zil.c revision 249643
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26/* Portions Copyright 2010 Robert Milkowski */
27
28#include <sys/zfs_context.h>
29#include <sys/spa.h>
30#include <sys/dmu.h>
31#include <sys/zap.h>
32#include <sys/arc.h>
33#include <sys/stat.h>
34#include <sys/resource.h>
35#include <sys/zil.h>
36#include <sys/zil_impl.h>
37#include <sys/dsl_dataset.h>
38#include <sys/vdev_impl.h>
39#include <sys/dmu_tx.h>
40#include <sys/dsl_pool.h>
41
42/*
43 * The zfs intent log (ZIL) saves transaction records of system calls
44 * that change the file system in memory with enough information
45 * to be able to replay them. These are stored in memory until
46 * either the DMU transaction group (txg) commits them to the stable pool
47 * and they can be discarded, or they are flushed to the stable log
48 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
49 * requirement. In the event of a panic or power fail then those log
50 * records (transactions) are replayed.
51 *
52 * There is one ZIL per file system. Its on-disk (pool) format consists
53 * of 3 parts:
54 *
55 * 	- ZIL header
56 * 	- ZIL blocks
57 * 	- ZIL records
58 *
59 * A log record holds a system call transaction. Log blocks can
60 * hold many log records and the blocks are chained together.
61 * Each ZIL block contains a block pointer (blkptr_t) to the next
62 * ZIL block in the chain. The ZIL header points to the first
63 * block in the chain. Note there is not a fixed place in the pool
64 * to hold blocks. They are dynamically allocated and freed as
65 * needed from the blocks available. Figure X shows the ZIL structure:
66 */
67
68/*
69 * This global ZIL switch affects all pools
70 */
71int zil_replay_disable = 0;    /* disable intent logging replay */
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86
87static kmem_cache_t *zil_lwb_cache;
88
89static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
90
91#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
92    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
93
94
95/*
96 * ziltest is by and large an ugly hack, but very useful in
97 * checking replay without tedious work.
98 * When running ziltest we want to keep all itx's and so maintain
99 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
100 * We subtract TXG_CONCURRENT_STATES to allow for common code.
101 */
102#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
103
104static int
105zil_bp_compare(const void *x1, const void *x2)
106{
107	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
108	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
109
110	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
111		return (-1);
112	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
113		return (1);
114
115	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
116		return (-1);
117	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
118		return (1);
119
120	return (0);
121}
122
123static void
124zil_bp_tree_init(zilog_t *zilog)
125{
126	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
127	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
128}
129
130static void
131zil_bp_tree_fini(zilog_t *zilog)
132{
133	avl_tree_t *t = &zilog->zl_bp_tree;
134	zil_bp_node_t *zn;
135	void *cookie = NULL;
136
137	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
138		kmem_free(zn, sizeof (zil_bp_node_t));
139
140	avl_destroy(t);
141}
142
143int
144zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
145{
146	avl_tree_t *t = &zilog->zl_bp_tree;
147	const dva_t *dva = BP_IDENTITY(bp);
148	zil_bp_node_t *zn;
149	avl_index_t where;
150
151	if (avl_find(t, dva, &where) != NULL)
152		return (SET_ERROR(EEXIST));
153
154	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
155	zn->zn_dva = *dva;
156	avl_insert(t, zn, where);
157
158	return (0);
159}
160
161static zil_header_t *
162zil_header_in_syncing_context(zilog_t *zilog)
163{
164	return ((zil_header_t *)zilog->zl_header);
165}
166
167static void
168zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
169{
170	zio_cksum_t *zc = &bp->blk_cksum;
171
172	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
173	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
174	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
175	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
176}
177
178/*
179 * Read a log block and make sure it's valid.
180 */
181static int
182zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
183    char **end)
184{
185	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
186	uint32_t aflags = ARC_WAIT;
187	arc_buf_t *abuf = NULL;
188	zbookmark_t zb;
189	int error;
190
191	if (zilog->zl_header->zh_claim_txg == 0)
192		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
193
194	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
195		zio_flags |= ZIO_FLAG_SPECULATIVE;
196
197	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
198	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
199
200	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
201	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
202
203	if (error == 0) {
204		zio_cksum_t cksum = bp->blk_cksum;
205
206		/*
207		 * Validate the checksummed log block.
208		 *
209		 * Sequence numbers should be... sequential.  The checksum
210		 * verifier for the next block should be bp's checksum plus 1.
211		 *
212		 * Also check the log chain linkage and size used.
213		 */
214		cksum.zc_word[ZIL_ZC_SEQ]++;
215
216		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
217			zil_chain_t *zilc = abuf->b_data;
218			char *lr = (char *)(zilc + 1);
219			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
220
221			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
222			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
223				error = SET_ERROR(ECKSUM);
224			} else {
225				bcopy(lr, dst, len);
226				*end = (char *)dst + len;
227				*nbp = zilc->zc_next_blk;
228			}
229		} else {
230			char *lr = abuf->b_data;
231			uint64_t size = BP_GET_LSIZE(bp);
232			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
233
234			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
235			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
236			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
237				error = SET_ERROR(ECKSUM);
238			} else {
239				bcopy(lr, dst, zilc->zc_nused);
240				*end = (char *)dst + zilc->zc_nused;
241				*nbp = zilc->zc_next_blk;
242			}
243		}
244
245		VERIFY(arc_buf_remove_ref(abuf, &abuf));
246	}
247
248	return (error);
249}
250
251/*
252 * Read a TX_WRITE log data block.
253 */
254static int
255zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
256{
257	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
258	const blkptr_t *bp = &lr->lr_blkptr;
259	uint32_t aflags = ARC_WAIT;
260	arc_buf_t *abuf = NULL;
261	zbookmark_t zb;
262	int error;
263
264	if (BP_IS_HOLE(bp)) {
265		if (wbuf != NULL)
266			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
267		return (0);
268	}
269
270	if (zilog->zl_header->zh_claim_txg == 0)
271		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
272
273	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
274	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
275
276	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
277	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
278
279	if (error == 0) {
280		if (wbuf != NULL)
281			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
282		(void) arc_buf_remove_ref(abuf, &abuf);
283	}
284
285	return (error);
286}
287
288/*
289 * Parse the intent log, and call parse_func for each valid record within.
290 */
291int
292zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
293    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
294{
295	const zil_header_t *zh = zilog->zl_header;
296	boolean_t claimed = !!zh->zh_claim_txg;
297	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
298	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
299	uint64_t max_blk_seq = 0;
300	uint64_t max_lr_seq = 0;
301	uint64_t blk_count = 0;
302	uint64_t lr_count = 0;
303	blkptr_t blk, next_blk;
304	char *lrbuf, *lrp;
305	int error = 0;
306
307	/*
308	 * Old logs didn't record the maximum zh_claim_lr_seq.
309	 */
310	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
311		claim_lr_seq = UINT64_MAX;
312
313	/*
314	 * Starting at the block pointed to by zh_log we read the log chain.
315	 * For each block in the chain we strongly check that block to
316	 * ensure its validity.  We stop when an invalid block is found.
317	 * For each block pointer in the chain we call parse_blk_func().
318	 * For each record in each valid block we call parse_lr_func().
319	 * If the log has been claimed, stop if we encounter a sequence
320	 * number greater than the highest claimed sequence number.
