aac.c revision 130006
1/*-
2 * Copyright (c) 2000 Michael Smith
3 * Copyright (c) 2001 Scott Long
4 * Copyright (c) 2000 BSDi
5 * Copyright (c) 2001 Adaptec, Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/aac/aac.c 130006 2004-06-02 18:15:48Z scottl $");
32
33/*
34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35 */
36
37#include "opt_aac.h"
38
39/* #include <stddef.h> */
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/malloc.h>
43#include <sys/kernel.h>
44#include <sys/kthread.h>
45#include <sys/sysctl.h>
46#include <sys/poll.h>
47#include <sys/ioccom.h>
48
49#include <sys/bus.h>
50#include <sys/conf.h>
51#include <sys/signalvar.h>
52#include <sys/time.h>
53#include <sys/eventhandler.h>
54
55#include <machine/bus_memio.h>
56#include <machine/bus.h>
57#include <machine/resource.h>
58
59#include <dev/aac/aacreg.h>
60#include <dev/aac/aac_ioctl.h>
61#include <dev/aac/aacvar.h>
62#include <dev/aac/aac_tables.h>
63
64static void	aac_startup(void *arg);
65static void	aac_add_container(struct aac_softc *sc,
66				  struct aac_mntinforesp *mir, int f);
67static void	aac_get_bus_info(struct aac_softc *sc);
68
69/* Command Processing */
70static void	aac_timeout(struct aac_softc *sc);
71static void	aac_complete(void *context, int pending);
72static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73static void	aac_bio_complete(struct aac_command *cm);
74static int	aac_wait_command(struct aac_command *cm);
75static void	aac_command_thread(struct aac_softc *sc);
76
77/* Command Buffer Management */
78static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
79				   int nseg, int error);
80static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
81				       int nseg, int error);
82static int	aac_alloc_commands(struct aac_softc *sc);
83static void	aac_free_commands(struct aac_softc *sc);
84static void	aac_unmap_command(struct aac_command *cm);
85
86/* Hardware Interface */
87static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
88			       int error);
89static int	aac_check_firmware(struct aac_softc *sc);
90static int	aac_init(struct aac_softc *sc);
91static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
92				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
93				 u_int32_t arg3, u_int32_t *sp);
94static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
95				struct aac_command *cm);
96static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
97				u_int32_t *fib_size, struct aac_fib **fib_addr);
98static int	aac_enqueue_response(struct aac_softc *sc, int queue,
99				     struct aac_fib *fib);
100
101/* Falcon/PPC interface */
102static int	aac_fa_get_fwstatus(struct aac_softc *sc);
103static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
104static int	aac_fa_get_istatus(struct aac_softc *sc);
105static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
106static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
107				   u_int32_t arg0, u_int32_t arg1,
108				   u_int32_t arg2, u_int32_t arg3);
109static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
110static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
111
112struct aac_interface aac_fa_interface = {
113	aac_fa_get_fwstatus,
114	aac_fa_qnotify,
115	aac_fa_get_istatus,
116	aac_fa_clear_istatus,
117	aac_fa_set_mailbox,
118	aac_fa_get_mailbox,
119	aac_fa_set_interrupts
120};
121
122/* StrongARM interface */
123static int	aac_sa_get_fwstatus(struct aac_softc *sc);
124static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
125static int	aac_sa_get_istatus(struct aac_softc *sc);
126static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
127static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
128				   u_int32_t arg0, u_int32_t arg1,
129				   u_int32_t arg2, u_int32_t arg3);
130static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
131static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
132
133struct aac_interface aac_sa_interface = {
134	aac_sa_get_fwstatus,
135	aac_sa_qnotify,
136	aac_sa_get_istatus,
137	aac_sa_clear_istatus,
138	aac_sa_set_mailbox,
139	aac_sa_get_mailbox,
140	aac_sa_set_interrupts
141};
142
143/* i960Rx interface */
144static int	aac_rx_get_fwstatus(struct aac_softc *sc);
145static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
146static int	aac_rx_get_istatus(struct aac_softc *sc);
147static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
148static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
149				   u_int32_t arg0, u_int32_t arg1,
150				   u_int32_t arg2, u_int32_t arg3);
151static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
152static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
153
154struct aac_interface aac_rx_interface = {
155	aac_rx_get_fwstatus,
156	aac_rx_qnotify,
157	aac_rx_get_istatus,
158	aac_rx_clear_istatus,
159	aac_rx_set_mailbox,
160	aac_rx_get_mailbox,
161	aac_rx_set_interrupts
162};
163
164/* Debugging and Diagnostics */
165static void	aac_describe_controller(struct aac_softc *sc);
166static char	*aac_describe_code(struct aac_code_lookup *table,
167				   u_int32_t code);
168
169/* Management Interface */
170static d_open_t		aac_open;
171static d_close_t	aac_close;
172static d_ioctl_t	aac_ioctl;
173static d_poll_t		aac_poll;
174static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
175static void		aac_handle_aif(struct aac_softc *sc,
176					   struct aac_fib *fib);
177static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
178static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
179static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
180static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
181
182static struct cdevsw aac_cdevsw = {
183	.d_version =	D_VERSION,
184	.d_flags =	D_NEEDGIANT,
185	.d_open =	aac_open,
186	.d_close =	aac_close,
187	.d_ioctl =	aac_ioctl,
188	.d_poll =	aac_poll,
189	.d_name =	"aac",
190};
191
192MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193
194/* sysctl node */
195SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196
197/*
198 * Device Interface
199 */
200
201/*
202 * Initialise the controller and softc
203 */
204int
205aac_attach(struct aac_softc *sc)
206{
207	int error, unit;
208
209	debug_called(1);
210
211	/*
212	 * Initialise per-controller queues.
213	 */
214	aac_initq_free(sc);
215	aac_initq_ready(sc);
216	aac_initq_busy(sc);
217	aac_initq_bio(sc);
218
219	/*
220	 * Initialise command-completion task.
221	 */
222	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223
224	/* disable interrupts before we enable anything */
225	AAC_MASK_INTERRUPTS(sc);
226
227	/* mark controller as suspended until we get ourselves organised */
228	sc->aac_state |= AAC_STATE_SUSPEND;
229
230	/*
231	 * Check that the firmware on the card is supported.
232	 */
233	if ((error = aac_check_firmware(sc)) != 0)
234		return(error);
235
236	/*
237	 * Initialize locks
238	 */
239	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
240	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
241	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
242	TAILQ_INIT(&sc->aac_container_tqh);
243
244	/* Initialize the local AIF queue pointers */
245	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
246
247	/*
248	 * Initialise the adapter.
249	 */
250	if ((error = aac_init(sc)) != 0)
251		return(error);
252
253	/*
254	 * Print a little information about the controller.
255	 */
256	aac_describe_controller(sc);
257
258	/*
259	 * Register to probe our containers later.
260	 */
261	sc->aac_ich.ich_func = aac_startup;
262	sc->aac_ich.ich_arg = sc;
263	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264		device_printf(sc->aac_dev,
265			      "can't establish configuration hook\n");
266		return(ENXIO);
267	}
268
269	/*
270	 * Make the control device.
271	 */
272	unit = device_get_unit(sc->aac_dev);
273	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274				 0640, "aac%d", unit);
275	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277	sc->aac_dev_t->si_drv1 = sc;
278
279	/* Create the AIF thread */
280	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281			   &sc->aifthread, 0, 0, "aac%daif", unit))
282		panic("Could not create AIF thread\n");
283
284	/* Register the shutdown method to only be called post-dump */
285	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287		device_printf(sc->aac_dev,
288			      "shutdown event registration failed\n");
289
290	/* Register with CAM for the non-DASD devices */
291	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292		TAILQ_INIT(&sc->aac_sim_tqh);
293		aac_get_bus_info(sc);
294	}
295
296	return(0);
297}
298
299/*
300 * Probe for containers, create disks.
301 */
302static void
303aac_startup(void *arg)
304{
305	struct aac_softc *sc;
306	struct aac_fib *fib;
307	struct aac_mntinfo *mi;
308	struct aac_mntinforesp *mir = NULL;
309	int count = 0, i = 0;
310
311	debug_called(1);
312
313	sc = (struct aac_softc *)arg;
314
315	/* disconnect ourselves from the intrhook chain */
316	config_intrhook_disestablish(&sc->aac_ich);
317
318	aac_alloc_sync_fib(sc, &fib);
319	mi = (struct aac_mntinfo *)&fib->data[0];
320
321	/* loop over possible containers */
322	do {
323		/* request information on this container */
324		bzero(mi, sizeof(struct aac_mntinfo));
325		mi->Command = VM_NameServe;
326		mi->MntType = FT_FILESYS;
327		mi->MntCount = i;
328		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329				 sizeof(struct aac_mntinfo))) {
330			printf("error probing container %d", i);
331			continue;
332		}
333
334		mir = (struct aac_mntinforesp *)&fib->data[0];
335		/* XXX Need to check if count changed */
336		count = mir->MntRespCount;
337		aac_add_container(sc, mir, 0);
338		i++;
339	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340
341	aac_release_sync_fib(sc);
342
343	/* poke the bus to actually attach the child devices */
344	if (bus_generic_attach(sc->aac_dev))
345		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346
347	/* mark the controller up */
348	sc->aac_state &= ~AAC_STATE_SUSPEND;
349
350	/* enable interrupts now */
351	AAC_UNMASK_INTERRUPTS(sc);
352}
353
354/*
355 * Create a device to respresent a new container
356 */
357static void
358aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359{
360	struct aac_container *co;
361	device_t child;
362
363	/*
364	 * Check container volume type for validity.  Note that many of
365	 * the possible types may never show up.
