aac.c revision 109716
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	$FreeBSD: head/sys/dev/aac/aac.c 109716 2003-01-23 01:01:44Z scottl $
30 */
31
32/*
33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34 */
35
36#include "opt_aac.h"
37
38/* #include <stddef.h> */
39#include <sys/param.h>
40#include <sys/systm.h>
41#include <sys/malloc.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/sysctl.h>
47#include <sys/poll.h>
48#if __FreeBSD_version >= 500005
49#include <sys/selinfo.h>
50#else
51#include <sys/select.h>
52#endif
53
54#include <dev/aac/aac_compat.h>
55
56#include <sys/bus.h>
57#include <sys/conf.h>
58#include <sys/devicestat.h>
59#include <sys/disk.h>
60#include <sys/signalvar.h>
61#include <sys/time.h>
62#include <sys/eventhandler.h>
63
64#include <machine/bus_memio.h>
65#include <machine/bus.h>
66#include <machine/resource.h>
67
68#include <dev/aac/aacreg.h>
69#include <dev/aac/aac_ioctl.h>
70#include <dev/aac/aacvar.h>
71#include <dev/aac/aac_tables.h>
72#include <dev/aac/aac_cam.h>
73
74static void	aac_startup(void *arg);
75static void	aac_add_container(struct aac_softc *sc,
76				  struct aac_mntinforesp *mir, int f);
77static void	aac_get_bus_info(struct aac_softc *sc);
78
79/* Command Processing */
80static void	aac_timeout(struct aac_softc *sc);
81static int	aac_start(struct aac_command *cm);
82static void	aac_complete(void *context, int pending);
83static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84static void	aac_bio_complete(struct aac_command *cm);
85static int	aac_wait_command(struct aac_command *cm, int timeout);
86static void	aac_host_command(struct aac_softc *sc);
87static void	aac_host_response(struct aac_softc *sc);
88
89/* Command Buffer Management */
90static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
91				       int nseg, int error);
92static int	aac_alloc_commands(struct aac_softc *sc);
93static void	aac_free_commands(struct aac_softc *sc);
94static void	aac_map_command(struct aac_command *cm);
95static void	aac_unmap_command(struct aac_command *cm);
96
97/* Hardware Interface */
98static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
99			       int error);
100static int	aac_check_firmware(struct aac_softc *sc);
101static int	aac_init(struct aac_softc *sc);
102static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
103				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
104				 u_int32_t arg3, u_int32_t *sp);
105static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
106				struct aac_command *cm);
107static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
108				u_int32_t *fib_size, struct aac_fib **fib_addr);
109static int	aac_enqueue_response(struct aac_softc *sc, int queue,
110				     struct aac_fib *fib);
111
112/* Falcon/PPC interface */
113static int	aac_fa_get_fwstatus(struct aac_softc *sc);
114static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
115static int	aac_fa_get_istatus(struct aac_softc *sc);
116static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
117static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
118				   u_int32_t arg0, u_int32_t arg1,
119				   u_int32_t arg2, u_int32_t arg3);
120static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
121static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
122
123struct aac_interface aac_fa_interface = {
124	aac_fa_get_fwstatus,
125	aac_fa_qnotify,
126	aac_fa_get_istatus,
127	aac_fa_clear_istatus,
128	aac_fa_set_mailbox,
129	aac_fa_get_mailboxstatus,
130	aac_fa_set_interrupts
131};
132
133/* StrongARM interface */
134static int	aac_sa_get_fwstatus(struct aac_softc *sc);
135static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
136static int	aac_sa_get_istatus(struct aac_softc *sc);
137static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
138static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
139				   u_int32_t arg0, u_int32_t arg1,
140				   u_int32_t arg2, u_int32_t arg3);
141static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
142static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
143
144struct aac_interface aac_sa_interface = {
145	aac_sa_get_fwstatus,
146	aac_sa_qnotify,
147	aac_sa_get_istatus,
148	aac_sa_clear_istatus,
149	aac_sa_set_mailbox,
150	aac_sa_get_mailboxstatus,
151	aac_sa_set_interrupts
152};
153
154/* i960Rx interface */
155static int	aac_rx_get_fwstatus(struct aac_softc *sc);
156static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
157static int	aac_rx_get_istatus(struct aac_softc *sc);
158static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
159static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
160				   u_int32_t arg0, u_int32_t arg1,
161				   u_int32_t arg2, u_int32_t arg3);
162static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
163static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
164
165struct aac_interface aac_rx_interface = {
166	aac_rx_get_fwstatus,
167	aac_rx_qnotify,
168	aac_rx_get_istatus,
169	aac_rx_clear_istatus,
170	aac_rx_set_mailbox,
171	aac_rx_get_mailboxstatus,
172	aac_rx_set_interrupts
173};
174
175/* Debugging and Diagnostics */
176static void	aac_describe_controller(struct aac_softc *sc);
177static char	*aac_describe_code(struct aac_code_lookup *table,
178				   u_int32_t code);
179
180/* Management Interface */
181static d_open_t		aac_open;
182static d_close_t	aac_close;
183static d_ioctl_t	aac_ioctl;
184static d_poll_t		aac_poll;
185static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
186static void		aac_handle_aif(struct aac_softc *sc,
187					   struct aac_fib *fib);
188static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
189static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
190static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
191static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
192
193#define AAC_CDEV_MAJOR	150
194
195static struct cdevsw aac_cdevsw = {
196	aac_open,		/* open */
197	aac_close,		/* close */
198	noread,			/* read */
199	nowrite,		/* write */
200	aac_ioctl,		/* ioctl */
201	aac_poll,		/* poll */
202	nommap,			/* mmap */
203	nostrategy,		/* strategy */
204	"aac",			/* name */
205	AAC_CDEV_MAJOR,		/* major */
206	nodump,			/* dump */
207	nopsize,		/* psize */
208	0,			/* flags */
209#if __FreeBSD_version < 500005
210	-1,			/* bmaj */
211#endif
212};
213
214MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
215
216/* sysctl node */
217SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
218
219/*
220 * Device Interface
221 */
222
223/*
224 * Initialise the controller and softc
225 */
226int
227aac_attach(struct aac_softc *sc)
228{
229	int error, unit;
230
231	debug_called(1);
232
233	/*
234	 * Initialise per-controller queues.
235	 */
236	aac_initq_free(sc);
237	aac_initq_ready(sc);
238	aac_initq_busy(sc);
239	aac_initq_complete(sc);
240	aac_initq_bio(sc);
241
242#if __FreeBSD_version >= 500005
243	/*
244	 * Initialise command-completion task.
245	 */
246	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
247#endif
248
249	/* disable interrupts before we enable anything */
250	AAC_MASK_INTERRUPTS(sc);
251
252	/* mark controller as suspended until we get ourselves organised */
253	sc->aac_state |= AAC_STATE_SUSPEND;
254
255	/*
256	 * Check that the firmware on the card is supported.
257	 */
258	if ((error = aac_check_firmware(sc)) != 0)
259		return(error);
260
261	/*
262	 * Allocate command structures.  This must be done before aac_init()
263	 * in order to work around a 2120/2200 bug.
264	 */
265	if ((error = aac_alloc_commands(sc)) != 0)
266		return(error);
267
268	/* Init the sync fib lock */
269	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
270
271	/*
272	 * Initialise the adapter.
273	 */
274	if ((error = aac_init(sc)) != 0)
275		return(error);
276
277	/*
278	 * Print a little information about the controller.
279	 */
280	aac_describe_controller(sc);
281
282	/*
283	 * Register to probe our containers later.
284	 */
285	TAILQ_INIT(&sc->aac_container_tqh);
286	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
287
288	/*
289	 * Lock for the AIF queue
290	 */
291	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
292
293	sc->aac_ich.ich_func = aac_startup;
294	sc->aac_ich.ich_arg = sc;
295	if (config_intrhook_establish(&sc->aac_ich) != 0) {
296		device_printf(sc->aac_dev,
297			      "can't establish configuration hook\n");
298		return(ENXIO);
299	}
300
301	/*
302	 * Make the control device.
303	 */
304	unit = device_get_unit(sc->aac_dev);
305	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
306				 0640, "aac%d", unit);
307#if __FreeBSD_version > 500005
308	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
309	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
310#endif
311	sc->aac_dev_t->si_drv1 = sc;
312
313	/* Create the AIF thread */
314#if __FreeBSD_version > 500005
315	if (kthread_create((void(*)(void *))aac_host_command, sc,
316			   &sc->aifthread, 0, 0, "aac%daif", unit))
317#else
318	if (kthread_create((void(*)(void *))aac_host_command, sc,
319			   &sc->aifthread, "aac%daif", unit))
320#endif
321		panic("Could not create AIF thread\n");
322
323	/* Register the shutdown method to only be called post-dump */
324	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
325				   SHUTDOWN_PRI_DEFAULT)) == NULL)
326	device_printf(sc->aac_dev, "shutdown event registration failed\n");
327
328	/* Register with CAM for the non-DASD devices */
329	if (!(sc->quirks & AAC_QUIRK_NOCAM))
330		aac_get_bus_info(sc);
331
332	return(0);
333}
334
335/*
336 * Probe for containers, create disks.