321	 */
322	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
323	zil_bp_tree_init(zilog);
324
325	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
326		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
327		int reclen;
328		char *end;
329
330		if (blk_seq > claim_blk_seq)
331			break;
332		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
333			break;
334		ASSERT3U(max_blk_seq, <, blk_seq);
335		max_blk_seq = blk_seq;
336		blk_count++;
337
338		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
339			break;
340
341		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
342		if (error != 0)
343			break;
344
345		for (lrp = lrbuf; lrp < end; lrp += reclen) {
346			lr_t *lr = (lr_t *)lrp;
347			reclen = lr->lrc_reclen;
348			ASSERT3U(reclen, >=, sizeof (lr_t));
349			if (lr->lrc_seq > claim_lr_seq)
350				goto done;
351			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
352				goto done;
353			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
354			max_lr_seq = lr->lrc_seq;
355			lr_count++;
356		}
357	}
358done:
359	zilog->zl_parse_error = error;
360	zilog->zl_parse_blk_seq = max_blk_seq;
361	zilog->zl_parse_lr_seq = max_lr_seq;
362	zilog->zl_parse_blk_count = blk_count;
363	zilog->zl_parse_lr_count = lr_count;
364
365	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
366	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
367
368	zil_bp_tree_fini(zilog);
369	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
370
371	return (error);
372}
373
374static int
375zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
376{
377	/*
378	 * Claim log block if not already committed and not already claimed.
379	 * If tx == NULL, just verify that the block is claimable.
380	 */
381	if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
382		return (0);
383
384	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
385	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
386	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
387}
388
389static int
390zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
391{
392	lr_write_t *lr = (lr_write_t *)lrc;
393	int error;
394
395	if (lrc->lrc_txtype != TX_WRITE)
396		return (0);
397
398	/*
399	 * If the block is not readable, don't claim it.  This can happen
400	 * in normal operation when a log block is written to disk before
401	 * some of the dmu_sync() blocks it points to.  In this case, the
402	 * transaction cannot have been committed to anyone (we would have
403	 * waited for all writes to be stable first), so it is semantically
404	 * correct to declare this the end of the log.
405	 */
406	if (lr->lr_blkptr.blk_birth >= first_txg &&
407	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
408		return (error);
409	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
410}
411
412/* ARGSUSED */
413static int
414zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
415{
416	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
417
418	return (0);
419}
420
421static int
422zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
423{
424	lr_write_t *lr = (lr_write_t *)lrc;
425	blkptr_t *bp = &lr->lr_blkptr;
426
427	/*
428	 * If we previously claimed it, we need to free it.
429	 */
430	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
431	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
432		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
433
434	return (0);
435}
436
437static lwb_t *
438zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
439{
440	lwb_t *lwb;
441
442	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
443	lwb->lwb_zilog = zilog;
444	lwb->lwb_blk = *bp;
445	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
446	lwb->lwb_max_txg = txg;
447	lwb->lwb_zio = NULL;
448	lwb->lwb_tx = NULL;
449	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
450		lwb->lwb_nused = sizeof (zil_chain_t);
451		lwb->lwb_sz = BP_GET_LSIZE(bp);
452	} else {
453		lwb->lwb_nused = 0;
454		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
455	}
456
457	mutex_enter(&zilog->zl_lock);
458	list_insert_tail(&zilog->zl_lwb_list, lwb);
459	mutex_exit(&zilog->zl_lock);
460
461	return (lwb);
462}
463
464/*
465 * Called when we create in-memory log transactions so that we know
466 * to cleanup the itxs at the end of spa_sync().
467 */
468void
469zilog_dirty(zilog_t *zilog, uint64_t txg)
470{
471	dsl_pool_t *dp = zilog->zl_dmu_pool;
472	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
473
474	if (dsl_dataset_is_snapshot(ds))
475		panic("dirtying snapshot!");
476
477	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
478		/* up the hold count until we can be written out */
479		dmu_buf_add_ref(ds->ds_dbuf, zilog);
480	}
481}
482
483boolean_t
484zilog_is_dirty(zilog_t *zilog)
485{
486	dsl_pool_t *dp = zilog->zl_dmu_pool;
487
488	for (int t = 0; t < TXG_SIZE; t++) {
489		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
490			return (B_TRUE);
491	}
492	return (B_FALSE);
493}
494
495/*
496 * Create an on-disk intent log.
497 */
498static lwb_t *
499zil_create(zilog_t *zilog)
500{
501	const zil_header_t *zh = zilog->zl_header;
502	lwb_t *lwb = NULL;
503	uint64_t txg = 0;
504	dmu_tx_t *tx = NULL;
505	blkptr_t blk;
506	int error = 0;
507
508	/*
509	 * Wait for any previous destroy to complete.
510	 */
511	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
512
513	ASSERT(zh->zh_claim_txg == 0);
514	ASSERT(zh->zh_replay_seq == 0);
515
516	blk = zh->zh_log;
517
518	/*
519	 * Allocate an initial log block if:
520	 *    - there isn't one already
521	 *    - the existing block is the wrong endianess
522	 */
523	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
524		tx = dmu_tx_create(zilog->zl_os);
525		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
526		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
527		txg = dmu_tx_get_txg(tx);
528
529		if (!BP_IS_HOLE(&blk)) {
530			zio_free_zil(zilog->zl_spa, txg, &blk);
531			BP_ZERO(&blk);
532		}
533
534		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
535		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
536
537		if (error == 0)
538			zil_init_log_chain(zilog, &blk);
539	}
540
541	/*
542	 * Allocate a log write buffer (lwb) for the first log block.
543	 */
544	if (error == 0)
545		lwb = zil_alloc_lwb(zilog, &blk, txg);
546
547	/*
548	 * If we just allocated the first log block, commit our transaction
549	 * and wait for zil_sync() to stuff the block poiner into zh_log.
550	 * (zh is part of the MOS, so we cannot modify it in open context.)
551	 */
552	if (tx != NULL) {
553		dmu_tx_commit(tx);
554		txg_wait_synced(zilog->zl_dmu_pool, txg);
555	}
556
557	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
558
559	return (lwb);
560}
561
562/*
563 * In one tx, free all log blocks and clear the log header.
564 * If keep_first is set, then we're replaying a log with no content.
565 * We want to keep the first block, however, so that the first
566 * synchronous transaction doesn't require a txg_wait_synced()
567 * in zil_create().  We don't need to txg_wait_synced() here either
568 * when keep_first is set, because both zil_create() and zil_destroy()
569 * will wait for any in-progress destroys to complete.
570 */
571void
572zil_destroy(zilog_t *zilog, boolean_t keep_first)
573{
574	const zil_header_t *zh = zilog->zl_header;
575	lwb_t *lwb;
576	dmu_tx_t *tx;
577	uint64_t txg;
578
579	/*
580	 * Wait for any previous destroy to complete.