366	 */
367	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369		       M_NOWAIT | M_ZERO);
370		if (co == NULL)
371			panic("Out of memory?!\n");
372		debug(1, "id %x  name '%.16s'  size %u  type %d",
373		      mir->MntTable[0].ObjectId,
374		      mir->MntTable[0].FileSystemName,
375		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376
377		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378			device_printf(sc->aac_dev, "device_add_child failed\n");
379		else
380			device_set_ivars(child, co);
381		device_set_desc(child, aac_describe_code(aac_container_types,
382				mir->MntTable[0].VolType));
383		co->co_disk = child;
384		co->co_found = f;
385		bcopy(&mir->MntTable[0], &co->co_mntobj,
386		      sizeof(struct aac_mntobj));
387		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390	}
391}
392
393/*
394 * Free all of the resources associated with (sc)
395 *
396 * Should not be called if the controller is active.
397 */
398void
399aac_free(struct aac_softc *sc)
400{
401
402	debug_called(1);
403
404	/* remove the control device */
405	if (sc->aac_dev_t != NULL)
406		destroy_dev(sc->aac_dev_t);
407
408	/* throw away any FIB buffers, discard the FIB DMA tag */
409	aac_free_commands(sc);
410	if (sc->aac_fib_dmat)
411		bus_dma_tag_destroy(sc->aac_fib_dmat);
412
413	free(sc->aac_commands, M_AACBUF);
414
415	/* destroy the common area */
416	if (sc->aac_common) {
417		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419				sc->aac_common_dmamap);
420	}
421	if (sc->aac_common_dmat)
422		bus_dma_tag_destroy(sc->aac_common_dmat);
423
424	/* disconnect the interrupt handler */
425	if (sc->aac_intr)
426		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427	if (sc->aac_irq != NULL)
428		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429				     sc->aac_irq);
430
431	/* destroy data-transfer DMA tag */
432	if (sc->aac_buffer_dmat)
433		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434
435	/* destroy the parent DMA tag */
436	if (sc->aac_parent_dmat)
437		bus_dma_tag_destroy(sc->aac_parent_dmat);
438
439	/* release the register window mapping */
440	if (sc->aac_regs_resource != NULL)
441		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442				     sc->aac_regs_rid, sc->aac_regs_resource);
443}
444
445/*
446 * Disconnect from the controller completely, in preparation for unload.
447 */
448int
449aac_detach(device_t dev)
450{
451	struct aac_softc *sc;
452	struct aac_container *co;
453	struct aac_sim	*sim;
454	int error;
455
456	debug_called(1);
457
458	sc = device_get_softc(dev);
459
460	if (sc->aac_state & AAC_STATE_OPEN)
461		return(EBUSY);
462
463	/* Remove the child containers */
464	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465		error = device_delete_child(dev, co->co_disk);
466		if (error)
467			return (error);
468		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469		free(co, M_AACBUF);
470	}
471
472	/* Remove the CAM SIMs */
473	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475		error = device_delete_child(dev, sim->sim_dev);
476		if (error)
477			return (error);
478		free(sim, M_AACBUF);
479	}
480
481	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483		wakeup(sc->aifthread);
484		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485	}
486
487	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488		panic("Cannot shutdown AIF thread\n");
489
490	if ((error = aac_shutdown(dev)))
491		return(error);
492
493	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494
495	aac_free(sc);
496
497	return(0);
498}
499
500/*
501 * Bring the controller down to a dormant state and detach all child devices.
502 *
503 * This function is called before detach or system shutdown.
504 *
505 * Note that we can assume that the bioq on the controller is empty, as we won't
506 * allow shutdown if any device is open.
507 */
508int
509aac_shutdown(device_t dev)
510{
511	struct aac_softc *sc;
512	struct aac_fib *fib;
513	struct aac_close_command *cc;
514
515	debug_called(1);
516
517	sc = device_get_softc(dev);
518
519	sc->aac_state |= AAC_STATE_SUSPEND;
520
521	/*
522	 * Send a Container shutdown followed by a HostShutdown FIB to the
523	 * controller to convince it that we don't want to talk to it anymore.
524	 * We've been closed and all I/O completed already
525	 */
526	device_printf(sc->aac_dev, "shutting down controller...");
527
528	aac_alloc_sync_fib(sc, &fib);
529	cc = (struct aac_close_command *)&fib->data[0];
530
531	bzero(cc, sizeof(struct aac_close_command));
532	cc->Command = VM_CloseAll;
533	cc->ContainerId = 0xffffffff;
534	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535	    sizeof(struct aac_close_command)))
536		printf("FAILED.\n");
537	else
538		printf("done\n");
539#if 0
540	else {
541		fib->data[0] = 0;
542		/*
543		 * XXX Issuing this command to the controller makes it shut down
544		 * but also keeps it from coming back up without a reset of the
545		 * PCI bus.  This is not desirable if you are just unloading the
546		 * driver module with the intent to reload it later.
547		 */
548		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549		    fib, 1)) {
550			printf("FAILED.\n");
551		} else {
552			printf("done.\n");
553		}
554	}
555#endif
556
557	AAC_MASK_INTERRUPTS(sc);
558
559	return(0);
560}
561
562/*
563 * Bring the controller to a quiescent state, ready for system suspend.
564 */
565int
566aac_suspend(device_t dev)
567{
568	struct aac_softc *sc;
569
570	debug_called(1);
571
572	sc = device_get_softc(dev);
573
574	sc->aac_state |= AAC_STATE_SUSPEND;
575
576	AAC_MASK_INTERRUPTS(sc);
577	return(0);
578}
579
580/*
581 * Bring the controller back to a state ready for operation.
582 */
583int
584aac_resume(device_t dev)
585{
586	struct aac_softc *sc;
587
588	debug_called(1);
589
590	sc = device_get_softc(dev);
591
592	sc->aac_state &= ~AAC_STATE_SUSPEND;
593	AAC_UNMASK_INTERRUPTS(sc);
594	return(0);
595}
596
597/*
598 * Take an interrupt.
599 */
600void
601aac_intr(void *arg)
602{
603	struct aac_softc *sc;
604	u_int16_t reason;
605
606	debug_called(2);
607
608	sc = (struct aac_softc *)arg;
609
610	/*
611	 * Read the status register directly.  This is faster than taking the
612	 * driver lock and reading the queues directly.  It also saves having
613	 * to turn parts of the driver lock into a spin mutex, which would be
614	 * ugly.
615	 */
616	reason = AAC_GET_ISTATUS(sc);
617	AAC_CLEAR_ISTATUS(sc, reason);
618
619	/* handle completion processing */
620	if (reason & AAC_DB_RESPONSE_READY)
621		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
622
623	/* controller wants to talk to us */
624	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
625		/*
626		 * XXX Make sure that we don't get fooled by strange messages
627		 * that start with a NULL.
628		 */
629		if ((reason & AAC_DB_PRINTF) &&
630		    (sc->aac_common->ac_printf[0] == 0))
631			sc->aac_common->ac_printf[0] = 32;
632
633		/*
634		 * This might miss doing the actual wakeup.  However, the
635		 * msleep that this is waking up has a timeout, so it will
636		 * wake up eventually.  AIFs and printfs are low enough
637		 * priority that they can handle hanging out for a few seconds
638		 * if needed.
639		 */
640		wakeup(sc->aifthread);
641	}
642}
643
644/*
645 * Command Processing
646 */
647
648/*
649 * Start as much queued I/O as possible on the controller
650 */
651void
652aac_startio(struct aac_softc *sc)
653{
654	struct aac_command *cm;
655	int error;
656
657	debug_called(2);
658
659	for (;;) {
660		/*
661		 * This flag might be set if the card is out of resources.
662		 * Checking it here prevents an infinite loop of deferrals.
663		 */
664		if (sc->flags & AAC_QUEUE_FRZN)
665			break;
666
667		/*
668		 * Try to get a command that's been put off for lack of
669		 * resources
670		 */
671		cm = aac_dequeue_ready(sc);
672
673		/*
674		 * Try to build a command off the bio queue (ignore error
675		 * return)
676		 */
677		if (cm == NULL)
678			aac_bio_command(sc, &cm);
679
680		/* nothing to do? */
681		if (cm == NULL)
682			break;
683
684		/* don't map more than once */
685		if (cm->cm_flags & AAC_CMD_MAPPED)
686			panic("aac: command %p already mapped", cm);
687
688		/*
689		 * Set up the command to go to the controller.  If there are no
690		 * data buffers associated with the command then it can bypass
691		 * busdma.
692		 */
693		if (cm->cm_datalen != 0) {
694			error = bus_dmamap_load(sc->aac_buffer_dmat,
695						cm->cm_datamap, cm->cm_data,
696						cm->cm_datalen,
697						aac_map_command_sg, cm, 0);
698			if (error == EINPROGRESS) {
699				debug(1, "freezing queue\n");
700				sc->flags |= AAC_QUEUE_FRZN;
701				error = 0;
702			} else if (error != 0)
703				panic("aac_startio: unexpected error %d from "
704				      "busdma\n", error);
705		} else
706			aac_map_command_sg(cm, NULL, 0, 0);
707	}
708}
709
710/*
711 * Handle notification of one or more FIBs coming from the controller.
712 */
713static void
714aac_command_thread(struct aac_softc *sc)
715{
716	struct aac_fib *fib;
717	u_int32_t fib_size;
718	int size, retval;
719
720	debug_called(2);
721
722	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
723	sc->aifflags = AAC_AIFFLAGS_RUNNING;
724
725	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
726
727		retval = 0;
728		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
729			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
730					"aifthd", AAC_PERIODIC_INTERVAL * hz);
731
732		/*
733		 * First see if any FIBs need to be allocated.  This needs
734		 * to be called without the driver lock because contigmalloc
735		 * will grab Giant, and would result in an LOR.
736		 */
737		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
738			AAC_LOCK_RELEASE(&sc->aac_io_lock);
739			aac_alloc_commands(sc);
740			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
741			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
742			aac_startio(sc);
743		}
744
745		/*
746		 * While we're here, check to see if any commands are stuck.
747		 * This is pretty low-priority, so it's ok if it doesn't
748		 * always fire.
