrupt reason bits
1936 */
1937static int
1938aac_sa_get_istatus(struct aac_softc *sc)
1939{
1940	debug_called(3);
1941
1942	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1943}
1944
1945static int
1946aac_rx_get_istatus(struct aac_softc *sc)
1947{
1948	debug_called(3);
1949
1950	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1951}
1952
1953static int
1954aac_fa_get_istatus(struct aac_softc *sc)
1955{
1956	int val;
1957
1958	debug_called(3);
1959
1960	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1961	return (val);
1962}
1963
1964/*
1965 * Clear some interrupt reason bits
1966 */
1967static void
1968aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1969{
1970	debug_called(3);
1971
1972	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1973}
1974
1975static void
1976aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1977{
1978	debug_called(3);
1979
1980	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1981}
1982
1983static void
1984aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1985{
1986	debug_called(3);
1987
1988	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1989	AAC_FA_HACK(sc);
1990}
1991
1992/*
1993 * Populate the mailbox and set the command word
1994 */
1995static void
1996aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1997		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1998{
1999	debug_called(4);
2000
2001	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2002	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2003	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2004	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2005	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2006}
2007
2008static void
2009aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2010		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2011{
2012	debug_called(4);
2013
2014	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2015	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2016	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2017	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2018	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2019}
2020
2021static void
2022aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2023		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2024{
2025	debug_called(4);
2026
2027	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2028	AAC_FA_HACK(sc);
2029	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2030	AAC_FA_HACK(sc);
2031	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2032	AAC_FA_HACK(sc);
2033	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2034	AAC_FA_HACK(sc);
2035	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2036	AAC_FA_HACK(sc);
2037}
2038
2039/*
2040 * Fetch the immediate command status word
2041 */
2042static int
2043aac_sa_get_mailboxstatus(struct aac_softc *sc)
2044{
2045	debug_called(4);
2046
2047	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2048}
2049
2050static int
2051aac_rx_get_mailboxstatus(struct aac_softc *sc)
2052{
2053	debug_called(4);
2054
2055	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2056}
2057
2058static int
2059aac_fa_get_mailboxstatus(struct aac_softc *sc)
2060{
2061	int val;
2062
2063	debug_called(4);
2064
2065	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2066	return (val);
2067}
2068
2069/*
2070 * Set/clear interrupt masks
2071 */
2072static void
2073aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2074{
2075	debug(2, "%sable interrupts", enable ? "en" : "dis");
2076
2077	if (enable) {
2078		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2079	} else {
2080		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2081	}
2082}
2083
2084static void
2085aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2086{
2087	debug(2, "%sable interrupts", enable ? "en" : "dis");
2088
2089	if (enable) {
2090		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2091	} else {
2092		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2093	}
2094}
2095
2096static void
2097aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2098{
2099	debug(2, "%sable interrupts", enable ? "en" : "dis");
2100
2101	if (enable) {
2102		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2103		AAC_FA_HACK(sc);
2104	} else {
2105		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2106		AAC_FA_HACK(sc);
2107	}
2108}
2109
2110/*
2111 * Debugging and Diagnostics
2112 */
2113
2114/*
2115 * Print some information about the controller.
2116 */
2117static void
2118aac_describe_controller(struct aac_softc *sc)
2119{
2120	struct aac_fib *fib;
2121	struct aac_adapter_info	*info;
2122
2123	debug_called(2);
2124
2125	aac_alloc_sync_fib(sc, &fib, 0);
2126
2127	fib->data[0] = 0;
2128	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2129		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2130		aac_release_sync_fib(sc);
2131		return;
2132	}
2133	info = (struct aac_adapter_info *)&fib->data[0];
2134
2135	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2136		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2137		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2138		      aac_describe_code(aac_battery_platform,
2139					info->batteryPlatform));
2140
2141	/* save the kernel revision structure for later use */
2142	sc->aac_revision = info->KernelRevision;
2143	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2144		      info->KernelRevision.external.comp.major,
2145		      info->KernelRevision.external.comp.minor,
2146		      info->KernelRevision.external.comp.dash,
2147		      info->KernelRevision.buildNumber,
2148		      (u_int32_t)(info->SerialNumber & 0xffffff));
2149
2150	aac_release_sync_fib(sc);
2151}
2152
2153/*
2154 * Look up a text description of a numeric error code and return a pointer to
2155 * same.