581	 */
582	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
583
584	zilog->zl_old_header = *zh;		/* debugging aid */
585
586	if (BP_IS_HOLE(&zh->zh_log))
587		return;
588
589	tx = dmu_tx_create(zilog->zl_os);
590	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
591	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
592	txg = dmu_tx_get_txg(tx);
593
594	mutex_enter(&zilog->zl_lock);
595
596	ASSERT3U(zilog->zl_destroy_txg, <, txg);
597	zilog->zl_destroy_txg = txg;
598	zilog->zl_keep_first = keep_first;
599
600	if (!list_is_empty(&zilog->zl_lwb_list)) {
601		ASSERT(zh->zh_claim_txg == 0);
602		VERIFY(!keep_first);
603		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
604			list_remove(&zilog->zl_lwb_list, lwb);
605			if (lwb->lwb_buf != NULL)
606				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
607			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
608			kmem_cache_free(zil_lwb_cache, lwb);
609		}
610	} else if (!keep_first) {
611		zil_destroy_sync(zilog, tx);
612	}
613	mutex_exit(&zilog->zl_lock);
614
615	dmu_tx_commit(tx);
616}
617
618void
619zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
620{
621	ASSERT(list_is_empty(&zilog->zl_lwb_list));
622	(void) zil_parse(zilog, zil_free_log_block,
623	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
624}
625
626int
627zil_claim(const char *osname, void *txarg)
628{
629	dmu_tx_t *tx = txarg;
630	uint64_t first_txg = dmu_tx_get_txg(tx);
631	zilog_t *zilog;
632	zil_header_t *zh;
633	objset_t *os;
634	int error;
635
636	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
637	if (error != 0) {
638		cmn_err(CE_WARN, "can't open objset for %s", osname);
639		return (0);
640	}
641
642	zilog = dmu_objset_zil(os);
643	zh = zil_header_in_syncing_context(zilog);
644
645	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
646		if (!BP_IS_HOLE(&zh->zh_log))
647			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
648		BP_ZERO(&zh->zh_log);
649		dsl_dataset_dirty(dmu_objset_ds(os), tx);
650		dmu_objset_disown(os, FTAG);
651		return (0);
652	}
653
654	/*
655	 * Claim all log blocks if we haven't already done so, and remember
656	 * the highest claimed sequence number.  This ensures that if we can
657	 * read only part of the log now (e.g. due to a missing device),
658	 * but we can read the entire log later, we will not try to replay
659	 * or destroy beyond the last block we successfully claimed.
660	 */
661	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
662	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
663		(void) zil_parse(zilog, zil_claim_log_block,
664		    zil_claim_log_record, tx, first_txg);
665		zh->zh_claim_txg = first_txg;
666		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
667		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
668		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
669			zh->zh_flags |= ZIL_REPLAY_NEEDED;
670		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
671		dsl_dataset_dirty(dmu_objset_ds(os), tx);
672	}
673
674	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
675	dmu_objset_disown(os, FTAG);
676	return (0);
677}
678
679/*
680 * Check the log by walking the log chain.
681 * Checksum errors are ok as they indicate the end of the chain.
682 * Any other error (no device or read failure) returns an error.
683 */
684int
685zil_check_log_chain(const char *osname, void *tx)
686{
687	zilog_t *zilog;
688	objset_t *os;
689	blkptr_t *bp;
690	int error;
691
692	ASSERT(tx == NULL);
693
694	error = dmu_objset_hold(osname, FTAG, &os);
695	if (error != 0) {
696		cmn_err(CE_WARN, "can't open objset for %s", osname);
697		return (0);
698	}
699
700	zilog = dmu_objset_zil(os);
701	bp = (blkptr_t *)&zilog->zl_header->zh_log;
702
703	/*
704	 * Check the first block and determine if it's on a log device
705	 * which may have been removed or faulted prior to loading this
706	 * pool.  If so, there's no point in checking the rest of the log
707	 * as its content should have already been synced to the pool.
708	 */
709	if (!BP_IS_HOLE(bp)) {
710		vdev_t *vd;
711		boolean_t valid = B_TRUE;
712
713		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
714		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
715		if (vd->vdev_islog && vdev_is_dead(vd))
716			valid = vdev_log_state_valid(vd);
717		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
718
719		if (!valid) {
720			dmu_objset_rele(os, FTAG);
721			return (0);
722		}
723	}
724
725	/*
726	 * Because tx == NULL, zil_claim_log_block() will not actually claim
727	 * any blocks, but just determine whether it is possible to do so.
728	 * In addition to checking the log chain, zil_claim_log_block()
729	 * will invoke zio_claim() with a done func of spa_claim_notify(),
730	 * which will update spa_max_claim_txg.  See spa_load() for details.
731	 */
732	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
733	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
734
735	dmu_objset_rele(os, FTAG);
736
737	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
738}
739
740static int
741zil_vdev_compare(const void *x1, const void *x2)
742{
743	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
744	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
745
746	if (v1 < v2)
747		return (-1);
748	if (v1 > v2)
749		return (1);
750
751	return (0);
752}
753
754void
755zil_add_block(zilog_t *zilog, const blkptr_t *bp)
756{
757	avl_tree_t *t = &zilog->zl_vdev_tree;
758	avl_index_t where;
759	zil_vdev_node_t *zv, zvsearch;
760	int ndvas = BP_GET_NDVAS(bp);
761	int i;
762
763	if (zfs_nocacheflush)
764		return;
765
766	ASSERT(zilog->zl_writer);
767
768	/*
769	 * Even though we're zl_writer, we still need a lock because the
770	 * zl_get_data() callbacks may have dmu_sync() done callbacks
771	 * that will run concurrently.
772	 */
773	mutex_enter(&zilog->zl_vdev_lock);
774	for (i = 0; i < ndvas; i++) {
775		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
776		if (avl_find(t, &zvsearch, &where) == NULL) {
777			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
778			zv->zv_vdev = zvsearch.zv_vdev;
779			avl_insert(t, zv, where);
780		}
781	}
782	mutex_exit(&zilog->zl_vdev_lock);
783}
784
785static void
786zil_flush_vdevs(zilog_t *zilog)
787{
788	spa_t *spa = zilog->zl_spa;
789	avl_tree_t *t = &zilog->zl_vdev_tree;
790	void *cookie = NULL;
791	zil_vdev_node_t *zv;
792	zio_t *zio;
793
794	ASSERT(zilog->zl_writer);
795
796	/*
797	 * We don't need zl_vdev_lock here because we're the zl_writer,
798	 * and all zl_get_data() callbacks are done.
799	 */
800	if (avl_numnodes(t) == 0)
801		return;
802
803	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
804
805	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
806
807	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
808		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
809		if (vd != NULL)
810			zio_flush(zio, vd);
811		kmem_free(zv, sizeof (*zv));
812	}
813
814	/*
815	 * Wait for all the flushes to complete.  Not all devices actually
816	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
817	 */
818	(void) zio_wait(zio);
819
820	spa_config_exit(spa, SCL_STATE, FTAG);
821}
822
823/*
824 * Function called when a log block write completes
825 */
826static void
827zil_lwb_write_done(zio_t *zio)
828{
829	lwb_t *lwb = zio->io_private;
830	zilog_t *zilog = lwb->lwb_zilog;
831	dmu_tx_t *tx = lwb->lwb_tx;
832
833	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
834	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
835	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
836	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
837	ASSERT(!BP_IS_GANG(zio->io_bp));
838	ASSERT(!BP_IS_HOLE(zio->io_bp));
839	ASSERT(zio->io_bp->blk_fill == 0);
840
841	/*
842	 * Ensure the lwb buffer pointer is cleared before releasing
843	 * the txg. If we have had an allocation failure and
844	 * the txg is waiting to sync then we want want zil_sync()
845	 * to remove the lwb so that it's not picked up as the next new
846	 * one in zil_commit_writer(). zil_sync() will only remove
847	 * the lwb if lwb_buf is null.
848	 */
849	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
850	mutex_enter(&zilog->zl_lock);
851	lwb->lwb_buf = NULL;
852	lwb->lwb_tx = NULL;
853	mutex_exit(&zilog->zl_lock);
854
855	/*
856	 * Now that we've written this log block, we have a stable pointer
857	 * to the next block in the chain, so it's OK to let the txg in
858	 * which we allocated the next block sync.
859	 */
860	dmu_tx_commit(tx);
861}
862
863/*
864 * Initialize the io for a log block.
865 */
866static void
867zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
868{
869	zbookmark_t zb;
870
871	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
872	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
873	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
874
875	if (zilog->zl_root_zio == NULL) {
876		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
877		    ZIO_FLAG_CANFAIL);
878	}
879	if (lwb->lwb_zio == NULL) {
880		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
881		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
882		    zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
883		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
884	}
885}
886
887/*
888 * Define a limited set of intent log block sizes.