337 */
338static void
339aac_startup(void *arg)
340{
341	struct aac_softc *sc;
342	struct aac_fib *fib;
343	struct aac_mntinfo *mi;
344	struct aac_mntinforesp *mir = NULL;
345	int i = 0;
346
347	debug_called(1);
348
349	sc = (struct aac_softc *)arg;
350
351	/* disconnect ourselves from the intrhook chain */
352	config_intrhook_disestablish(&sc->aac_ich);
353
354	aac_alloc_sync_fib(sc, &fib, 0);
355	mi = (struct aac_mntinfo *)&fib->data[0];
356
357	/* loop over possible containers */
358	do {
359		/* request information on this container */
360		bzero(mi, sizeof(struct aac_mntinfo));
361		mi->Command = VM_NameServe;
362		mi->MntType = FT_FILESYS;
363		mi->MntCount = i;
364		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
365				 sizeof(struct aac_mntinfo))) {
366			debug(2, "error probing container %d", i);
367			continue;
368		}
369
370		mir = (struct aac_mntinforesp *)&fib->data[0];
371		aac_add_container(sc, mir, 0);
372		i++;
373	} while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS));
374
375	aac_release_sync_fib(sc);
376
377	/* poke the bus to actually attach the child devices */
378	if (bus_generic_attach(sc->aac_dev))
379		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
380
381	/* mark the controller up */
382	sc->aac_state &= ~AAC_STATE_SUSPEND;
383
384	/* enable interrupts now */
385	AAC_UNMASK_INTERRUPTS(sc);
386
387	/* enable the timeout watchdog */
388	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
389}
390
391/*
392 * Create a device to respresent a new container
393 */
394static void
395aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
396{
397	struct aac_container *co;
398	device_t child;
399
400	/*
401	 * Check container volume type for validity.  Note that many of
402	 * the possible types may never show up.
403	 */
404	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
405		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
406		       M_NOWAIT);
407		if (co == NULL)
408			panic("Out of memory?!\n");
409		debug(1, "id %x  name '%.16s'  size %u  type %d",
410		      mir->MntTable[0].ObjectId,
411		      mir->MntTable[0].FileSystemName,
412		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
413
414		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
415			device_printf(sc->aac_dev, "device_add_child failed\n");
416		else
417			device_set_ivars(child, co);
418		device_set_desc(child, aac_describe_code(aac_container_types,
419				mir->MntTable[0].VolType));
420		co->co_disk = child;
421		co->co_found = f;
422		bcopy(&mir->MntTable[0], &co->co_mntobj,
423		      sizeof(struct aac_mntobj));
424		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
425		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
426		AAC_LOCK_RELEASE(&sc->aac_container_lock);
427	}
428}
429
430/*
431 * Free all of the resources associated with (sc)
432 *
433 * Should not be called if the controller is active.
434 */
435void
436aac_free(struct aac_softc *sc)
437{
438	debug_called(1);
439
440	/* remove the control device */
441	if (sc->aac_dev_t != NULL)
442		destroy_dev(sc->aac_dev_t);
443
444	/* throw away any FIB buffers, discard the FIB DMA tag */
445	if (sc->aac_fibs != NULL)
446		aac_free_commands(sc);
447	if (sc->aac_fib_dmat)
448		bus_dma_tag_destroy(sc->aac_fib_dmat);
449
450	/* destroy the common area */
451	if (sc->aac_common) {
452		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
453		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
454				sc->aac_common_dmamap);
455	}
456	if (sc->aac_common_dmat)
457		bus_dma_tag_destroy(sc->aac_common_dmat);
458
459	/* disconnect the interrupt handler */
460	if (sc->aac_intr)
461		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
462	if (sc->aac_irq != NULL)
463		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
464				     sc->aac_irq);
465
466	/* destroy data-transfer DMA tag */
467	if (sc->aac_buffer_dmat)
468		bus_dma_tag_destroy(sc->aac_buffer_dmat);
469
470	/* destroy the parent DMA tag */
471	if (sc->aac_parent_dmat)
472		bus_dma_tag_destroy(sc->aac_parent_dmat);
473
474	/* release the register window mapping */
475	if (sc->aac_regs_resource != NULL)
476		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
477				     sc->aac_regs_rid, sc->aac_regs_resource);
478}
479
480/*
481 * Disconnect from the controller completely, in preparation for unload.
482 */
483int
484aac_detach(device_t dev)
485{
486	struct aac_softc *sc;
487#if AAC_BROKEN
488	int error;
489#endif
490
491	debug_called(1);
492
493	sc = device_get_softc(dev);
494
495	if (sc->aac_state & AAC_STATE_OPEN)
496	return(EBUSY);
497
498#if AAC_BROKEN
499	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
500		sc->aifflags |= AAC_AIFFLAGS_EXIT;
501		wakeup(sc->aifthread);
502		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
503	}
504
505	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
506		panic("Cannot shutdown AIF thread\n");
507
508	if ((error = aac_shutdown(dev)))
509		return(error);
510
511	aac_free(sc);
512
513	return(0);
514#else
515	return (EBUSY);
516#endif
517}
518
519/*
520 * Bring the controller down to a dormant state and detach all child devices.
521 *
522 * This function is called before detach or system shutdown.
523 *
524 * Note that we can assume that the bioq on the controller is empty, as we won't
525 * allow shutdown if any device is open.
526 */
527int
528aac_shutdown(device_t dev)
529{
530	struct aac_softc *sc;
531	struct aac_fib *fib;
532	struct aac_close_command *cc;
533	int s;
534
535	debug_called(1);
536
537	sc = device_get_softc(dev);
538
539	s = splbio();
540
541	sc->aac_state |= AAC_STATE_SUSPEND;
542
543	/*
544	 * Send a Container shutdown followed by a HostShutdown FIB to the
545	 * controller to convince it that we don't want to talk to it anymore.
546	 * We've been closed and all I/O completed already
547	 */
548	device_printf(sc->aac_dev, "shutting down controller...");
549
550	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
551	cc = (struct aac_close_command *)&fib->data[0];
552
553	bzero(cc, sizeof(struct aac_close_command));
554	cc->Command = VM_CloseAll;
555	cc->ContainerId = 0xffffffff;
556	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
557	    sizeof(struct aac_close_command)))
558		printf("FAILED.\n");
559	else {
560		fib->data[0] = 0;
561		/*
562		 * XXX Issuing this command to the controller makes it shut down
563		 * but also keeps it from coming back up without a reset of the
564		 * PCI bus.  This is not desirable if you are just unloading the
565		 * driver module with the intent to reload it later.
566		 */
567		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
568		    fib, 1)) {
569			printf("FAILED.\n");
570		} else {
571			printf("done.\n");
572		}
573	}
574
575	AAC_MASK_INTERRUPTS(sc);
576
577	splx(s);
578	return(0);
579}
580
581/*
582 * Bring the controller to a quiescent state, ready for system suspend.
583 */
584int
585aac_suspend(device_t dev)
586{
587	struct aac_softc *sc;
588	int s;
589
590	debug_called(1);
591
592	sc = device_get_softc(dev);
593
594	s = splbio();
595
596	sc->aac_state |= AAC_STATE_SUSPEND;
597
598	AAC_MASK_INTERRUPTS(sc);
599	splx(s);
600	return(0);
601}
602
603/*
604 * Bring the controller back to a state ready for operation.
605 */
606int
607aac_resume(device_t dev)
608{
609	struct aac_softc *sc;
610
611	debug_called(1);
612
613	sc = device_get_softc(dev);
614
615	sc->aac_state &= ~AAC_STATE_SUSPEND;
616	AAC_UNMASK_INTERRUPTS(sc);
617	return(0);
618}
619
620/*
621 * Take an interrupt.
622 */
623void
624aac_intr(void *arg)
625{
626	struct aac_softc *sc;
627	u_int16_t reason;
628	u_int32_t *resp_queue;
629
630	debug_called(2);
631
632	sc = (struct aac_softc *)arg;
633
634	/*
635	 * Optimize the common case of adapter response interrupts.
636	 * We must read from the card prior to processing the responses
637	 * to ensure the clear is flushed prior to accessing the queues.
638	 * Reading the queues from local memory might save us a PCI read.
639	 */
640	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
641	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
642		reason = AAC_DB_RESPONSE_READY;
643	else
644		reason = AAC_GET_ISTATUS(sc);
645	AAC_CLEAR_ISTATUS(sc, reason);
646	(void)AAC_GET_ISTATUS(sc);
647
648	/* It's not ok to return here because of races with the previous step */
649	if (reason & AAC_DB_RESPONSE_READY)
650		aac_host_response(sc);
651
652	/* controller wants to talk to the log */
653	if (reason & AAC_DB_PRINTF)
654		aac_print_printf(sc);
655
656	/* controller has a message for us? */
657	if (reason & AAC_DB_COMMAND_READY) {
658		/* XXX What happens if the thread is already awake? */
659		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
660			sc->aifflags |= AAC_AIFFLAGS_PENDING;
661			wakeup(sc->aifthread);
662		}
663	}
664}
665
666/*
667 * Command Processing
668 */
669
670/*
671 * Start as much queued I/O as possible on the controller
672 */
673void
674aac_startio(struct aac_softc *sc)
675{
676	struct aac_command *cm;
677
678	debug_called(2);
679
680	for (;;) {
681		/*
682		 * Try to get a command that's been put off for lack of
683		 * resources
684		 */
685		cm = aac_dequeue_ready(sc);
686
687		/*
688		 * Try to build a command off the bio queue (ignore error
689		 * return)
690		 */
691		if (cm == NULL)
692			aac_bio_command(sc, &cm);
693
694		/* nothing to do? */
695		if (cm == NULL)
696			break;
697
698		/* try to give the command to the controller */
699		if (aac_start(cm) == EBUSY) {
700			/* put it on the ready queue for later */
701			aac_requeue_ready(cm);
702			break;
703		}
704	}
705}
706
707/*
708 * Deliver a command to the controller; allocate controller resources at the
709 * last moment when possible.