749		 */
750		if (retval == EWOULDBLOCK)
751			aac_timeout(sc);
752
753		/* Check the hardware printf message buffer */
754		if (sc->aac_common->ac_printf[0] != 0)
755			aac_print_printf(sc);
756
757		/* Also check to see if the adapter has a command for us. */
758		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
759				       &fib_size, &fib) == 0) {
760
761			AAC_PRINT_FIB(sc, fib);
762
763			switch (fib->Header.Command) {
764			case AifRequest:
765				aac_handle_aif(sc, fib);
766				break;
767			default:
768				device_printf(sc->aac_dev, "unknown command "
769					      "from controller\n");
770				break;
771			}
772
773			if ((fib->Header.XferState == 0) ||
774			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
775				break;
776
777			/* Return the AIF to the controller. */
778			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
779				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
780				*(AAC_FSAStatus*)fib->data = ST_OK;
781
782				/* XXX Compute the Size field? */
783				size = fib->Header.Size;
784				if (size > sizeof(struct aac_fib)) {
785					size = sizeof(struct aac_fib);
786					fib->Header.Size = size;
787				}
788				/*
789				 * Since we did not generate this command, it
790				 * cannot go through the normal
791				 * enqueue->startio chain.
792				 */
793				aac_enqueue_response(sc,
794						     AAC_ADAP_NORM_RESP_QUEUE,
795						     fib);
796			}
797		}
798	}
799	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
800	AAC_LOCK_RELEASE(&sc->aac_io_lock);
801	wakeup(sc->aac_dev);
802
803	kthread_exit(0);
804}
805
806/*
807 * Process completed commands.
808 */
809static void
810aac_complete(void *context, int pending)
811{
812	struct aac_softc *sc;
813	struct aac_command *cm;
814	struct aac_fib *fib;
815	u_int32_t fib_size;
816
817	debug_called(2);
818
819	sc = (struct aac_softc *)context;
820
821	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
822
823	/* pull completed commands off the queue */
824	for (;;) {
825		/* look for completed FIBs on our queue */
826		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
827				    &fib))
828			break;	/* nothing to do */
829
830		/* get the command, unmap and hand off for processing */
831		cm = sc->aac_commands + fib->Header.SenderData;
832		if (cm == NULL) {
833			AAC_PRINT_FIB(sc, fib);
834			break;
835		}
836
837		aac_remove_busy(cm);
838		aac_unmap_command(cm);
839		cm->cm_flags |= AAC_CMD_COMPLETED;
840
841		/* is there a completion handler? */
842		if (cm->cm_complete != NULL) {
843			cm->cm_complete(cm);
844		} else {
845			/* assume that someone is sleeping on this command */
846			wakeup(cm);
847		}
848	}
849
850	/* see if we can start some more I/O */
851	sc->flags &= ~AAC_QUEUE_FRZN;
852	aac_startio(sc);
853
854	AAC_LOCK_RELEASE(&sc->aac_io_lock);
855}
856
857/*
858 * Handle a bio submitted from a disk device.
859 */
860void
861aac_submit_bio(struct bio *bp)
862{
863	struct aac_disk *ad;
864	struct aac_softc *sc;
865
866	debug_called(2);
867
868	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
869	sc = ad->ad_controller;
870
871	/* queue the BIO and try to get some work done */
872	aac_enqueue_bio(sc, bp);
873	aac_startio(sc);
874}
875
876/*
877 * Get a bio and build a command to go with it.
878 */
879static int
880aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
881{
882	struct aac_command *cm;
883	struct aac_fib *fib;
884	struct aac_disk *ad;
885	struct bio *bp;
886
887	debug_called(2);
888
889	/* get the resources we will need */
890	cm = NULL;
891	bp = NULL;
892	if (aac_alloc_command(sc, &cm))	/* get a command */
893		goto fail;
894	if ((bp = aac_dequeue_bio(sc)) == NULL)
895		goto fail;
896
897	/* fill out the command */
898	cm->cm_data = (void *)bp->bio_data;
899	cm->cm_datalen = bp->bio_bcount;
900	cm->cm_complete = aac_bio_complete;
901	cm->cm_private = bp;
902	cm->cm_timestamp = time_second;
903	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
904
905	/* build the FIB */
906	fib = cm->cm_fib;
907	fib->Header.Size = sizeof(struct aac_fib_header);
908	fib->Header.XferState =
909		AAC_FIBSTATE_HOSTOWNED   |
910		AAC_FIBSTATE_INITIALISED |
911		AAC_FIBSTATE_EMPTY	 |
912		AAC_FIBSTATE_FROMHOST	 |
913		AAC_FIBSTATE_REXPECTED   |
914		AAC_FIBSTATE_NORM	 |
915		AAC_FIBSTATE_ASYNC	 |
916		AAC_FIBSTATE_FAST_RESPONSE;
917
918	/* build the read/write request */
919	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
920
921	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
922		fib->Header.Command = ContainerCommand;
923		if (bp->bio_cmd == BIO_READ) {
924			struct aac_blockread *br;
925			br = (struct aac_blockread *)&fib->data[0];
926			br->Command = VM_CtBlockRead;
927			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
928			br->BlockNumber = bp->bio_pblkno;
929			br->ByteCount = bp->bio_bcount;
930			fib->Header.Size += sizeof(struct aac_blockread);
931			cm->cm_sgtable = &br->SgMap;
932			cm->cm_flags |= AAC_CMD_DATAIN;
933		} else {
934			struct aac_blockwrite *bw;
935			bw = (struct aac_blockwrite *)&fib->data[0];
936			bw->Command = VM_CtBlockWrite;
937			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938			bw->BlockNumber = bp->bio_pblkno;
939			bw->ByteCount = bp->bio_bcount;
940			bw->Stable = CUNSTABLE;
941			fib->Header.Size += sizeof(struct aac_blockwrite);
942			cm->cm_flags |= AAC_CMD_DATAOUT;
943			cm->cm_sgtable = &bw->SgMap;
944		}
945	} else {
946		fib->Header.Command = ContainerCommand64;
947		if (bp->bio_cmd == BIO_READ) {
948			struct aac_blockread64 *br;
949			br = (struct aac_blockread64 *)&fib->data[0];
950			br->Command = VM_CtHostRead64;
951			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
952			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
953			br->BlockNumber = bp->bio_pblkno;
954			br->Pad = 0;
955			br->Flags = 0;
956			fib->Header.Size += sizeof(struct aac_blockread64);
957			cm->cm_flags |= AAC_CMD_DATAOUT;
958			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
959		} else {
960			struct aac_blockwrite64 *bw;
961			bw = (struct aac_blockwrite64 *)&fib->data[0];
962			bw->Command = VM_CtHostWrite64;
963			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
964			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
965			bw->BlockNumber = bp->bio_pblkno;
966			bw->Pad = 0;
967			bw->Flags = 0;
968			fib->Header.Size += sizeof(struct aac_blockwrite64);
969			cm->cm_flags |= AAC_CMD_DATAIN;
970			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
971		}
972	}
973
974	*cmp = cm;
975	return(0);
976
977fail:
978	if (bp != NULL)
979		aac_enqueue_bio(sc, bp);
980	if (cm != NULL)
981		aac_release_command(cm);
982	return(ENOMEM);
983}
984
985/*
986 * Handle a bio-instigated command that has been completed.
987 */
988static void
989aac_bio_complete(struct aac_command *cm)
990{
991	struct aac_blockread_response *brr;
992	struct aac_blockwrite_response *bwr;
993	struct bio *bp;
994	AAC_FSAStatus status;
995
996	/* fetch relevant status and then release the command */
997	bp = (struct bio *)cm->cm_private;
998	if (bp->bio_cmd == BIO_READ) {
999		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1000		status = brr->Status;
1001	} else {
1002		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1003		status = bwr->Status;
1004	}
1005	aac_release_command(cm);
1006
1007	/* fix up the bio based on status */
1008	if (status == ST_OK) {
1009		bp->bio_resid = 0;
1010	} else {
1011		bp->bio_error = EIO;
1012		bp->bio_flags |= BIO_ERROR;
1013		/* pass an error string out to the disk layer */
1014		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1015						    status);
1016	}
1017	aac_biodone(bp);
1018}
1019
1020/*
1021 * Submit a command to the controller, return when it completes.
1022 * XXX This is very dangerous!  If the card has gone out to lunch, we could
1023 *     be stuck here forever.  At the same time, signals are not caught
1024 *     because there is a risk that a signal could wakeup the sleep before
1025 *     the card has a chance to complete the command.  Since there is no way
1026 *     to cancel a command that is in progress, we can't protect against the
1027 *     card completing a command late and spamming the command and data
1028 *     memory.  So, we are held hostage until the command completes.
1029 */
1030static int
1031aac_wait_command(struct aac_command *cm)
1032{
1033	struct aac_softc *sc;
1034	int error;
1035
1036	debug_called(2);
1037
1038	sc = cm->cm_sc;
1039
1040	/* Put the command on the ready queue and get things going */
1041	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1042	aac_enqueue_ready(cm);
1043	aac_startio(sc);
1044	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1045	return(error);
1046}
1047
1048/*
1049 *Command Buffer Management
1050 */
1051
1052/*
1053 * Allocate a command.
1054 */
1055int
1056aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1057{
1058	struct aac_command *cm;
1059
1060	debug_called(3);
1061
1062	if ((cm = aac_dequeue_free(sc)) == NULL) {
1063		if (sc->total_fibs < sc->aac_max_fibs) {
1064			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1065			wakeup(sc->aifthread);
1066		}
1067		return (EBUSY);
1068	}
1069
1070	*cmp = cm;
1071	return(0);
1072}
1073
1074/*
1075 * Release a command back to the freelist.
1076 */
1077void
1078aac_release_command(struct aac_command *cm)
1079{
1080	debug_called(3);
1081
1082	/* (re)initialise the command/FIB */
1083	cm->cm_sgtable = NULL;
1084	cm->cm_flags = 0;
1085	cm->cm_complete = NULL;
1086	cm->cm_private = NULL;
1087	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1088	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1089	cm->cm_fib->Header.Flags = 0;
1090	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1091
1092	/*
1093	 * These are duplicated in aac_start to cover the case where an
1094	 * intermediate stage may have destroyed them.  They're left
1095	 * initialised here for debugging purposes only.