889 * These must be a multiple of 4KB. Note only the amount used (again
890 * aligned to 4KB) actually gets written. However, we can't always just
891 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
892 */
893uint64_t zil_block_buckets[] = {
894    4096,		/* non TX_WRITE */
895    8192+4096,		/* data base */
896    32*1024 + 4096, 	/* NFS writes */
897    UINT64_MAX
898};
899
900/*
901 * Use the slog as long as the logbias is 'latency' and the current commit size
902 * is less than the limit or the total list size is less than 2X the limit.
903 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
904 */
905uint64_t zil_slog_limit = 1024 * 1024;
906#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
907	(((zilog)->zl_cur_used < zil_slog_limit) || \
908	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
909
910/*
911 * Start a log block write and advance to the next log block.
912 * Calls are serialized.
913 */
914static lwb_t *
915zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
916{
917	lwb_t *nlwb = NULL;
918	zil_chain_t *zilc;
919	spa_t *spa = zilog->zl_spa;
920	blkptr_t *bp;
921	dmu_tx_t *tx;
922	uint64_t txg;
923	uint64_t zil_blksz, wsz;
924	int i, error;
925
926	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
927		zilc = (zil_chain_t *)lwb->lwb_buf;
928		bp = &zilc->zc_next_blk;
929	} else {
930		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
931		bp = &zilc->zc_next_blk;
932	}
933
934	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
935
936	/*
937	 * Allocate the next block and save its address in this block
938	 * before writing it in order to establish the log chain.
939	 * Note that if the allocation of nlwb synced before we wrote
940	 * the block that points at it (lwb), we'd leak it if we crashed.
941	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
942	 * We dirty the dataset to ensure that zil_sync() will be called
943	 * to clean up in the event of allocation failure or I/O failure.
944	 */
945	tx = dmu_tx_create(zilog->zl_os);
946	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
947	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
948	txg = dmu_tx_get_txg(tx);
949
950	lwb->lwb_tx = tx;
951
952	/*
953	 * Log blocks are pre-allocated. Here we select the size of the next
954	 * block, based on size used in the last block.
955	 * - first find the smallest bucket that will fit the block from a
956	 *   limited set of block sizes. This is because it's faster to write
957	 *   blocks allocated from the same metaslab as they are adjacent or
958	 *   close.
959	 * - next find the maximum from the new suggested size and an array of
960	 *   previous sizes. This lessens a picket fence effect of wrongly
961	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
962	 *   requests.
963	 *
964	 * Note we only write what is used, but we can't just allocate
965	 * the maximum block size because we can exhaust the available
966	 * pool log space.
967	 */
968	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
969	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
970		continue;
971	zil_blksz = zil_block_buckets[i];
972	if (zil_blksz == UINT64_MAX)
973		zil_blksz = SPA_MAXBLOCKSIZE;
974	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
975	for (i = 0; i < ZIL_PREV_BLKS; i++)
976		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
977	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
978
979	BP_ZERO(bp);
980	/* pass the old blkptr in order to spread log blocks across devs */
981	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
982	    USE_SLOG(zilog));
983	if (error == 0) {
984		ASSERT3U(bp->blk_birth, ==, txg);
985		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
986		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
987
988		/*
989		 * Allocate a new log write buffer (lwb).
990		 */
991		nlwb = zil_alloc_lwb(zilog, bp, txg);
992
993		/* Record the block for later vdev flushing */
994		zil_add_block(zilog, &lwb->lwb_blk);
995	}
996
997	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
998		/* For Slim ZIL only write what is used. */
999		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1000		ASSERT3U(wsz, <=, lwb->lwb_sz);
1001		zio_shrink(lwb->lwb_zio, wsz);
1002
1003	} else {
1004		wsz = lwb->lwb_sz;
1005	}
1006
1007	zilc->zc_pad = 0;
1008	zilc->zc_nused = lwb->lwb_nused;
1009	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1010
1011	/*
1012	 * clear unused data for security
1013	 */
1014	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1015
1016	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1017
1018	/*
1019	 * If there was an allocation failure then nlwb will be null which
1020	 * forces a txg_wait_synced().
1021	 */
1022	return (nlwb);
1023}
1024
1025static lwb_t *
1026zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1027{
1028	lr_t *lrc = &itx->itx_lr; /* common log record */
1029	lr_write_t *lrw = (lr_write_t *)lrc;
1030	char *lr_buf;
1031	uint64_t txg = lrc->lrc_txg;
1032	uint64_t reclen = lrc->lrc_reclen;
1033	uint64_t dlen = 0;
1034
1035	if (lwb == NULL)
1036		return (NULL);
1037
1038	ASSERT(lwb->lwb_buf != NULL);
1039	ASSERT(zilog_is_dirty(zilog) ||
1040	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1041
1042	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1043		dlen = P2ROUNDUP_TYPED(
1044		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1045
1046	zilog->zl_cur_used += (reclen + dlen);
1047
1048	zil_lwb_write_init(zilog, lwb);
1049
1050	/*
1051	 * If this record won't fit in the current log block, start a new one.
1052	 */
1053	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1054		lwb = zil_lwb_write_start(zilog, lwb);
1055		if (lwb == NULL)
1056			return (NULL);
1057		zil_lwb_write_init(zilog, lwb);
1058		ASSERT(LWB_EMPTY(lwb));
1059		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1060			txg_wait_synced(zilog->zl_dmu_pool, txg);
1061			return (lwb);
1062		}
1063	}
1064
1065	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1066	bcopy(lrc, lr_buf, reclen);
1067	lrc = (lr_t *)lr_buf;
1068	lrw = (lr_write_t *)lrc;
1069
1070	/*
1071	 * If it's a write, fetch the data or get its blkptr as appropriate.
1072	 */
1073	if (lrc->lrc_txtype == TX_WRITE) {
1074		if (txg > spa_freeze_txg(zilog->zl_spa))
1075			txg_wait_synced(zilog->zl_dmu_pool, txg);
1076		if (itx->itx_wr_state != WR_COPIED) {
1077			char *dbuf;
1078			int error;
1079
1080			if (dlen) {
1081				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1082				dbuf = lr_buf + reclen;
1083				lrw->lr_common.lrc_reclen += dlen;
1084			} else {
1085				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1086				dbuf = NULL;
1087			}
1088			error = zilog->zl_get_data(
1089			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1090			if (error == EIO) {
1091				txg_wait_synced(zilog->zl_dmu_pool, txg);
1092				return (lwb);
1093			}
1094			if (error != 0) {
1095				ASSERT(error == ENOENT || error == EEXIST ||
1096				    error == EALREADY);
1097				return (lwb);
1098			}
1099		}
1100	}
1101
1102	/*
1103	 * We're actually making an entry, so update lrc_seq to be the
1104	 * log record sequence number.  Note that this is generally not
1105	 * equal to the itx sequence number because not all transactions
1106	 * are synchronous, and sometimes spa_sync() gets there first.
1107	 */
1108	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1109	lwb->lwb_nused += reclen + dlen;
1110	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1111	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1112	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1113
1114	return (lwb);
1115}
1116
1117itx_t *
1118zil_itx_create(uint64_t txtype, size_t lrsize)
1119{
1120	itx_t *itx;
1121
1122	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1123
1124	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1125	itx->itx_lr.lrc_txtype = txtype;
1126	itx->itx_lr.lrc_reclen = lrsize;
1127	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1128	itx->itx_lr.lrc_seq = 0;	/* defensive */
1129	itx->itx_sync = B_TRUE;		/* default is synchronous */
1130
1131	return (itx);
1132}
1133
1134void
1135zil_itx_destroy(itx_t *itx)
1136{
1137	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1138}
1139
1140/*
1141 * Free up the sync and async itxs. The itxs_t has already been detached
1142 * so no locks are needed.