710 */
711static int
712aac_start(struct aac_command *cm)
713{
714	struct aac_softc *sc;
715	int error;
716
717	debug_called(2);
718
719	sc = cm->cm_sc;
720
721	/* get the command mapped */
722	aac_map_command(cm);
723
724	/* fix up the address values in the FIB */
725	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
726	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
727
728	/* save a pointer to the command for speedy reverse-lookup */
729	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
730							 * address issue */
731	/* put the FIB on the outbound queue */
732	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
733	return(error);
734}
735
736/*
737 * Handle notification of one or more FIBs coming from the controller.
738 */
739static void
740aac_host_command(struct aac_softc *sc)
741{
742	struct aac_fib *fib;
743	u_int32_t fib_size;
744	int size;
745
746	debug_called(2);
747
748	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749
750	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
752			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
753
754		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
755		for (;;) {
756			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
757					    &fib_size, &fib))
758				break;	/* nothing to do */
759
760			AAC_PRINT_FIB(sc, fib);
761
762			switch (fib->Header.Command) {
763			case AifRequest:
764				aac_handle_aif(sc, fib);
765				break;
766			default:
767				device_printf(sc->aac_dev, "unknown command "
768					      "from controller\n");
769				break;
770			}
771
772			/* Return the AIF to the controller. */
773			if ((fib->Header.XferState == 0) ||
774			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775				break;
776
777			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
778				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
779				*(AAC_FSAStatus*)fib->data = ST_OK;
780
781				/* XXX Compute the Size field? */
782				size = fib->Header.Size;
783				if (size > sizeof(struct aac_fib)) {
784					size = sizeof(struct aac_fib);
785					fib->Header.Size = size;
786				}
787				/*
788				 * Since we did not generate this command, it
789				 * cannot go through the normal
790				 * enqueue->startio chain.
791				 */
792				aac_enqueue_response(sc,
793						     AAC_ADAP_NORM_RESP_QUEUE,
794						     fib);
795			}
796		}
797	}
798	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
799	wakeup(sc->aac_dev);
800
801#if __FreeBSD_version > 500005
802	mtx_lock(&Giant);
803#endif
804	kthread_exit(0);
805}
806
807/*
808 * Handle notification of one or more FIBs completed by the controller
809 */
810static void
811aac_host_response(struct aac_softc *sc)
812{
813	struct aac_command *cm;
814	struct aac_fib *fib;
815	u_int32_t fib_size;
816
817	debug_called(2);
818
819	for (;;) {
820		/* look for completed FIBs on our queue */
821		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
822				    &fib))
823			break;	/* nothing to do */
824
825		/* get the command, unmap and queue for later processing */
826		cm = (struct aac_command *)fib->Header.SenderData;
827		if (cm == NULL) {
828			AAC_PRINT_FIB(sc, fib);
829		} else {
830			aac_remove_busy(cm);
831			aac_unmap_command(cm);		/* XXX defer? */
832			aac_enqueue_complete(cm);
833		}
834	}
835
836	/* handle completion processing */
837#if __FreeBSD_version >= 500005
838	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
839#else
840	aac_complete(sc, 0);
841#endif
842}
843
844/*
845 * Process completed commands.
846 */
847static void
848aac_complete(void *context, int pending)
849{
850	struct aac_softc *sc;
851	struct aac_command *cm;
852
853	debug_called(2);
854
855	sc = (struct aac_softc *)context;
856
857	/* pull completed commands off the queue */
858	for (;;) {
859		cm = aac_dequeue_complete(sc);
860		if (cm == NULL)
861			break;
862		cm->cm_flags |= AAC_CMD_COMPLETED;
863
864		/* is there a completion handler? */
865		if (cm->cm_complete != NULL) {
866			cm->cm_complete(cm);
867		} else {
868			/* assume that someone is sleeping on this command */
869			wakeup(cm);
870		}
871	}
872
873	/* see if we can start some more I/O */
874	aac_startio(sc);
875}
876
877/*
878 * Handle a bio submitted from a disk device.
879 */
880void
881aac_submit_bio(struct bio *bp)
882{
883	struct aac_disk *ad;
884	struct aac_softc *sc;
885
886	debug_called(2);
887
888	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
889	sc = ad->ad_controller;
890
891	/* queue the BIO and try to get some work done */
892	aac_enqueue_bio(sc, bp);
893	aac_startio(sc);
894}
895
896/*
897 * Get a bio and build a command to go with it.
898 */
899static int
900aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
901{
902	struct aac_command *cm;
903	struct aac_fib *fib;
904	struct aac_blockread *br;
905	struct aac_blockwrite *bw;
906	struct aac_disk *ad;
907	struct bio *bp;
908
909	debug_called(2);
910
911	/* get the resources we will need */
912	cm = NULL;
913	if ((bp = aac_dequeue_bio(sc)) == NULL)
914		goto fail;
915	if (aac_alloc_command(sc, &cm))	/* get a command */
916		goto fail;
917
918	/* fill out the command */
919	cm->cm_data = (void *)bp->bio_data;
920	cm->cm_datalen = bp->bio_bcount;
921	cm->cm_complete = aac_bio_complete;
922	cm->cm_private = bp;
923	cm->cm_timestamp = time_second;
924	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
925
926	/* build the FIB */
927	fib = cm->cm_fib;
928	fib->Header.XferState =
929		AAC_FIBSTATE_HOSTOWNED   |
930		AAC_FIBSTATE_INITIALISED |
931		AAC_FIBSTATE_EMPTY	 |
932		AAC_FIBSTATE_FROMHOST	 |
933		AAC_FIBSTATE_REXPECTED   |
934		AAC_FIBSTATE_NORM	 |
935		AAC_FIBSTATE_ASYNC	 |
936		AAC_FIBSTATE_FAST_RESPONSE;
937	fib->Header.Command = ContainerCommand;
938	fib->Header.Size = sizeof(struct aac_fib_header);
939
940	/* build the read/write request */
941	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
942	if (BIO_IS_READ(bp)) {
943		br = (struct aac_blockread *)&fib->data[0];
944		br->Command = VM_CtBlockRead;
945		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946		br->BlockNumber = bp->bio_pblkno;
947		br->ByteCount = bp->bio_bcount;
948		fib->Header.Size += sizeof(struct aac_blockread);
949		cm->cm_sgtable = &br->SgMap;
950		cm->cm_flags |= AAC_CMD_DATAIN;
951	} else {
952		bw = (struct aac_blockwrite *)&fib->data[0];
953		bw->Command = VM_CtBlockWrite;
954		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955		bw->BlockNumber = bp->bio_pblkno;
956		bw->ByteCount = bp->bio_bcount;
957		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
958		fib->Header.Size += sizeof(struct aac_blockwrite);
959		cm->cm_flags |= AAC_CMD_DATAOUT;
960		cm->cm_sgtable = &bw->SgMap;
961	}
962
963	*cmp = cm;
964	return(0);
965
966fail:
967	if (bp != NULL)
968		aac_enqueue_bio(sc, bp);
969	if (cm != NULL)
970		aac_release_command(cm);
971	return(ENOMEM);
972}
973
974/*
975 * Handle a bio-instigated command that has been completed.
976 */
977static void
978aac_bio_complete(struct aac_command *cm)
979{
980	struct aac_blockread_response *brr;
981	struct aac_blockwrite_response *bwr;
982	struct bio *bp;
983	AAC_FSAStatus status;
984
985	/* fetch relevant status and then release the command */
986	bp = (struct bio *)cm->cm_private;
987	if (BIO_IS_READ(bp)) {
988		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
989		status = brr->Status;
990	} else {
991		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
992		status = bwr->Status;
993	}
994	aac_release_command(cm);
995
996	/* fix up the bio based on status */
997	if (status == ST_OK) {
998		bp->bio_resid = 0;
999	} else {
1000		bp->bio_error = EIO;
1001		bp->bio_flags |= BIO_ERROR;
1002		/* pass an error string out to the disk layer */
1003		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1004						    status);
1005	}
1006	aac_biodone(bp);
1007}
1008
1009/*
1010 * Submit a command to the controller, return when it completes.
1011 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1012 *     be stuck here forever.  At the same time, signals are not caught
1013 *     because there is a risk that a signal could wakeup the tsleep before
1014 *     the card has a chance to complete the command.  The passed in timeout
1015 *     is ignored for the same reason.  Since there is no way to cancel a
1016 *     command in progress, we should probably create a 'dead' queue where
1017 *     commands go that have been interrupted/timed-out/etc, that keeps them
1018 *     out of the free pool.  That way, if the card is just slow, it won't
1019 *     spam the memory of a command that has been recycled.