1096	 */
1097	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1098	cm->cm_fib->Header.SenderData = 0;
1099
1100	aac_enqueue_free(cm);
1101}
1102
1103/*
1104 * Map helper for command/FIB allocation.
1105 */
1106static void
1107aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1108{
1109	uint32_t	*fibphys;
1110
1111	fibphys = (uint32_t *)arg;
1112
1113	debug_called(3);
1114
1115	*fibphys = segs[0].ds_addr;
1116}
1117
1118/*
1119 * Allocate and initialise commands/FIBs for this adapter.
1120 */
1121static int
1122aac_alloc_commands(struct aac_softc *sc)
1123{
1124	struct aac_command *cm;
1125	struct aac_fibmap *fm;
1126	uint32_t fibphys;
1127	int i, error;
1128
1129	debug_called(2);
1130
1131	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1132		return (ENOMEM);
1133
1134	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1135	if (fm == NULL)
1136		return (ENOMEM);
1137
1138	/* allocate the FIBs in DMAable memory and load them */
1139	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1140			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1141		device_printf(sc->aac_dev,
1142			      "Not enough contiguous memory available.\n");
1143		free(fm, M_AACBUF);
1144		return (ENOMEM);
1145	}
1146
1147	/* Ignore errors since this doesn't bounce */
1148	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1149			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1150			      aac_map_command_helper, &fibphys, 0);
1151
1152	/* initialise constant fields in the command structure */
1153	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
1154	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1155	for (i = 0; i < AAC_FIB_COUNT; i++) {
1156		cm = sc->aac_commands + sc->total_fibs;
1157		fm->aac_commands = cm;
1158		cm->cm_sc = sc;
1159		cm->cm_fib = fm->aac_fibs + i;
1160		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1161		cm->cm_index = sc->total_fibs;
1162
1163		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1164					       &cm->cm_datamap)) == 0)
1165			aac_release_command(cm);
1166		else
1167			break;
1168		sc->total_fibs++;
1169	}
1170
1171	if (i > 0) {
1172		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1173		debug(1, "total_fibs= %d\n", sc->total_fibs);
1174		AAC_LOCK_RELEASE(&sc->aac_io_lock);
1175		return (0);
1176	}
1177
1178	AAC_LOCK_RELEASE(&sc->aac_io_lock);
1179	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1180	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1181	free(fm, M_AACBUF);
1182	return (ENOMEM);
1183}
1184
1185/*
1186 * Free FIBs owned by this adapter.
1187 */
1188static void
1189aac_free_commands(struct aac_softc *sc)
1190{
1191	struct aac_fibmap *fm;
1192	struct aac_command *cm;
1193	int i;
1194
1195	debug_called(1);
1196
1197	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1198
1199		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1200		/*
1201		 * We check against total_fibs to handle partially
1202		 * allocated blocks.
1203		 */
1204		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1205			cm = fm->aac_commands + i;
1206			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1207		}
1208		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1209		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1210		free(fm, M_AACBUF);
1211	}
1212}
1213
1214/*
1215 * Command-mapping helper function - populate this command's s/g table.
1216 */
1217static void
1218aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1219{
1220	struct aac_softc *sc;
1221	struct aac_command *cm;
1222	struct aac_fib *fib;
1223	int i;
1224
1225	debug_called(3);
1226
1227	cm = (struct aac_command *)arg;
1228	sc = cm->cm_sc;
1229	fib = cm->cm_fib;
1230
1231	/* copy into the FIB */
1232	if (cm->cm_sgtable != NULL) {
1233		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1234			struct aac_sg_table *sg;
1235			sg = cm->cm_sgtable;
1236			sg->SgCount = nseg;
1237			for (i = 0; i < nseg; i++) {
1238				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1239				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1240			}
1241			/* update the FIB size for the s/g count */
1242			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1243		} else {
1244			struct aac_sg_table64 *sg;
1245			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1246			sg->SgCount = nseg;
1247			for (i = 0; i < nseg; i++) {
1248				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1249				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1250			}
1251			/* update the FIB size for the s/g count */
1252			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1253		}
1254	}
1255
1256	/* Fix up the address values in the FIB.  Use the command array index
1257	 * instead of a pointer since these fields are only 32 bits.  Shift
1258	 * the SenderFibAddress over to make room for the fast response bit.
1259	 */
1260	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1261	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1262
1263	/* save a pointer to the command for speedy reverse-lookup */
1264	cm->cm_fib->Header.SenderData = cm->cm_index;
1265
1266	if (cm->cm_flags & AAC_CMD_DATAIN)
1267		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1268				BUS_DMASYNC_PREREAD);
1269	if (cm->cm_flags & AAC_CMD_DATAOUT)
1270		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1271				BUS_DMASYNC_PREWRITE);
1272	cm->cm_flags |= AAC_CMD_MAPPED;
1273
1274	/* Put the FIB on the outbound queue */
1275	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1276		aac_unmap_command(cm);
1277		sc->flags |= AAC_QUEUE_FRZN;
1278		aac_requeue_ready(cm);
1279	}
1280
1281	return;
1282}
1283
1284/*
1285 * Unmap a command from controller-visible space.
1286 */
1287static void
1288aac_unmap_command(struct aac_command *cm)
1289{
1290	struct aac_softc *sc;
1291
1292	debug_called(2);
1293
1294	sc = cm->cm_sc;
1295
1296	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1297		return;
1298
1299	if (cm->cm_datalen != 0) {
1300		if (cm->cm_flags & AAC_CMD_DATAIN)
1301			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1302					BUS_DMASYNC_POSTREAD);
1303		if (cm->cm_flags & AAC_CMD_DATAOUT)
1304			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1305					BUS_DMASYNC_POSTWRITE);
1306
1307		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1308	}
1309	cm->cm_flags &= ~AAC_CMD_MAPPED;
1310}
1311
1312/*
1313 * Hardware Interface
1314 */
1315
1316/*
1317 * Initialise the adapter.
1318 */
1319static void
1320aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1321{
1322	struct aac_softc *sc;
1323
1324	debug_called(1);
1325
1326	sc = (struct aac_softc *)arg;
1327
1328	sc->aac_common_busaddr = segs[0].ds_addr;
1329}
1330
1331static int
1332aac_check_firmware(struct aac_softc *sc)
1333{
1334	u_int32_t major, minor, options;
1335
1336	debug_called(1);
1337
1338	/*
1339	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1340	 * firmware version 1.x are not compatible with this driver.
1341	 */
1342	if (sc->flags & AAC_FLAGS_PERC2QC) {
1343		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1344				     NULL)) {
1345			device_printf(sc->aac_dev,
1346				      "Error reading firmware version\n");
1347			return (EIO);
1348		}
1349
1350		/* These numbers are stored as ASCII! */
1351		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1352		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1353		if (major == 1) {
1354			device_printf(sc->aac_dev,
1355			    "Firmware version %d.%d is not supported.\n",
1356			    major, minor);
1357			return (EINVAL);
1358		}
1359	}
1360
1361	/*
1362	 * Retrieve the capabilities/supported options word so we know what
1363	 * work-arounds to enable.
1364	 */
1365	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1366		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1367		return (EIO);
1368	}
1369	options = AAC_GET_MAILBOX(sc, 1);
1370	sc->supported_options = options;
1371
1372	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1373	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1374		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1375	if (options & AAC_SUPPORTED_NONDASD)
1376		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1377	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1378	     && (sizeof(bus_addr_t) > 4)) {
1379		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1380		sc->flags |= AAC_FLAGS_SG_64BIT;
1381	}
1382
1383	/* Check for broken hardware that does a lower number of commands */
1384	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1385		sc->aac_max_fibs = AAC_MAX_FIBS;
1386	else
1387		sc->aac_max_fibs = 256;
1388
1389	return (0);
1390}
1391
1392static int
1393aac_init(struct aac_softc *sc)
1394{
1395	struct aac_adapter_init	*ip;
1396	time_t then;
1397	u_int32_t code, qoffset;
1398	int error;
1399
1400	debug_called(1);
1401
1402	/*
1403	 * First wait for the adapter to come ready.
1404	 */
1405	then = time_second;
1406	do {
1407		code = AAC_GET_FWSTATUS(sc);
1408		if (code & AAC_SELF_TEST_FAILED) {
1409			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1410			return(ENXIO);
1411		}
1412		if (code & AAC_KERNEL_PANIC) {
1413			device_printf(sc->aac_dev,
1414				      "FATAL: controller kernel panic\n");
1415			return(ENXIO);
1416		}
1417		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1418			device_printf(sc->aac_dev,
1419				      "FATAL: controller not coming ready, "
1420					   "status %x\n", code);
1421			return(ENXIO);
1422		}
1423	} while (!(code & AAC_UP_AND_RUNNING));
1424
1425	error = ENOMEM;
1426	/*
1427	 * Create DMA tag for mapping buffers into controller-addressable space.
1428	 */
1429	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1430			       1, 0, 			/* algnmnt, boundary */
1431			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1432			       BUS_SPACE_MAXADDR :
1433			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1434			       BUS_SPACE_MAXADDR, 	/* highaddr */
1435			       NULL, NULL, 		/* filter, filterarg */
1436			       MAXBSIZE,		/* maxsize */
1437			       AAC_MAXSGENTRIES,	/* nsegments */
1438			       MAXBSIZE,		/* maxsegsize */
1439			       BUS_DMA_ALLOCNOW,	/* flags */
1440			       busdma_lock_mutex,	/* lockfunc */
1441			       &sc->aac_io_lock,	/* lockfuncarg */
1442			       &sc->aac_buffer_dmat)) {
1443		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1444		goto out;
1445	}
1446
1447	/*
1448	 * Create DMA tag for mapping FIBs into controller-addressable space..