1143 */
1144static void
1145zil_itxg_clean(itxs_t *itxs)
1146{
1147	itx_t *itx;
1148	list_t *list;
1149	avl_tree_t *t;
1150	void *cookie;
1151	itx_async_node_t *ian;
1152
1153	list = &itxs->i_sync_list;
1154	while ((itx = list_head(list)) != NULL) {
1155		list_remove(list, itx);
1156		kmem_free(itx, offsetof(itx_t, itx_lr) +
1157		    itx->itx_lr.lrc_reclen);
1158	}
1159
1160	cookie = NULL;
1161	t = &itxs->i_async_tree;
1162	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1163		list = &ian->ia_list;
1164		while ((itx = list_head(list)) != NULL) {
1165			list_remove(list, itx);
1166			kmem_free(itx, offsetof(itx_t, itx_lr) +
1167			    itx->itx_lr.lrc_reclen);
1168		}
1169		list_destroy(list);
1170		kmem_free(ian, sizeof (itx_async_node_t));
1171	}
1172	avl_destroy(t);
1173
1174	kmem_free(itxs, sizeof (itxs_t));
1175}
1176
1177static int
1178zil_aitx_compare(const void *x1, const void *x2)
1179{
1180	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1181	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1182
1183	if (o1 < o2)
1184		return (-1);
1185	if (o1 > o2)
1186		return (1);
1187
1188	return (0);
1189}
1190
1191/*
1192 * Remove all async itx with the given oid.
1193 */
1194static void
1195zil_remove_async(zilog_t *zilog, uint64_t oid)
1196{
1197	uint64_t otxg, txg;
1198	itx_async_node_t *ian;
1199	avl_tree_t *t;
1200	avl_index_t where;
1201	list_t clean_list;
1202	itx_t *itx;
1203
1204	ASSERT(oid != 0);
1205	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1206
1207	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1208		otxg = ZILTEST_TXG;
1209	else
1210		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1211
1212	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1213		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1214
1215		mutex_enter(&itxg->itxg_lock);
1216		if (itxg->itxg_txg != txg) {
1217			mutex_exit(&itxg->itxg_lock);
1218			continue;
1219		}
1220
1221		/*
1222		 * Locate the object node and append its list.
1223		 */
1224		t = &itxg->itxg_itxs->i_async_tree;
1225		ian = avl_find(t, &oid, &where);
1226		if (ian != NULL)
1227			list_move_tail(&clean_list, &ian->ia_list);
1228		mutex_exit(&itxg->itxg_lock);
1229	}
1230	while ((itx = list_head(&clean_list)) != NULL) {
1231		list_remove(&clean_list, itx);
1232		kmem_free(itx, offsetof(itx_t, itx_lr) +
1233		    itx->itx_lr.lrc_reclen);
1234	}
1235	list_destroy(&clean_list);
1236}
1237
1238void
1239zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1240{
1241	uint64_t txg;
1242	itxg_t *itxg;
1243	itxs_t *itxs, *clean = NULL;
1244
1245	/*
1246	 * Object ids can be re-instantiated in the next txg so
1247	 * remove any async transactions to avoid future leaks.
1248	 * This can happen if a fsync occurs on the re-instantiated
1249	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1250	 * the new file data and flushes a write record for the old object.
1251	 */
1252	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1253		zil_remove_async(zilog, itx->itx_oid);
1254
1255	/*
1256	 * Ensure the data of a renamed file is committed before the rename.
1257	 */
1258	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1259		zil_async_to_sync(zilog, itx->itx_oid);
1260
1261	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1262		txg = ZILTEST_TXG;
1263	else
1264		txg = dmu_tx_get_txg(tx);
1265
1266	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1267	mutex_enter(&itxg->itxg_lock);
1268	itxs = itxg->itxg_itxs;
1269	if (itxg->itxg_txg != txg) {
1270		if (itxs != NULL) {
1271			/*
1272			 * The zil_clean callback hasn't got around to cleaning
1273			 * this itxg. Save the itxs for release below.
1274			 * This should be rare.
1275			 */
1276			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1277			itxg->itxg_sod = 0;
1278			clean = itxg->itxg_itxs;
1279		}
1280		ASSERT(itxg->itxg_sod == 0);
1281		itxg->itxg_txg = txg;
1282		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1283
1284		list_create(&itxs->i_sync_list, sizeof (itx_t),
1285		    offsetof(itx_t, itx_node));
1286		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1287		    sizeof (itx_async_node_t),
1288		    offsetof(itx_async_node_t, ia_node));
1289	}
1290	if (itx->itx_sync) {
1291		list_insert_tail(&itxs->i_sync_list, itx);
1292		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1293		itxg->itxg_sod += itx->itx_sod;
1294	} else {
1295		avl_tree_t *t = &itxs->i_async_tree;
1296		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1297		itx_async_node_t *ian;
1298		avl_index_t where;
1299
1300		ian = avl_find(t, &foid, &where);
1301		if (ian == NULL) {
1302			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1303			list_create(&ian->ia_list, sizeof (itx_t),
1304			    offsetof(itx_t, itx_node));
1305			ian->ia_foid = foid;
1306			avl_insert(t, ian, where);
1307		}
1308		list_insert_tail(&ian->ia_list, itx);
1309	}
1310
1311	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1312	zilog_dirty(zilog, txg);
1313	mutex_exit(&itxg->itxg_lock);
1314
1315	/* Release the old itxs now we've dropped the lock */
1316	if (clean != NULL)
1317		zil_itxg_clean(clean);
1318}
1319
1320/*
1321 * If there are any in-memory intent log transactions which have now been
1322 * synced then start up a taskq to free them. We should only do this after we
1323 * have written out the uberblocks (i.e. txg has been comitted) so that
1324 * don't inadvertently clean out in-memory log records that would be required
1325 * by zil_commit().
1326 */
1327void
1328zil_clean(zilog_t *zilog, uint64_t synced_txg)
1329{
1330	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1331	itxs_t *clean_me;
1332
1333	mutex_enter(&itxg->itxg_lock);
1334	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1335		mutex_exit(&itxg->itxg_lock);
1336		return;
1337	}
1338	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1339	ASSERT(itxg->itxg_txg != 0);
1340	ASSERT(zilog->zl_clean_taskq != NULL);
1341	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1342	itxg->itxg_sod = 0;
1343	clean_me = itxg->itxg_itxs;
1344	itxg->itxg_itxs = NULL;
1345	itxg->itxg_txg = 0;
1346	mutex_exit(&itxg->itxg_lock);
1347	/*
1348	 * Preferably start a task queue to free up the old itxs but
1349	 * if taskq_dispatch can't allocate resources to do that then
1350	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1351	 * created a bad performance problem.
1352	 */
1353	if (taskq_dispatch(zilog->zl_clean_taskq,
1354	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1355		zil_itxg_clean(clean_me);
1356}
1357
1358/*
1359 * Get the list of itxs to commit into zl_itx_commit_list.