2156 */
2157static char *
2158aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2159{
2160	int i;
2161
2162	for (i = 0; table[i].string != NULL; i++)
2163		if (table[i].code == code)
2164			return(table[i].string);
2165	return(table[i + 1].string);
2166}
2167
2168/*
2169 * Management Interface
2170 */
2171
2172static int
2173aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2174{
2175	struct aac_softc *sc;
2176
2177	debug_called(2);
2178
2179	sc = dev->si_drv1;
2180
2181	/* Check to make sure the device isn't already open */
2182	if (sc->aac_state & AAC_STATE_OPEN) {
2183		return EBUSY;
2184	}
2185	sc->aac_state |= AAC_STATE_OPEN;
2186
2187	return 0;
2188}
2189
2190static int
2191aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2192{
2193	struct aac_softc *sc;
2194
2195	debug_called(2);
2196
2197	sc = dev->si_drv1;
2198
2199	/* Mark this unit as no longer open  */
2200	sc->aac_state &= ~AAC_STATE_OPEN;
2201
2202	return 0;
2203}
2204
2205static int
2206aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2207{
2208	union aac_statrequest *as;
2209	struct aac_softc *sc;
2210	int error = 0;
2211	int i;
2212
2213	debug_called(2);
2214
2215	as = (union aac_statrequest *)arg;
2216	sc = dev->si_drv1;
2217
2218	switch (cmd) {
2219	case AACIO_STATS:
2220		switch (as->as_item) {
2221		case AACQ_FREE:
2222		case AACQ_BIO:
2223		case AACQ_READY:
2224		case AACQ_BUSY:
2225		case AACQ_COMPLETE:
2226			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2227			      sizeof(struct aac_qstat));
2228			break;
2229		default:
2230			error = ENOENT;
2231			break;
2232		}
2233	break;
2234
2235	case FSACTL_SENDFIB:
2236		arg = *(caddr_t*)arg;
2237	case FSACTL_LNX_SENDFIB:
2238		debug(1, "FSACTL_SENDFIB");
2239		error = aac_ioctl_sendfib(sc, arg);
2240		break;
2241	case FSACTL_AIF_THREAD:
2242	case FSACTL_LNX_AIF_THREAD:
2243		debug(1, "FSACTL_AIF_THREAD");
2244		error = EINVAL;
2245		break;
2246	case FSACTL_OPEN_GET_ADAPTER_FIB:
2247		arg = *(caddr_t*)arg;
2248	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2249		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2250		/*
2251		 * Pass the caller out an AdapterFibContext.
2252		 *
2253		 * Note that because we only support one opener, we
2254		 * basically ignore this.  Set the caller's context to a magic
2255		 * number just in case.
2256		 *
2257		 * The Linux code hands the driver a pointer into kernel space,
2258		 * and then trusts it when the caller hands it back.  Aiee!
2259		 * Here, we give it the proc pointer of the per-adapter aif
2260		 * thread. It's only used as a sanity check in other calls.