1020 */
1021static int
1022aac_wait_command(struct aac_command *cm, int timeout)
1023{
1024	int s, error = 0;
1025
1026	debug_called(2);
1027
1028	/* Put the command on the ready queue and get things going */
1029	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1030	aac_enqueue_ready(cm);
1031	aac_startio(cm->cm_sc);
1032	s = splbio();
1033	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1034		error = tsleep(cm, PRIBIO, "aacwait", 0);
1035	}
1036	splx(s);
1037	return(error);
1038}
1039
1040/*
1041 *Command Buffer Management
1042 */
1043
1044/*
1045 * Allocate a command.
1046 */
1047int
1048aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1049{
1050	struct aac_command *cm;
1051
1052	debug_called(3);
1053
1054	if ((cm = aac_dequeue_free(sc)) == NULL)
1055		return(ENOMEM);
1056
1057	*cmp = cm;
1058	return(0);
1059}
1060
1061/*
1062 * Release a command back to the freelist.
1063 */
1064void
1065aac_release_command(struct aac_command *cm)
1066{
1067	debug_called(3);
1068
1069	/* (re)initialise the command/FIB */
1070	cm->cm_sgtable = NULL;
1071	cm->cm_flags = 0;
1072	cm->cm_complete = NULL;
1073	cm->cm_private = NULL;
1074	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1075	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1076	cm->cm_fib->Header.Flags = 0;
1077	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1078
1079	/*
1080	 * These are duplicated in aac_start to cover the case where an
1081	 * intermediate stage may have destroyed them.  They're left
1082	 * initialised here for debugging purposes only.
1083	 */
1084	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1085	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1086	cm->cm_fib->Header.SenderData = 0;
1087
1088	aac_enqueue_free(cm);
1089}
1090
1091/*
1092 * Map helper for command/FIB allocation.
1093 */
1094static void
1095aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1096{
1097	struct aac_softc *sc;
1098
1099	sc = (struct aac_softc *)arg;
1100
1101	debug_called(3);
1102
1103	sc->aac_fibphys = segs[0].ds_addr;
1104}
1105
1106/*
1107 * Allocate and initialise commands/FIBs for this adapter.
1108 */
1109static int
1110aac_alloc_commands(struct aac_softc *sc)
1111{
1112	struct aac_command *cm;
1113	int i;
1114
1115	debug_called(1);
1116
1117	/* allocate the FIBs in DMAable memory and load them */
1118	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1119			     BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1120		printf("Not enough contiguous memory available.\n");
1121		return (ENOMEM);
1122	}
1123
1124	/*
1125	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1126	 * below address 8192 in physical memory.
1127	 * XXX If the padding is not needed, can it be put to use instead
1128	 * of ignored?
1129	 */
1130	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1131			8192 + AAC_FIB_COUNT * sizeof(struct aac_fib),
1132			aac_map_command_helper, sc, 0);
1133
1134	if (sc->aac_fibphys < 8192) {
1135		sc->aac_fibs += (8192 / sizeof(struct aac_fib));
1136		sc->aac_fibphys += 8192;
1137	}
1138
1139	/* initialise constant fields in the command structure */
1140	bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1141	for (i = 0; i < AAC_FIB_COUNT; i++) {
1142		cm = &sc->aac_command[i];
1143		cm->cm_sc = sc;
1144		cm->cm_fib = sc->aac_fibs + i;
1145		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1146
1147		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1148			aac_release_command(cm);
1149	}
1150	return (0);
1151}
1152
1153/*
1154 * Free FIBs owned by this adapter.
1155 */
1156static void
1157aac_free_commands(struct aac_softc *sc)
1158{
1159	int i;
1160
1161	debug_called(1);
1162
1163	for (i = 0; i < AAC_FIB_COUNT; i++)
1164		bus_dmamap_destroy(sc->aac_buffer_dmat,
1165				   sc->aac_command[i].cm_datamap);
1166
1167	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1168	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1169}
1170
1171/*
1172 * Command-mapping helper function - populate this command's s/g table.
1173 */
1174static void
1175aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1176{
1177	struct aac_command *cm;
1178	struct aac_fib *fib;
1179	struct aac_sg_table *sg;
1180	int i;
1181
1182	debug_called(3);
1183
1184	cm = (struct aac_command *)arg;
1185	fib = cm->cm_fib;
1186
1187	/* find the s/g table */
1188	sg = cm->cm_sgtable;
1189
1190	/* copy into the FIB */
1191	if (sg != NULL) {
1192		sg->SgCount = nseg;
1193		for (i = 0; i < nseg; i++) {
1194			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1195			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1196		}
1197		/* update the FIB size for the s/g count */
1198		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1199	}
1200
1201}
1202
1203/*
1204 * Map a command into controller-visible space.
1205 */
1206static void
1207aac_map_command(struct aac_command *cm)
1208{
1209	struct aac_softc *sc;
1210
1211	debug_called(2);
1212
1213	sc = cm->cm_sc;
1214
1215	/* don't map more than once */
1216	if (cm->cm_flags & AAC_CMD_MAPPED)
1217		return;
1218
1219	if (cm->cm_datalen != 0) {
1220		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1221				cm->cm_data, cm->cm_datalen,
1222				aac_map_command_sg, cm, 0);
1223
1224		if (cm->cm_flags & AAC_CMD_DATAIN)
1225			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1226					BUS_DMASYNC_PREREAD);
1227		if (cm->cm_flags & AAC_CMD_DATAOUT)
1228			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1229					BUS_DMASYNC_PREWRITE);
1230	}
1231	cm->cm_flags |= AAC_CMD_MAPPED;
1232}
1233
1234/*
1235 * Unmap a command from controller-visible space.
1236 */
1237static void
1238aac_unmap_command(struct aac_command *cm)
1239{
1240	struct aac_softc *sc;
1241
1242	debug_called(2);
1243
1244	sc = cm->cm_sc;
1245
1246	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1247		return;
1248
1249	if (cm->cm_datalen != 0) {
1250		if (cm->cm_flags & AAC_CMD_DATAIN)
1251			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1252					BUS_DMASYNC_POSTREAD);
1253		if (cm->cm_flags & AAC_CMD_DATAOUT)
1254			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1255					BUS_DMASYNC_POSTWRITE);
1256
1257		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1258	}
1259	cm->cm_flags &= ~AAC_CMD_MAPPED;
1260}
1261
1262/*
1263 * Hardware Interface
1264 */
1265
1266/*
1267 * Initialise the adapter.
1268 */
1269static void
1270aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1271{
1272	struct aac_softc *sc;
1273
1274	debug_called(1);
1275
1276	sc = (struct aac_softc *)arg;
1277
1278	sc->aac_common_busaddr = segs[0].ds_addr;
1279}
1280
1281/*
1282 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1283 * firmware version 1.x are not compatible with this driver.
1284 */
1285static int
1286aac_check_firmware(struct aac_softc *sc)
1287{
1288	u_int32_t major, minor;
1289
1290	debug_called(1);
1291
1292	if (sc->quirks & AAC_QUIRK_PERC2QC) {
1293		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1294				     NULL)) {
1295			device_printf(sc->aac_dev,
1296				      "Error reading firmware version\n");
1297			return (EIO);
1298		}
1299
1300		/* These numbers are stored as ASCII! */
1301		major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30;
1302		minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30;
1303		if (major == 1) {
1304			device_printf(sc->aac_dev,
1305			    "Firmware version %d.%d is not supported.\n",
1306			    major, minor);
1307			return (EINVAL);
1308		}
1309	}
1310
1311	return (0);
1312}
1313
1314static int
1315aac_init(struct aac_softc *sc)
1316{
1317	struct aac_adapter_init	*ip;
1318	time_t then;
1319	u_int32_t code;
1320	u_int8_t *qaddr;
1321
1322	debug_called(1);
1323
1324	/*
1325	 * First wait for the adapter to come ready.
1326	 */
1327	then = time_second;
1328	do {
1329		code = AAC_GET_FWSTATUS(sc);
1330		if (code & AAC_SELF_TEST_FAILED) {
1331			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1332			return(ENXIO);
1333		}
1334		if (code & AAC_KERNEL_PANIC) {
1335			device_printf(sc->aac_dev,
1336				      "FATAL: controller kernel panic\n");
1337			return(ENXIO);
1338		}
1339		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1340			device_printf(sc->aac_dev,
1341				      "FATAL: controller not coming ready, "
1342					   "status %x\n", code);
1343			return(ENXIO);
1344		}
1345	} while (!(code & AAC_UP_AND_RUNNING));
1346
1347	/*
1348	 * Create DMA tag for the common structure and allocate it.
1349	 */
1350	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1351			       1, 0,			/* algnmnt, boundary */
1352			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1353			       BUS_SPACE_MAXADDR, 	/* highaddr */
1354			       NULL, NULL, 		/* filter, filterarg */
1355			       sizeof(struct aac_common), /* maxsize */
1356			       1,			/* nsegments */
1357			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1358			       0,			/* flags */
1359			       &sc->aac_common_dmat)) {
1360		device_printf(sc->aac_dev,
1361			      "can't allocate common structure DMA tag\n");
1362		return(ENOMEM);
1363	}
1364	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1365			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1366		device_printf(sc->aac_dev, "can't allocate common structure\n");
1367		return(ENOMEM);
1368	}
1369	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1370			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1371			sc, 0);
1372	bzero(sc->aac_common, sizeof(*sc->aac_common));
1373
1374	/*
1375	 * Fill in the init structure.  This tells the adapter about the
1376	 * physical location of various important shared data structures.