1360 */
1361static void
1362zil_get_commit_list(zilog_t *zilog)
1363{
1364	uint64_t otxg, txg;
1365	list_t *commit_list = &zilog->zl_itx_commit_list;
1366	uint64_t push_sod = 0;
1367
1368	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1369		otxg = ZILTEST_TXG;
1370	else
1371		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1372
1373	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1374		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1375
1376		mutex_enter(&itxg->itxg_lock);
1377		if (itxg->itxg_txg != txg) {
1378			mutex_exit(&itxg->itxg_lock);
1379			continue;
1380		}
1381
1382		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1383		push_sod += itxg->itxg_sod;
1384		itxg->itxg_sod = 0;
1385
1386		mutex_exit(&itxg->itxg_lock);
1387	}
1388	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1389}
1390
1391/*
1392 * Move the async itxs for a specified object to commit into sync lists.
1393 */
1394static void
1395zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1396{
1397	uint64_t otxg, txg;
1398	itx_async_node_t *ian;
1399	avl_tree_t *t;
1400	avl_index_t where;
1401
1402	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1403		otxg = ZILTEST_TXG;
1404	else
1405		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1406
1407	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1408		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1409
1410		mutex_enter(&itxg->itxg_lock);
1411		if (itxg->itxg_txg != txg) {
1412			mutex_exit(&itxg->itxg_lock);
1413			continue;
1414		}
1415
1416		/*
1417		 * If a foid is specified then find that node and append its
1418		 * list. Otherwise walk the tree appending all the lists
1419		 * to the sync list. We add to the end rather than the
1420		 * beginning to ensure the create has happened.
1421		 */
1422		t = &itxg->itxg_itxs->i_async_tree;
1423		if (foid != 0) {
1424			ian = avl_find(t, &foid, &where);
1425			if (ian != NULL) {
1426				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1427				    &ian->ia_list);
1428			}
1429		} else {
1430			void *cookie = NULL;
1431
1432			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1433				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1434				    &ian->ia_list);
1435				list_destroy(&ian->ia_list);
1436				kmem_free(ian, sizeof (itx_async_node_t));
1437			}
1438		}
1439		mutex_exit(&itxg->itxg_lock);
1440	}
1441}
1442
1443static void
1444zil_commit_writer(zilog_t *zilog)
1445{
1446	uint64_t txg;
1447	itx_t *itx;
1448	lwb_t *lwb;
1449	spa_t *spa = zilog->zl_spa;
1450	int error = 0;
1451
1452	ASSERT(zilog->zl_root_zio == NULL);
1453
1454	mutex_exit(&zilog->zl_lock);
1455
1456	zil_get_commit_list(zilog);
1457
1458	/*
1459	 * Return if there's nothing to commit before we dirty the fs by
1460	 * calling zil_create().
1461	 */
1462	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1463		mutex_enter(&zilog->zl_lock);
1464		return;
1465	}
1466
1467	if (zilog->zl_suspend) {
1468		lwb = NULL;
1469	} else {
1470		lwb = list_tail(&zilog->zl_lwb_list);
1471		if (lwb == NULL)
1472			lwb = zil_create(zilog);
1473	}
1474
1475	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1476	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1477		txg = itx->itx_lr.lrc_txg;
1478		ASSERT(txg);
1479
1480		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1481			lwb = zil_lwb_commit(zilog, itx, lwb);
1482		list_remove(&zilog->zl_itx_commit_list, itx);
1483		kmem_free(itx, offsetof(itx_t, itx_lr)
1484		    + itx->itx_lr.lrc_reclen);
1485	}
1486	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1487
1488	/* write the last block out */
1489	if (lwb != NULL && lwb->lwb_zio != NULL)
1490		lwb = zil_lwb_write_start(zilog, lwb);
1491
1492	zilog->zl_cur_used = 0;
1493
1494	/*
1495	 * Wait if necessary for the log blocks to be on stable storage.
1496	 */
1497	if (zilog->zl_root_zio) {
1498		error = zio_wait(zilog->zl_root_zio);
1499		zilog->zl_root_zio = NULL;
1500		zil_flush_vdevs(zilog);
1501	}
1502
1503	if (error || lwb == NULL)
1504		txg_wait_synced(zilog->zl_dmu_pool, 0);
1505
1506	mutex_enter(&zilog->zl_lock);
1507
1508	/*
1509	 * Remember the highest committed log sequence number for ztest.
1510	 * We only update this value when all the log writes succeeded,
1511	 * because ztest wants to ASSERT that it got the whole log chain.
1512	 */
1513	if (error == 0 && lwb != NULL)
1514		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1515}
1516
1517/*
1518 * Commit zfs transactions to stable storage.
1519 * If foid is 0 push out all transactions, otherwise push only those
1520 * for that object or might reference that object.
1521 *
1522 * itxs are committed in batches. In a heavily stressed zil there will be
1523 * a commit writer thread who is writing out a bunch of itxs to the log
1524 * for a set of committing threads (cthreads) in the same batch as the writer.
1525 * Those cthreads are all waiting on the same cv for that batch.
1526 *
1527 * There will also be a different and growing batch of threads that are
1528 * waiting to commit (qthreads). When the committing batch completes
1529 * a transition occurs such that the cthreads exit and the qthreads become
1530 * cthreads. One of the new cthreads becomes the writer thread for the
1531 * batch. Any new threads arriving become new qthreads.
1532 *
1533 * Only 2 condition variables are needed and there's no transition
1534 * between the two cvs needed. They just flip-flop between qthreads
1535 * and cthreads.
1536 *
1537 * Using this scheme we can efficiently wakeup up only those threads
1538 * that have been committed.
1539 */
1540void
1541zil_commit(zilog_t *zilog, uint64_t foid)
1542{
1543	uint64_t mybatch;
1544
1545	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1546		return;
1547
1548	/* move the async itxs for the foid to the sync queues */
1549	zil_async_to_sync(zilog, foid);
1550
1551	mutex_enter(&zilog->zl_lock);
1552	mybatch = zilog->zl_next_batch;
1553	while (zilog->zl_writer) {
1554		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1555		if (mybatch <= zilog->zl_com_batch) {
1556			mutex_exit(&zilog->zl_lock);
1557			return;
1558		}
1559	}
1560
1561	zilog->zl_next_batch++;
1562	zilog->zl_writer = B_TRUE;
1563	zil_commit_writer(zilog);
1564	zilog->zl_com_batch = mybatch;
1565	zilog->zl_writer = B_FALSE;
1566	mutex_exit(&zilog->zl_lock);
1567
1568	/* wake up one thread to become the next writer */
1569	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1570
1571	/* wake up all threads waiting for this batch to be committed */
1572	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1573}
1574
1575/*
1576 * Called in syncing context to free committed log blocks and update log header.
1577 */
1578void
1579zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1580{
1581	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1582	uint64_t txg = dmu_tx_get_txg(tx);
1583	spa_t *spa = zilog->zl_spa;
1584	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1585	lwb_t *lwb;
1586
1587	/*
1588	 * We don't zero out zl_destroy_txg, so make sure we don't try
1589	 * to destroy it twice.
1590	 */
1591	if (spa_sync_pass(spa) != 1)
1592		return;
1593
1594	mutex_enter(&zilog->zl_lock);
1595
1596	ASSERT(zilog->zl_stop_sync == 0);
1597
1598	if (*replayed_seq != 0) {
1599		ASSERT(zh->zh_replay_seq < *replayed_seq);
1600		zh->zh_replay_seq = *replayed_seq;
1601		*replayed_seq = 0;
1602	}
1603
1604	if (zilog->zl_destroy_txg == txg) {
1605		blkptr_t blk = zh->zh_log;
1606
1607		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1608
1609		bzero(zh, sizeof (zil_header_t));
1610		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1611
1612		if (zilog->zl_keep_first) {
1613			/*
1614			 * If this block was part of log chain that couldn't
1615			 * be claimed because a device was missing during
1616			 * zil_claim(), but that device later returns,
1617			 * then this block could erroneously appear valid.