2261		 */
2262		i = (int)sc->aifthread;
2263		error = copyout(&i, arg, sizeof(i));
2264		break;
2265	case FSACTL_GET_NEXT_ADAPTER_FIB:
2266		arg = *(caddr_t*)arg;
2267	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2268		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2269		error = aac_getnext_aif(sc, arg);
2270		break;
2271	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2272	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2273		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2274		/* don't do anything here */
2275		break;
2276	case FSACTL_MINIPORT_REV_CHECK:
2277		arg = *(caddr_t*)arg;
2278	case FSACTL_LNX_MINIPORT_REV_CHECK:
2279		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2280		error = aac_rev_check(sc, arg);
2281		break;
2282	case FSACTL_QUERY_DISK:
2283		arg = *(caddr_t*)arg;
2284	case FSACTL_LNX_QUERY_DISK:
2285		debug(1, "FSACTL_QUERY_DISK");
2286		error = aac_query_disk(sc, arg);
2287			break;
2288	case FSACTL_DELETE_DISK:
2289	case FSACTL_LNX_DELETE_DISK:
2290		/*
2291		 * We don't trust the underland to tell us when to delete a
2292		 * container, rather we rely on an AIF coming from the
2293		 * controller
2294		 */
2295		error = 0;
2296		break;
2297	default:
2298		debug(1, "unsupported cmd 0x%lx\n", cmd);
2299		error = EINVAL;
2300		break;
2301	}
2302	return(error);
2303}
2304
2305static int
2306aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2307{
2308	struct aac_softc *sc;
2309	int revents;
2310
2311	sc = dev->si_drv1;
2312	revents = 0;
2313
2314	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2315	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2316		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2317			revents |= poll_events & (POLLIN | POLLRDNORM);
2318	}
2319	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2320
2321	if (revents == 0) {
2322		if (poll_events & (POLLIN | POLLRDNORM))
2323			selrecord(td, &sc->rcv_select);
2324	}
2325
2326	return (revents);
2327}
2328
2329/*
2330 * Send a FIB supplied from userspace
2331 */
2332static int
2333aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2334{
2335	struct aac_command *cm;
2336	int size, error;
2337
2338	debug_called(2);
2339
2340	cm = NULL;
2341
2342	/*
2343	 * Get a command
2344	 */
2345	if (aac_alloc_command(sc, &cm)) {
2346		error = EBUSY;
2347		goto out;
2348	}
2349
2350	/*
2351	 * Fetch the FIB header, then re-copy to get data as well.
2352	 */
2353	if ((error = copyin(ufib, cm->cm_fib,
2354			    sizeof(struct aac_fib_header))) != 0)
2355		goto out;
2356	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2357	if (size > sizeof(struct aac_fib)) {
2358		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2359			      size, sizeof(struct aac_fib));
2360		size = sizeof(struct aac_fib);
2361	}
2362	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2363		goto out;
2364	cm->cm_fib->Header.Size = size;
2365	cm->cm_timestamp = time_second;
2366
2367	/*
2368	 * Pass the FIB to the controller, wait for it to complete.
2369	 */
2370	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2371		device_printf(sc->aac_dev,
2372			      "aac_wait_command return %d\n", error);
2373		goto out;
2374	}
2375
2376	/*
2377	 * Copy the FIB and data back out to the caller.
2378	 */
2379	size = cm->cm_fib->Header.Size;
2380	if (size > sizeof(struct aac_fib)) {
2381		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2382			      size, sizeof(struct aac_fib));
2383		size = sizeof(struct aac_fib);
2384	}
2385	error = copyout(cm->cm_fib, ufib, size);
2386
2387out:
2388	if (cm != NULL) {
2389		aac_release_command(cm);
2390	}
2391	return(error);
2392}
2393
2394/*
2395 * Handle an AIF sent to us by the controller; queue it for later reference.
2396 * If the queue fills up, then drop the older entries.
2397 */
2398static void
2399aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2400{
2401	struct aac_aif_command *aif;
2402	struct aac_container *co, *co_next;
2403	struct aac_mntinfo *mi;
2404	struct aac_mntinforesp *mir = NULL;
2405	u_int16_t rsize;
2406	int next, found;
2407	int added = 0, i = 0;
2408
2409	debug_called(2);
2410
2411	aif = (struct aac_aif_command*)&fib->data[0];
2412	aac_print_aif(sc, aif);
2413
2414	/* Is it an event that we should care about? */
2415	switch (aif->command) {
2416	case AifCmdEventNotify:
2417		switch (aif->data.EN.type) {
2418		case AifEnAddContainer:
2419		case AifEnDeleteContainer:
2420			/*
2421			 * A container was added or deleted, but the message
2422			 * doesn't tell us anything else!  Re-enumerate the
2423			 * containers and sort things out.