1449	 */
1450	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1451			       1, 0, 			/* algnmnt, boundary */
1452			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1453			       BUS_SPACE_MAXADDR_32BIT :
1454			       0x7fffffff,		/* lowaddr */
1455			       BUS_SPACE_MAXADDR, 	/* highaddr */
1456			       NULL, NULL, 		/* filter, filterarg */
1457			       AAC_FIB_COUNT *
1458			       sizeof(struct aac_fib),  /* maxsize */
1459			       1,			/* nsegments */
1460			       AAC_FIB_COUNT *
1461			       sizeof(struct aac_fib),	/* maxsegsize */
1462			       BUS_DMA_ALLOCNOW,	/* flags */
1463			       NULL, NULL,		/* No locking needed */
1464			       &sc->aac_fib_dmat)) {
1465		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1466		goto out;
1467	}
1468
1469	/*
1470	 * Create DMA tag for the common structure and allocate it.
1471	 */
1472	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1473			       1, 0,			/* algnmnt, boundary */
1474			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1475			       BUS_SPACE_MAXADDR_32BIT :
1476			       0x7fffffff,		/* lowaddr */
1477			       BUS_SPACE_MAXADDR, 	/* highaddr */
1478			       NULL, NULL, 		/* filter, filterarg */
1479			       8192 + sizeof(struct aac_common), /* maxsize */
1480			       1,			/* nsegments */
1481			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1482			       BUS_DMA_ALLOCNOW,	/* flags */
1483			       NULL, NULL,		/* No locking needed */
1484			       &sc->aac_common_dmat)) {
1485		device_printf(sc->aac_dev,
1486			      "can't allocate common structure DMA tag\n");
1487		goto out;
1488	}
1489	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1490			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1491		device_printf(sc->aac_dev, "can't allocate common structure\n");
1492		goto out;
1493	}
1494
1495	/*
1496	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1497	 * below address 8192 in physical memory.
1498	 * XXX If the padding is not needed, can it be put to use instead
1499	 * of ignored?
1500	 */
1501	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1502			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1503			aac_common_map, sc, 0);
1504
1505	if (sc->aac_common_busaddr < 8192) {
1506		(uint8_t *)sc->aac_common += 8192;
1507		sc->aac_common_busaddr += 8192;
1508	}
1509	bzero(sc->aac_common, sizeof(*sc->aac_common));
1510
1511	/* Allocate some FIBs and associated command structs */
1512	TAILQ_INIT(&sc->aac_fibmap_tqh);
1513	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1514				  M_AACBUF, M_WAITOK|M_ZERO);
1515	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1516		if (aac_alloc_commands(sc) != 0)
1517			break;
1518	}
1519	if (sc->total_fibs == 0)
1520		goto out;
1521
1522	/*
1523	 * Fill in the init structure.  This tells the adapter about the
1524	 * physical location of various important shared data structures.
1525	 */
1526	ip = &sc->aac_common->ac_init;
1527	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1528	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1529
1530	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1531					 offsetof(struct aac_common, ac_fibs);
1532	ip->AdapterFibsVirtualAddress = 0;
1533	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1534	ip->AdapterFibAlign = sizeof(struct aac_fib);
1535
1536	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1537				  offsetof(struct aac_common, ac_printf);
1538	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1539
1540	/*
1541	 * The adapter assumes that pages are 4K in size, except on some
1542 	 * broken firmware versions that do the page->byte conversion twice,
1543	 * therefore 'assuming' that this value is in 16MB units (2^24).
1544	 * Round up since the granularity is so high.
1545	 */
1546	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1547	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1548		ip->HostPhysMemPages =
1549		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1550	}
1551	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1552
1553	/*
1554	 * Initialise FIB queues.  Note that it appears that the layout of the
1555	 * indexes and the segmentation of the entries may be mandated by the
1556	 * adapter, which is only told about the base of the queue index fields.
1557	 *
1558	 * The initial values of the indices are assumed to inform the adapter
1559	 * of the sizes of the respective queues, and theoretically it could
1560	 * work out the entire layout of the queue structures from this.  We
1561	 * take the easy route and just lay this area out like everyone else
1562	 * does.
1563	 *
1564	 * The Linux driver uses a much more complex scheme whereby several
1565	 * header records are kept for each queue.  We use a couple of generic
1566	 * list manipulation functions which 'know' the size of each list by
1567	 * virtue of a table.
1568	 */
1569	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1570	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1571	sc->aac_queues =
1572	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1573	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1574
1575	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1576		AAC_HOST_NORM_CMD_ENTRIES;
1577	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1578		AAC_HOST_NORM_CMD_ENTRIES;
1579	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580		AAC_HOST_HIGH_CMD_ENTRIES;
1581	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582		AAC_HOST_HIGH_CMD_ENTRIES;
1583	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584		AAC_ADAP_NORM_CMD_ENTRIES;
1585	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586		AAC_ADAP_NORM_CMD_ENTRIES;
1587	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588		AAC_ADAP_HIGH_CMD_ENTRIES;
1589	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590		AAC_ADAP_HIGH_CMD_ENTRIES;
1591	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1592		AAC_HOST_NORM_RESP_ENTRIES;
1593	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1594		AAC_HOST_NORM_RESP_ENTRIES;
1595	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596		AAC_HOST_HIGH_RESP_ENTRIES;
1597	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598		AAC_HOST_HIGH_RESP_ENTRIES;
1599	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600		AAC_ADAP_NORM_RESP_ENTRIES;
1601	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602		AAC_ADAP_NORM_RESP_ENTRIES;
1603	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604		AAC_ADAP_HIGH_RESP_ENTRIES;
1605	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606		AAC_ADAP_HIGH_RESP_ENTRIES;
1607	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1608		&sc->aac_queues->qt_HostNormCmdQueue[0];
1609	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1610		&sc->aac_queues->qt_HostHighCmdQueue[0];
1611	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1612		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1613	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1614		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1615	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1616		&sc->aac_queues->qt_HostNormRespQueue[0];
1617	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1618		&sc->aac_queues->qt_HostHighRespQueue[0];
1619	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1620		&sc->aac_queues->qt_AdapNormRespQueue[0];
1621	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1622		&sc->aac_queues->qt_AdapHighRespQueue[0];
1623
1624	/*
1625	 * Do controller-type-specific initialisation
1626	 */
1627	switch (sc->aac_hwif) {
1628	case AAC_HWIF_I960RX:
1629		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1630		break;
1631	}
1632
1633	/*
1634	 * Give the init structure to the controller.
1635	 */
1636	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1637			     sc->aac_common_busaddr +
1638			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1639			     NULL)) {
1640		device_printf(sc->aac_dev,
1641			      "error establishing init structure\n");
1642		error = EIO;
1643		goto out;
1644	}
1645
1646	error = 0;
1647out:
1648	return(error);
1649}
1650
1651/*
1652 * Send a synchronous command to the controller and wait for a result.
1653 */
1654static int
1655aac_sync_command(struct aac_softc *sc, u_int32_t command,
1656		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1657		 u_int32_t *sp)
1658{
1659	time_t then;
1660	u_int32_t status;
1661
1662	debug_called(3);
1663
1664	/* populate the mailbox */
1665	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1666
1667	/* ensure the sync command doorbell flag is cleared */
1668	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1669
1670	/* then set it to signal the adapter */
1671	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1672
1673	/* spin waiting for the command to complete */
1674	then = time_second;
1675	do {
1676		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1677			debug(1, "timed out");
1678			return(EIO);
1679		}
1680	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1681
1682	/* clear the completion flag */
1683	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684
1685	/* get the command status */
1686	status = AAC_GET_MAILBOX(sc, 0);
1687	if (sp != NULL)
1688		*sp = status;
1689	return(0);
1690}
1691
1692int
1693aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1694		 struct aac_fib *fib, u_int16_t datasize)
1695{
1696	debug_called(3);
1697
1698	if (datasize > AAC_FIB_DATASIZE)
1699		return(EINVAL);
1700
1701	/*
1702	 * Set up the sync FIB
1703	 */
1704	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1705				AAC_FIBSTATE_INITIALISED |
1706				AAC_FIBSTATE_EMPTY;
1707	fib->Header.XferState |= xferstate;
1708	fib->Header.Command = command;
1709	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1710	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1711	fib->Header.SenderSize = sizeof(struct aac_fib);
1712	fib->Header.SenderFibAddress = 0;	/* Not needed */
1713	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1714					 offsetof(struct aac_common,
1715						  ac_sync_fib);
1716
1717	/*
1718	 * Give the FIB to the controller, wait for a response.
1719	 */
1720	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1721			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1722		debug(2, "IO error");
1723		return(EIO);
1724	}
1725
1726	return (0);
1727}
1728
1729/*
1730 * Adapter-space FIB queue manipulation
1731 *
1732 * Note that the queue implementation here is a little funky; neither the PI or
1733 * CI will ever be zero.  This behaviour is a controller feature.
1734 */
1735static struct {
1736	int		size;
1737	int		notify;
1738} aac_qinfo[] = {
1739	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1740	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1741	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1742	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1743	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1744	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1745	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1746	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1747};
1748
1749/*
1750 * Atomically insert an entry into the nominated queue, returns 0 on success or
1751 * EBUSY if the queue is full.
1752 *
1753 * Note: it would be more efficient to defer notifying the controller in
1754 *	 the case where we may be inserting several entries in rapid succession,
1755 *	 but implementing this usefully may be difficult (it would involve a
1756 *	 separate queue/notify interface).
1757 */
1758static int
1759aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1760{
1761	u_int32_t pi, ci;
1762	int error;
1763	u_int32_t fib_size;
1764	u_int32_t fib_addr;
1765
1766	debug_called(3);
1767
1768	fib_size = cm->cm_fib->Header.Size;
1769	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1770
1771	/* get the producer/consumer indices */
1772	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1773	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1774
1775	/* wrap the queue? */
1776	if (pi >= aac_qinfo[queue].size)
1777		pi = 0;
1778
1779	/* check for queue full */
1780	if ((pi + 1) == ci) {
1781		error = EBUSY;
1782		goto out;
1783	}
1784
1785	/*
1786	 * To avoid a race with its completion interrupt, place this command on
1787	 * the busy queue prior to advertising it to the controller.