1377	 */
1378	ip = &sc->aac_common->ac_init;
1379	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1380	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1381
1382	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1383					 offsetof(struct aac_common, ac_fibs);
1384	ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0];
1385	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1386	ip->AdapterFibAlign = sizeof(struct aac_fib);
1387
1388	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1389				  offsetof(struct aac_common, ac_printf);
1390	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1391
1392	/* The adapter assumes that pages are 4K in size */
1393	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1394	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1395
1396	/*
1397	 * Initialise FIB queues.  Note that it appears that the layout of the
1398	 * indexes and the segmentation of the entries may be mandated by the
1399	 * adapter, which is only told about the base of the queue index fields.
1400	 *
1401	 * The initial values of the indices are assumed to inform the adapter
1402	 * of the sizes of the respective queues, and theoretically it could
1403	 * work out the entire layout of the queue structures from this.  We
1404	 * take the easy route and just lay this area out like everyone else
1405	 * does.
1406	 *
1407	 * The Linux driver uses a much more complex scheme whereby several
1408	 * header records are kept for each queue.  We use a couple of generic
1409	 * list manipulation functions which 'know' the size of each list by
1410	 * virtue of a table.
1411	 */
1412	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1413	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1414	sc->aac_queues = (struct aac_queue_table *)qaddr;
1415	ip->CommHeaderAddress = sc->aac_common_busaddr +
1416				((u_int32_t)sc->aac_queues -
1417				(u_int32_t)sc->aac_common);
1418
1419	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1420		AAC_HOST_NORM_CMD_ENTRIES;
1421	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1422		AAC_HOST_NORM_CMD_ENTRIES;
1423	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1424		AAC_HOST_HIGH_CMD_ENTRIES;
1425	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1426		AAC_HOST_HIGH_CMD_ENTRIES;
1427	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1428		AAC_ADAP_NORM_CMD_ENTRIES;
1429	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1430		AAC_ADAP_NORM_CMD_ENTRIES;
1431	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1432		AAC_ADAP_HIGH_CMD_ENTRIES;
1433	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1434		AAC_ADAP_HIGH_CMD_ENTRIES;
1435	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1436		AAC_HOST_NORM_RESP_ENTRIES;
1437	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1438		AAC_HOST_NORM_RESP_ENTRIES;
1439	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1440		AAC_HOST_HIGH_RESP_ENTRIES;
1441	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1442		AAC_HOST_HIGH_RESP_ENTRIES;
1443	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1444		AAC_ADAP_NORM_RESP_ENTRIES;
1445	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1446		AAC_ADAP_NORM_RESP_ENTRIES;
1447	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1448		AAC_ADAP_HIGH_RESP_ENTRIES;
1449	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1450		AAC_ADAP_HIGH_RESP_ENTRIES;
1451	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1452		&sc->aac_queues->qt_HostNormCmdQueue[0];
1453	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1454		&sc->aac_queues->qt_HostHighCmdQueue[0];
1455	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1456		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1457	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1458		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1459	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1460		&sc->aac_queues->qt_HostNormRespQueue[0];
1461	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1462		&sc->aac_queues->qt_HostHighRespQueue[0];
1463	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1464		&sc->aac_queues->qt_AdapNormRespQueue[0];
1465	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1466		&sc->aac_queues->qt_AdapHighRespQueue[0];
1467
1468	/*
1469	 * Do controller-type-specific initialisation
1470	 */
1471	switch (sc->aac_hwif) {
1472	case AAC_HWIF_I960RX:
1473		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1474		break;
1475	}
1476
1477	/*
1478	 * Give the init structure to the controller.
1479	 */
1480	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1481			     sc->aac_common_busaddr +
1482			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1483			     NULL)) {
1484		device_printf(sc->aac_dev,
1485			      "error establishing init structure\n");
1486		return(EIO);
1487	}
1488
1489	return(0);
1490}
1491
1492/*
1493 * Send a synchronous command to the controller and wait for a result.
1494 */
1495static int
1496aac_sync_command(struct aac_softc *sc, u_int32_t command,
1497		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1498		 u_int32_t *sp)
1499{
1500	time_t then;
1501	u_int32_t status;
1502
1503	debug_called(3);
1504
1505	/* populate the mailbox */
1506	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1507
1508	/* ensure the sync command doorbell flag is cleared */
1509	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1510
1511	/* then set it to signal the adapter */
1512	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1513
1514	/* spin waiting for the command to complete */
1515	then = time_second;
1516	do {
1517		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1518			debug(2, "timed out");
1519			return(EIO);
1520		}
1521	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1522
1523	/* clear the completion flag */
1524	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1525
1526	/* get the command status */
1527	status = AAC_GET_MAILBOXSTATUS(sc);
1528	if (sp != NULL)
1529		*sp = status;
1530	return(0);
1531}
1532
1533/*
1534 * Grab the sync fib area.
1535 */
1536int
1537aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1538{
1539
1540	/*
1541	 * If the force flag is set, the system is shutting down, or in
1542	 * trouble.  Ignore the mutex.
1543	 */
1544	if (!(flags & AAC_SYNC_LOCK_FORCE))
1545		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1546
1547	*fib = &sc->aac_common->ac_sync_fib;
1548
1549	return (1);
1550}
1551
1552/*
1553 * Release the sync fib area.
1554 */
1555void
1556aac_release_sync_fib(struct aac_softc *sc)
1557{
1558
1559	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1560}
1561
1562/*
1563 * Send a synchronous FIB to the controller and wait for a result.
1564 */
1565int
1566aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1567		 struct aac_fib *fib, u_int16_t datasize)
1568{
1569	debug_called(3);
1570
1571	if (datasize > AAC_FIB_DATASIZE)
1572		return(EINVAL);
1573
1574	/*
1575	 * Set up the sync FIB
1576	 */
1577	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1578				AAC_FIBSTATE_INITIALISED |
1579				AAC_FIBSTATE_EMPTY;
1580	fib->Header.XferState |= xferstate;
1581	fib->Header.Command = command;
1582	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1583	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1584	fib->Header.SenderSize = sizeof(struct aac_fib);
1585	fib->Header.SenderFibAddress = (u_int32_t)fib;
1586	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1587					 offsetof(struct aac_common,
1588						  ac_sync_fib);
1589
1590	/*
1591	 * Give the FIB to the controller, wait for a response.
1592	 */
1593	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1594			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1595		debug(2, "IO error");
1596		return(EIO);
1597	}
1598
1599	return (0);
1600}
1601
1602/*
1603 * Adapter-space FIB queue manipulation
1604 *
1605 * Note that the queue implementation here is a little funky; neither the PI or
1606 * CI will ever be zero.  This behaviour is a controller feature.
1607 */
1608static struct {
1609	int		size;
1610	int		notify;
1611} aac_qinfo[] = {
1612	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1613	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1614	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1615	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1616	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1617	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1618	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1619	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1620};
1621
1622/*
1623 * Atomically insert an entry into the nominated queue, returns 0 on success or
1624 * EBUSY if the queue is full.
1625 *
1626 * Note: it would be more efficient to defer notifying the controller in
1627 *	 the case where we may be inserting several entries in rapid succession,
1628 *	 but implementing this usefully may be difficult (it would involve a
1629 *	 separate queue/notify interface).
1630 */
1631static int
1632aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1633{
1634	u_int32_t pi, ci;
1635	int s, error;
1636	u_int32_t fib_size;
1637	u_int32_t fib_addr;
1638
1639	debug_called(3);
1640
1641	fib_size = cm->cm_fib->Header.Size;
1642	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1643
1644	s = splbio();
1645
1646	/* get the producer/consumer indices */
1647	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1648	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1649
1650	/* wrap the queue? */
1651	if (pi >= aac_qinfo[queue].size)
1652		pi = 0;
1653
1654	/* check for queue full */
1655	if ((pi + 1) == ci) {
1656		error = EBUSY;
1657		goto out;
1658	}
1659
1660	/* populate queue entry */
1661	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1662	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1663
1664	/* update producer index */
1665	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1666
1667	/*
1668	 * To avoid a race with its completion interrupt, place this command on
1669	 * the busy queue prior to advertising it to the controller.
1670	 */
1671	aac_enqueue_busy(cm);
1672
1673	/* notify the adapter if we know how */
1674	if (aac_qinfo[queue].notify != 0)
1675		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1676
1677	error = 0;
1678
1679out:
1680	splx(s);
1681	return(error);
1682}
1683
1684/*
1685 * Atomically remove one entry from the nominated queue, returns 0 on
1686 * success or ENOENT if the queue is empty.
1687 */
1688static int
1689aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1690		struct aac_fib **fib_addr)
1691{
1692	u_int32_t pi, ci;
1693	int s, error;
1694	int notify;
1695
1696	debug_called(3);
1697
1698	s = splbio();
1699
1700	/* get the producer/consumer indices */
1701	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1702	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1703
1704	/* check for queue empty */
1705	if (ci == pi) {
1706		error = ENOENT;
1707		goto out;
1708	}
1709
1710	notify = 0;
1711	if (ci == pi + 1)
1712		notify++;
1713
1714	/* wrap the queue? */
1715	if (ci >= aac_qinfo[queue].size)
1716		ci = 0;
1717
1718	/* fetch the entry */
1719	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1720	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1721				       ci)->aq_fib_addr;
1722
1723	/*
1724	 * Is this a fast response? If it is, update the fib fields in
1725	 * local memory so the whole fib doesn't have to be DMA'd back up.