2424			 */
2425			aac_alloc_sync_fib(sc, &fib, 0);
2426			mi = (struct aac_mntinfo *)&fib->data[0];
2427			do {
2428				/*
2429				 * Ask the controller for its containers one at
2430				 * a time.
2431				 * XXX What if the controller's list changes
2432				 * midway through this enumaration?
2433				 * XXX This should be done async.
2434				 */
2435				bzero(mi, sizeof(struct aac_mntinfo));
2436				mi->Command = VM_NameServe;
2437				mi->MntType = FT_FILESYS;
2438				mi->MntCount = i;
2439				rsize = sizeof(mir);
2440				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2441						 sizeof(struct aac_mntinfo))) {
2442					debug(2, "Error probing container %d\n",
2443					      i);
2444					continue;
2445				}
2446				mir = (struct aac_mntinforesp *)&fib->data[0];
2447				/*
2448				 * Check the container against our list.
2449				 * co->co_found was already set to 0 in a
2450				 * previous run.
2451				 */
2452				if ((mir->Status == ST_OK) &&
2453				    (mir->MntTable[0].VolType != CT_NONE)) {
2454					found = 0;
2455					TAILQ_FOREACH(co,
2456						      &sc->aac_container_tqh,
2457						      co_link) {
2458						if (co->co_mntobj.ObjectId ==
2459						    mir->MntTable[0].ObjectId) {
2460							co->co_found = 1;
2461							found = 1;
2462							break;
2463						}
2464					}
2465					/*
2466					 * If the container matched, continue
2467					 * in the list.
2468					 */
2469					if (found) {
2470						i++;
2471						continue;
2472					}
2473
2474					/*
2475					 * This is a new container.  Do all the
2476					 * appropriate things to set it up.
2477					 */
2478					aac_add_container(sc, mir, 1);
2479					added = 1;
2480				}
2481				i++;
2482			} while ((i < mir->MntRespCount) &&
2483				 (i < AAC_MAX_CONTAINERS));
2484			aac_release_sync_fib(sc);
2485
2486			/*
2487			 * Go through our list of containers and see which ones
2488			 * were not marked 'found'.  Since the controller didn't
2489			 * list them they must have been deleted.  Do the
2490			 * appropriate steps to destroy the device.  Also reset
2491			 * the co->co_found field.
2492			 */
2493			co = TAILQ_FIRST(&sc->aac_container_tqh);
2494			while (co != NULL) {
2495				if (co->co_found == 0) {
2496					device_delete_child(sc->aac_dev,
2497							    co->co_disk);
2498					co_next = TAILQ_NEXT(co, co_link);
2499					AAC_LOCK_ACQUIRE(&sc->
2500							aac_container_lock);
2501					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2502						     co_link);
2503					AAC_LOCK_RELEASE(&sc->
2504							 aac_container_lock);
2505					FREE(co, M_AACBUF);
2506					co = co_next;
2507				} else {
2508					co->co_found = 0;
2509					co = TAILQ_NEXT(co, co_link);
2510				}
2511			}
2512
2513			/* Attach the newly created containers */
2514			if (added)
2515				bus_generic_attach(sc->aac_dev);
2516
2517			break;
2518
2519		default:
2520			break;
2521		}
2522
2523	default:
2524		break;
2525	}
2526
2527	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2528	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2529	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2530	if (next != sc->aac_aifq_tail) {
2531		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2532		sc->aac_aifq_head = next;
2533
2534		/* On the off chance that someone is sleeping for an aif... */
2535		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2536			wakeup(sc->aac_aifq);
2537		/* Wakeup any poll()ers */
2538		selwakeup(&sc->rcv_select);
2539	}
2540	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2541
2542	return;
2543}
2544
2545/*
2546 * Return the Revision of the driver to userspace and check to see if the
2547 * userspace app is possibly compatible.  This is extremely bogus since
2548 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2549 * returning what the card reported.