1788	 */
1789	aac_enqueue_busy(cm);
1790
1791	/* populate queue entry */
1792	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1793	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1794
1795	/* update producer index */
1796	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1797
1798	/* notify the adapter if we know how */
1799	if (aac_qinfo[queue].notify != 0)
1800		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1801
1802	error = 0;
1803
1804out:
1805	return(error);
1806}
1807
1808/*
1809 * Atomically remove one entry from the nominated queue, returns 0 on
1810 * success or ENOENT if the queue is empty.
1811 */
1812static int
1813aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1814		struct aac_fib **fib_addr)
1815{
1816	u_int32_t pi, ci;
1817	u_int32_t fib_index;
1818	int error;
1819	int notify;
1820
1821	debug_called(3);
1822
1823	/* get the producer/consumer indices */
1824	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1825	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1826
1827	/* check for queue empty */
1828	if (ci == pi) {
1829		error = ENOENT;
1830		goto out;
1831	}
1832
1833	/* wrap the pi so the following test works */
1834	if (pi >= aac_qinfo[queue].size)
1835		pi = 0;
1836
1837	notify = 0;
1838	if (ci == pi + 1)
1839		notify++;
1840
1841	/* wrap the queue? */
1842	if (ci >= aac_qinfo[queue].size)
1843		ci = 0;
1844
1845	/* fetch the entry */
1846	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1847
1848	switch (queue) {
1849	case AAC_HOST_NORM_CMD_QUEUE:
1850	case AAC_HOST_HIGH_CMD_QUEUE:
1851		/*
1852		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1853		 * on to hold an address.  For AIF's, the adapter assumes
1854		 * that it's giving us an address into the array of AIF fibs.
1855		 * Therefore, we have to convert it to an index.
1856		 */
1857		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1858			sizeof(struct aac_fib);
1859		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1860		break;
1861
1862	case AAC_HOST_NORM_RESP_QUEUE:
1863	case AAC_HOST_HIGH_RESP_QUEUE:
1864	{
1865		struct aac_command *cm;
1866
1867		/*
1868		 * As above, an index is used instead of an actual address.
1869		 * Gotta shift the index to account for the fast response
1870		 * bit.  No other correction is needed since this value was
1871		 * originally provided by the driver via the SenderFibAddress
1872		 * field.
1873		 */
1874		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1875		cm = sc->aac_commands + (fib_index >> 1);
1876		*fib_addr = cm->cm_fib;
1877
1878		/*
1879		 * Is this a fast response? If it is, update the fib fields in
1880		 * local memory since the whole fib isn't DMA'd back up.
1881		 */
1882		if (fib_index & 0x01) {
1883			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1884			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1885		}
1886		break;
1887	}
1888	default:
1889		panic("Invalid queue in aac_dequeue_fib()");
1890		break;
1891	}
1892
1893	/* update consumer index */
1894	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1895
1896	/* if we have made the queue un-full, notify the adapter */
1897	if (notify && (aac_qinfo[queue].notify != 0))
1898		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1899	error = 0;
1900
1901out:
1902	return(error);
1903}
1904
1905/*
1906 * Put our response to an Adapter Initialed Fib on the response queue
1907 */
1908static int
1909aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1910{
1911	u_int32_t pi, ci;
1912	int error;
1913	u_int32_t fib_size;
1914	u_int32_t fib_addr;
1915
1916	debug_called(1);
1917
1918	/* Tell the adapter where the FIB is */
1919	fib_size = fib->Header.Size;
1920	fib_addr = fib->Header.SenderFibAddress;
1921	fib->Header.ReceiverFibAddress = fib_addr;
1922
1923	/* get the producer/consumer indices */
1924	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1925	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1926
1927	/* wrap the queue? */
1928	if (pi >= aac_qinfo[queue].size)
1929		pi = 0;
1930
1931	/* check for queue full */
1932	if ((pi + 1) == ci) {
1933		error = EBUSY;
1934		goto out;
1935	}
1936
1937	/* populate queue entry */
1938	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1939	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1940
1941	/* update producer index */
1942	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1943
1944	/* notify the adapter if we know how */
1945	if (aac_qinfo[queue].notify != 0)
1946		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1947
1948	error = 0;
1949
1950out:
1951	return(error);
1952}
1953
1954/*
1955 * Check for commands that have been outstanding for a suspiciously long time,
1956 * and complain about them.
1957 */
1958static void
1959aac_timeout(struct aac_softc *sc)
1960{
1961	struct aac_command *cm;
1962	time_t deadline;
1963
1964	/*
1965	 * Traverse the busy command list, bitch about late commands once
1966	 * only.
1967	 */
1968	deadline = time_second - AAC_CMD_TIMEOUT;
1969	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1970		if ((cm->cm_timestamp  < deadline)
1971			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1972			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1973			device_printf(sc->aac_dev,
1974				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1975				      cm, (int)(time_second-cm->cm_timestamp));
1976			AAC_PRINT_FIB(sc, cm->cm_fib);
1977		}
1978	}
1979
1980	return;
1981}
1982
1983/*
1984 * Interface Function Vectors
1985 */
1986
1987/*
1988 * Read the current firmware status word.
1989 */
1990static int
1991aac_sa_get_fwstatus(struct aac_softc *sc)
1992{
1993	debug_called(3);
1994
1995	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1996}
1997
1998static int
1999aac_rx_get_fwstatus(struct aac_softc *sc)
2000{
2001	debug_called(3);
2002
2003	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2004}
2005
2006static int
2007aac_fa_get_fwstatus(struct aac_softc *sc)
2008{
2009	int val;
2010
2011	debug_called(3);
2012
2013	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2014	return (val);
2015}
2016
2017/*
2018 * Notify the controller of a change in a given queue
2019 */
2020
2021static void
2022aac_sa_qnotify(struct aac_softc *sc, int qbit)
2023{
2024	debug_called(3);
2025
2026	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2027}
2028
2029static void
2030aac_rx_qnotify(struct aac_softc *sc, int qbit)
2031{
2032	debug_called(3);
2033
2034	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2035}
2036
2037static void
2038aac_fa_qnotify(struct aac_softc *sc, int qbit)
2039{
2040	debug_called(3);
2041
2042	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2043	AAC_FA_HACK(sc);
2044}
2045
2046/*
2047 * Get the interrupt reason bits
2048 */
2049static int
2050aac_sa_get_istatus(struct aac_softc *sc)
2051{
2052	debug_called(3);
2053
2054	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2055}
2056
2057static int
2058aac_rx_get_istatus(struct aac_softc *sc)
2059{
2060	debug_called(3);
2061
2062	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2063}
2064
2065static int
2066aac_fa_get_istatus(struct aac_softc *sc)
2067{
2068	int val;
2069
2070	debug_called(3);
2071
2072	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2073	return (val);
2074}
2075
2076/*
2077 * Clear some interrupt reason bits
2078 */
2079static void
2080aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2081{
2082	debug_called(3);
2083
2084	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2085}
2086
2087static void
2088aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2089{
2090	debug_called(3);
2091
2092	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2093}
2094
2095static void
2096aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2097{
2098	debug_called(3);
2099
2100	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2101	AAC_FA_HACK(sc);
2102}
2103
2104/*
2105 * Populate the mailbox and set the command word
2106 */
2107static void
2108aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2109		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2110{
2111	debug_called(4);
2112
2113	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2114	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2115	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2116	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2117	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2118}
2119
2120static void
2121aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2122		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2123{
2124	debug_called(4);
2125
2126	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2127	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2128	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2129	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2130	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2131}
2132
2133static void
2134aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2135		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2136{
2137	debug_called(4);
2138
2139	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2140	AAC_FA_HACK(sc);
2141	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2142	AAC_FA_HACK(sc);
2143	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2144	AAC_FA_HACK(sc);
2145	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2146	AAC_FA_HACK(sc);
2147	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2148	AAC_FA_HACK(sc);
2149}
2150
2151/*
2152 * Fetch the immediate command status word
2153 */
2154static int
2155aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2156{
2157	debug_called(4);
2158
2159	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2160}
2161
2162static int
2163aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2164{
2165	debug_called(4);
2166
2167	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2168}
2169
2170static int
2171aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2172{
2173	int val;
2174
2175	debug_called(4);
2176
2177	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2178	return (val);
2179}
2180
2181/*
2182 * Set/clear interrupt masks
2183 */
2184static void
2185aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2186{
2187	debug(2, "%sable interrupts", enable ? "en" : "dis");
2188
2189	if (enable) {
2190		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2191	} else {
2192		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2193	}
2194}
2195
2196static void
2197aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2198{
2199	debug(2, "%sable interrupts", enable ? "en" : "dis");
2200
2201	if (enable) {
2202		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2203	} else {
2204		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2205	}
2206}
2207
2208static void
2209aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2210{
2211	debug(2, "%sable interrupts", enable ? "en" : "dis");
2212
2213	if (enable) {
2214		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2215		AAC_FA_HACK(sc);
2216	} else {
2217		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2218		AAC_FA_HACK(sc);
2219	}
2220}
2221
2222/*
2223 * Debugging and Diagnostics
2224 */
2225
2226/*
2227 * Print some information about the controller.