1726	 */
1727	if (*(uintptr_t *)fib_addr & 0x01) {
1728		*(uintptr_t *)fib_addr &= ~0x01;
1729		(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1730		*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1731	}
1732	/* update consumer index */
1733	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1734
1735	/* if we have made the queue un-full, notify the adapter */
1736	if (notify && (aac_qinfo[queue].notify != 0))
1737		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1738	error = 0;
1739
1740out:
1741	splx(s);
1742	return(error);
1743}
1744
1745/*
1746 * Put our response to an Adapter Initialed Fib on the response queue
1747 */
1748static int
1749aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1750{
1751	u_int32_t pi, ci;
1752	int s, error;
1753	u_int32_t fib_size;
1754	u_int32_t fib_addr;
1755
1756	debug_called(1);
1757
1758	/* Tell the adapter where the FIB is */
1759	fib_size = fib->Header.Size;
1760	fib_addr = fib->Header.SenderFibAddress;
1761	fib->Header.ReceiverFibAddress = fib_addr;
1762
1763	s = splbio();
1764
1765	/* get the producer/consumer indices */
1766	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1767	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1768
1769	/* wrap the queue? */
1770	if (pi >= aac_qinfo[queue].size)
1771		pi = 0;
1772
1773	/* check for queue full */
1774	if ((pi + 1) == ci) {
1775		error = EBUSY;
1776		goto out;
1777	}
1778
1779	/* populate queue entry */
1780	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1781	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1782
1783	/* update producer index */
1784	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1785
1786	/* notify the adapter if we know how */
1787	if (aac_qinfo[queue].notify != 0)
1788		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1789
1790	error = 0;
1791
1792out:
1793	splx(s);
1794	return(error);
1795}
1796
1797/*
1798 * Check for commands that have been outstanding for a suspiciously long time,
1799 * and complain about them.
1800 */
1801static void
1802aac_timeout(struct aac_softc *sc)
1803{
1804	int s;
1805	struct aac_command *cm;
1806	time_t deadline;
1807
1808#if 0
1809	/* simulate an interrupt to handle possibly-missed interrupts */
1810	/*
1811	 * XXX This was done to work around another bug which has since been
1812	 * fixed.  It is dangerous anyways because you don't want multiple
1813	 * threads in the interrupt handler at the same time!  If calling
1814	 * is deamed neccesary in the future, proper mutexes must be used.
1815	 */
1816	s = splbio();
1817	aac_intr(sc);
1818	splx(s);
1819
1820	/* kick the I/O queue to restart it in the case of deadlock */
1821	aac_startio(sc);
1822#endif
1823
1824	/*
1825	 * traverse the busy command list, bitch about late commands once
1826	 * only.
1827	 */
1828	deadline = time_second - AAC_CMD_TIMEOUT;
1829	s = splbio();
1830	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1831		if ((cm->cm_timestamp  < deadline)
1832			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1833			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1834			device_printf(sc->aac_dev,
1835				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1836				      cm, (int)(time_second-cm->cm_timestamp));
1837			AAC_PRINT_FIB(sc, cm->cm_fib);
1838		}
1839	}
1840	splx(s);
1841
1842	/* reset the timer for next time */
1843	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1844	return;
1845}
1846
1847/*
1848 * Interface Function Vectors
1849 */
1850
1851/*
1852 * Read the current firmware status word.
1853 */
1854static int
1855aac_sa_get_fwstatus(struct aac_softc *sc)
1856{
1857	debug_called(3);
1858
1859	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1860}
1861
1862static int
1863aac_rx_get_fwstatus(struct aac_softc *sc)
1864{
1865	debug_called(3);
1866
1867	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1868}
1869
1870static int
1871aac_fa_get_fwstatus(struct aac_softc *sc)
1872{
1873	int val;
1874
1875	debug_called(3);
1876
1877	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1878	return (val);
1879}
1880
1881/*
1882 * Notify the controller of a change in a given queue
1883 */
1884
1885static void
1886aac_sa_qnotify(struct aac_softc *sc, int qbit)
1887{
1888	debug_called(3);
1889
1890	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1891}
1892
1893static void
1894aac_rx_qnotify(struct aac_softc *sc, int qbit)
1895{
1896	debug_called(3);
1897
1898	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1899}
1900
1901static void
1902aac_fa_qnotify(struct aac_softc *sc, int qbit)
1903{
1904	debug_called(3);
1905
1906	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1907	AAC_FA_HACK(sc);
1908}
1909
1910/*
1911 * Get the interrupt reason bits
1912 */
1913static int
1914aac_sa_get_istatus(struct aac_softc *sc)
1915{
1916	debug_called(3);
1917
1918	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1919}
1920
1921static int
1922aac_rx_get_istatus(struct aac_softc *sc)
1923{
1924	debug_called(3);
1925
1926	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1927}
1928
1929static int
1930aac_fa_get_istatus(struct aac_softc *sc)
1931{
1932	int val;
1933
1934	debug_called(3);
1935
1936	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1937	return (val);
1938}
1939
1940/*
1941 * Clear some interrupt reason bits
1942 */
1943static void
1944aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1945{
1946	debug_called(3);
1947
1948	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1949}
1950
1951static void
1952aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1953{
1954	debug_called(3);
1955
1956	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1957}
1958
1959static void
1960aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1961{
1962	debug_called(3);
1963
1964	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1965	AAC_FA_HACK(sc);
1966}
1967
1968/*
1969 * Populate the mailbox and set the command word
1970 */
1971static void
1972aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1973		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1974{
1975	debug_called(4);
1976
1977	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
1978	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
1979	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
1980	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
1981	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
1982}
1983
1984static void
1985aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
1986		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1987{
1988	debug_called(4);
1989
1990	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
1991	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
1992	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
1993	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
1994	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
1995}
1996
1997static void
1998aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1999		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2000{
2001	debug_called(4);
2002
2003	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2004	AAC_FA_HACK(sc);
2005	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2006	AAC_FA_HACK(sc);
2007	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2008	AAC_FA_HACK(sc);
2009	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2010	AAC_FA_HACK(sc);
2011	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2012	AAC_FA_HACK(sc);
2013}
2014
2015/*
2016 * Fetch the immediate command status word
2017 */
2018static int
2019aac_sa_get_mailboxstatus(struct aac_softc *sc)
2020{
2021	debug_called(4);
2022
2023	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2024}
2025
2026static int
2027aac_rx_get_mailboxstatus(struct aac_softc *sc)
2028{
2029	debug_called(4);
2030
2031	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2032}
2033
2034static int
2035aac_fa_get_mailboxstatus(struct aac_softc *sc)
2036{
2037	int val;
2038
2039	debug_called(4);
2040
2041	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2042	return (val);
2043}
2044
2045/*
2046 * Set/clear interrupt masks
2047 */
2048static void
2049aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2050{
2051	debug(2, "%sable interrupts", enable ? "en" : "dis");
2052
2053	if (enable) {
2054		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2055	} else {
2056		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2057	}
2058}
2059
2060static void
2061aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2062{
2063	debug(2, "%sable interrupts", enable ? "en" : "dis");
2064
2065	if (enable) {
2066		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2067	} else {
2068		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2069	}
2070}
2071
2072static void
2073aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2074{
2075	debug(2, "%sable interrupts", enable ? "en" : "dis");
2076
2077	if (enable) {
2078		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2079		AAC_FA_HACK(sc);
2080	} else {
2081		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2082		AAC_FA_HACK(sc);
2083	}
2084}
2085
2086/*
2087 * Debugging and Diagnostics
2088 */
2089
2090/*
2091 * Print some information about the controller.
2092 */
2093static void
2094aac_describe_controller(struct aac_softc *sc)
2095{
2096	struct aac_fib *fib;
2097	struct aac_adapter_info	*info;
2098
2099	debug_called(2);
2100
2101	aac_alloc_sync_fib(sc, &fib, 0);
2102
2103	fib->data[0] = 0;
2104	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2105		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2106		aac_release_sync_fib(sc);
2107		return;
2108	}
2109	info = (struct aac_adapter_info *)&fib->data[0];
2110
2111	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2112		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2113		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2114		      aac_describe_code(aac_battery_platform,
2115					info->batteryPlatform));
2116
2117	/* save the kernel revision structure for later use */
2118	sc->aac_revision = info->KernelRevision;
2119	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2120		      info->KernelRevision.external.comp.major,
2121		      info->KernelRevision.external.comp.minor,
2122		      info->KernelRevision.external.comp.dash,
2123		      info->KernelRevision.buildNumber,
2124		      (u_int32_t)(info->SerialNumber & 0xffffff));
2125
2126	aac_release_sync_fib(sc);
2127}
2128
2129/*
2130 * Look up a text description of a numeric error code and return a pointer to
2131 * same.