2550 */
2551static int
2552aac_rev_check(struct aac_softc *sc, caddr_t udata)
2553{
2554	struct aac_rev_check rev_check;
2555	struct aac_rev_check_resp rev_check_resp;
2556	int error = 0;
2557
2558	debug_called(2);
2559
2560	/*
2561	 * Copyin the revision struct from userspace
2562	 */
2563	if ((error = copyin(udata, (caddr_t)&rev_check,
2564			sizeof(struct aac_rev_check))) != 0) {
2565		return error;
2566	}
2567
2568	debug(2, "Userland revision= %d\n",
2569	      rev_check.callingRevision.buildNumber);
2570
2571	/*
2572	 * Doctor up the response struct.
2573	 */
2574	rev_check_resp.possiblyCompatible = 1;
2575	rev_check_resp.adapterSWRevision.external.ul =
2576	    sc->aac_revision.external.ul;
2577	rev_check_resp.adapterSWRevision.buildNumber =
2578	    sc->aac_revision.buildNumber;
2579
2580	return(copyout((caddr_t)&rev_check_resp, udata,
2581			sizeof(struct aac_rev_check_resp)));
2582}
2583
2584/*
2585 * Pass the caller the next AIF in their queue
2586 */
2587static int
2588aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2589{
2590	struct get_adapter_fib_ioctl agf;
2591	int error, s;
2592
2593	debug_called(2);
2594
2595	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2596
2597		/*
2598		 * Check the magic number that we gave the caller.
2599		 */
2600		if (agf.AdapterFibContext != (int)sc->aifthread) {
2601			error = EFAULT;
2602		} else {
2603
2604			s = splbio();
2605			error = aac_return_aif(sc, agf.AifFib);
2606
2607			if ((error == EAGAIN) && (agf.Wait)) {
2608				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2609				while (error == EAGAIN) {
2610					error = tsleep(sc->aac_aifq, PRIBIO |
2611						       PCATCH, "aacaif", 0);
2612					if (error == 0)
2613						error = aac_return_aif(sc,
2614						    agf.AifFib);
2615				}
2616				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2617			}
2618		splx(s);
2619		}
2620	}
2621	return(error);
2622}
2623
2624/*
2625 * Hand the next AIF off the top of the queue out to userspace.
2626 */
2627static int
2628aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2629{
2630	int error;
2631
2632	debug_called(2);
2633
2634	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2635	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2636		error = EAGAIN;
2637	} else {
2638		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2639				sizeof(struct aac_aif_command));
2640		if (error)
2641			device_printf(sc->aac_dev,
2642			    "aac_return_aif: copyout returned %d\n", error);
2643		if (!error)
2644			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2645					    AAC_AIFQ_LENGTH;
2646	}
2647	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2648	return(error);
2649}
2650
2651/*
2652 * Give the userland some information about the container.  The AAC arch
2653 * expects the driver to be a SCSI passthrough type driver, so it expects
2654 * the containers to have b:t:l numbers.  Fake it.