2228 */
2229static void
2230aac_describe_controller(struct aac_softc *sc)
2231{
2232	struct aac_fib *fib;
2233	struct aac_adapter_info	*info;
2234
2235	debug_called(2);
2236
2237	aac_alloc_sync_fib(sc, &fib);
2238
2239	fib->data[0] = 0;
2240	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2241		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2242		aac_release_sync_fib(sc);
2243		return;
2244	}
2245	info = (struct aac_adapter_info *)&fib->data[0];
2246
2247	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2248		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2249		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2250		      aac_describe_code(aac_battery_platform,
2251					info->batteryPlatform));
2252
2253	/* save the kernel revision structure for later use */
2254	sc->aac_revision = info->KernelRevision;
2255	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2256		      info->KernelRevision.external.comp.major,
2257		      info->KernelRevision.external.comp.minor,
2258		      info->KernelRevision.external.comp.dash,
2259		      info->KernelRevision.buildNumber,
2260		      (u_int32_t)(info->SerialNumber & 0xffffff));
2261
2262	aac_release_sync_fib(sc);
2263
2264	if (1 || bootverbose) {
2265		device_printf(sc->aac_dev, "Supported Options=%b\n",
2266			      sc->supported_options,
2267			      "\20"
2268			      "\1SNAPSHOT"
2269			      "\2CLUSTERS"
2270			      "\3WCACHE"
2271			      "\4DATA64"
2272			      "\5HOSTTIME"
2273			      "\6RAID50"
2274			      "\7WINDOW4GB"
2275			      "\10SCSIUPGD"
2276			      "\11SOFTERR"
2277			      "\12NORECOND"
2278			      "\13SGMAP64"
2279			      "\14ALARM"
2280			      "\15NONDASD");
2281	}
2282}
2283
2284/*
2285 * Look up a text description of a numeric error code and return a pointer to
2286 * same.
2287 */
2288static char *
2289aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2290{
2291	int i;
2292
2293	for (i = 0; table[i].string != NULL; i++)
2294		if (table[i].code == code)
2295			return(table[i].string);
2296	return(table[i + 1].string);
2297}
2298
2299/*
2300 * Management Interface
2301 */
2302
2303static int
2304aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2305{
2306	struct aac_softc *sc;
2307
2308	debug_called(2);
2309
2310	sc = dev->si_drv1;
2311
2312	/* Check to make sure the device isn't already open */
2313	if (sc->aac_state & AAC_STATE_OPEN) {
2314		return EBUSY;
2315	}
2316	sc->aac_state |= AAC_STATE_OPEN;
2317
2318	return 0;
2319}
2320
2321static int
2322aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2323{
2324	struct aac_softc *sc;
2325
2326	debug_called(2);
2327
2328	sc = dev->si_drv1;
2329
2330	/* Mark this unit as no longer open  */
2331	sc->aac_state &= ~AAC_STATE_OPEN;
2332
2333	return 0;
2334}
2335
2336static int
2337aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2338{
2339	union aac_statrequest *as;
2340	struct aac_softc *sc;
2341	int error = 0;
2342	uint32_t cookie;
2343
2344	debug_called(2);
2345
2346	as = (union aac_statrequest *)arg;
2347	sc = dev->si_drv1;
2348
2349	switch (cmd) {
2350	case AACIO_STATS:
2351		switch (as->as_item) {
2352		case AACQ_FREE:
2353		case AACQ_BIO:
2354		case AACQ_READY:
2355		case AACQ_BUSY:
2356			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2357			      sizeof(struct aac_qstat));
2358			break;
2359		default:
2360			error = ENOENT;
2361			break;
2362		}
2363	break;
2364
2365	case FSACTL_SENDFIB:
2366		arg = *(caddr_t*)arg;
2367	case FSACTL_LNX_SENDFIB:
2368		debug(1, "FSACTL_SENDFIB");
2369		error = aac_ioctl_sendfib(sc, arg);
2370		break;
2371	case FSACTL_AIF_THREAD:
2372	case FSACTL_LNX_AIF_THREAD:
2373		debug(1, "FSACTL_AIF_THREAD");
2374		error = EINVAL;
2375		break;
2376	case FSACTL_OPEN_GET_ADAPTER_FIB:
2377		arg = *(caddr_t*)arg;
2378	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2379		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2380		/*
2381		 * Pass the caller out an AdapterFibContext.
2382		 *
2383		 * Note that because we only support one opener, we
2384		 * basically ignore this.  Set the caller's context to a magic
2385		 * number just in case.
2386		 *
2387		 * The Linux code hands the driver a pointer into kernel space,
2388		 * and then trusts it when the caller hands it back.  Aiee!
2389		 * Here, we give it the proc pointer of the per-adapter aif
2390		 * thread. It's only used as a sanity check in other calls.
2391		 */
2392		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2393		error = copyout(&cookie, arg, sizeof(cookie));
2394		break;
2395	case FSACTL_GET_NEXT_ADAPTER_FIB:
2396		arg = *(caddr_t*)arg;
2397	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2398		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2399		error = aac_getnext_aif(sc, arg);
2400		break;
2401	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2402	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2403		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2404		/* don't do anything here */
2405		break;
2406	case FSACTL_MINIPORT_REV_CHECK:
2407		arg = *(caddr_t*)arg;
2408	case FSACTL_LNX_MINIPORT_REV_CHECK:
2409		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2410		error = aac_rev_check(sc, arg);
2411		break;
2412	case FSACTL_QUERY_DISK:
2413		arg = *(caddr_t*)arg;
2414	case FSACTL_LNX_QUERY_DISK:
2415		debug(1, "FSACTL_QUERY_DISK");
2416		error = aac_query_disk(sc, arg);
2417			break;
2418	case FSACTL_DELETE_DISK:
2419	case FSACTL_LNX_DELETE_DISK:
2420		/*
2421		 * We don't trust the underland to tell us when to delete a
2422		 * container, rather we rely on an AIF coming from the
2423		 * controller
2424		 */
2425		error = 0;
2426		break;
2427	default:
2428		debug(1, "unsupported cmd 0x%lx\n", cmd);
2429		error = EINVAL;
2430		break;
2431	}
2432	return(error);
2433}
2434
2435static int
2436aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2437{
2438	struct aac_softc *sc;
2439	int revents;
2440
2441	sc = dev->si_drv1;
2442	revents = 0;
2443
2444	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2445	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2446		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2447			revents |= poll_events & (POLLIN | POLLRDNORM);
2448	}
2449	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2450
2451	if (revents == 0) {
2452		if (poll_events & (POLLIN | POLLRDNORM))
2453			selrecord(td, &sc->rcv_select);
2454	}
2455
2456	return (revents);
2457}
2458
2459/*
2460 * Send a FIB supplied from userspace
2461 */
2462static int
2463aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2464{
2465	struct aac_command *cm;
2466	int size, error;
2467
2468	debug_called(2);
2469
2470	cm = NULL;
2471
2472	/*
2473	 * Get a command
2474	 */
2475	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2476	if (aac_alloc_command(sc, &cm)) {
2477		error = EBUSY;
2478		goto out;
2479	}
2480
2481	/*
2482	 * Fetch the FIB header, then re-copy to get data as well.
2483	 */
2484	if ((error = copyin(ufib, cm->cm_fib,
2485			    sizeof(struct aac_fib_header))) != 0)
2486		goto out;
2487	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2488	if (size > sizeof(struct aac_fib)) {
2489		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2490			      size, sizeof(struct aac_fib));
2491		size = sizeof(struct aac_fib);
2492	}
2493	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2494		goto out;
2495	cm->cm_fib->Header.Size = size;
2496	cm->cm_timestamp = time_second;
2497
2498	/*
2499	 * Pass the FIB to the controller, wait for it to complete.
2500	 */
2501	if ((error = aac_wait_command(cm)) != 0) {
2502		device_printf(sc->aac_dev,
2503			      "aac_wait_command return %d\n", error);
2504		goto out;
2505	}
2506
2507	/*
2508	 * Copy the FIB and data back out to the caller.
2509	 */
2510	size = cm->cm_fib->Header.Size;
2511	if (size > sizeof(struct aac_fib)) {
2512		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2513			      size, sizeof(struct aac_fib));
2514		size = sizeof(struct aac_fib);
2515	}
2516	error = copyout(cm->cm_fib, ufib, size);
2517
2518out:
2519	if (cm != NULL) {
2520		aac_release_command(cm);
2521	}
2522
2523	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2524	return(error);
2525}
2526
2527/*
2528 * Handle an AIF sent to us by the controller; queue it for later reference.
2529 * If the queue fills up, then drop the older entries.
2530 */
2531static void
2532aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2533{
2534	struct aac_aif_command *aif;
2535	struct aac_container *co, *co_next;
2536	struct aac_mntinfo *mi;
2537	struct aac_mntinforesp *mir = NULL;
2538	u_int16_t rsize;
2539	int next, found;
2540	int count = 0, added = 0, i = 0;
2541
2542	debug_called(2);
2543
2544	aif = (struct aac_aif_command*)&fib->data[0];
2545	aac_print_aif(sc, aif);
2546
2547	/* Is it an event that we should care about? */
2548	switch (aif->command) {
2549	case AifCmdEventNotify:
2550		switch (aif->data.EN.type) {
2551		case AifEnAddContainer:
2552		case AifEnDeleteContainer:
2553			/*
2554			 * A container was added or deleted, but the message
2555			 * doesn't tell us anything else!  Re-enumerate the
2556			 * containers and sort things out.
2557			 */
2558			aac_alloc_sync_fib(sc, &fib);
2559			mi = (struct aac_mntinfo *)&fib->data[0];
2560			do {
2561				/*
2562				 * Ask the controller for its containers one at
2563				 * a time.
2564				 * XXX What if the controller's list changes
2565				 * midway through this enumaration?
2566				 * XXX This should be done async.
2567				 */
2568				bzero(mi, sizeof(struct aac_mntinfo));
2569				mi->Command = VM_NameServe;
2570				mi->MntType = FT_FILESYS;
2571				mi->MntCount = i;
2572				rsize = sizeof(mir);
2573				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2574						 sizeof(struct aac_mntinfo))) {
2575					printf("Error probing container %d\n",
2576					      i);
2577					continue;
2578				}
2579				mir = (struct aac_mntinforesp *)&fib->data[0];
2580				/* XXX Need to check if count changed */
2581				count = mir->MntRespCount;
2582				/*
2583				 * Check the container against our list.
2584				 * co->co_found was already set to 0 in a
2585				 * previous run.