2132 */
2133static char *
2134aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2135{
2136	int i;
2137
2138	for (i = 0; table[i].string != NULL; i++)
2139		if (table[i].code == code)
2140			return(table[i].string);
2141	return(table[i + 1].string);
2142}
2143
2144/*
2145 * Management Interface
2146 */
2147
2148static int
2149aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2150{
2151	struct aac_softc *sc;
2152
2153	debug_called(2);
2154
2155	sc = dev->si_drv1;
2156
2157	/* Check to make sure the device isn't already open */
2158	if (sc->aac_state & AAC_STATE_OPEN) {
2159		return EBUSY;
2160	}
2161	sc->aac_state |= AAC_STATE_OPEN;
2162
2163	return 0;
2164}
2165
2166static int
2167aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2168{
2169	struct aac_softc *sc;
2170
2171	debug_called(2);
2172
2173	sc = dev->si_drv1;
2174
2175	/* Mark this unit as no longer open  */
2176	sc->aac_state &= ~AAC_STATE_OPEN;
2177
2178	return 0;
2179}
2180
2181static int
2182aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2183{
2184	union aac_statrequest *as;
2185	struct aac_softc *sc;
2186	int error = 0;
2187	int i;
2188
2189	debug_called(2);
2190
2191	as = (union aac_statrequest *)arg;
2192	sc = dev->si_drv1;
2193
2194	switch (cmd) {
2195	case AACIO_STATS:
2196		switch (as->as_item) {
2197		case AACQ_FREE:
2198		case AACQ_BIO:
2199		case AACQ_READY:
2200		case AACQ_BUSY:
2201		case AACQ_COMPLETE:
2202			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2203			      sizeof(struct aac_qstat));
2204			break;
2205		default:
2206			error = ENOENT;
2207			break;
2208		}
2209	break;
2210
2211	case FSACTL_SENDFIB:
2212		arg = *(caddr_t*)arg;
2213	case FSACTL_LNX_SENDFIB:
2214		debug(1, "FSACTL_SENDFIB");
2215		error = aac_ioctl_sendfib(sc, arg);
2216		break;
2217	case FSACTL_AIF_THREAD:
2218	case FSACTL_LNX_AIF_THREAD:
2219		debug(1, "FSACTL_AIF_THREAD");
2220		error = EINVAL;
2221		break;
2222	case FSACTL_OPEN_GET_ADAPTER_FIB:
2223		arg = *(caddr_t*)arg;
2224	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2225		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2226		/*
2227		 * Pass the caller out an AdapterFibContext.
2228		 *
2229		 * Note that because we only support one opener, we
2230		 * basically ignore this.  Set the caller's context to a magic
2231		 * number just in case.
2232		 *
2233		 * The Linux code hands the driver a pointer into kernel space,
2234		 * and then trusts it when the caller hands it back.  Aiee!
2235		 * Here, we give it the proc pointer of the per-adapter aif
2236		 * thread. It's only used as a sanity check in other calls.
2237		 */
2238		i = (int)sc->aifthread;
2239		error = copyout(&i, arg, sizeof(i));
2240		break;
2241	case FSACTL_GET_NEXT_ADAPTER_FIB:
2242		arg = *(caddr_t*)arg;
2243	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2244		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2245		error = aac_getnext_aif(sc, arg);
2246		break;
2247	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2248	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2249		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2250		/* don't do anything here */
2251		break;
2252	case FSACTL_MINIPORT_REV_CHECK:
2253		arg = *(caddr_t*)arg;
2254	case FSACTL_LNX_MINIPORT_REV_CHECK:
2255		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2256		error = aac_rev_check(sc, arg);
2257		break;
2258	case FSACTL_QUERY_DISK:
2259		arg = *(caddr_t*)arg;
2260	case FSACTL_LNX_QUERY_DISK:
2261		debug(1, "FSACTL_QUERY_DISK");
2262		error = aac_query_disk(sc, arg);
2263			break;
2264	case FSACTL_DELETE_DISK:
2265	case FSACTL_LNX_DELETE_DISK:
2266		/*
2267		 * We don't trust the underland to tell us when to delete a
2268		 * container, rather we rely on an AIF coming from the
2269		 * controller
2270		 */
2271		error = 0;
2272		break;
2273	default:
2274		debug(1, "unsupported cmd 0x%lx\n", cmd);
2275		error = EINVAL;
2276		break;
2277	}
2278	return(error);
2279}
2280
2281static int
2282aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2283{
2284	struct aac_softc *sc;
2285	int revents;
2286
2287	sc = dev->si_drv1;
2288	revents = 0;
2289
2290	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2291	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2292		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2293			revents |= poll_events & (POLLIN | POLLRDNORM);
2294	}
2295	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2296
2297	if (revents == 0) {
2298		if (poll_events & (POLLIN | POLLRDNORM))
2299			selrecord(td, &sc->rcv_select);
2300	}
2301
2302	return (revents);
2303}
2304
2305/*
2306 * Send a FIB supplied from userspace
2307 */
2308static int
2309aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2310{
2311	struct aac_command *cm;
2312	int size, error;
2313
2314	debug_called(2);
2315
2316	cm = NULL;
2317
2318	/*
2319	 * Get a command
2320	 */
2321	if (aac_alloc_command(sc, &cm)) {
2322		error = EBUSY;
2323		goto out;
2324	}
2325
2326	/*
2327	 * Fetch the FIB header, then re-copy to get data as well.
2328	 */
2329	if ((error = copyin(ufib, cm->cm_fib,
2330			    sizeof(struct aac_fib_header))) != 0)
2331		goto out;
2332	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2333	if (size > sizeof(struct aac_fib)) {
2334		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2335			      size, sizeof(struct aac_fib));
2336		size = sizeof(struct aac_fib);
2337	}
2338	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2339		goto out;
2340	cm->cm_fib->Header.Size = size;
2341	cm->cm_timestamp = time_second;
2342
2343	/*
2344	 * Pass the FIB to the controller, wait for it to complete.
2345	 */
2346	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2347		printf("aac_wait_command return %d\n", error);
2348		goto out;
2349	}
2350
2351	/*
2352	 * Copy the FIB and data back out to the caller.
2353	 */
2354	size = cm->cm_fib->Header.Size;
2355	if (size > sizeof(struct aac_fib)) {
2356		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2357			      size, sizeof(struct aac_fib));
2358		size = sizeof(struct aac_fib);
2359	}
2360	error = copyout(cm->cm_fib, ufib, size);
2361
2362out:
2363	if (cm != NULL) {
2364		aac_release_command(cm);
2365	}
2366	return(error);
2367}
2368
2369/*
2370 * Handle an AIF sent to us by the controller; queue it for later reference.
2371 * If the queue fills up, then drop the older entries.
2372 */
2373static void
2374aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2375{
2376	struct aac_aif_command *aif;
2377	struct aac_container *co, *co_next;
2378	struct aac_mntinfo *mi;
2379	struct aac_mntinforesp *mir = NULL;
2380	u_int16_t rsize;
2381	int next, found;
2382	int added = 0, i = 0;
2383
2384	debug_called(2);
2385
2386	aif = (struct aac_aif_command*)&fib->data[0];
2387	aac_print_aif(sc, aif);
2388
2389	/* Is it an event that we should care about? */
2390	switch (aif->command) {
2391	case AifCmdEventNotify:
2392		switch (aif->data.EN.type) {
2393		case AifEnAddContainer:
2394		case AifEnDeleteContainer:
2395			/*
2396			 * A container was added or deleted, but the message
2397			 * doesn't tell us anything else!  Re-enumerate the
2398			 * containers and sort things out.
2399			 */
2400			aac_alloc_sync_fib(sc, &fib, 0);
2401			mi = (struct aac_mntinfo *)&fib->data[0];
2402			do {
2403				/*
2404				 * Ask the controller for its containers one at
2405				 * a time.
2406				 * XXX What if the controller's list changes
2407				 * midway through this enumaration?
2408				 * XXX This should be done async.
2409				 */
2410				bzero(mi, sizeof(struct aac_mntinfo));
2411				mi->Command = VM_NameServe;
2412				mi->MntType = FT_FILESYS;
2413				mi->MntCount = i;
2414				rsize = sizeof(mir);
2415				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2416						 sizeof(struct aac_mntinfo))) {
2417					debug(2, "Error probing container %d\n",
2418					      i);
2419					continue;
2420				}
2421				mir = (struct aac_mntinforesp *)&fib->data[0];
2422				/*
2423				 * Check the container against our list.
2424				 * co->co_found was already set to 0 in a
2425				 * previous run.
2426				 */
2427				if ((mir->Status == ST_OK) &&
2428				    (mir->MntTable[0].VolType != CT_NONE)) {
2429					found = 0;
2430					TAILQ_FOREACH(co,
2431						      &sc->aac_container_tqh,
2432						      co_link) {
2433						if (co->co_mntobj.ObjectId ==
2434						    mir->MntTable[0].ObjectId) {
2435							co->co_found = 1;
2436							found = 1;
2437							break;
2438						}
2439					}
2440					/*
2441					 * If the container matched, continue
2442					 * in the list.
2443					 */
2444					if (found) {
2445						i++;
2446						continue;
2447					}
2448
2449					/*
2450					 * This is a new container.  Do all the
2451					 * appropriate things to set it up.						 */
2452					aac_add_container(sc, mir, 1);
2453					added = 1;
2454				}
2455				i++;
2456			} while ((i < mir->MntRespCount) &&
2457				 (i < AAC_MAX_CONTAINERS));
2458			aac_release_sync_fib(sc);
2459
2460			/*
2461			 * Go through our list of containers and see which ones
2462			 * were not marked 'found'.  Since the controller didn't
2463			 * list them they must have been deleted.  Do the
2464			 * appropriate steps to destroy the device.  Also reset
2465			 * the co->co_found field.