1618			 * To guard against this, assign a new GUID to the new
1619			 * log chain so it doesn't matter what blk points to.
1620			 */
1621			zil_init_log_chain(zilog, &blk);
1622			zh->zh_log = blk;
1623		}
1624	}
1625
1626	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1627		zh->zh_log = lwb->lwb_blk;
1628		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1629			break;
1630		list_remove(&zilog->zl_lwb_list, lwb);
1631		zio_free_zil(spa, txg, &lwb->lwb_blk);
1632		kmem_cache_free(zil_lwb_cache, lwb);
1633
1634		/*
1635		 * If we don't have anything left in the lwb list then
1636		 * we've had an allocation failure and we need to zero
1637		 * out the zil_header blkptr so that we don't end
1638		 * up freeing the same block twice.
1639		 */
1640		if (list_head(&zilog->zl_lwb_list) == NULL)
1641			BP_ZERO(&zh->zh_log);
1642	}
1643	mutex_exit(&zilog->zl_lock);
1644}
1645
1646void
1647zil_init(void)
1648{
1649	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1650	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1651}
1652
1653void
1654zil_fini(void)
1655{
1656	kmem_cache_destroy(zil_lwb_cache);
1657}
1658
1659void
1660zil_set_sync(zilog_t *zilog, uint64_t sync)
1661{
1662	zilog->zl_sync = sync;
1663}
1664
1665void
1666zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1667{
1668	zilog->zl_logbias = logbias;
1669}
1670
1671zilog_t *
1672zil_alloc(objset_t *os, zil_header_t *zh_phys)
1673{
1674	zilog_t *zilog;
1675
1676	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1677
1678	zilog->zl_header = zh_phys;
1679	zilog->zl_os = os;
1680	zilog->zl_spa = dmu_objset_spa(os);
1681	zilog->zl_dmu_pool = dmu_objset_pool(os);
1682	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1683	zilog->zl_logbias = dmu_objset_logbias(os);
1684	zilog->zl_sync = dmu_objset_syncprop(os);
1685	zilog->zl_next_batch = 1;
1686
1687	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1688
1689	for (int i = 0; i < TXG_SIZE; i++) {
1690		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1691		    MUTEX_DEFAULT, NULL);
1692	}
1693
1694	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1695	    offsetof(lwb_t, lwb_node));
1696
1697	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1698	    offsetof(itx_t, itx_node));
1699
1700	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1701
1702	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1703	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1704
1705	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1706	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1707	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1708	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1709
1710	return (zilog);
1711}
1712
1713void
1714zil_free(zilog_t *zilog)
1715{
1716	zilog->zl_stop_sync = 1;
1717
1718	ASSERT0(zilog->zl_suspend);
1719	ASSERT0(zilog->zl_suspending);
1720
1721	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1722	list_destroy(&zilog->zl_lwb_list);
1723
1724	avl_destroy(&zilog->zl_vdev_tree);
1725	mutex_destroy(&zilog->zl_vdev_lock);
1726
1727	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1728	list_destroy(&zilog->zl_itx_commit_list);
1729
1730	for (int i = 0; i < TXG_SIZE; i++) {
1731		/*
1732		 * It's possible for an itx to be generated that doesn't dirty
1733		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1734		 * callback to remove the entry. We remove those here.
1735		 *
1736		 * Also free up the ziltest itxs.
1737		 */
1738		if (zilog->zl_itxg[i].itxg_itxs)
1739			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1740		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1741	}
1742
1743	mutex_destroy(&zilog->zl_lock);
1744
1745	cv_destroy(&zilog->zl_cv_writer);
1746	cv_destroy(&zilog->zl_cv_suspend);
1747	cv_destroy(&zilog->zl_cv_batch[0]);
1748	cv_destroy(&zilog->zl_cv_batch[1]);
1749
1750	kmem_free(zilog, sizeof (zilog_t));
1751}
1752
1753/*
1754 * Open an intent log.
1755 */
1756zilog_t *
1757zil_open(objset_t *os, zil_get_data_t *get_data)
1758{
1759	zilog_t *zilog = dmu_objset_zil(os);
1760
1761	ASSERT(zilog->zl_clean_taskq == NULL);
1762	ASSERT(zilog->zl_get_data == NULL);
1763	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1764
1765	zilog->zl_get_data = get_data;
1766	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1767	    2, 2, TASKQ_PREPOPULATE);
1768
1769	return (zilog);
1770}
1771
1772/*
1773 * Close an intent log.
1774 */
1775void
1776zil_close(zilog_t *zilog)
1777{
1778	lwb_t *lwb;
1779	uint64_t txg = 0;
1780
1781	zil_commit(zilog, 0); /* commit all itx */
1782
1783	/*
1784	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1785	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1786	 * callbacks have occurred that may clean the zil.  Only then can we
1787	 * destroy the zl_clean_taskq.
1788	 */
1789	mutex_enter(&zilog->zl_lock);
1790	lwb = list_tail(&zilog->zl_lwb_list);
1791	if (lwb != NULL)
1792		txg = lwb->lwb_max_txg;
1793	mutex_exit(&zilog->zl_lock);
1794	if (txg)
1795		txg_wait_synced(zilog->zl_dmu_pool, txg);
1796	ASSERT(!zilog_is_dirty(zilog));
1797
1798	taskq_destroy(zilog->zl_clean_taskq);
1799	zilog->zl_clean_taskq = NULL;
1800	zilog->zl_get_data = NULL;
1801
1802	/*
1803	 * We should have only one LWB left on the list; remove it now.
1804	 */
1805	mutex_enter(&zilog->zl_lock);
1806	lwb = list_head(&zilog->zl_lwb_list);
1807	if (lwb != NULL) {
1808		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1809		list_remove(&zilog->zl_lwb_list, lwb);
1810		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1811		kmem_cache_free(zil_lwb_cache, lwb);
1812	}
1813	mutex_exit(&zilog->zl_lock);
1814}
1815
1816static char *suspend_tag = "zil suspending";
1817
1818/*
1819 * Suspend an intent log.  While in suspended mode, we still honor
1820 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1821 * On old version pools, we suspend the log briefly when taking a
1822 * snapshot so that it will have an empty intent log.
1823 *
1824 * Long holds are not really intended to be used the way we do here --
1825 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1826 * could fail.  Therefore we take pains to only put a long hold if it is
1827 * actually necessary.  Fortunately, it will only be necessary if the
1828 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1829 * will already have a long hold, so we are not really making things any worse.
1830 *
1831 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1832 * zvol_state_t), and use their mechanism to prevent their hold from being
1833 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1834 * very little gain.
1835 *
1836 * if cookiep == NULL, this does both the suspend & resume.
1837 * Otherwise, it returns with the dataset "long held", and the cookie
1838 * should be passed into zil_resume().
1839 */
1840int
1841zil_suspend(const char *osname, void **cookiep)
1842{
1843	objset_t *os;
1844	zilog_t *zilog;
1845	const zil_header_t *zh;
1846	int error;
1847
1848	error = dmu_objset_hold(osname, suspend_tag, &os);
1849	if (error != 0)
1850		return (error);
1851	zilog = dmu_objset_zil(os);
1852
1853	mutex_enter(&zilog->zl_lock);
1854	zh = zilog->zl_header;
1855
1856	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1857		mutex_exit(&zilog->zl_lock);
1858		dmu_objset_rele(os, suspend_tag);
1859		return (SET_ERROR(EBUSY));
1860	}
1861
1862	/*
1863	 * Don't put a long hold in the cases where we can avoid it.  This
1864	 * is when there is no cookie so we are doing a suspend & resume
1865	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1866	 * for the suspend because it's already suspended, or there's no ZIL.