2586				 */
2587				if ((mir->Status == ST_OK) &&
2588				    (mir->MntTable[0].VolType != CT_NONE)) {
2589					found = 0;
2590					TAILQ_FOREACH(co,
2591						      &sc->aac_container_tqh,
2592						      co_link) {
2593						if (co->co_mntobj.ObjectId ==
2594						    mir->MntTable[0].ObjectId) {
2595							co->co_found = 1;
2596							found = 1;
2597							break;
2598						}
2599					}
2600					/*
2601					 * If the container matched, continue
2602					 * in the list.
2603					 */
2604					if (found) {
2605						i++;
2606						continue;
2607					}
2608
2609					/*
2610					 * This is a new container.  Do all the
2611					 * appropriate things to set it up.
2612					 */
2613					aac_add_container(sc, mir, 1);
2614					added = 1;
2615				}
2616				i++;
2617			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2618			aac_release_sync_fib(sc);
2619
2620			/*
2621			 * Go through our list of containers and see which ones
2622			 * were not marked 'found'.  Since the controller didn't
2623			 * list them they must have been deleted.  Do the
2624			 * appropriate steps to destroy the device.  Also reset
2625			 * the co->co_found field.
2626			 */
2627			co = TAILQ_FIRST(&sc->aac_container_tqh);
2628			while (co != NULL) {
2629				if (co->co_found == 0) {
2630					device_delete_child(sc->aac_dev,
2631							    co->co_disk);
2632					co_next = TAILQ_NEXT(co, co_link);
2633					AAC_LOCK_ACQUIRE(&sc->
2634							aac_container_lock);
2635					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2636						     co_link);
2637					AAC_LOCK_RELEASE(&sc->
2638							 aac_container_lock);
2639					FREE(co, M_AACBUF);
2640					co = co_next;
2641				} else {
2642					co->co_found = 0;
2643					co = TAILQ_NEXT(co, co_link);
2644				}
2645			}
2646
2647			/* Attach the newly created containers */
2648			if (added)
2649				bus_generic_attach(sc->aac_dev);
2650
2651			break;
2652
2653		default:
2654			break;
2655		}
2656
2657	default:
2658		break;
2659	}
2660
2661	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2662	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2663	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2664	if (next != sc->aac_aifq_tail) {
2665		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2666		sc->aac_aifq_head = next;
2667
2668		/* On the off chance that someone is sleeping for an aif... */
2669		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2670			wakeup(sc->aac_aifq);
2671		/* Wakeup any poll()ers */
2672		selwakeuppri(&sc->rcv_select, PRIBIO);
2673	}
2674	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2675
2676	return;
2677}
2678
2679/*
2680 * Return the Revision of the driver to userspace and check to see if the
2681 * userspace app is possibly compatible.  This is extremely bogus since
2682 * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2683 * returning what the card reported.
2684 */
2685static int
2686aac_rev_check(struct aac_softc *sc, caddr_t udata)
2687{
2688	struct aac_rev_check rev_check;
2689	struct aac_rev_check_resp rev_check_resp;
2690	int error = 0;
2691
2692	debug_called(2);
2693
2694	/*
2695	 * Copyin the revision struct from userspace
2696	 */
2697	if ((error = copyin(udata, (caddr_t)&rev_check,
2698			sizeof(struct aac_rev_check))) != 0) {
2699		return error;
2700	}
2701
2702	debug(2, "Userland revision= %d\n",
2703	      rev_check.callingRevision.buildNumber);
2704
2705	/*
2706	 * Doctor up the response struct.
2707	 */
2708	rev_check_resp.possiblyCompatible = 1;
2709	rev_check_resp.adapterSWRevision.external.ul =
2710	    sc->aac_revision.external.ul;
2711	rev_check_resp.adapterSWRevision.buildNumber =
2712	    sc->aac_revision.buildNumber;
2713
2714	return(copyout((caddr_t)&rev_check_resp, udata,
2715			sizeof(struct aac_rev_check_resp)));
2716}
2717
2718/*
2719 * Pass the caller the next AIF in their queue
2720 */
2721static int
2722aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2723{
2724	struct get_adapter_fib_ioctl agf;
2725	int error;
2726
2727	debug_called(2);
2728
2729	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2730
2731		/*
2732		 * Check the magic number that we gave the caller.
2733		 */
2734		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2735			error = EFAULT;
2736		} else {
2737			error = aac_return_aif(sc, agf.AifFib);
2738			if ((error == EAGAIN) && (agf.Wait)) {
2739				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2740				while (error == EAGAIN) {
2741					error = tsleep(sc->aac_aifq, PRIBIO |
2742						       PCATCH, "aacaif", 0);
2743					if (error == 0)
2744						error = aac_return_aif(sc,
2745						    agf.AifFib);
2746				}
2747				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2748			}
2749		}
2750	}
2751	return(error);
2752}
2753
2754/*
2755 * Hand the next AIF off the top of the queue out to userspace.
2756 */
2757static int
2758aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2759{
2760	int next, error;
2761
2762	debug_called(2);
2763
2764	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2765	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2766		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2767		return (EAGAIN);
2768	}
2769
2770	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2771	error = copyout(&sc->aac_aifq[next], uptr,
2772			sizeof(struct aac_aif_command));
2773	if (error)
2774		device_printf(sc->aac_dev,
2775		    "aac_return_aif: copyout returned %d\n", error);
2776	else
2777		sc->aac_aifq_tail = next;
2778
2779	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2780	return(error);
2781}
2782
2783/*
2784 * Give the userland some information about the container.  The AAC arch
2785 * expects the driver to be a SCSI passthrough type driver, so it expects
2786 * the containers to have b:t:l numbers.  Fake it.
2787 */
2788static int
2789aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2790{
2791	struct aac_query_disk query_disk;
2792	struct aac_container *co;
2793	struct aac_disk	*disk;
2794	int error, id;
2795
2796	debug_called(2);
2797
2798	disk = NULL;
2799
2800	error = copyin(uptr, (caddr_t)&query_disk,
2801		       sizeof(struct aac_query_disk));
2802	if (error)
2803		return (error);
2804
2805	id = query_disk.ContainerNumber;
2806	if (id == -1)
2807		return (EINVAL);
2808
2809	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2810	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2811		if (co->co_mntobj.ObjectId == id)
2812			break;
2813		}
2814
2815	if (co == NULL) {
2816			query_disk.Valid = 0;
2817			query_disk.Locked = 0;
2818			query_disk.Deleted = 1;		/* XXX is this right? */
2819	} else {
2820		disk = device_get_softc(co->co_disk);
2821		query_disk.Valid = 1;
2822		query_disk.Locked =
2823		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2824		query_disk.Deleted = 0;
2825		query_disk.Bus = device_get_unit(sc->aac_dev);
2826		query_disk.Target = disk->unit;
2827		query_disk.Lun = 0;
2828		query_disk.UnMapped = 0;
2829		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2830		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2831	}
2832	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2833
2834	error = copyout((caddr_t)&query_disk, uptr,
2835			sizeof(struct aac_query_disk));
2836
2837	return (error);
2838}
2839
2840static void
2841aac_get_bus_info(struct aac_softc *sc)
2842{
2843	struct aac_fib *fib;
2844	struct aac_ctcfg *c_cmd;
2845	struct aac_ctcfg_resp *c_resp;
2846	struct aac_vmioctl *vmi;
2847	struct aac_vmi_businf_resp *vmi_resp;
2848	struct aac_getbusinf businfo;
2849	struct aac_sim *caminf;
2850	device_t child;
2851	int i, found, error;
2852
2853	aac_alloc_sync_fib(sc, &fib);
2854	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2855	bzero(c_cmd, sizeof(struct aac_ctcfg));
2856
2857	c_cmd->Command = VM_ContainerConfig;
2858	c_cmd->cmd = CT_GET_SCSI_METHOD;
2859	c_cmd->param = 0;
2860
2861	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2862	    sizeof(struct aac_ctcfg));
2863	if (error) {
2864		device_printf(sc->aac_dev, "Error %d sending "
2865		    "VM_ContainerConfig command\n", error);
2866		aac_release_sync_fib(sc);
2867		return;
2868	}
2869
2870	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2871	if (c_resp->Status != ST_OK) {
2872		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2873		    c_resp->Status);
2874		aac_release_sync_fib(sc);
2875		return;
2876	}
2877
2878	sc->scsi_method_id = c_resp->param;
2879
2880	vmi = (struct aac_vmioctl *)&fib->data[0];
2881	bzero(vmi, sizeof(struct aac_vmioctl));
2882
2883	vmi->Command = VM_Ioctl;
2884	vmi->ObjType = FT_DRIVE;
2885	vmi->MethId = sc->scsi_method_id;
2886	vmi->ObjId = 0;
2887	vmi->IoctlCmd = GetBusInfo;
2888
2889	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2890	    sizeof(struct aac_vmioctl));
2891	if (error) {
2892		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2893		    error);
2894		aac_release_sync_fib(sc);
2895		return;
2896	}
2897
2898	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2899	if (vmi_resp->Status != ST_OK) {
2900		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2901		    vmi_resp->Status);
2902		aac_release_sync_fib(sc);
2903		return;
2904	}
2905
2906	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2907	aac_release_sync_fib(sc);
2908
2909	found = 0;
2910	for (i = 0; i < businfo.BusCount; i++) {
2911		if (businfo.BusValid[i] != AAC_BUS_VALID)
2912			continue;
2913
2914		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2915		    M_AACBUF, M_NOWAIT | M_ZERO);
2916		if (caminf == NULL)
2917			continue;
2918
2919		child = device_add_child(sc->aac_dev, "aacp", -1);
2920		if (child == NULL) {
2921			device_printf(sc->aac_dev, "device_add_child failed\n");
2922			continue;
2923		}
2924
2925		caminf->TargetsPerBus = businfo.TargetsPerBus;
2926		caminf->BusNumber = i;
2927		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2928		caminf->aac_sc = sc;
2929		caminf->sim_dev = child;
2930
2931		device_set_ivars(child, caminf);
2932		device_set_desc(child, "SCSI Passthrough Bus");
2933		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2934
2935		found = 1;
2936	}
2937
2938	if (found)
2939		bus_generic_attach(sc->aac_dev);
2940
2941	return;
2942}
2943