2655 */
2656static int
2657aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2658{
2659	struct aac_query_disk query_disk;
2660	struct aac_container *co;
2661	struct aac_disk	*disk;
2662	int error, id;
2663
2664	debug_called(2);
2665
2666	disk = NULL;
2667
2668	error = copyin(uptr, (caddr_t)&query_disk,
2669		       sizeof(struct aac_query_disk));
2670	if (error)
2671		return (error);
2672
2673	id = query_disk.ContainerNumber;
2674	if (id == -1)
2675		return (EINVAL);
2676
2677	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2678	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2679		if (co->co_mntobj.ObjectId == id)
2680			break;
2681		}
2682
2683	if (co == NULL) {
2684			query_disk.Valid = 0;
2685			query_disk.Locked = 0;
2686			query_disk.Deleted = 1;		/* XXX is this right? */
2687	} else {
2688		disk = device_get_softc(co->co_disk);
2689		query_disk.Valid = 1;
2690		query_disk.Locked =
2691		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2692		query_disk.Deleted = 0;
2693		query_disk.Bus = device_get_unit(sc->aac_dev);
2694		query_disk.Target = disk->unit;
2695		query_disk.Lun = 0;
2696		query_disk.UnMapped = 0;
2697		bcopy(disk->ad_dev_t->si_name,
2698		      &query_disk.diskDeviceName[0], 10);
2699	}
2700	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2701
2702	error = copyout((caddr_t)&query_disk, uptr,
2703			sizeof(struct aac_query_disk));
2704
2705	return (error);
2706}
2707
2708static void
2709aac_get_bus_info(struct aac_softc *sc)
2710{
2711	struct aac_fib *fib;
2712	struct aac_ctcfg *c_cmd;
2713	struct aac_ctcfg_resp *c_resp;
2714	struct aac_vmioctl *vmi;
2715	struct aac_vmi_businf_resp *vmi_resp;
2716	struct aac_getbusinf businfo;
2717	struct aac_sim *caminf;
2718	device_t child;
2719	int i, found, error;
2720
2721	aac_alloc_sync_fib(sc, &fib, 0);
2722	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2723	bzero(c_cmd, sizeof(struct aac_ctcfg));
2724
2725	c_cmd->Command = VM_ContainerConfig;
2726	c_cmd->cmd = CT_GET_SCSI_METHOD;
2727	c_cmd->param = 0;
2728
2729	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2730	    sizeof(struct aac_ctcfg));
2731	if (error) {
2732		device_printf(sc->aac_dev, "Error %d sending "
2733		    "VM_ContainerConfig command\n", error);
2734		aac_release_sync_fib(sc);
2735		return;
2736	}
2737
2738	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2739	if (c_resp->Status != ST_OK) {
2740		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2741		    c_resp->Status);
2742		aac_release_sync_fib(sc);
2743		return;
2744	}
2745
2746	sc->scsi_method_id = c_resp->param;
2747
2748	vmi = (struct aac_vmioctl *)&fib->data[0];
2749	bzero(vmi, sizeof(struct aac_vmioctl));
2750
2751	vmi->Command = VM_Ioctl;
2752	vmi->ObjType = FT_DRIVE;
2753	vmi->MethId = sc->scsi_method_id;
2754	vmi->ObjId = 0;
2755	vmi->IoctlCmd = GetBusInfo;
2756
2757	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2758	    sizeof(struct aac_vmioctl));
2759	if (error) {
2760		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2761		    error);
2762		aac_release_sync_fib(sc);
2763		return;
2764	}
2765
2766	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2767	if (vmi_resp->Status != ST_OK) {
2768		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2769		    vmi_resp->Status);
2770		aac_release_sync_fib(sc);
2771		return;
2772	}
2773
2774	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2775	aac_release_sync_fib(sc);
2776
2777	found = 0;
2778	for (i = 0; i < businfo.BusCount; i++) {
2779		if (businfo.BusValid[i] != AAC_BUS_VALID)
2780			continue;
2781
2782		MALLOC(caminf, struct aac_sim *,
2783		    sizeof(struct aac_sim), M_AACBUF, M_NOWAIT | M_ZERO);
2784		if (caminf == NULL)
2785			continue;
2786
2787		child = device_add_child(sc->aac_dev, "aacp", -1);
2788		if (child == NULL) {
2789			device_printf(sc->aac_dev, "device_add_child failed\n");
2790			continue;
2791		}
2792
2793		caminf->TargetsPerBus = businfo.TargetsPerBus;
2794		caminf->BusNumber = i;
2795		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2796		caminf->aac_sc = sc;
2797
2798		device_set_ivars(child, caminf);
2799		device_set_desc(child, "SCSI Passthrough Bus");
2800		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2801
2802		found = 1;
2803	}
2804
2805	if (found)
2806		bus_generic_attach(sc->aac_dev);
2807
2808	return;
2809}
2810