1867	 */
1868	if (cookiep == NULL && !zilog->zl_suspending &&
1869	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1870		mutex_exit(&zilog->zl_lock);
1871		dmu_objset_rele(os, suspend_tag);
1872		return (0);
1873	}
1874
1875	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1876	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1877
1878	zilog->zl_suspend++;
1879
1880	if (zilog->zl_suspend > 1) {
1881		/*
1882		 * Someone else is already suspending it.
1883		 * Just wait for them to finish.
1884		 */
1885
1886		while (zilog->zl_suspending)
1887			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1888		mutex_exit(&zilog->zl_lock);
1889
1890		if (cookiep == NULL)
1891			zil_resume(os);
1892		else
1893			*cookiep = os;
1894		return (0);
1895	}
1896
1897	/*
1898	 * If there is no pointer to an on-disk block, this ZIL must not
1899	 * be active (e.g. filesystem not mounted), so there's nothing
1900	 * to clean up.
1901	 */
1902	if (BP_IS_HOLE(&zh->zh_log)) {
1903		ASSERT(cookiep != NULL); /* fast path already handled */
1904
1905		*cookiep = os;
1906		mutex_exit(&zilog->zl_lock);
1907		return (0);
1908	}
1909
1910	zilog->zl_suspending = B_TRUE;
1911	mutex_exit(&zilog->zl_lock);
1912
1913	zil_commit(zilog, 0);
1914
1915	zil_destroy(zilog, B_FALSE);
1916
1917	mutex_enter(&zilog->zl_lock);
1918	zilog->zl_suspending = B_FALSE;
1919	cv_broadcast(&zilog->zl_cv_suspend);
1920	mutex_exit(&zilog->zl_lock);
1921
1922	if (cookiep == NULL)
1923		zil_resume(os);
1924	else
1925		*cookiep = os;
1926	return (0);
1927}
1928
1929void
1930zil_resume(void *cookie)
1931{
1932	objset_t *os = cookie;
1933	zilog_t *zilog = dmu_objset_zil(os);
1934
1935	mutex_enter(&zilog->zl_lock);
1936	ASSERT(zilog->zl_suspend != 0);
1937	zilog->zl_suspend--;
1938	mutex_exit(&zilog->zl_lock);
1939	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1940	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1941}
1942
1943typedef struct zil_replay_arg {
1944	zil_replay_func_t **zr_replay;
1945	void		*zr_arg;
1946	boolean_t	zr_byteswap;
1947	char		*zr_lr;
1948} zil_replay_arg_t;
1949
1950static int
1951zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1952{
1953	char name[MAXNAMELEN];
1954
1955	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1956
1957	dmu_objset_name(zilog->zl_os, name);
1958
1959	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1960	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1961	    (u_longlong_t)lr->lrc_seq,
1962	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1963	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1964
1965	return (error);
1966}
1967
1968static int
1969zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1970{
1971	zil_replay_arg_t *zr = zra;
1972	const zil_header_t *zh = zilog->zl_header;
1973	uint64_t reclen = lr->lrc_reclen;
1974	uint64_t txtype = lr->lrc_txtype;
1975	int error = 0;
1976
1977	zilog->zl_replaying_seq = lr->lrc_seq;
1978
1979	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1980		return (0);
1981
1982	if (lr->lrc_txg < claim_txg)		/* already committed */
1983		return (0);
1984
1985	/* Strip case-insensitive bit, still present in log record */
1986	txtype &= ~TX_CI;
1987
1988	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1989		return (zil_replay_error(zilog, lr, EINVAL));
1990
1991	/*
1992	 * If this record type can be logged out of order, the object
1993	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
1994	 */
1995	if (TX_OOO(txtype)) {
1996		error = dmu_object_info(zilog->zl_os,
1997		    ((lr_ooo_t *)lr)->lr_foid, NULL);
1998		if (error == ENOENT || error == EEXIST)
1999			return (0);
2000	}
2001
2002	/*
2003	 * Make a copy of the data so we can revise and extend it.
2004	 */
2005	bcopy(lr, zr->zr_lr, reclen);
2006
2007	/*
2008	 * If this is a TX_WRITE with a blkptr, suck in the data.
2009	 */
2010	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2011		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2012		    zr->zr_lr + reclen);
2013		if (error != 0)
2014			return (zil_replay_error(zilog, lr, error));
2015	}
2016
2017	/*
2018	 * The log block containing this lr may have been byteswapped
2019	 * so that we can easily examine common fields like lrc_txtype.
2020	 * However, the log is a mix of different record types, and only the
2021	 * replay vectors know how to byteswap their records.  Therefore, if
2022	 * the lr was byteswapped, undo it before invoking the replay vector.
2023	 */
2024	if (zr->zr_byteswap)
2025		byteswap_uint64_array(zr->zr_lr, reclen);
2026
2027	/*
2028	 * We must now do two things atomically: replay this log record,
2029	 * and update the log header sequence number to reflect the fact that
2030	 * we did so. At the end of each replay function the sequence number
2031	 * is updated if we are in replay mode.
2032	 */
2033	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2034	if (error != 0) {
2035		/*
2036		 * The DMU's dnode layer doesn't see removes until the txg
2037		 * commits, so a subsequent claim can spuriously fail with
2038		 * EEXIST. So if we receive any error we try syncing out
2039		 * any removes then retry the transaction.  Note that we
2040		 * specify B_FALSE for byteswap now, so we don't do it twice.
2041		 */
2042		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2043		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2044		if (error != 0)
2045			return (zil_replay_error(zilog, lr, error));
2046	}
2047	return (0);
2048}
2049
2050/* ARGSUSED */
2051static int
2052zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2053{
2054	zilog->zl_replay_blks++;
2055
2056	return (0);
2057}
2058
2059/*
2060 * If this dataset has a non-empty intent log, replay it and destroy it.
2061 */
2062void
2063zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2064{
2065	zilog_t *zilog = dmu_objset_zil(os);
2066	const zil_header_t *zh = zilog->zl_header;
2067	zil_replay_arg_t zr;
2068
2069	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2070		zil_destroy(zilog, B_TRUE);
2071		return;
2072	}
2073	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
2074
2075	zr.zr_replay = replay_func;
2076	zr.zr_arg = arg;
2077	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2078	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2079
2080	/*
2081	 * Wait for in-progress removes to sync before starting replay.
2082	 */
2083	txg_wait_synced(zilog->zl_dmu_pool, 0);
2084
2085	zilog->zl_replay = B_TRUE;
2086	zilog->zl_replay_time = ddi_get_lbolt();
2087	ASSERT(zilog->zl_replay_blks == 0);
2088	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2089	    zh->zh_claim_txg);
2090	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2091
2092	zil_destroy(zilog, B_FALSE);
2093	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2094	zilog->zl_replay = B_FALSE;
2095	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
2096}
2097
2098boolean_t
2099zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2100{
2101	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2102		return (B_TRUE);
2103
2104	if (zilog->zl_replay) {
2105		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2106		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2107		    zilog->zl_replaying_seq;
2108		return (B_TRUE);
2109	}
2110
2111	return (B_FALSE);
2112}
2113
2114/* ARGSUSED */
2115int
2116zil_vdev_offline(const char *osname, void *arg)
2117{
2118	int error;
2119
2120	error = zil_suspend(osname, NULL);
2121	if (error != 0)
2122		return (SET_ERROR(EEXIST));
2123	return (0);
2124}
2125