2466			 */
2467			co = TAILQ_FIRST(&sc->aac_container_tqh);
2468			while (co != NULL) {
2469				if (co->co_found == 0) {
2470					device_delete_child(sc->aac_dev,
2471							    co->co_disk);
2472					co_next = TAILQ_NEXT(co, co_link);
2473					AAC_LOCK_ACQUIRE(&sc->
2474							aac_container_lock);
2475					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2476						     co_link);
2477					AAC_LOCK_RELEASE(&sc->
2478							 aac_container_lock);
2479					FREE(co, M_AACBUF);
2480					co = co_next;
2481				} else {
2482					co->co_found = 0;
2483					co = TAILQ_NEXT(co, co_link);
2484				}
2485			}
2486
2487			/* Attach the newly created containers */
2488			if (added)
2489				bus_generic_attach(sc->aac_dev);
2490
2491			break;
2492
2493		default:
2494			break;
2495		}
2496
2497	default:
2498		break;
2499	}
2500
2501	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2502	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2503	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2504	if (next != sc->aac_aifq_tail) {
2505		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2506		sc->aac_aifq_head = next;
2507
2508		/* On the off chance that someone is sleeping for an aif... */
2509		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2510			wakeup(sc->aac_aifq);
2511		/* Wakeup any poll()ers */
2512		selwakeup(&sc->rcv_select);
2513	}
2514	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2515
2516	return;
2517}
2518
2519/*
2520 * Return the Revision of the driver to userspace and check to see if the
2521 * userspace app is possibly compatible.  This is extremely bogus since
2522 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2523 * returning what the card reported.
2524 */
2525static int
2526aac_rev_check(struct aac_softc *sc, caddr_t udata)
2527{
2528	struct aac_rev_check rev_check;
2529	struct aac_rev_check_resp rev_check_resp;
2530	int error = 0;
2531
2532	debug_called(2);
2533
2534	/*
2535	 * Copyin the revision struct from userspace
2536	 */
2537	if ((error = copyin(udata, (caddr_t)&rev_check,
2538			sizeof(struct aac_rev_check))) != 0) {
2539		return error;
2540	}
2541
2542	debug(2, "Userland revision= %d\n",
2543	      rev_check.callingRevision.buildNumber);
2544
2545	/*
2546	 * Doctor up the response struct.
2547	 */
2548	rev_check_resp.possiblyCompatible = 1;
2549	rev_check_resp.adapterSWRevision.external.ul =
2550	    sc->aac_revision.external.ul;
2551	rev_check_resp.adapterSWRevision.buildNumber =
2552	    sc->aac_revision.buildNumber;
2553
2554	return(copyout((caddr_t)&rev_check_resp, udata,
2555			sizeof(struct aac_rev_check_resp)));
2556}
2557
2558/*
2559 * Pass the caller the next AIF in their queue
2560 */
2561static int
2562aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2563{
2564	struct get_adapter_fib_ioctl agf;
2565	int error, s;
2566
2567	debug_called(2);
2568
2569	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2570
2571		/*
2572		 * Check the magic number that we gave the caller.
2573		 */
2574		if (agf.AdapterFibContext != (int)sc->aifthread) {
2575			error = EFAULT;
2576		} else {
2577
2578			s = splbio();
2579			error = aac_return_aif(sc, agf.AifFib);
2580
2581			if ((error == EAGAIN) && (agf.Wait)) {
2582				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2583				while (error == EAGAIN) {
2584					error = tsleep(sc->aac_aifq, PRIBIO |
2585						       PCATCH, "aacaif", 0);
2586					if (error == 0)
2587						error = aac_return_aif(sc,
2588						    agf.AifFib);
2589				}
2590				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2591			}
2592		splx(s);
2593		}
2594	}
2595	return(error);
2596}
2597
2598/*
2599 * Hand the next AIF off the top of the queue out to userspace.
2600 */
2601static int
2602aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2603{
2604	int error;
2605
2606	debug_called(2);
2607
2608	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2609	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2610		error = EAGAIN;
2611	} else {
2612		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2613				sizeof(struct aac_aif_command));
2614		if (error)
2615			printf("aac_return_aif: copyout returned %d\n", error);
2616		if (!error)
2617			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2618					    AAC_AIFQ_LENGTH;
2619	}
2620	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2621	return(error);
2622}
2623
2624/*
2625 * Give the userland some information about the container.  The AAC arch
2626 * expects the driver to be a SCSI passthrough type driver, so it expects
2627 * the containers to have b:t:l numbers.  Fake it.
2628 */
2629static int
2630aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2631{
2632	struct aac_query_disk query_disk;
2633	struct aac_container *co;
2634	struct aac_disk	*disk;
2635	int error, id;
2636
2637	debug_called(2);
2638
2639	disk = NULL;
2640
2641	error = copyin(uptr, (caddr_t)&query_disk,
2642		       sizeof(struct aac_query_disk));
2643	if (error)
2644		return (error);
2645
2646	id = query_disk.ContainerNumber;
2647	if (id == -1)
2648		return (EINVAL);
2649
2650	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2651	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2652		if (co->co_mntobj.ObjectId == id)
2653			break;
2654		}
2655
2656	if (co == NULL) {
2657			query_disk.Valid = 0;
2658			query_disk.Locked = 0;
2659			query_disk.Deleted = 1;		/* XXX is this right? */
2660	} else {
2661		disk = device_get_softc(co->co_disk);
2662		query_disk.Valid = 1;
2663		query_disk.Locked =
2664		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2665		query_disk.Deleted = 0;
2666		query_disk.Bus = device_get_unit(sc->aac_dev);
2667		query_disk.Target = disk->unit;
2668		query_disk.Lun = 0;
2669		query_disk.UnMapped = 0;
2670		bcopy(disk->ad_dev_t->si_name,
2671		      &query_disk.diskDeviceName[0], 10);
2672	}
2673	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2674
2675	error = copyout((caddr_t)&query_disk, uptr,
2676			sizeof(struct aac_query_disk));
2677
2678	return (error);
2679}
2680
2681static void
2682aac_get_bus_info(struct aac_softc *sc)
2683{
2684	struct aac_fib *fib;
2685	struct aac_ctcfg *c_cmd;
2686	struct aac_ctcfg_resp *c_resp;
2687	struct aac_vmioctl *vmi;
2688	struct aac_vmi_businf_resp *vmi_resp;
2689	struct aac_getbusinf businfo;
2690	struct aac_cam_inf *caminf;
2691	device_t child;
2692	int i, found, error;
2693
2694	aac_alloc_sync_fib(sc, &fib, 0);
2695	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2696	bzero(c_cmd, sizeof(struct aac_ctcfg));
2697
2698	c_cmd->Command = VM_ContainerConfig;
2699	c_cmd->cmd = CT_GET_SCSI_METHOD;
2700	c_cmd->param = 0;
2701
2702	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2703	    sizeof(struct aac_ctcfg));
2704	if (error) {
2705		device_printf(sc->aac_dev, "Error %d sending "
2706		    "VM_ContainerConfig command\n", error);
2707		aac_release_sync_fib(sc);
2708		return;
2709	}
2710
2711	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2712	if (c_resp->Status != ST_OK) {
2713		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2714		    c_resp->Status);
2715		aac_release_sync_fib(sc);
2716		return;
2717	}
2718
2719	sc->scsi_method_id = c_resp->param;
2720
2721	vmi = (struct aac_vmioctl *)&fib->data[0];
2722	bzero(vmi, sizeof(struct aac_vmioctl));
2723
2724	vmi->Command = VM_Ioctl;
2725	vmi->ObjType = FT_DRIVE;
2726	vmi->MethId = sc->scsi_method_id;
2727	vmi->ObjId = 0;
2728	vmi->IoctlCmd = GetBusInfo;
2729
2730	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2731	    sizeof(struct aac_vmioctl));
2732	if (error) {
2733		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2734		    error);
2735		aac_release_sync_fib(sc);
2736		return;
2737	}
2738
2739	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2740	if (vmi_resp->Status != ST_OK) {
2741		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2742		    vmi_resp->Status);
2743		aac_release_sync_fib(sc);
2744		return;
2745	}
2746
2747	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2748	aac_release_sync_fib(sc);
2749
2750	found = 0;
2751	for (i = 0; i < businfo.BusCount; i++) {
2752		if (businfo.BusValid[i] != AAC_BUS_VALID)
2753			continue;
2754
2755		MALLOC(caminf, struct aac_cam_inf *,
2756		    sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO);
2757		if (caminf == NULL)
2758			continue;
2759
2760		child = device_add_child(sc->aac_dev, "aacp", -1);
2761		if (child == NULL) {
2762			device_printf(sc->aac_dev, "device_add_child failed\n");
2763			continue;
2764		}
2765
2766		caminf->TargetsPerBus = businfo.TargetsPerBus;
2767		caminf->BusNumber = i;
2768		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2769		caminf->aac_sc = sc;
2770
2771		device_set_ivars(child, caminf);
2772		device_set_desc(child, "SCSI Passthrough Bus");
2773
2774		found = 1;
2775	}
2776
2777	if (found)
2778		bus_generic_attach(sc->aac_dev);
2779
2780	return;
2781}
2782